CHAPTER Z 7

Formal-Relational Query
Languages

Practice Exercises
27.1 Let the following relation schemas be given:

R =(4,B0C)
S =(D,E,F)

Let relations 7(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. IL,(r)
b. oz_7 (1)
c. rXs
d. Tz (oc_p(r X s))
Answer:
a. {1|3q € r(qld] = 14D}
b. {t|t €r AtB] =17}

c. {t|3p € rdq € s(tlA] = plAd] A tIB] = p[B] A tIC] =
plCT A 1[D] = q[D]
ANIE] = qlE] A I[F] = q[FD}

d. {t|3p € rdq € sld] = plA] A 1[F] = q[F] A pIC] = q[D]}

27.2 LetR = (4, B, C), and let r; and r, both be relations on schema R. Give an
expression in the domain relational calculus that is equivalent to each of the
following:

2 Chapter 27 Formal-Relational Query Languages

a. IL,(r)
b. oz_; ()
c. rnrun
d rnnrn
e. 1 -

f. 1L, p(r) X g o(ry)

Answer:
a. {<t>|3p. g(<t,p,g>€ r)}
b. {<abc>| <abc>er Ab =17}

c. {<abc>| <abec>e€rV <abc>€ern}
d. {<abc>| <abc>e€r A <abc>€n}
e. {<abc>| <abc>erA<abc>¢&rn}

f. {<abyec>|3p, g(<abp>€ r A <gqgbc>€ r)}

273 LetR = (4,B) and S = (4,C), and let r(R) and s(S) be relations. Write

27.4

expressions in relational algebra for each of the following queries:
a. {<a>|3b<ab>er Ab=T)}
b. {<abc>| <ab>€rAn <ac>E€ s}

c. {<a>|3Fc(Kac>€ sAITb,by(<ab >€rA<cb >€
rAb > b))}

Answer:
a. 1L, (cg_7(r)
b. rXs

c. ILi(sX (L, (0,545(rX py(r)))))

Consider the relational database of Figure 27.13 where the primary keys are
underlined. Give an expression in tuple relational calculus for each of the fol-
lowing queries:

a. Find all employees who work directly for “Jones.”

b. Find all cities of residence of all employees who work directly for
“Jones.”

c. Find the name of the manager of the manager of “Jones.”

Practice Exercises 3

employee (person_name, street, city)

works (person_name, company_name, salary)
company (company_name, city)

manages (person_name, manager_name)

Figure 27.13 Employee database.

d. Find those employees who earn more than all employees living in the
city “Mumbai.”

Answer:
a. Query:
{t| Am € manages (t|person_name]| = m|person_namel
A m|manager_name] = ’Jones’)}
b. Query:

{t| Am € manages e € employee(e|person_name] = m|person_name]
A m|manager-name] = Jones’

A tlcity] = e[city])}
c. Query:

{t | Aml € manages Am2 € manages(ml|manager-name| = m2[person_name]

A ml|person_name] = ’Jones’
A tlmanager-name] = m2|manager-name])}

d. Query:

{t | Awl € works ~Iw2 € works(wl[salary] < w2[salary]

de2 € employee (w2|person_name] = e2|person_name]

A €2[city] = Mumbai’))}

275 LetR = (4,B) and S = (4,C), and let r(R) and s(S) be relations. Write
expressions in Datalog for each of the following queries:

a. {<a> |3b(<ab>er ANb=17)}
b. {<abc>| <ab>€rA <ac>E¢€ s}

c. {<a>|3Fc(Kac>€ sAITb,by(<ab >€rA<cb >€
rAb > b))}

4

Chapter 27

27.6

Formal-Relational Query Languages

Answer:

a. query(X):-r(X, I7)
b. query(X, Y, Z) -r(X, Y), s(X, Z)

c. query(X)=-sX,Y),rX,2),r(Y,W),Z > W

Consider the relational database of Figure 27.13 where the primary keys are
underlined. Give an expression in Datalog for each of the following queries:

a. Find all employees who work (directly or indirectly) under the manager
“Jones.”

b. Find all cities of residence of all employees who work (directly or indi-
rectly) under the manager “Jones.”

c. Find all pairs of employees who have a (direct or indirect) manager in
common.

d. Find all pairs of employees who have a (direct or indirect) manager in
common and are at the same number of levels of supervision below the
common manager.

Answer:
a. Query:
query (X) - p(X)
p (X) - manages (X, “Jones”)
p(X) - manages (X, Y), p(Y)
b. Query:
querv(X, C) - p(X), employee(X, S, C)
p(X) - manages(X, ‘Jones”)
p(X) - manages(X, Y), p(Y)
c. Query:

query(X, Y) == p(X, W), p(Y, W)
p(X Y) - manages(X, Y)
p(X, Y) - manages(X, Z), p(Z, Y)

d. Query:

Practice Exercises 5

query(X, Y) - p(X, Y)
p(X, Y) - manages(X, Z), manages(Y, Z)
p(X, Y) - manages(X, V), manages(Y, W), p(V, W)

27.7 Describe how an arbitrary Datalog rule can be expressed as an extended
relational-algebra view.

Answer:

A Datalog rule has two parts, the sead and the body. The body is a comma-
separated list of literals. A positive literal has the form p(¢,, t,, ..., t,) where pis
the name of a relation with » attributes, and #,, #,, ..., ¢, are either constants
or variables. A negative literal has the form —p(#,, ¢,,..., t,) where p has n
attributes. In the case of arithmetic literals, p will be an arithmetic operator
like >, = etc.

We consider only safe rules; see Section 27.4.4 for the definition of safety of
Datalog rules. Further, we assume that every variable that occurs in an arith-
metic literal also occurs in a positive nonarithmetic literal.

Consider first a rule without any negative literals. To express the rule as
an extended relational-algebra view, we write it as a join of all the relations
referred to in the (positive) nonarithmetic literals in the body, followed by
a selection. The selection condition is a conjunction obtained as follows: If
P, (X, Y), p, (Y, Z) occur in the body, where p, is of the schema (4, B) and
D, isof the schema (C, D), thenp,.B = p,.C should belong to the conjunction.
The arithmetic literals can then be added to the condition.

As an example, the Datalog query

querv(X, Y) - works(X, C, S1), works(Y, C, S2), S1 > S2, manages(X, Y)

becomes the following relational-algebra expression:

E 1 = G(wl.company.name:w2.company_name A wl.salary>w2.salary A

manages.person_name = wl.person_name A manages.manager-name = w2.person_name)

(p,s1(works) X p,,(works) X manages)

Now suppose the given rule has negative literals. First suppose that there are
no constants in the negative literals; recall that all variables in a negative literal
must also occur in a positive literal. Let g(X, Y) be the first negative literal,
and let it be of the schema (E, F). Let E; be the relational-algebra expression
obtained after all positive and arithmetic literals have been handled. To handle
this negative literal, we generate the expression

E} = E,' X (HAl»Az(Ei) -q)

6

Chapter 27 Formal-Relational Query Languages

where 4, and 4, are the attribute names of two columns in £; which correspond
to X and Y respectively.

Now let us consider constants occurring in a negative literal. Consider a
negative literal of the form —¢g(a, b, Y') where a and b are constants. Then, in
the above expression defining £, we replace ¢ with ¢ Ay=a /\A2=b(q)'

Proceeding in a similar fashion, the remaining negative literals are pro-
cessed, finally resulting in an expression E,,.

Finally the desired attributes are projected out of the expression. The at-
tributes in £, corresponding to the variables in the head of the rule become
the projection attributes.

Thus our example rule finally becomes the view:

create view guery as
I1

wl.person_name, w2.person_name (E 2)

If there are multiple rules for the same predicate, the relational-algebra
expression defining the view is the union of the expressions corresponding to
the individual rules.

The above conversion can be extended to handle rules that satisfy some
weaker forms of the safety conditions, and to some restricted cases where the
variables in arithmetic predicates do not appear in a positive nonarithmetic
literal.

	Blockchain Databases
	Exercises

