Introduction to DBMS

1. INTRODUCTION TO DBMS

A system which manages all such inter-related data is called “Database
Management System” It plays a vital role in almost all areas where
computers are used.

For example, a company can have a database of their employees, including
their name, address, age, date of birth and salaries.

DBMS:

DBMS

Collection of Set of software tools/programs
inter-related date. that operate on collection of data

Database management system can be defined as software that helps to
maintain and utilize a huge amount of data.

Users/Programmers

Database
system \

Application Programs/Queries

A4

DBMS

Software to Process
software

Queries/Programs

A 4

Software to access
stored data

| pa ™N)

Stored DB
Definition
(Meta-Data)

Stored
Database

o o4

Fig. 11 A Simplified Database System Environment

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

DBMS helps in:

1) Database design: It helps to decide how to organise the stored data.

2) Data analysis: It tells to execute queries over data in DBMS.

3) Concurrency and robustness: DBMS allows multiple users to access
data concurrently and protects data in case of system failures.

4) Efficiency and scalability: DBMS efficiently give answers to the
queries and the cost-effectiveness, ability to accommodate increased
workload and makes it scalable.

File systems versus a DBMS:

To store a large amount of data, we need a database management system.
For example, a company has a large amount of data on employees,
departments etc. In this case, only DBMS can give us the results, not file
systems.

Let us consider an example: A company has a large amount of data, say
500 GB, on employees. Now, this data needs to be accessed concurrently
by several employees, changes can be made to a certain parts of data, and
these should be applied consistently and access to certain part of data
must be restricted.

Using operating system files to store this huge amount of data, this may

cause certain drawbacks.

e |t is possible that we may not have 500 GB of main memory to hold all
the data.

* We must write special programs to answer each question.

e Operating systems are inflexible to enforce security.

We can store data using DBMS instead of files to manage the data efficiently.

File System DBMS

Data is stored on the disk Data is being stored by database
management system using indexing

Accessing any information is Time required to access is
time consuming comparatively less.
It can have redundant data DBMS reduces redundancy

Table 1.1 File System Vs DBMS

@

Note:

DBMS stores everything in a file, but DBMS also includes a piece of software
that helps manage these data efficiently.

The usefulness of different representations of the database:

i) We know how entities are related. Therefore, the databases can be
pictorially represented using E-R diagrams.

iil) We need tables to store data. The model which talks about it is called
the relational model.

concurrency control system.

Architecture of database:

Architecture of Database

ii) Searching and retrieving is fast. Therefore, we use B-Trees.
v) The accessing of data can be made simple using transaction and

Internal (physical) level

Conceptual level

External (view) level

The internal (physical)
level defines the physical
storage of database.

Conceptual level includes
conceptual schema,
which tells what data
needs to be stored and
what relationship will
exist among these data.

Fig. 1.2 Architecture of Database

The external or view level
includes several external
schemas or views. Each
external schema describes
the part of the database that
a particular user group is
interested in and hides the
rest of database from that
user group.

Chapter 1

Introduction to DBMS

External External
level View

External/Conceptual
mapping

Conceptual level

End users

External
View

Conceptual schemas

Conceptual / Internal
mapping

Internal level

Internal

schema

Fig. 1.3 Stored Database

Data Independence

Logical data independence is the
capacity of changing the conceptual
schema without having to change
external schemas or application

programs.

Physical data independence is the capacity
to change the internal schema without
having to change the conceptual schema.
Hence, the external schemas need not be
changed as well.

Fig. 1.4 Data Independence

Advantages of DBMS:

Data independence

Data Administration Advantages of DBMS Efficient data access

Data integrity and
security

Fig. 1.5 Advantage of DBMS

Concept of keys and constraints:

Keys

An attribute or a set of attributes which helps in uniquely identifying a tuple
(a row) in a relation (a table) is called a key.

Types of key
Candidate Primary Alternate Composite Super Surrogate Foreign
key key key key key key key
Fig. 1.6 Types of Keys

Compound key: Key with multiple attributes/columns.
Example: (emp_name, emp_dept) is a compound key.
Candidate key: The set of all unique keys are candidate keys.
Example: {emp-id, {emp-name, emp-dept}}

Rules while closing primary key:

e |t can not be null of any tuple/row.

e There should be at most one primary key per table.
e |t should be unique for each row/tuple.

Above mentioned conditions are called entity integrity constraints.

Constraints are properties to be satisfied while inserting, deleting, or

modifying the data in a relational table.

e Foreign key: It is an attribute/group of attributes in a relation database
which relates two tables.

)

Chapter 1

Introduction to DBMS

Example: Consider following two tables.

Works for

lﬁnﬂee \

(Referenced Relation) (Referencing Relation)

Table 1.2 Foreign Key

‘Emp-id’ is a foreign key in Works for relation. A foreign key should be the
primary key in referenced relation, but it may or may not be the primary key
in referencing relation.

Self-referential foreign keys: It defines relationships within the same table.

Table 1.3 Self-referential Foreign Keys

Here, the emp-dept id is a self-referential foreign key.

Surrogate key: It is an artificial key which uniquely identifies each record.
Super-key: It’s a collection of one or more attributes that allow us to
identify an entity in the relation uniquely. The superset of the candidate key
is known as the super key in a relation.

Example: consider Emp-id as a candidate key in a relation Employee.
Then, {Emp-id, Emp-name} is a super-key.

Ce)

How many super keys are possible inR (A, A, ... A)) when candidate key is {A}?

Super key = ((candidate key) U (other attributes))

Here, candidate key = A,

Now, A, U, A UA,,..A; UA, A, ...A, all are possible super keys. It means A,
can be combined with (n-1) ways to other attributes in a given relation.

Using the concept of power sets:
Number of super keys = 2",

How many super keys are possible in relationR (A, A, ... A) if candidate
keys are {A, A,}?

As we have discussed in the above example
® Taking A, as a candidate key.

Number of super keys = 2", say A,
* Taking A, as a candidate key.

Number of super keys = 2", say A,

Using inclusion-exclusion principal

(A TUTA, DA T+IA T=-TA INTA, |27 +27 =22 =2" —2"2,

v
Rack Your Brain

How many super keys willbe in arelation
R (A, A, ... A) when the candidate keys
are {{A, AL, {A,, Al

Rack Your Brain

Consider R (A, B, C, D); how many superkeys are possible if
i) Ais the candidate key.
ii) {A, B, C} are candidate keys.

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

Candidate key: The minimal superkey is defined as the candidate key.
Primary key: Randomly chosen candidate key is the primary key.

Let us consider two tables, student and subset, with mentioned attributes.

S—id S-name S-acc no S-roll no Sub id Sub-id Sub-name

Table 1.4 Tables

Here, Candidate keys = {S-id, S-acc no, S- roll no}
Primary key = {S-id}
Alternate keys = {S-acc no, S-roll no}
Super keys = {S-id, {S-id, S-name}, {S-id, S-name, S-roll no}...}
Foreign key = {Sub-id}

Alternate Key: All other keys are alternate keys from the set of candidate
keys, except the primary key.

Constraints:

As we have already discussed, constraints are conditions which must be
satisfied before performing any operation on the database.

Constraints
Domain Entity Referential
Constraints Integrity Integrity

Fig. 1.7 Constraints

i) Entity integrity constraints:
e Every relation must have a primary key
e Every primary key must be unique
e A primary key should not be NULL

ii) Domain integrity constraints:

Domain integrity constraints just give a valid value for the attribute.
Example: An employee’s age must be between 24 and 35, and the domain
should be (integer) numeric value.

Referential integrity constraints:
e |t is based on a foreign key concept.

Example:
1 Jannat 101
2 Faisu 102
3 Muskan 103

Table 1.5 Referencing Relation

101 Acting
102 Singing
Table 1.6 Referenced Relation

Now, various operations can be performed on referencing and referenced
relations.

The three basic operations are:

® Insertion

e Deletion

e Updation

Chapter 1

Introduction to DBMS

On insertion On inserting
On inserting in referenced relation, there On inserting in referencing relation, first it
will be no change in referencing relation. will check if it is not violating referential

integrity constraint.

On deletion On deletion
On deleting a row, changes will be made: On deletion in referencing relation, it will
i) On delete no action bring no change.

ii) On delete cascade.
This will be a deletion of a row from
referencing relation corresponds to
particular key.

iif) On delete set null:
It will set value null corresponding
referencing tuple.

On updation On updation

i) On updation no action. It will also check for violation.
ii) On updation cascade

It will update the changes in referencing
relation.

iii) On update set null is not widely used.
Table 1.7 Referenced Vs Referencing Relation

Note:

e On delete cascade can result in loss of data.
e On delete, no action violates referential integrity.

Relational model:
The database is essentially represented as a collection of relations in the

relational paradigm. E.F Codd proposed it to model data in the form of
relations or tables.

Example:

Sushant Mumbai 9213213400 CS/IT
2 Rhea Bhopal 9132123400 Civil 31
3 Showick West Bengal 9123912300 Mechanical 24
4 Kangana Himachal 9989998900 37
5 Diljit Punjab 9789978900 Electrical 29
6 Arnab Delhi 8760876000 Communication 42

Table 1.8 Relational Model

Terminology:

Terminology —

Tuple: Each row in the relation is known as tuple.

Attribute: Attribute is the name of column in a
particular table.

Domain of an Attribute: The possible values an attribute
can take in a relation is called domain.

Null Values: The unknown or empty cells are considered
as null values. It is represented by blank space.

Degree: The number of attributes in a relation is known
as degree of relation.

Cardinality: The number of tuples in a relation is known
as cardinality.

Relation Instance: It is finite set of tuples in RDBMS
system.

Relational Schema: It represents the name of relation
with its attributes.

Fig. 1.8 Terminology

)

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

Note:

Relation instances never have duplicate tuples.

Example: Employee

Mumbai 9213213400 CS/IT

Sushant
2 Rhea
3 Showick
4 Kangana
5 Diljit
6 Arnab

Tuple: 1 Sushant

Bhopal 9132123400 Civil

West Bengal 9123912300 Mechanical

Himachal 9989998900
Punjab 9789978900 Electrical
Delhi 8760876000 Communication

Table 1.9 Employee Data

Mumbai 9213213400 CS/IT 2

Attributes: emp-id, Name, Address, Contact, Dept, Age.

The domain of attribute Age: The age range should be greater than 20 and

less than 45.

Null values: emp-id = 4 has no dept assigned.

Cardinality: 6

ER Model

Entity

Fig. 1.9 ER Model

Relationship

Gulshan

The E-R model consists of three basic terms:
® Entity sets

e Relationship sets

e Attributes

> 0. The foundation rule

\ 4
—

. Information rule

\ 4
N

. Guaranteed access rule

> 3. Systematic treatment of null values

4. Active/Dynamic online catalog based
on the relational model

5. Comprehensive data sub language rule

Codd Rules —

6. View updating rule

7. Relational level operation rule

8. Physical data independence rule

9. Logical data independence rule

> 10. Integrity independence rule

> 11. Distribution independence rule

> 12. Non sub version rule

Fig. 110 Codd Rules

Entity sets:

An entity is a distinct object that can be differentiated from other items.
It has a set of properties, some of which can be used to identify an entity.
For example, an employee will have an id which uniquely identifies one

(3)

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

particular employee. In addition, an entity can be concrete (person, book)
or abstract (loan, holiday or concept).

A set of entities of the same type with the same features or attributes
is referred to as an entity set. Individual entities that make up a set are
referred to as the extension of the entity set in a database management
system (DBMS). All individual bank clients, for example, are an extension of
the entity set customer.

It is not required for entity sets to be disjoint. A set of attributes represents
an entity. Each of the attributes of an entity has a value. For example, empid,

emp-name, and emp-address may have value for a certain employee object.
Types of Entity Set

v v

Strong Entity Set Weak Entity Set

Fig. 111 Types of Entity Set

Strong entity set:

It has enough properties to identify each of its entities uniquely. So, formally
we can say that a strong entity set has a main key.

A rectangle represents it.

Example:

E, Relationship E,

Fig. 1.12 Strong Entity Set

Where, E = Entity set
A = Attribute

Weak entity set:

It lacks sufficient properties to allow its entities to be uniquely identified.
Although the weak entity set does not have a primary key, it does have a
partial key, known as a discriminator, that can identify a group of entities
from the entity set. A dashed line is used to depict it.

Weak entity sets are represented by a double rectangle, while the relationship
between strong and weak entity sets is represented by a double diamond
symbol. This relationship is known as the identifying relationship.

Note:
Total participation exists in a relationship involving weak entities, from the
weak entity terminal.

Example:

Fig. 113 Weak Entity Set

Where, E, is a weak entity set
E, is a strong entity set
A, is the discriminator of a weak entity set E,

Relationship sets:
A connection is essentially an association between two or more entities. A
relationship set is a collection of similar relationships.

The association between entity sets is referred to as participation. The
entity’s function in a relationship is called that entity’s role.

Note:
A relationship may also have attributes called descriptive attributes.

The number of entity sets that participates in a relationship set is called
the degree of a relationship set. A binary relationship set is degree 2, a
ternary relationship set is degree 3.

Attributes:

Attributes can be of the following types:

1) Simple and composite attributes: The attributes which cannot be
decomposed into a set of smaller independent attributes are classified
as simple attributes. Composite attributes can be further split into
more than one simple attribute.

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

Name

First-name Middle-name Last-name

Fig. 114 Composite Attributes Employee Name

2) Single-valued and multivalued attributes: Single valued characteristics
are attributes that have a single value for a specific entity. A multivalued
attribute is one that has a collection of values for a certain entity.

3) Derived attribute: An attribute whose field can be derived from other
attributes is classified as a derived attribute.

Consider the following scenario: The date of birth can be used to
calculate age.

Constraints:

There are two major types of constraints which we will discuss:
® Mapping cardinalities

e Participation constraints

i) Mapping cardinalities: Mapping cardinality denotes the number of
associativity from one entity set to another. The following forms of
mapping cardinalities for a binary relationship set R on entity sets
A and B are possible:

1) One-to-one: An entity in A is associated with at most one
entity in B, and an entity in B is associated with at most one
entity in A.

aI
a
2,

o

o U T T
W W

Iy

a,

A B

Fig. 1.15 One-to-one Mapping

2) One-to-many: A single entity in set A can be linked to any
number of entities in set B, but one entity in set B can be
linked to at most one entity in set A.

Fig. 116 One-To-Many Mapping

3) Many-to-one: Every component in set A must have at most one
correspondence in set B. Every component in set B may have
zero or more correspondences in set A.

Fig. 1.17 Many-to-one Mapping

4) Many-to-many: Every component in set A may have any number
of correspondences in set B and conversely.

Fig. 1.18 Many-to-many Mapping

ii) Participation constraints:

Fig. 1.19 Participation Constraints

Chapter 1

Introduction to DBMS

If every entity in E participates in at least one relationship in R, the
participation is said to be total.

However, if just some entities participate in relationship R, entity set E’s
participation is considered partial.

Relationship sets:

Let R be a set of relationships involving entity sets E, E,,... E_. Let the
primary key (E) signify the set of attributes that make up the entity set Ei’s
primary key.

Entity-relationship diagram:
ER models consist of the following major components.

e Rectangle Represent entity set
e Eclipse Represent attributes
e Diamonds represent relationship sets
e Llines Attributes are linked to entity sets, while

entity sets are linked to relationship sets.

e Double eclipse represent Multivalued attributes
e Dash oval ' . represents derived attributes

e Double lines Total participation

® Double rectangles Weak entity sets

Example of ER diagram:

Employee address

Employee
contact

Project id

Employee @ Project

Fig. 1.20 ER Diagram

Employee id

Here in the above diagram:
e Underlined entity is the primary key.
An undirected line represents a many-to-many relationship.

[]
Adirected line mayrepresentaone-to-manyor many-to-one relationship.

Example 1:

Customer w— Loan = one-to-many
Customer Borrower Loan = many-to-one

Fig. 1.21 Example

Example 2: The following figure shows ER diagram with composite,
multivalued and derived attributes.

m_name
@ L_name

nanB/ City

[

eet

Street number
Date of birth @

.,
...........

Fig. 1.22 ER Diagram

Minimization of ER diagrams:

We can minimize ER diagrams into tables because RDMS can easily organise
tables.

To minimize ER diagrams, following rules should be kept under consideration.

I) A strong entity with only simple attribute will require only one table.
e Attributes of the entity set will be the attributes of table.
e Primary attributes of the entity set will be primary key of table.

For example:
name
::
| Employee

Fig. 1.23 ER Diagram

=| emp_id | name | address

II) Check for strong entity set with composite attributes

e A strong entity with any number of composite attributes will require
only one table.
Example:

@ address

Fig. 1.24 ER Diagram

=|emp_id | f_name | m_name |l_name | City | Street | H.No.

Il) Check for strong entity set with multivalued attributes.
This requires two tables:

® One table will contain all simple attributes with primary key.
e Other table will contain primary key all the multivalued attributes.

Example:

| Employee !

Fig. 1.25 ER Diagram

€D

emp_id | name

Table 1:

emp _id | contact

Table 2:

IV) Translation of relationship set into a table:

It requires one table in relational model and its attributes should be:
® Primary key attributes of entity sets
e Descriptive attributes if any

Example:

Project_id

Employee Project

Fig. 1.26 ER Diagram

emp_id | proj_id | time

This design requires three relations- Employee, Project, Works on.
V) Check for binary relationships with cardinality ratios.

(22)

Case I:
Many-to-many
Example:

Fig. 1.27 Many-to-one Example

Here, three tables will be required:

e P(P,P)
° Q(P,Q)
° R@Q,Q)

Case ll: One-to-many:

27

P /R\ Q
N

Fig. 1.28 One-to-many Example

Here, two tables will be required

° QR(P,Q,Q)
e P(P,P)

Case lll: Many-to-one:

m

p 0 .
A

3

Fig. 1.29 Many-to-one Example

Here, two tables will be required:
e PR(P,P,Q)
° Q (Q15 Q2)

Chapter 1

Introduction to DBMS

Case IV: One-to-one:

X7

P /R’\ Q
N

Fig. 1.30 One-To-One Example

In this case, there are two ways

/\

PR (P, P,, Q) P (P, P,)
Q(Q, Q) QR (P, Q, Q;)

VI) Check for the binary relationship between cardinality and participation
constraints.

Case I: On one side, there is a binary relationship between a cardinality
constraint and a total participation constraint.

Fig. 1.32 ER Diagram

As we have already discussed, for one-to-many, two tables will be required
e P(P,P)
® QR (Q1’ P'I’ QQ)

But, because of total participation, the foreign key acquires Not NULL
constraint, i.e., the new foreign key cannot be null

Case ll: Binary relationship with cardinality constraint and total participation
constraint from both sides.

P - (/R\> » Q
N \/ 7

Fig. 1.33 Binary Relationship Diagram

Please keep in mind that if both sides of an entity set have a key constraint

with total participation, the binary connection is represented using only
one table.

Therefore,

PRQ is the table that will generate in this case (P, P,, Q, Q,)

VII) With a weak entity set, view for binary relationships. Please remember
that a weak entity set is always associated with an identifying
connection that has a total participation constraint.

: 1”@

Example:

Fig. 1.34 ER Diagram
Therefore, here two tables will be required:
e P(P,P)
* QR(P,Q,Q)

The above mentioned seven rules are the basic and main rules used in
reducing of E-R diagrams into tables.

SOLVED EXAMPLES

Find the minimum number of tables required for the following ER diagram in
relational model.

=x s

b S

With the help of the above discussed rules, we can conclude that a minimum of
3 tables will be required.

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

Table 1:
AR, =| A, | A, | A, |B,
Table 2:
B=|B, |B,
Table 3:
CR, =|BC, |C, |c,

Consider the below ER model:

AV

O m G

c 0

5 D

b S

How many are the minimum number of relations needed to organise the above
ER model into RDBMS design?

Considering the above given ER diagram and applying rules, minimum 5 tables
will be required.

Table 1:

AR, | A | Ay | B

Table 2:
B|B |B
Table 3:
CR, |G |C, | By
Table 4:
DR,R, [D; | D, | C; | B,
Table 5:

Q. Find the minimum number of tables required for the given ER
diagram.

G ite

Class |

|
Teac>

M

Student

Chapter 1

Introduction to DBMS

Previous Years’ Question

Consider the following ER diagram.

M %

=

Tk
Sats b s

®

Which of the following is a correct attribute set for one of the tables
for the minimum number of tables needed to represent M, N, P, R, R,?

1) {M1$ M2’ M3! P1}
3) {M,P,N}
Sol: 1)

Self-referential relationship:

It is the relation from an entity to itself. For example, a manager being an employee

managing another employee.

2) {M1$ P1! N«]’ N2}
4) {M, P}

Employee

Manages

(GATE-CSE 2008)

General diagram of show the self-referential relationship:

Fig. 1.35 Self-Referential Relationship

Case I: One-to-one relationship:

@ @ dept_id

Employee Manages

Fig. 1.36 One-to-one Relationship

Only one table will be required.
Case 2: One-to-many relationship

Fig. 1.37 One-to-many Relationship

Only one table will sufficient.
Case 3: Many-to-many relationship:

Fig. 1.38 Many-to-many Relationship

Two table will be required.

Extended ER-features:

Specialization:

e Specialization refers to the presence of more detailed attribute set
belonging to an entity that uniquely defers it from other entities.

e Consider a person entity set with attributes such as name, street, and
city. A person can also be described as one of the following:

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

e Customer & Employee

® Specialization is the process of identifying subgroupings within an
entity set. We can discriminate between employees and customers
using person specialization.

e Specialization is represented in the E-R diagram by the triangle
component labelled ISA, which stands for “is-a” and symbolises, for
example, a client is a person. A superclass-subclass relationship is
another name for this relationship.

Generalization:

Generalization refers to the similarity of attributes shared between two or
more entities.

For all the practical purposes, generalization is simple inversion of
specialization. “Difference in the two approaches may be characterized by

their starting point and our all goal.

Specialization stems from a single entity set, it emphasises difference
among entities within the set by creating distinct lower-level entity sets.
Generalization proceeds from the recognition that a number of entity sets
share some common features.”

G =2 >

person

ISA

|employee| |customer|

secretary

station hours
number worked

Fig. 1.39 Specialization and Generlization

office
number

Function dependency

In this topic we are going to study the following things
e Functional Dependencies

e Types of functional dependency

e Rules of functional dependency

e Attribute closure

e Minimal cover

® Problem caused by redundancy

e Equivalence set of functional dependency

Here, we will concentrate on an important class of constraints called
functional dependencies.

Definition

Functional dependency (FD) is a kind of integrity constraint that
generalizes the concept of a key.

Let R be a relation and let X & Y be non-empty sets of attributes in R
If the following holds for every Tuple t, and t, in r, we claim that an instance
r of R fulfils the FD X ® Y.

Ift,xX=t,xXthent xY=t xy.
Where t, and t, are two difference tuples.

Consider an entity set employee with attributes emp-id, emp-name,
empaddress.

Employee (emp-id, emp-name, emp-address)

Now,

1) |If given an employee id, we can uniquely determine the employee’s
name. It can be represented as:

emp-id - emp-name ..()
2) Similarly, given an id, we can uniquely determine the address
Therefore, emp-id — emp-address ..(ii)

Now, combining (i) & (ii) we get
emp-id - emp-name, emp-address

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

Note:

‘>’ is a notation which means LHS functionally determines RHS.

Generalization, given a relation R(A, A, ..., A))
Let{A, A, A} —> {A, A}

Now, let’s try to understand this concept using set theory.
A A, A, A, A

Types of functional dependencies:

Functional Dependencies

Trivial Functional Non-Trivial Functional
Dependency Dependency

Fig. 1.40 Types of Functional Dependencies

® Any Functional dependency is said to be Trivial iff LHS is a superset of
RHS.

Considering the above example:
emp-id - emp-id
emp-id, emp-name — emp-id
emp-id, emp-name — emp-name
® Any Functional dependency is said to be non-trivial if LHS is not a
superset of RHS :
For example, emp-id - emp-name

Rules of functional dependency:
Over arelation schema R, we employ X, Y, and Z to denote sets of attributes:

(32)

1. Reflexivity: If X2 Y, then X > Y
2. Augmentation: If X —» VY, then XZ — YZ for any Z

3. Transitivity: If X > YandY - Z, then X »> Z

There are some additional rules as well.
1) Union:If X ->Yand X — Z, then X - YZ
2) Decomposition: If X - YZ, then X > Yand X > Z

Attribute closure of functional dependency:
A collection of all Functional dependencies implied by a particular set F of
Functional Dependency is defined as the closure of F. To check if a given
Functional dependency is in the closure of a set F of FDs, we can do this
using the following algorithm.

Closure = X

Repeat until there is no change: {

If there is an FD: U — V in F such that

U < closure,

then set closure = closure UV

}

Attribute closure of X: It is a set of attributes that can be functionally
determined using attributes in X.

Example 1: Given relation R(A, B, C)and FD=A > B,B > C
Now, let’s compute the closure of A (A*), which is a set of all attributes
which can be determined using A.

*={A, B, C}
Similarly:
B* = {B, C}
+={c}
Example 2: R(A, B, C, D, E, F, G) and set of FD =
{
AB — CD

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

AF > D
DE > F
C—o>G
F—>E
G—o>A

}

Find closure of CF?

Sol:
(CF)Y'=1{c, F, G, E, A, D}

IE

F—>E

C—->G

G—A

Closure of attributes helps us to determine super keys and candidate keys.

e |f F* gives all attributes of R, then F is super key.

Note:

Attributes which are part of atleast one candidate key are called prime attribute, non-

prime otherwise, and the concept of prime attribute helps us to determine all possible
candidate keys.

SOLVED EXAMPLES

Consider a relation R with the attributes (P, Q, M, S, T, U, V, W) with the fol-
lowing functional dependencies :

P>Q,S>V, TU>»W,MS>T,Q>U,U>S,S > P, T M. Which of the follow-
ing is/are keys for relation R?

1) MS 2) STU 3) PS 4) PU

1) and 2)

1) MS=>T,S=>V,S>PP->QQ~>UTU->W.
MS)+={P,Q, M, S, T, U, V, W}
.. MS is a key for R.

2) (STU)+={S,T,U,V,W, P, M, Q}
.. STU is a key for R.

3) (PS)+ ={P, S, Q,V, U}

.. PS is not a key for R.
4) (PU)+={PU,Q,S,V}

.. PU is not a key for R.

R(ABCDE)
FD = {A — BCDE,
BC — ADE,
D > E}
Find candidate key?

A* = {A, B, C, D, E}

Now, B* = {B}
*={c}

*= {D}

E* = {E}

But BC — A, now we will check for BC,
(BC)*={B, C, A, D, E}
Therefore, BC is a candidate key.

Properties of functional dependency set:

1) Membership: Let F be an FD set on R we can get X — Y using FD in F then, X - Y is
a member of F.

Example: R{ABC} and FD ={P - Q, Q —» R}
Is P - R is member of F?

Sol: P* = {P, Q, R}

Using closure of P, we can say that

A—>C

Therefore, P - R is a member of F.

2) Closure of an FD set: It is a set of all functional dependencies that can be determined
using Functional dependency in F.

Note:
F* includes all trivial and non-trivial dependencies that are possible.

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

3) Equality of functional dependency set: Two Functional dependency, F and G, is said
to be equal iff are
o Fr=gG*
e F covers G, and G covers F (If all FDs in G can be determined by all FD’s in F and
all FDs in F can be determined by all FDs in G).

SOLVED EXAMPLES

For R(PQRS), given F={PQ>RS,Q>R,R=> S}
G={PQ>R,PQ>S,R> S}
IsF=G?

F covers G

(PQ): ={P, Q,R, S}

(R); =1{R, S}
Hence F covers G, but G does not cover F
Hence F covers G, but G does not cover F as the closure of Q using the FD set G
is not the same as using the FD set F.
G does not the cover F as

Q+ =0Q, butinF, FD : Q » R that G does not hold.
R+ = RS
PQ+ = PQRS

Therefore, F # G

Rack Your Brain
R(A, B, C, D, E) has two FD sets F and G
- A—>B, D— AC G A — BC
|AB>C D—>E "~ |b > AE
Check if F covers G

Finding the minimal cover:

Canonical/minimal cover is the reduced form of functional dependency

also known as irreducible set.

e |tis free from all extraneous FDs.

e The closure of canonical cover is same as that of the given set of
functional dependencies.

e Canonical cover is not unique.

e |t reduces the computation time.

Steps to find canonical cover:
Given a set of Functional dependencies, F:

1) Start with F.
2)Remove all trivial functional dependencies.

3)Repeated apply until no changes are possible.

e Union simplification
® RHS simplification
e | HS simplification
4) Result is a minimal cover.

Chapter 1

Introduction to DBMS

Chapter 1

Introduction to DBMS

SOLVED EXAMPLES

FD={E—> G,
G- S,
E—>S
}

Using union rule:

E—>GS

Simplifying RHS,

This is the canonical cover obtained from given Functional Dependencies.
OR

There is one more explanatory way to solve this.

1) Write the given set of FDs such that each FD on LHS has only one
attribute.

Il) Check each FD one by one to see if the obtained set of Functional
dependencies is essential or not.

Now, there are two cases:

Case l: If the results are the same, it means that FD is non-essential
and can be removed.

Case ll: Iftheresults are different, itindicates that Functionaldependency
is necessary, and FD should not be deleted.

III) Now, check for any FD that contains more than one attribute on its left
side. If there exists such FD, then check if their LHS can be reduced
with the help of the following steps:

e Compute the closure of possible subsets of LHS of that FD.
e Replace the LHS with the subset if any subset yields the same
closure result as the complete left side.

Previous Years’ Question Q

Suppose the following Functional dependencies hold on a relation U
with attributes P, Q, R, S, and T:

e P-O0QR

® RS—H>T

Which of the following Functional dependencies can be inferred from
the above Functional dependencies?

1) PS>T 2) R>T
3) P>R 4) PS> Q
Sol: 1, 2, 3 (GATE-CSE Set-2 2021)

Chapter 1

Introduction to DBMS

Chapter Summary [[E

e A DBMS is a software that supports the management of a large collection of data.
e DBMS provides the user with data independence, efficient data access, automatic
data integrity and security.
e Database design as six steps:
a) Requirement analysis
b) Conceptual database design
c) Logical database design
d) Schema refinement
e) Physical database design
f) Security design

ATTRIBUTES
Simple Multivalued Composite Single valued Derived Key
attributes attributes attributes attributes attributes attributes
KEY
Super Candidate Composite Surrogate
key key key key
Primary Alternate Foreign

e The relational database modelling represents the database as a collection of

relations.

® Properties of relation:

a) Name of relation should be distinct
b) Tuple should not have duplicate value
c) Name of every attribute should be distinct

CONSTRAINTS

v

|
v v

Domain Integrity Entity Integrity Referential Integrity
Constraint Constraint Constraint

FUNCTIONAL DEPENDENCIES

v

!

Trivial Non-Trivial

Armstrong’s axioms:
a) Reflexivity:

b) Transitivity:

c) Augmentation:

If Bc A, then A —> B

IfA—> Band B —> C,then A > C
If A > B then AC - BC where C is an attribute—sets

From the above axioms, we can derive :

d) Decomposition:
e) Composition:
f) Additive:

IFA— BC,then A > Band A —>C
IFA— B and C —» D, then AC - BD
IFA— Band A - C, then A > BC

TYPES OF CARDINALITY RATIOS

v

I
v v v

One to one One to many Many to one Many to many

PARTICIPATION CONSTRAINTS

v

y

Total Participation Partial Participation

Chapter 1

Introduction to DBMS

	Ch-01_Introduction of DBMS

