CHAPTER 31

Information Retrieval

Practice Exercises

31.1 Compute the relevance (using appropriate definitions of term frequency and
inverse document frequency) of each of the Practice Exercises in this chapter
to the query “SQL relation”.

Answer:

We do not consider the questions that contain neither of the keywords because
their relevance to the keywords is zero. The number of words in a question
includes stop words. We use the equations given in Section 31.2 to compute
relevance; the log term in the equation is assumed to be to the base 2.

Q# | #wo- # #“rela- “sQL” “relation” | “SQL” | “relation” | Tota

ds | “SQL” | -tion” | term freq. | term freq. relv. relv. relv.
1|84 1 1 0.0170 0.0170 0.0002 | 0.0002 0.0004
4122 0 1 0.0000 0.0641 0.0000 | 0.0029 0.0029
5146 1 1 0.0310 0.0310 0.0006 | 0.0006 0.0013
6122 1 0 0.0641 0.0000 0.0029 | 0.0000 0.0029
7133 1 1 0.0430 0.0430 0.0013 | 0.0013 0.0026
8|32 1 3 0.0443 0.1292 0.0013 | 0.0040 0.0054
9177 0 1 0.0000 0.0186 0.0000 | 0.0002 0.0002
14 | 30 1 0 0.0473 0.0000 0.0015 | 0.0000 0.0015
15| 26 1 1 0.0544 0.0544 0.0020 | 0.0020 0.0041

31.2 Suppose you want to find documents that contain at least k£ of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

Answer:

23

24

Chapter 31 Information Retrieval

31.3

314

Let S be a set of n keywords. An algorithm to find all documents that contain
at least k of these keywords is given below.

This algorithm calculates a reference count for each document identifier.
A reference count of i for a document identifier 4 means that at least 7 of the
keywords in S occur in the document identified by d. The algorithm maintains
a list of records, each having two fields - a document identifier, and the refer-
ence count for this identifier. This list is maintained sorted on the document
identifier field.

initialize the list L to the empty list;
for (each keyword c in S) do
begin
D = the list of documents identifiers corresponding to ¢;
for (each document identifier 4 in D) do
if (a record R with document identifier as d is on list) then
R.reference_count == R.reference_count + 1;
else begin
make a new record R;
R.document_id = d;
R.reference_count = 1;
add Rto L;
end;
end;
for (each record R in L) do
if (R.reference_count >= k) then
output R;

Note that execution of the second for statement causes the list D to “merge”
with the list L. Since the lists L and D are sorted, the time taken for this merge
is proportional to the sum of the lengths of the two lists. Thus the algorithm
runs in time (at most) proportional to » times the sum total of the number of
document identifiers corresponding to each keyword in S.

Suggest how to implement the iterative technique for computing PageRank
given that the 7" matrix (even in adjacency list representation) does not fit in
memory.

Answer:
FILL

Suggest how a document containing a word (such as /eopard) can be indexed
such that it is efficiently retrieved by queries using a more general concept (such
as “carnivore” or “mammal”). You can assume that the concept hierarchy is
not very deep, so each concept has only a few generalizations (a concept can,
however, have a large number of specializations). You can also assume that

31.5

Practice Exercises 25

you are provided with a function that returns the concept for each word in a
document. Also suggest how a query using a specialized concept can retrieve
documents using a more general concept.

Answer:
Add doc to index lists for more general concepts also.

Suppose inverted lists are maintained in blocks, with each block noting the
largest popularity rank and TF-IDF scores of documents in the remaining
blocks in the list. Suggest how merging of inverted lists can stop early if the
user wants only the top K answers.

Answer:

For all documents whose scores are not complete, use upper bounds to com-
pute the best possible score. If the Kth largest completed score is greater than
the largest upper bound among incomplete scores, output the top K answers.

	XML
	Exercises

