CHAPTER 25

Advanced Application
Development

Practice Exercises

25.1 Find out all performance information your favorite database system provides.
Look for at least the following: what queries are currently executing or exe-
cuted recently, what resources each of them consumed (CPU and I/O), what
fraction of page requests resulted in buffer misses (for each query, if available),
and what locks have a high degree of contention. Also get information about
CPU, 1I/0 and network utilization, including the number of open network con-
nections using your operating system utilities.

Answer:
* Postgresql: The EXPLAIN command lets us see what query plan the sys-

tem creates for any query. The numbers that are currently quoted by
EXPLAIN are:

a. Estimated startup cost
b. Estimated total cost
c. Estimated number of rows output by this plan node
d. Estimated average width of rows
* SQL: There is a Microsoft tool called SQLProfiler. The data are logged,

and then the performance can be monitored. The following performance
counters can be logged.

a. Memory

b. Physical disk
c. Process

d. Processor

e. SQLServer:Access Methods
193



194 Chapter 25 Advanced Application Development

f. SQLServer:Buffer Manager
g. SQLServer:Cache Manager
h. SQLServer:Databases
i. SQLServer:General Statistics
j- SQLServer:Latches
k. SQLServer:Locks
. SQLServer:Memory Manager
m. SQLServer:SQL Statistics
n. SQLServer:SQL Settable

25.2 Many applications need to generate sequence numbers for each transaction.

a. If a sequence counter is locked in two-phase manner, it can become a
concurrency bottleneck. Explain why this may be the case.

b. Many database systems support built-in sequence counters that are not
locked in two-phase manner; when a transaction requests a sequence
number, the counter is locked, incremented and unlocked.

i. Explain how such counters can improve concurrency.

ii. Explain why there may be gaps in the sequence numbers belonging
to the final set of committed transactions.

Answer:

If two-phase locking is used on the counter, the counter must remain locked in
exclusive mode until the transaction is done acquiring locks. During that time,
the counter is unavailable and no concurrent transactions can be started re-
gardless of whether they would have data conflicts with the transaction holding
the counter.

If locking is done outside the scope of a two-phase locking protocol, the
counter is locked only for the brief time it takes to increment the counter. Since
there is no other operation besides increment performed on the counter, this
creates no problem except when a transaction aborts. During an abort, the
counter cannot be restored to its old value but instead should remain as it
stands. This means that some counter values are unused since those values
were assigned to aborted transactions. To see why we cannot restore the old
counter value, assume transaction 7, has counter value 100 and then 7, is
given the next value, 101. If 7, aborted and the counter were restored to 100,
the value 100 would be given to some other transaction 7, and then 101 would
be given to a second transaction 7);. Now we have two non-aborted transac-
tions with the same counter value.

25.3 Suppose you are given a relation r(a, b, ¢).



Practice Exercises 195

Give an example of a situation under which the performance of equal-
ity selection queries on attribute ¢ can be greatly affected by how r is
clustered.

Suppose you also had range selection queries on attribute 5. Can you
cluster r in such a way that the equality selection queries on r.a and the
range selection queries on r.b can both be answered efficiently? Explain
your answer.

If clustering as above is not possible, suggest how both types of queries
can be executed efficiently by choosing appropriate indices.

Answer:

a.

If r is not clustered on a, tuples of r with a particular a-value could be
scattered throughout the area in which r is stored. This would make it
necessary to scan all of 7. Clustering on ¢ combined with an index would
allow tuples of r with a particular a-value to be retrieved directly.

This is possible only if there is a special relationship between a and b
such as “if tuple #; has an a-value less than the a-value of tuple 7,, then
t; must have a b-value less than that of #,”. Aside from special cases,
such a clustering is not possible since the sort order of the tuples on a
is different from the sort order on b.

The physical order of the tuples cannot always be suited to both queries.
If r is clustered on a and we have a B*-tree index on b, the first query
can be executed very efficiently. For the second, we can use the usual
Bt-tree range-query algorithm to obtain pointers to all the tuples in the
result relation, then sort those those pointers so that any particular disk
block is accessed only once.

25.4 When a large number of records are inserted into a relation in a short period
of time, it is often recommended that all indices be dropped, and recreated
after the inserts have been completed.

a. What is the motivation for this recommendation?
b. Dropping and recreation of indices can be avoided by bulk-updating of
the indices. Suggest how this could be done efficiently for B*-tree indices.
c. Iftheindices were write-optimized indices such as LSM trees, would this
advice be meaningful?
Answer:
a. Indexupdate can be expensive, with potentially 1 I/O per record inserted,

which could take 10 msec with magnetic disks. It is often cheaper to per-



196

Chapter 25 Advanced Application Development

25.5

25.6

form a bottom up build to recreate the index if there are a large enough
number of inserts.

b. Ifthe inserts are provided as a batch to the database system, for example
via bulk-load utilities, the database can sort the records in index order,
and then perform a merge with the leaf level of the B*-tree. This would
greatly reduce the I/O overhead.

c. With an LSM tree, there wouldn’t be any significant performance penalty
since the LSM tree is already designed to reduce the number of 1I/O op-
erations required for insertion. The underlying techniques are similar to
the solution for part (b), since they are based on merging of leaf-level
entries of different B*-trees.

Suppose that a database application does not appear to have a single bottle-
neck; that is, CPU and disk utilization are both high, and all database queues
are roughly balanced. Does that mean the application cannot be tuned further?
Explain your answer.

Answer:

It may still be tunable at a higher level. For example, by creating an index or
a materialized view, which may reduce both CPU and disk utilization signifi-
cantly. Further, caching may be done above the database layer, to reduce the
load on the database.

Suppose a system runs three types of transactions. Transactions of type A run
at the rate of 50 per second, transactions of type B run at 100 per second, and
transactions of type C run at 200 per second. Suppose the mix of transactions
has 25 percent of type A, 25 percent of type B, and 50 percent of type C.

a. What is the average transaction throughput of the system, assuming
there is no interference between the transactions?

b. What factors may result in interference between the transactions of dif-
ferent types, leading to the calculated throughput being incorrect?

Answer:

a. Letthere be 100 transactions in the system. The given mix of transaction
types would have 25 transactions each of type A and B, and 50 transac-
tions of type C. Thus the time taken to execute transactions only of type
Ais 0.5 seconds and that for transactions only of type B or only of type
C is 0.25 seconds. Given that the transactions do not interfere, the total
time taken to execute the 100 transactions is 0.5 + 0.25 + 0.25 = 1 sec-
ond, i.e., the average overall transaction throughput is 100 fransactions
per second.



Practice Exercises 197

One of the most important causes of transaction interference is lock
contention. In the previous example, assume that transactions of type 4
and B are update transactions, and that those of type C are queries. Due
to the speed mismatch between the processor and the disk, it is possible
that a transaction of type A4 is holding a lock on a “hot” item of data and
waiting for a disk write to complete, while another transaction (possibly
of type B or () is waiting for the lock to be released by A. In this scenario
some CPU cycles are wasted. Hence, the observed throughput would be
lower than the calculated throughput.

Conversely, if transactions of type 4 and type B are disk bound, and
those of type C are CPU bound, and there is no lock contention, ob-
served throughput may even be better than calculated.

Lock contention can also lead to deadlocks, in which case some
transaction(s) will have to be aborted. Transaction aborts and restarts
(which may also be used by an optimistic concurrency control scheme)
contribute to the observed throughput being lower than the calculated
throughput.

Factors such as the limits on the sizes of data structures and the
variance in the time taken by bookkeeping functions of the transaction
manager may also cause a difference in the values of the observed and
calculated throughput.

25.7 Suppose an application programmer was supposed to write a query

25.8

select *
from r natural left outer join s;

on relations r(4, B) and s(B, C), but instead wrote the query

select *
from r natural join s;

Give sample data for r and s on which both queries would give the same
result.

Give sample data for r and s where the two queries would give different
results, thereby exposing the error in the query,

Answer:
FILL IN

List some benefits and drawbacks of an anticipatory standard compared to a
reactionary standard.

Answer:



198

Chapter 25 Advanced Application Development

25.9

In the absence of an anticipatory standard it may be difficult to reconcile be-
tween the differences among products developed by various organizations.
Thus it may be hard to formulate a reactionary standard without sacrificing
any of the product development effort. This problem has been faced while
standardizing pointer syntax and access mechanisms for the ODMG standard.
On the other hand, a reactionary standard is usually formed after extensive
product usage, and hence has an advantage over an anticipatory standard -
that of built-in pragmatic experience. In practice, it has been found that some
anticipatory standards tend to be over-ambitious. SQL-3 is an example of a
standard that is complex and has a very large number of features. Some of
these features may not be implemented for a long time on any system, and
some, no doubt, will be found to be inappropriate.

Describe how LDAP can be used to provide multiple hierarchical views of data,
without replicating the base-level data.

Answer:

This can be done using referrals. For example an organization may maintain
its information about departments either by geography (i.e. all departments in
a site of the the organization) or by structure (i.e. information about a depart-
ment from all sites). These two hierarchies can be maintained by defining two
different schemas with department information at a site as the base informa-
tion. The entries in the two hierarchies will refer to the base information entry
using referrals.



	Advanced Indexing Techniques
	Exercises


