

CHAPTER 26

Blockchain Databases

Practice Exercises

26.1 What is a blockchain fork? List the two types of fork and explain their differences.

Answer:

A fork occurs when a block is added to a block other than the most recent one in the chain. A soft fork does not invalidate prior blocks, but a hard fork does.

26.2 Consider a hash function $h(x) = x \mod 2^{256}$, that is, the hash function returns the last 256 bits of x.

Does this function have

- a. collision resistance
- b. irreversibility
- c. puzzle friendliness

Why or why not?

Answer:

- a. collision resistance: No. Given a hash value y, it is easy to compute as many values as one wishes for x such that $x \mod 2^{256} = y$.
- b. irreversibility: Not in a strong sense. Given a hash value y, the set of values for x such that $x \mod 2^{256} = y$ is a small fraction of the domain from which x was chosen. So, unless the realistic set of possible values for x in the real-world application is virtually unbounded, this function fails the irreversibility test.
- c. puzzle friendliness: NO. Concatenating a bit string to another creates and easily computed new numeric value. Thus, finding a nonce is trivial computation problem.

26.3 If you were designing a new public blockchain, why might you choose proof-of-stake rather than proof-of-work?

Answer

The single biggest reason is the energy consumption of proof-of-work.

26.4 If you were designing a new public blockchain, why might you choose proof-of-work rather than proof-of-stake?

Answer:

Proof-of-work is easier to tune for mining rate and less susceptible to control by a relatively small group of large stakeholders.

26.5 Explain the distinction between a public and a permissioned blockchain and when each would be more desirable.

Answer:

There is no central control over a public blockchain. In a permissioned blockchain there is a controlling organization for at least membership and identity management.

26.6 Data stored in a blockchain are protected by the tamper-resistance property of a blockchain. In what way is this tamper resistance more secure in practice than the security provided by a traditional enterprise database system?

Answer:

The high degree of replication of a blockchain means that a successful tamperer must alter a prohibitively large number of copies. Not only is this hard, but also any significant failed attempt is easily detected by the network. The hash-pointer structure of the chain means that all subsequent blocks to an altered block must be altered as well. With a traditional database, theft of the access password can led to arbitrary changes anywhere in the database without detection.

26.7 In a public blockchain, how might someone determine the real-world identity that corresponds to a given user ID?

Answer:

Data mining of the blockchain and separately of real-world data might lead to correlations being discovered. Linkage of an ID to some other via a transaction can lead to the contruction of a relationship graph that may related a user ID to some already de-anonymized ID.

26.8 What is the purpose of gas in Ethereum?

Answer:

Gas represents a payment to miners for running a smart contract in Ethereum. By charging for code execution, Ethereum is able to place a bound on total execution time and disincent the construction of computationally consumptive smart contracts.

26.9 Suppose we are in an environment where users can be assumed not to be malicious. In that case, what advantages, if any, does Byzantine consensus have over 2PC?

Answer:

Nonmaliciousness allows us to assume there are no Sybil attacks. Rather we need be concerned only about arbitrary (not just fail-stop) failures. The Byzantine failure model offers that generality while 2PC makes the fail-stop assumption.

26.10 Explain the benefits and potential risks of sharding.

Answer:

Sharding allows parallelism in mining but also divides the set of miners into smaller sets that might be more susceptible to attack.

26.11 Why do enterprise blockchains often incorporate database-style access?

Answer:

Enterprise blockchains usually store more than just funds-transfers transactions among accounts, but instead store data of a more general-purpose nature.