
CHAP T E R

24

Advan
ed Indexing Te
hniques

Pra
ti
e Exer
ises

24.1 Both LSM trees and bu�er trees (des
ribed in Se
tion 14.8.2) o�er bene�ts to

write-intensive workloads, 
ompared to normal B

+

-trees, and bu�er trees o�er

potentially better lookup performan
e. Yet LSM trees are more frequently used

in Big Data settings. What is the most important reason for this preferen
e?

Answer:

The biggest di�eren
e is that bu�er trees require more random I/O for insert

operations as 
ompared to LSM trees, whereas LSM trees perform more se-

quential I/O operations. For Big Data settings where data is resident on mag-

neti
 disks, random I/O is signi�
antly more expensive than sequential I/O,

and thus LSM trees are preferred.

24.2 Consider the optimized te
hnique for 
ounting the number of bits that are set

in a bitmap. What are the tradeo�s in 
hoosing a smaller versus a larger array

size, keeping 
a
he size in mind?

Answer:

A larger array requires fewer add operations, but if you in
rease the size of

the array beyond the 
a
he size, there will be an in
reased overhead for array

element a

ess. Thus, the array should be sized to �t in 
a
he. With L1 
a
he

sizes of a few megabytes, an array indexed by 16 to 24 bytes would work well.

24.3 Suppose you want to store line segments in an R-tree. If a line segment is not

parallel to the axes, the bounding box for it 
an be large, 
ontaining a large

empty area.

�

Des
ribe the e�e
t on performan
e of having large bounding boxes on

queries that ask for line segments interse
ting a given region.

�

Brie�y des
ribe a te
hnique to improve performan
e for su
h queries and

give an example of its bene�t. Hint: You 
an divide segments into smaller

pie
es.

187



188 Chapter 24 Advan
ed Indexing Te
hniques

Answer:

FILL

24.4 Give a sear
h algorithm on an R-tree for e	
iently �nding the nearest neighbor

to a given query point.

Answer:

Idea: Priortize sear
h of 
hildren nodes based on the distan
e of the bounding

box fom the query point (the distan
e is 0 if the bounding box 
ontains the

query point). Maintain a priority queue of nodes based on the distan
e. When

you �nd an answer at distan
e d and also all nodes whose bounding boxes

are at distan
e d or 
loser have been explored, the sear
h 
an stop sin
e any

unexplored items are at distan
e greater than d.

24.5 Give a re
ursive pro
edure to e	
iently 
ompute the spatial join of two rela-

tions with R-tree indi
es. (Hint: Use bounding boxes to 
he
k if leaf entries

under a pair of internal nodes may interse
t.)

Answer:

Every pair of bounding boxes at ea
h level that interse
t need to be explored

further; when exploring a pair, all interse
ting 
hild pairs are generated and

explored further, unless they are leaves in whi
h 
ase the answer 
an be gen-

erated.

24.6 Suppose that we are using extendable hashing on a �le that 
ontains re
ords

with the following sear
h-key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

Show the extendable hash stru
ture for this �le if the hash fun
tion is h(x) = x

mod 8 and bu
kets 
an hold three re
ords.

Answer:

The extendable hash stru
ture is shown in ??

24.7 Show how the extendable hash stru
ture of Exer
ise 24.6 
hanges as the result

of ea
h of the following steps:

a. Delete 11.

b. Delete 31.


. Insert 1.

d. Insert 15.

Answer:

a. Delete 11: From the answer to Exer
ise 24.6, 
hange the third bu
ket to:



Pra
ti
e Exer
ises 189

000

001

010

011

100

101

110

111

3 3

2

2

2

3

17

11

29

23

31

19

2

3

5

7

Figure 24.101 The extendable hash stru
ture for Exer
ise 24.6

3

19

3

At this stage, it is possible to 
oales
e the se
ond and third bu
kets. Then

it is enough if the bu
ket address table has just four entries instead of

eight. For the purpose of this answer, we do not do the 
oales
ing.

b. Delete 31: From the answer to Exer
ise 24.6, 
hange the last bu
ket to:

2

23

7


. Insert 1: From the answer to Exer
ise 24.6, 
hange the �rst bu
ket to:

2

17

1



190 Chapter 24 Advan
ed Indexing Te
hniques

d. Insert 15: From the answer to Exer
ise 24.6, 
hange the last bu
ket to:

2

15

23

7

24.8 Give pseudo
ode for deletion of entries fromAVi an extendable hash stru
ture,

in
luding details of when and how to 
oales
e bu
kets. Do not bother about

redu
ing the size of the bu
ket address table.

Answer:

Let i denote the number of bits of the hash value used in the hash table. Let

bsize denote the maximum 
apa
ity of ea
h bu
ket. The pseudo
ode is shown

in ??.

Note that we 
an only merge two bu
kets at a time. The 
ommon hash

pre�x of the resultant bu
ket will have length one less than the two bu
kets

merged. Hen
e we look at the buddy bu
ket of bu
ket j di�ering from it only

at the last bit. If the 
ommon hash pre�x of this bu
ket is not i

j

, then this

implies that the buddy bu
ket has been further split and merge is not possible.

When merge is su

essful, further merging may be possible, whi
h is han-

dled by a re
ursive 
all to 
oales
e at the end of the fun
tion.

24.9 Suggest an e	
ient way to test if the bu
ket address table in extendable hashing


an be redu
ed in size by storing an extra 
ount with the bu
ket address table.

Give details of how the 
ount should be maintained when bu
kets are split,


oales
ed, or deleted. (Note: Redu
ing the size of the bu
ket address table is

an expensive operation, and subsequent inserts may 
ause the table to grow

again. Therefore, it is best not to redu
e the size as soon as it is possible to

do so, but instead do it only if the number of index entries be
omes small


ompared to the bu
ket-address-table size.)

Answer:

If the hash table is 
urrently using i bits of the hash value, then maintain a


ount of bu
kets for whi
h the length of 
ommon hash pre�x is exa
tly i.

Consider a bu
ket j with length of 
ommon hash pre�x i

j

. If the bu
ket is

being split, and i

j

is equal to i, then reset the 
ount to 1. If the bu
ket is being

split and i

j

is one less than i, then in
rease the 
ount by 1. It the bu
ket is

being 
oales
ed, and i

j

is equal to i, then de
rease the 
ount by 1. If the 
ount

be
omes 0, then the bu
ket address table 
an be redu
ed in size at that point.

However, note that if the bu
ket address table is not redu
ed at that point,

then the 
ount has no signi�
an
e afterwards. If we want to postpone the re-

du
tion, we have to keep an array of 
ounts, i.e., a 
ount for ea
h value of


ommon hash pre�x. The array has to be updated in a similar fashion. The

bu
ket address table 
an be redu
ed if the i

th

entry of the array is 0, where



Pra
ti
e Exer
ises 191

delete(value K

l

)

begin

j = �rst i high-order bits of h(K

l

);

delete value K

l

from bu
ket j;


oales
e(bu
ket j);

end


oales
e(bu
ket j)

begin

i

j

= bits used in bu
ket j;

k = any bu
ket with �rst (i

j

* 1) bits same as that

of bu
ket j while the bit i

j

is reversed;

i

k

= bits used in bu
ket k;

if(i

j

� i

k

)

return; /* bu
kets 
annot be merged */

if(entries in j + entries in k > bsize)

return; /* bu
kets 
annot be merged */

move entries of bu
ket k into bu
ket j;

de
rease the value of i

j

by 1;

make all the bu
ket-address-table entries,

whi
h pointed to bu
ket k, point to j;


oales
e(bu
ket j);

end

Figure 24.102 Pseudo
ode for delition of Exer
ise 24.8.

i is the number of bits the table is using. Sin
e bu
ket table redu
tion is an

expensive operation, it is not always advisable to redu
e the table. It should be

redu
ed only when a su	
ient number of entries at the end of the 
ount array

be
ome 0.




	Parallel and Distributed Transaction Processing
	Exercises


