CHAPTER 1 9

Distributed Databases

19.1

Unlike parallel systems, in which the processors are tightly coupled and consti-
tute a single database system, a distributed database system consists of loosely
coupled sites that share no physical components. Furthermore, the database sys-
tems that run on each site may have a substantial degree of mutual independence.
We discussed the basic structure of distributed systems in Chapter 17.

Each site may participate in the execution of transactions that access data at
one site, or several sites. The main difference between centralized and distributed
database systems is that, in the former, the data reside in one single location,
whereas in the latter, the data reside in several locations. This distribution of data
is the cause of many difficulties in transaction processing and query processing.
In this chapter, we address these difficulties.

We start by classifying distributed databases as homogeneous or heteroge-
neous, in Section 19.1. We then address the question of how to store data in a
distributed database in Section 19.2. In Section 19.3, we outline a model for trans-
action processing in a distributed database. In Section 19.4, we describe how to
implement atomic transactions in a distributed database by using special com-
mit protocols. In Section 19.5, we describe concurrency control in distributed
databases. In Section 19.6, we outline how to provide high availability in a dis-
tributed database by exploiting replication, so the system can continue processing
transactions even when there is a failure. We address query processing in dis-
tributed databases in Section 19.7. In Section 19.8, we outline issues in handling
heterogeneous databases. In Section 19.10, we describe directory systems, which
can be viewed as a specialized form of distributed databases.

In this chapter, we illustrate all our examples using the bank database of
Figure 19.1.

Homogeneous and Heterogeneous Databases

In a homogeneous distributed database system, all sites have identical database-
management system software, are aware of one another, and agree to cooperate in
processing users’ requests. In such a system, local sites surrender a portion of their
autonomy in terms of their right to change schemas or database-management
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branch(branch_name, branch_city, assets)
account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 19.1 Banking database.

system software. That software must also cooperate with other sites in exchanging
information about transactions, to make transaction processing possible across
multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use
different schemas, and different database-management system software. The sites
may not be aware of one another, and they may provide only limited facilities
for cooperation in transaction processing. The differences in schemas are often a
major problem for query processing, while the divergence in software becomes a
hindrance for processing transactions that access multiple sites.

In this chapter, we concentrate on homogeneous distributed databases. How-
ever, in Section 19.8 we briefly discuss issues in heterogeneous distributed database
systems.

Distributed Data Storage

Consider a relation r that is to be stored in the database. There are two approaches
to storing this relation in the distributed database:

¢ Replication. The system maintains several identical replicas (copies) of the
relation, and stores each replica at a different site. The alternative to replica-
tion is to store only one copy of relation r.

¢ Fragmentation. The system partitions the relation into several fragments,
and stores each fragment at a different site.

Fragmentation and replication can be combined: A relation can be partitioned
into several fragments and there may be several replicas of each fragment. In the
following subsections, we elaborate on each of these techniques.

19.2.1 Data Replication

If relation 7 is replicated, a copy of relation r is stored in two or more sites. In the
most extreme case, we have full replication, in which a copy is stored in every
site in the system.

There are a number of advantages and disadvantages to replication.

® Availability. If one of the sites containing relation r fails, then the relation »
can be found in another site. Thus, the system can continue to process queries
involving r, despite the failure of one site.
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¢ Increased parallelism. In the case where the majority of accesses to the rela-
tion r result in only the reading of the relation, then several sites can process
queries involving r in parallel. The more replicas of r there are, the greater the
chance that the needed data will be found in the site where the transaction
is executing. Hence, data replication minimizes movement of data between
sites.

¢ Increased overhead on update. The system must ensure that all replicas of a
relation r are consistent; otherwise, erroneous computations may result. Thus,
whenever r is updated, the update must be propagated to all sites containing
replicas. The result is increased overhead. For example, in a banking system,
where account information is replicated in various sites, it is necessary to
ensure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and in-
creases the availability of data to read-only transactions. However, update trans-
actions incur greater overhead. Controlling concurrent updates by several trans-
actions to replicated data is more complex than in centralized systems, which we
studied in Chapter 15. We can simplify the management of replicas of relation
r by choosing one of them as the primary copy of r. For example, in a banking
system, an account can be associated with the site in which the account has been
opened. Similarly, in an airline-reservation system, a flight can be associated with
the site at which the flight originates. We shall examine the primary copy scheme
and other options for distributed concurrency control in Section 19.5.

19.2.2 Data Fragmentation

If relation r is fragmented, r is divided into a number of fragments r1, ra, ..., y.
These fragments contain sufficient information to allow reconstruction of the
original relation r. There are two different schemes for fragmenting a relation:
horizontal fragmentation and vertical fragmentation. Horizontal fragmentation
splits the relation by assigning each tuple of r to one or more fragments. Vertical
fragmentation splits the relation by decomposing the scheme R of relation r.

In horizontal fragmentation, a relation r is partitioned into a number of
subsets, r1, 72, ..., r,. Each tuple of relation » must belong to at least one of the
fragments, so that the original relation can be reconstructed, if needed.

As an illustration, the account relation can be divided into several different
fragments, each of which consists of tuples of accounts belonging to a particular
branch. If the banking system has only two branches—Hillside and Valleyview
—then there are two different fragments:

accounty = Opranch-name = “Hillside” (account)
accounty = Opranch.name = “Valleyview” (account)

Horizontal fragmentation is usually used to keep tuples at the sites where they
are used the most, to minimize data transfer.
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In general, a horizontal fragment can be defined as a selection on the global
relation r. That is, we use a predicate P; to construct fragment r;:

ri = Op, (7’)
We reconstruct the relation r by taking the union of all fragments; that is:
r =rJr U.---ur,

In our example, the fragments are disjoint. By changing the selection predi-
cates used to construct the fragments, we can have a particular tuple of » appear
in more than one of the r;.

In its simplest form, vertical fragmentation is the same as decomposition
(see Chapter 8). Vertical fragmentation of r(R) involves the definition of several
subsets of attributes R;, Ro, ..., R, of the schema R so that:

R =R UR U---U R,
Each fragment r; of r is defined by:
ri = Ig (r)

The fragmentation should be done in such a way that we can reconstruct relation
r from the fragments by taking the natural join:

r =171 Mrpy Xrg X ... Xrp,

One way of ensuring that the relation r can be reconstructed is to include the
primary-key attributes of R in each R;. More generally, any superkey can be used.
It is often convenient to add a special attribute, called a tuple-id, to the schema
R. The tuple-id value of a tuple is a unique value that distinguishes the tuple
from all other tuples. The tuple-id attribute thus serves as a candidate key for the
augmented schema, and is included in each R;. The physical or logical address
for a tuple can be used as a tuple-id, since each tuple has a unique address.

To illustrate vertical fragmentation, consider a university database with a re-
lation employee_info that stores, for each employee, employee_id, name, designation,
and salary. For privacy reasons, this relation may be fragmented into a relation em-
ployee_private_info containing employee_id and salary, and another relation employee
_public_info containing attributes employee_id, name, and designation. These may be
stored at different sites, again, possibly for security reasons.

The two types of fragmentation can be applied to a single schema; for instance,
the fragments obtained by horizontally fragmenting a relation can be further
partitioned vertically. Fragments can also be replicated. In general, a fragment
can be replicated, replicas of fragments can be fragmented further, and so on.
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19.2.3 Transparency

The user of a distributed database system should not be required to know where
the data are physically located nor how the data can be accessed at the specific
local site. This characteristic, called data transparency, can take several forms:

e Fragmentation transparency. Users are not required to know how a relation
has been fragmented.

® Replication transparency. Users view each data object as logically unique.
The distributed system may replicate an object to increase either system
performance or data availability. Users do not have to be concerned with
what data objects have been replicated, or where replicas have been placed.

® Location transparency. Users are not required to know the physical location
of the data. The distributed database system should be able to find any data
as long as the data identifier is supplied by the user transaction.

Data items—such as relations, fragments, and replicas—must have unique
names. This property is easy to ensure in a centralized database. In a distributed
database, however, we must take care to ensure that two sites do not use the same
name for distinct data items.

One solution to this problem is to require all names to be registered in a
central name server. The name server helps to ensure that the same name does
not get used for different data items. We can also use the name server to locate a
data item, given the name of the item. This approach, however, suffers from two
major disadvantages. First, the name server may become a performance bottle-
neck when data items are located by their names, resulting in poor performance.
Second, if the name server crashes, it may not be possible for any site in the
distributed system to continue to run.

A more widely used alternative approach requires that each site prefix its
own site identifier to any name that it generates. This approach ensures that
no two sites generate the same name (since each site has a unique identifier).
Furthermore, no central control is required. This solution, however, fails to achieve
location transparency, since site identifiers are attached tonames. Thus, the account
relation might be referred to as sitel7. account, or account@sitel?7, rather than as
simply account. Many database systems use the Internet address (IP address) of a
site to identify it.

To overcome this problem, the database system can create a set of alternative
names, or aliases, for data items. A user may thus refer to data items by simple
names that are translated by the system to complete names. The mapping of
aliases to the real names can be stored at each site. With aliases, the user can be
unaware of the physical location of a data item. Furthermore, the user will be
unaffected if the database administrator decides to move a data item from one
site to another.

Users should not have to refer to a specific replica of a data item. Instead,
the system should determine which replica to reference on a read request, and
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should update all replicas on a write request. We can ensure that it does so by
maintaining a catalog table, which the system uses to determine all replicas for
the data item.

Distributed Transactions

Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 14.1).
There are two types of transaction that we need to consider. The local transactions
are those that access and update data in only one local database; the global
transactions are those that access and update data in several local databases.
Ensuring the ACID properties of the local transactions can be done as described in
Chapters 14, 15, and 16. However, for global transactions, this task is much more
complicated, since several sites may be participating in execution. The failure of
one of these sites, or the failure of a communication link connecting these sites,
may result in erroneous computations.

In this section, we study the system structure of a distributed database and
its possible failure modes. In Section 19.4, we study protocols for ensuring atomic
commit of global transactions, and in Section 19.5 we study protocols for concur-
rency control in distributed databases. In Section 19.6, we study how a distributed
database can continue functioning even in the presence of various types of failure.

19.3.1 System Structure

Each site has its own local transaction manager, whose function is to ensure the
ACID properties of those transactions that execute at that site. The various trans-
action managers cooperate to execute global transactions. To understand how
such a manager can be implemented, consider an abstract model of a transaction
system, in which each site contains two subsystems:

¢ The transaction manager manages the execution of those transactions (or
subtransactions) that access data stored in a local site. Note that each such
transaction may be either a local transaction (that is, a transaction that exe-
cutes at only that site) or part of a global transaction (that is, a transaction
that executes at several sites).

e The transaction coordinator coordinates the execution of the various trans-
actions (both local and global) initiated at that site.

The overall system architecture appears in Figure 19.2.
The structure of a transaction manager is similar in many respects to the
structure of a centralized system. Each transaction manager is responsible for:

* Maintaining a log for recovery purposes.



19.3 Distributed Transactions 831

@\ /@ transaction
coordinator

e N .
@ ° . o @ transaction
manager

computer 1 computer n

Figure 19.2 System architecture.

e Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site.

As we shall see, we need to modify both the recovery and concurrency schemes
to accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized en-
vironment, since a transaction accesses data at only a single site. A transaction
coordinator, as its name implies, is responsible for coordinating the execution of
all the transactions initiated at that site. For each such transaction, the coordinator
is responsible for:

e Starting the execution of the transaction.

¢ Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution.

¢ Coordinating the termination of the transaction, which may result in the
transaction being committed at all sites or aborted at all sites.
19.3.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes).
There are, however, additional types of failure with which we need to deal in a
distributed environment. The basic failure types are:

e TFailure of a site.

® Loss of messages.
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e Failure of a communication link.

® Network partition.

The loss or corruption of messages is always a possibility in a distributed
system. The system uses transmission-control protocols, such as TCP/IP, to handle
such errors. Information about such protocols may be found in standard textbooks
on networking (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from
one to the other must be routed through a sequence of communication links. If a
communication link fails, messages that would have been transmitted across the
link must be rerouted. In some cases, it is possible to find another route through
the network, so that the messages are able to reach their destination. In other
cases, a failure may result in there being no connection between some pairs of
sites. A system is partitioned if it has been split into two (or more) subsystems,
called partitions, that lack any connection between them. Note that, under this
definition, a partition may consist of a single node.

Commit Protocols

If we are to ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all sites, or
it must abort at all sites. To ensure this property, the transaction coordinator of T
must execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase
commit protocol (2PC), which is described in Section 19.4.1. An alternative is the
three-phase commit protocol (3PC), which avoids certain disadvantages of the
2PC protocol but adds to complexity and overhead. Section 19.4.2 briefly outlines
the 3PC protocol.

19.4.1 Two-Phase Commit

We first describe how the two-phase commit protocol (2PC) operates during nor-
mal operation, then describe how it handles failures and finally how it carries out
recovery and concurrency control.

Consider a transaction T initiated at site S;, where the transaction coordinator
is C,‘ .

19.4.1.1 The Commit Protocol
When T completes its execution—that is, when all the sites at which T has exe-

cuted inform C; that T has completed —C; starts the 2PC protocol.

¢ Phase 1. C; adds the record <prepare T> to the log, and forces the log onto
stable storage. It then sends a prepare T message to all sites at which T
executed. On receiving such a message, the transaction manager at that site
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determines whether it is willing to commit its portion of T. If the answer is
no, itadds a record <no T> to the log, and then responds by sending an abort
T message to C;. If the answer is yes, it adds a record <ready T> to the log,
and forces the log (with all the log records corresponding to T) onto stable
storage. The transaction manager then replies with a ready T message to C;.

¢ Phase 2. When C; receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, C; can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if C; received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort T> is added to the log and the log is forced onto stable storage. At this
point, the fate of the transaction has been sealed. Following this point, the
coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before
it sends the message ready T to the coordinator. Once the message is sent, the
transaction is said to be in the ready state at the site. The ready T message is,
in effect, a promise by a site to follow the coordinator’s order to commit T or to
abort T. To make such a promise, the needed information must first be stored
in stable storage. Otherwise, if the site crashes after sending ready T, it may be
unable to make good on its promise. Further, locks acquired by the transaction
must continue to be held until the transaction completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as
soon as at least one site responds abort T. Since the coordinator site S; is one of
the sites at which T executed, the coordinator can decide unilaterally to abort T.
The final verdict regarding T is determined at the time that the coordinator writes
that verdict (commit or abort) to the log and forces that verdict to stable storage.
In some implementations of the 2PC protocol, a site sends an acknowledge T
message to the coordinator at the end of the second phase of the protocol. When
the coordinator receives the acknowledge T message from all the sites, it adds the
record <complete T> to the log.

19.4.1.2 Handling of Failures

The 2PC protocol responds in different ways to various types of failures:

¢ Failure of a participating site. If the coordinator C; detects that a site has

failed, it takes these actions: If the site fails before responding with a ready

T message to C;, the coordinator assumes that it responded with an abort T

message. If the site fails after the coordinator has received the ready T message

from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site S; recovers from a failure, it must examine its log

to determine the fate of those transactions that were in the midst of execution
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when the failure occurred. Let T be one such transaction. We consider each
of the possible cases:

o The log contains a <commit T> record. In this case, the site executes
redo(T).

o The log contains an <abort T> record. In this case, the site executes
undo(T).

© The log contains a <ready T> record. In this case, the site must consult
C; to determine the fate of T. If C; is up, it notifies S, regarding whether
T committed or aborted. In the former case, it executes redo(T); in the
latter case, it executes undo(T). If C; is down, S must try to find the
fate of T from other sites. It does so by sending a querystatus T message
to all the sites in the system. On receiving such a message, a site must
consult its log to determine whether T has executed there, and if T has,
whether T committed or aborted. It then notifies S; about this outcome. If
no site has the appropriate information (that is, whether T committed or
aborted), then S; can neither abort nor commit T. The decision concerning
T is postponed until S; can obtain the needed information. Thus, S must
periodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which C; resides always has the needed information.

o The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that S failed before responding to the prepare T message
from C;. Since the failure of S; precludes the sending of such a response,
by our algorithm C; must abort T. Hence, Sy must execute undo(T).

e Failure of the coordinator. If the coordinator fails in the midst of the execution
of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.

o If an active site contains a <commit T> record in its log, then T must be
committed.

o If an active site contains an <abort T> record in its log, then T must be
aborted.

o If some active site does not contain a <ready T> record in its log, then
the failed coordinator C; cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
T message to C;. However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for C; to recover, it is preferable to
abort T.

o If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
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as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made, and if one
has, what that decision is, until the coordinator recovers. Thus, the active
sites must wait for C; to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before C; is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (C;), but on active sites as well. This
situation is called the blocking problem, because T is blocked pending
the recovery of site C;.

e Network partition. When a network partitions, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this
case, the failure has no effect on the commit protocol.

2. The coordinator and its participants belong to several partitions. From
the viewpoint of the sites in one of the partitions, it appears that the
sites in other partitions have failed. Sites that are not in the partition
containing the coordinator simply execute the protocol to deal with
failure of the coordinator. The coordinator and the sites that are in the
same partition as the coordinator follow the usual commit protocol,
assuming that the sites in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may
result in blocking, where a decision either to commit or to abort T'may have to be
postponed until C; recovers.

19.4.1.3 Recovery and Concurrency Control

When a failed site restarts, we can perform recovery by using, for example, the
recovery algorithm described in Section 16.4. To deal with distributed commit
protocols, the recovery procedure must treat in-doubt transactions specially; in-
doubt transactions are transactions for which a <ready T> log record is found,
but neither a <commit T> log record nor an <abort T> log record is found. The
recovering site must determine the commit-abort status of such transactions by
contacting other sites, as described in Section 19.4.1.2.

If recovery is done as just described, however, normal transaction processing
at the site cannot begin until all in-doubt transactions have been committed or
rolled back. Finding the status of in-doubt transactions can be slow, since multiple
sites may have to be contacted. Further, if the coordinator has failed, and no other
site has information about the commit-abort status of an incomplete transaction,
recovery potentially could become blocked if 2PC is used. As a result, the site
performing restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support
for noting lock information in the log. (We are assuming here that locking is used
for concurrency control.) Instead of writing a <ready T> log record, the algorithm



836

Chapter 19 Distributed Databases

writes a <ready T, L> log record, where L is a list of all write locks held by the
transaction T when the log record is written. At recovery time, after performing
local recovery actions, for every in-doubt transaction T, all the write locks noted
in the <ready T, L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction
processing can start at the site, even before the commit-abort status of the in-
doubt transactions is determined. The commit or rollback of in-doubt transactions
proceeds concurrently with the execution of new transactions. Thus, site recovery
is faster, and never gets blocked. Note that new transactions that have a lock
conflict with any write locks held by in-doubt transactions will be unable to make
progress until the conflicting in-doubt transactions have been committed or rolled
back.

19.4.2 Three-Phase Commit

The three-phase commit (3PC) protocol is an extension of the two-phase commit
protocol that avoids the blocking problem under certain assumptions. In partic-
ular, it is assumed that no network partition occurs, and not more than k sites
fail, where k is some predetermined number. Under these assumptions, the pro-
tocol avoids blocking by introducing an extra third phase where multiple sites
are involved in the decision to commit. Instead of directly noting the commit
decision in its persistent storage, the coordinator first ensures that at least k other
sites know that it intended to commit the transaction. If the coordinator fails, the
remaining sites first select a new coordinator. This new coordinator checks the
status of the protocol from the remaining sites; if the coordinator had decided
to commit, at least one of the other k sites that it informed will be up and will
ensure that the commit decision is respected. The new coordinator restarts the
third phase of the protocol if some site knew that the old coordinator intended to
commit the transaction. Otherwise the new coordinator aborts the transaction.

While the 3PC protocol has the desirable property of not blocking unless k
sites fail, it has the drawback that a partitioning of the network may appear to be
the same as more than k sites failing, which would lead to blocking. The protocol
also has to be implemented carefully to ensure that network partitioning (or
more than k sites failing) does not result in inconsistencies, where a transaction
is committed in one partition and aborted in another. Because of its overhead,
the 3PC protocol is not widely used. See the bibliographical notes for references
giving more details of the 3PC protocol.

19.4.3 Alternative Models of Transaction Processing

For many applications, the blocking problem of two-phase commit is not accept-
able. The problem here is the notion of a single transaction that works across
multiple sites. In this section, we describe how to use persistent messaging to avoid
the problem of distributed commit, and then briefly outline the larger issue of
workflows; workflows are considered in more detail in Section 26.2.

To understand persistent messaging, consider how one might transfer funds
between two different banks, each with its own computer. One approach is to have
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a transaction span the two sites and use two-phase commit to ensure atomicity.
However, the transaction may have to update the total bank balance, and blocking
could have a serious impact on all other transactions at each bank, since almost
all transactions at the bank would update the total bank balance.

In contrast, consider how funds transfer by a bank check occurs. The bank
first deducts the amount of the check from the available balance and prints out
a check. The check is then physically transferred to the other bank where it is
deposited. After verifying the check, the bank increases the local balance by the
amount of the check. The check constitutes a message sent between the two banks.
So that funds are not lost or incorrectly increased, the check must not be lost, and
must not be duplicated and deposited more than once. When the bank computers
are connected by a network, persistent messages provide the same service as the
check (but much faster, of course).

Persistent messages are messages that are guaranteed to be delivered to
the recipient exactly once (neither less nor more), regardless of failures, if the
transaction sending the message commits, and are guaranteed to not be delivered
if the transaction aborts. Database recovery techniques are used to implement
persistent messaging on top of the normal network channels, as we shall see
shortly. In contrast, regular messages may be lost or may even be delivered
multiple times in some situations.

Error handling is more complicated with persistent messaging than with two-
phase commit. For instance, if the account where the check is to be deposited has
been closed, the check must be sent back to the originating account and credited
back there. Both sites must therefore be provided with error-handling code, along
with code to handle the persistent messages. In contrast, with two-phase commit,
the error would be detected by the transaction, which would then never deduct
the amount in the first place.

The types of exception conditions that may arise depend on the application,
so it is not possible for the database system to handle exceptions automatically.
The application programs that send and receive persistent messages must include
code to handle exception conditions and bring the system back to a consistent
state. For instance, it is not acceptable to just lose the money being transferred if
the receiving account has been closed; the money must be credited back to the
originating account, and if that is not possible for some reason, humans must be
alerted to resolve the situation manually.

There are many applications where the benefit of eliminating blocking is well
worth the extra effort to implement systems that use persistent messages. In fact,
few organizations would agree to support two-phase commit for transactions
originating outside the organization, since failures could result in blocking of
access to local data. Persistent messaging therefore plays an important role in
carrying out transactions that cross organizational boundaries.

Workflows provide a general model of transaction processing involving mul-
tiple sites and possibly human processing of certain steps. For instance, when
a bank receives a loan application, there are many steps it must take, including
contacting external credit-checking agencies, before approving or rejecting a loan
application. The steps, together, form a workflow. We study workflows in more
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detail in Section 26.2. We also note that persistent messaging forms the underlying
basis for workflows in a distributed environment.

We now consider the implementation of persistent messaging. Persistent
messaging can be implemented on top of an unreliable messaging infrastructure,
which may lose messages or deliver them multiple times, by these protocols:

¢ Sending site protocol. When a transaction wishes to send a persistent mes-
sage, it writes a record containing the message in a special relation messages_to
_send, instead of directly sending out the message. The message is also given
a unique message identifier.

A message delivery process monitors the relation, and when a new mes-
sage is found, it sends the message to its destination. The usual database
concurrency-control mechanisms ensure that the system process reads the
message only after the transaction that wrote the message commits; if the
transaction aborts, the usual recovery mechanism would delete the message
from the relation.

The message delivery process deletes a message from the relation only
after it receives an acknowledgment from the destination site. If it receives
no acknowledgement from the destination site, after some time it sends the
message again. It repeats this until an acknowledgment is received. In case
of permanent failures, the system will decide, after some period of time,
that the message is undeliverable. Exception handling code provided by the
application is then invoked to deal with the failure.

Writing the message to a relation and processing it only after the trans-
action commits ensures that the message will be delivered if and only if the
transaction commits. Repeatedly sending it guarantees it will be delivered
even if there are (temporary) system or network failures.

® Receiving site protocol. When a site receives a persistent message, it runs
a transaction that adds the message to a special received_messages relation,
provided it is not already present in the relation (the unique message iden-
tifier allows duplicates to be detected). After the transaction commits, or if
the message was already present in the relation, the receiving site sends an
acknowledgment back to the sending site.

Note that sending the acknowledgment before the transaction commits
is not safe, since a system failure may then result in loss of the message.
Checking whether the message has been received earlier is essential to avoid
multiple deliveries of the message.

In many messaging systems, it is possible for messages to get delayed
arbitrarily, although such delays are very unlikely. Therefore, to be safe, the
message must never be deleted from the received_messages relation. Deleting
it could result in a duplicate delivery not being detected. But as a result,
the received_messages relation may grow indefinitely. To deal with this prob-
lem, each message is given a timestamp, and if the timestamp of a received
message is older than some cutoff, the message is discarded. All messages
recorded in the received_messages relation that are older than the cutoff can be
deleted.
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Concurrency Control in Distributed Databases

We show here how some of the concurrency-control schemes discussed in Chap-
ter 15 can be modified so that they can be used in a distributed environment. We
assume that each site participates in the execution of a commit protocol to ensure
global transaction atomicity.

The protocols we describe in this section require updates to be done on
all replicas of a data item. If any site containing a replica of a data item has
failed, updates to the data item cannot be processed. In Section 19.6, we describe
protocols that can continue transaction processing even if some sites or links have
failed, thereby providing high availability.

19.5.1 Locking Protocols

The various locking protocols described in Chapter 15 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager deals with replicated data. We present several possible schemes that are
applicable to an environment where data can be replicated in several sites. As in
Chapter 15, we shall assume the existence of the shared and exclusive lock modes.

19.5.1.1 Single Lock-Manager Approach

In the single lock-manager approach, the system maintains a single lock manager
that resides in a single chosen site—say S;. All lock and unlock requests are made
at site S;. When a transaction needs to lock a data item, it sends a lock request to
Si. The lock manager determines whether the lock can be granted immediately. If
the lock can be granted, the lock manager sends a message to that effect to the site
at which the lock request was initiated. Otherwise, the request is delayed until
it can be granted, at which time a message is sent to the site at which the lock
request was initiated. The transaction can read the data item from any one of the
sites at which a replica of the data item resides. In the case of a write, all the sites
where a replica of the data item resides must be involved in the writing.
The scheme has these advantages:

¢ Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

¢ Simple deadlock handling. Since all lock and unlock requests are made at
one site, the deadlock-handling algorithms discussed in Chapter 15 can be
applied directly.

The disadvantages of the scheme are:

¢ Bottleneck. The site S; becomes a bottleneck, since all requests must be pro-
cessed there.

® Vulnerability. If the site S; fails, the concurrency controller is lost. Either
processing must stop, or a recovery scheme must be used so that a backup
site can take over lock management from S;, as described in Section 19.6.5.
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19.5.1.2 Distributed Lock Manager

A compromise between the advantages and disadvantages can be achieved
through the distributed-lock-manager approach, in which the lock-manager
function is distributed over several sites.

Each site maintains a local lock manager whose function is to administer the
lock and unlock requests for those data items that are stored in that site. When a
transaction wishes to lock a data item Q that is not replicated and resides at site
Si, amessage is sent to the lock manager at site S; requesting a lock (in a particular
lock mode). If data item Q is locked in an incompatible mode, then the request is
delayed until it can be granted. Once it has determined that the lock request can
be granted, the lock manager sends a message back to the initiator indicating that
it has granted the lock request.

We discuss several alternative ways of dealing with replication of data items
in Sections 19.5.1.3 to 19.5.1.6.

The distributed-lock-manager scheme has the advantage of simple imple-
mentation, and reduces the degree to which the coordinator is a bottleneck. It
has a reasonably low overhead, requiring two message transfers for handling
lock requests, and one message transfer for handling unlock requests. However,
deadlock handling is more complex, since the lock and unlock requests are no
longer made at a single site: There may be intersite deadlocks even when there
is no deadlock within a single site. The deadlock-handling algorithms discussed
in Chapter 15 must be modified, as we shall discuss in Section 19.5.4, to detect
global deadlocks.

19.5.1.3 Primary Copy

When a system uses data replication, we can choose one of the replicas as the
primary copy. For each dataitem Q, the primary copy of Q must reside in precisely
one site, which we call the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock at the
primary site of Q. As before, the response to the request is delayed until it can
be granted. The primary copy enables concurrency control for replicated data
to be handled like that for unreplicated data. This similarity allows for a simple
implementation. However, if the primary site of Q fails, Q is inaccessible, even
though other sites containing a replica may be accessible.

19.5.1.4 Majority Protocol

The majority protocol works this way: If data item Q is replicated in n different
sites, then a lock-request message must be sent to more than one-half of the n
sites in which Q is stored. Each lock manager determines whether the lock can be
granted immediately (as far as it is concerned). As before, the response is delayed
until the request can be granted. The transaction does not operate on Q until it
has successfully obtained a lock on a majority of the replicas of Q.

We assume for now that writes are performed on all replicas, requiring all sites
containing replicas to be available. However, the major benefit of the majority
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protocol is that it can be extended to deal with site failures, as we shall see in
Section 19.6.1. The protocol also deals with replicated data in a decentralized
manner, thus avoiding the drawbacks of central control. However, it suffers from
these disadvantages:

¢ Implementation. The majority protocol is more complicated to implement
than are the previous schemes. It requires at least 2(n/2 + 1) messages for
handling lock requests and at least (/2 + 1) messages for handling unlock
requests.

¢ Deadlock handling. In addition to the problem of global deadlocks due to
the use of a distributed-lock-manager approach, it is possible for a deadlock
to occur even if only one data item is being locked. As an illustration, consider
a system with four sites and full replication. Suppose that transactions T; and
T, wish to lock data item Q in exclusive mode. Transaction T; may succeed
in locking Q at sites S; and Sz, while transaction T, may succeed in locking
Q at sites S, and S;. Each then must wait to acquire the third lock; hence, a
deadlock has occurred. Luckily, we can avoid such deadlocks with relative
ease, by requiring all sites to request locks on the replicas of a data item in
the same predetermined order.

19.5.1.5 Biased Protocol

The biased protocol is another approach to handling replication. The difference
from the majority protocol is that requests for shared locks are given more favor-
able treatment than requests for exclusive locks.

¢ Shared locks. When a transaction needs to lock data item Q, it simply requests
a lock on Q from the lock manager at one site that contains a replica of Q.

¢ Exclusive locks. When a transaction needs to lock data item Q), it requests a
lock on Q from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.

The biased scheme has the advantage of imposing less overhead on read
operations than does the majority protocol. This savings is especially significant
in common cases in which the frequency of read is much greater than the fre-
quency of write. However, the additional overhead on writes is a disadvantage.
Furthermore, the biased protocol shares the majority protocol’s disadvantage of
complexity in handling deadlock.

19.5.1.6 Quorum Consensus Protocol

The quorum consensus protocol is a generalization of the majority protocol. The
quorum consensus protocol assigns each site a nonnegative weight. It assigns
read and write operations on an item x two integers, called read quorum Q, and
write quorum Q,, that must satisfy the following condition, where S is the total
weight of all sites at which x resides:
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To execute a read operation, enough replicas must be locked that their total
weight is at least r. To execute a write operation, enough replicas must be locked
so that their total weight is at least w.

A benefit of the quorum consensus approach is that it can permit the cost of
either read or write locking to be selectively reduced by appropriately defining
the read and write quorums. For instance, with a small read quorum, reads need
to obtain fewer locks, but the write quorum will be higher, hence writes need to
obtain more locks. Also, if higher weights are given to some sites (for example,
those less likely to fail), fewer sites need to be accessed for acquiring locks. In fact,
by setting weights and quorums appropriately, the quorum consensus protocol
can simulate the majority protocol and the biased protocols.

Like the majority protocol, quorum consensus can be extended to work even
in the presence of site failures, as we shall see in Section 19.6.1.

19.5.2 Timestamping

The principal idea behind the timestamping scheme in Section 15.4 is that each
transaction is given a unique timestamp that the system uses in deciding the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a scheme for generating unique timestamps.
Then, the various protocols can operate directly to the nonreplicated environment.

There are two primary methods for generating unique timestamps, one cen-
tralized and one distributed. In the centralized scheme, a single site distributes
the timestamps. The site can use a logical counter or its own local clock for this
purpose.

In the distributed scheme, each site generates a unique local timestamp by
using either a logical counter or the local clock. We obtain the unique global
timestamp by concatenating the unique local timestamp with the site identifier,
which also must be unique (Figure 19.3). The order of concatenation is important!
We use the site identifier in the least significant position to ensure that the global
timestamps generated in one site are not always greater than those generated in
another site. Compare this technique for generating unique timestamps with the
one that we presented in Section 19.2.3 for generating unique names.

local unique site
timestamp identifier

>

Figure 19.3 Generation of unique timestamps.

global unique
identifier
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We may still have a problem if one site generates local timestamps at a rate
faster than that of the other sites. In such a case, the fast site’s logical counter
will be larger than that of other sites. Therefore, all timestamps generated by
the fast site will be larger than those generated by other sites. What we need
is a mechanism to ensure that local timestamps are generated fairly across the
system. We define within each site S; a logical clock (LC;), which generates the
unique local timestamp. The logical clock can be implemented as a counter that is
incremented after a new local timestamp is generated. To ensure that the various
logical clocks are synchronized, we require that a site S; advance its logical clock
whenever a transaction T; with timestamp <x,y> visits that site and x is greater
than the current value of LC;. In this case, site S; advances its logical clock to the
value x + 1.

If the system clock is used to generate timestamps, then timestamps will be
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that for logical
clocks must be used to ensure that no clock gets far ahead of or behind another
clock.

19.5.3 Replication with Weak Degrees of Consistency

Many commercial databases today support replication, which can take one of
several forms. With master—slave replication, the database allows updates at
a primary site, and automatically propagates updates to replicas at other sites.
Transactions may read the replicas at other sites, but are not permitted to update
them.

An important feature of such replication is that transactions do not obtain
locks at remote sites. To ensure that transactions running at the replica sites see
a consistent (but perhaps outdated) view of the database, the replica should
reflect a transaction-consistent snapshot of the data at the primary; that is, the
replica should reflect all updates of transactions up to some transaction in the
serialization order, and should not reflect any updates of later transactions in the
serialization order.

The database may be configured to propagate updates immediately after they
occur at the primary, or to propagate updates only periodically.

Master—slave replication is particularly useful for distributing information,
for instance from a central office to branch offices of an organization. Another use
for this form of replication is in creating a copy of the database to run large queries,
so that queries do not interfere with transactions. Updates should be propagated
periodically—every night, for example—so that update propagation does not
interfere with query processing.

The Oracle database system supports a create snapshot statement, which can
create a transaction-consistent snapshot copy of a relation, or set of relations,
at a remote site. It also supports snapshot refresh, which can be done either
by recomputing the snapshot or by incrementally updating it. Oracle supports
automatic refresh, either continuously or at periodic intervals.
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With multimaster replication (also called update-anywhere replication) up-
dates are permitted at any replica of a data item, and are automatically propa-
gated to all replicas. This model is the basic model used to manage replicas in
distributed databases. Transactions update the local copy and the system updates
other replicas transparently.

One way of updating replicas is to apply immediate update with two-phase
commit, using one of the distributed concurrency-control techniques we have
seen. Many database systems use the biased protocol, where writes have to lock
and update all replicas and reads lock and read any one replica, as their currency-
control technique.

Many database systems provide an alternative form of updating: They update
at one site, with lazy propagation of updates to other sites, instead of immedi-
ately applying updates to all replicas as part of the transaction performing the
update. Schemes based on lazy propagation allow transaction processing (in-
cluding updates) to proceed even if a site is disconnected from the network, thus
improving availability, but, unfortunately, do so at the cost of consistency. One of
two approaches is usually followed when lazy propagation is used:

e Updates at replicas are translated into updates at a primary site, which are
then propagated lazily to all replicas. This approach ensures that updates
to an item are ordered serially, although serializability problems can occur,
since transactions may read an old value of some other data item and use it
to perform an update.

¢ Updates are performed at any replica and propagated to all other replicas.
This approach can cause even more problems, since the same data item may
be updated concurrently at multiple sites.

Some conflicts due to the lack of distributed concurrency control can be detected
when updates are propagated to other sites (we shall see how in Section 25.5.4),
but resolving the conflict involves rolling back committed transactions, and dura-
bility of committed transactions is therefore not guaranteed. Further, human in-
tervention may be required to deal with conflicts. The above schemes should
therefore be avoided or used with care.

19.5.4 Deadlock Handling

The deadlock-prevention and deadlock-detection algorithms in Chapter 15 can be
used in a distributed system, provided that modifications are made. For example,
we can use the tree protocol by defining a global tree among the system data
items. Similarly, the timestamp-ordering approach could be directly applied to a
distributed environment, as we saw in Section 19.5.2.

Deadlock prevention may result in unnecessary waiting and rollback. Fur-
thermore, certain deadlock-prevention techniques may require more sites to be
involved in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main
problem in a distributed system is deciding how to maintain the wait-for graph.
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Figure 19.4 Local wait-for graphs.

Common techniques for dealing with this issue require that each site keep a local
wait-for graph. The nodes of the graph correspond to all the transactions (local as
well as nonlocal) that are currently either holding or requesting any of the items
local to that site. For example, Figure 19.4 depicts a system consisting of two sites,
each maintaining its local wait-for graph. Note that transactions T, and T3 appear
in both graphs, indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local
transactions and data items. When a transaction T; on site S; needs a resource in
site Sy, it sends a request message to site S. If the resource is held by transaction
T;, the system inserts an edge T; — T; in the local wait-for graph of site S,.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the
other hand, the fact that there are no cycles in any of the local wait-for graphs does
not mean that there are no deadlocks. To illustrate this problem, we consider the
local wait-for graphs of Figure 19.4. Each wait-for graph is acyclic; nevertheless,
a deadlock exists in the system because the union of the local wait-for graphs
contains a cycle. This graph appears in Figure 19.5.

In the centralized deadlock detection approach, the system constructs and
maintains a global wait-for graph (the union of all the local graphs) in a single
site: the deadlock-detection coordinator. Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The real
graph describes the real but unknown state of the system at any instance in
time, as would be seen by an omniscient observer. The constructed graph is an
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Figure 19.5 Gilobal wait-for graph for Figure 19.4.
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Figure 19.6 False cycles in the global wait-for graph.

approximation generated by the controller during the execution of the controller’s
algorithm. Obviously, the controller must generate the constructed graph in such
a way that, whenever the detection algorithm is invoked, the reported results are
correct. Correct means in this case that, if a deadlock exists, it is reported promptly,
and if the system reports a deadlock, it is indeed in a deadlock state.

The global wait-for graph can be reconstructed or updated under these con-
ditions:

¢ Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

¢ Periodically, when a number of changes have occurred in a local wait-for
graph.

¢ Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches
its global graph. If it finds a cycle, it selects a victim to be rolled back. The
coordinator must notify all the sites that a particular transaction has been selected
as victim. The sites, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

e False cycles exist in the global wait-for graph. As an illustration, consider a
snapshot of the system represented by the local wait-for graphs of Figure 19.6.
Suppose that T, releases the resource that it is holding in site S, resulting
in the deletion of the edge T} — T, in S;. Transaction T, then requests a
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resource held by T; at site Sy, resulting in the addition of the edge T, — T3 in
S.Iftheinsert T, — T3 message from S, arrives before the remove Ty — 1T,
message from Sy, the coordinator may discover the falsecycleTy — 1T, — T3
after the insert (but before the remove). Deadlock recovery may be initiated,
although no deadlock has occurred.

Note that the false-cycle situation could not occur under two-phase locking.
The likelihood of false cycles is usually sufficiently low that they do not cause
a serious performance problem.

¢ Adeadlock has indeed occurred and a victim has been picked, while one of the
transactions was aborted for reasons unrelated to the deadlock. For example,
suppose that site S; in Figure 19.4 decides to abort T,. At the same time, the
coordinator has discovered a cycle, and has picked T3 as a victim. Both T, and
T3 are now rolled back, although only T, needed to be rolled back.

Deadlock detection can be done in a distributed manner, with several sites
taking on parts of the task, instead of it being done at a single site. However, such
algorithms are more complicated and more expensive. See the bibliographical
notes for references to such algorithms.

Availability

One of the goals in using distributed databases is high availability; that is, the
database must function almost all the time. In particular, since failures are more
likely in large distributed systems, a distributed database must continue func-
tioning even when there are various types of failures. The ability to continue
functioning even during failures is referred to as robustness.

For a distributed system to be robust, it must detect failures, reconfigure the
system so that computation may continue, and recover when a processor or a link
is repaired.

The different types of failures are handled in different ways. For example,
message loss is handled by retransmission. Repeated retransmission of a message
across a link, without receipt of an acknowledgment, is usually a symptom of a
link failure. The network usually attempts to find an alternative route for the
message. Failure to find such a route is usually a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site
failure and network partition. The system can usually detect that a failure has
occurred, but it may not be able to identify the type of failure. For example,
suppose that site S; is not able to communicate with S,. It could be that S, has
failed. However, another possibility is that the link between S; and S; has failed,
resulting in network partition. The problem is partly addressed by using multiple
links between sites, so that even if one link fails the sites will remain connected.
However, multiple link failure can still occur, so there are situations where we
cannot be sure whether a site failure or network partition has occurred.
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Suppose that site S; has discovered that a failure has occurred. It must then
initiate a procedure that will allow the system to reconfigure, and to continue
with the normal mode of operation.

e If transactions were active at a failed/inaccessible site at the time of the
failure, these transactions should be aborted. It is desirable to abort such
transactions promptly, since they may hold locks on data at sites that are
still active; waiting for the failed /inaccessible site to become accessible again
may impede other transactions at sites that are operational. However, in
some cases, when data objects are replicated it may be possible to proceed
with reads and updates even though some replicas are inaccessible. In this
case, when a failed site recovers, if it had replicas of any data object, it must
obtain the current values of these data objects, and must ensure that it receives
all future updates. We address this issue in Section 19.6.1.

e If replicated data are stored at a failed /inaccessible site, the catalog should
be updated so that queries do not reference the copy at the failed site. When
a site rejoins, care must be taken to ensure that data at the site are consistent,
as we shall see in Section 19.6.3.

e If a failed site is a central server for some subsystem, an election must be
held to determine the new server (see Section 19.6.5). Examples of central
servers include aname server, a concurrency coordinator, or a global deadlock
detector.

Since it is, in general, not possible to distinguish between network link failures
and site failures, any reconfiguration scheme must be designed to work correctly
in case of a partitioning of the network. In particular, these situations must be
avoided to ensure consistency:

e Two or more central servers are elected in distinct partitions.

® More than one partition updates a replicated data item.

Although traditional database systems place a premium on consistency, there
are many applications today that value availability more than consistency. The
design of replication protocols is different for such systems, and is discussed in
Section 19.6.6.

19.6.1 Majority-Based Approach

The majority-based approach to distributed concurrency controlin Section 19.5.1.4
can be modified to work in spite of failures. In this approach, each data object
stores with it a version number to detect when it was last written. Whenever a
transaction writes an object it also updates the version number in this way:

e If data object a is replicated in n different sites, then a lock-request message
must be sent to more than one-half of the n sites at which a is stored. The
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transaction does not operate on a until it has successfully obtained a lock on
a majority of the replicas of a.

¢ Read operations look at all replicas on which a lock has been obtained, and
read the value from the replica that has the highest version number. (Op-
tionally, they may also write this value back to replicas with lower version
numbers.) Writes read all the replicas just like reads to find the highest ver-
sion number (this step would normally have been performed earlier in the
transaction by a read, and the result can be reused). The new version number
is one more than the highest version number. The write operation writes all
the replicas on which it has obtained locks, and sets the version number at
all the replicas to the new version number.

Failures during a transaction (whether network partitions or site failures) can be
tolerated as long as (1) the sites available at commit contain a majority of replicas
of all the objects written to and (2) during reads, a majority of replicas are read
to find the version numbers. If these requirements are violated, the transaction
must be aborted. As long as the requirements are satisfied, the two-phase commit
protocol can be used, as usual, on the sites that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is
because writes would have updated a majority of the replicas, while reads will
read a majority of the replicas and find at least one replica that has the latest
version.

The version numbering technique used with the majority protocol can also be
used to make the quorum consensus protocol work in the presence of failures. We
leave the (straightforward) details to the reader. However, the danger of failures
preventing the system from processing transactions increases if some sites are
given higher weights.

19.6.2 Read One, Write All Available Approach

As a special case of quorum consensus, we can employ the biased protocol by
giving unit weights to all sites, setting the read quorum to 1, and setting the
write quorum to 7 (all sites). In this special case, there is no need to use version
numbers; however, if even a single site containing a data item fails, no write to
the item can proceed, since the write quorum will not be available. This protocol
is called the read one, write all protocol since all replicas must be written.

To allow work to proceed in the event of failures, we would like to be able
to use a read one, write all available protocol. In this approach, a read operation
proceeds as in the read one, write all scheme; any available replica can be read,
and a read lock is obtained at that replica. A write operation is shipped to all
replicas; and write locks are acquired on all the replicas. If a site is down, the
transaction manager proceeds without waiting for the site to recover.

While this approach appears very attractive, there are several complications.
In particular, temporary communication failure may cause a site to appear to
be unavailable, resulting in a write not being performed, but when the link is
restored, the site is not aware that it has to perform some reintegration actions to
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catch up on writes it has lost. Further, if the network partitions, each partition may
proceed to update the same data item, believing that sites in the other partitions
are all dead.

The read one, write all available scheme can be used if there is never any
network partitioning, but it can result in inconsistencies in the event of network
partitions.

19.6.3 Site Reintegration

Reintegration of a repaired site or link into the system requires care. When a
failed site recovers, it must initiate a procedure to update its system tables to
reflect changes made while it was down. If the site had replicas of any data items,
it must obtain the current values of these data items and ensure that it receives all
future updates. Reintegration of a site is more complicated than it may seem to
be at first glance, since there may be updates to the data items processed during
the time that the site is recovering.

An easy solution is to halt the entire system temporarily while the failed site
rejoins it. In most applications, however, such a temporary halt is unacceptably
disruptive. Techniques have been developed to allow failed sites to reintegrate
while concurrent updates to data items proceed concurrently. Before a read or
write lock is granted on any data item, the site must ensure that it has caught up
on all updates to the data item. If a failed link recovers, two or more partitions can
be rejoined. Since a partitioning of the network limits the allowable operations
by some or all sites, all sites should be informed promptly of the recovery of the
link. See the bibliographical notes for more information on recovery in distributed
systems.

19.6.4 Comparison with Remote Backup

Remote backup systems, which we studied in Section 16.9, and replication in dis-
tributed databases are two alternative approaches to providing high availability.
The main difference between the two schemes is that with remote backup sys-
tems, actions such as concurrency control and recovery are performed at a single
site, and only data and log records are replicated at the other site. In particular, re-
mote backup systems help avoid two-phase commit, and its resultant overheads.
Also, transactions need to contact only one site (the primary site), and thus avoid
the overhead of running transaction code at multiple sites. Thus remote backup
systems offer a lower-cost approach to high availability than replication.

On the other hand, replication can provide greater availability by having
multiple replicas available and using the majority protocol.

19.6.5 Coordinator Selection

Several of the algorithms that we have presented require the use of a coordinator.
If the coordinator fails because of a failure of the site at which it resides, the system
can continue execution only by restarting a new coordinator on another site. One
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way to continue execution is by maintaining a backup to the coordinator, which
is ready to assume responsibility if the coordinator fails.

A backup coordinator is a site that, in addition to other tasks, maintains
enough information locally to allow it to assume the role of coordinator with
minimal disruption to the distributed system. All messages directed to the co-
ordinator are received by both the coordinator and its backup. The backup co-
ordinator executes the same algorithms and maintains the same internal state
information (such as, for a concurrency coordinator, the lock table) as does the
actual coordinator. The only difference in function between the coordinator and
its backup is that the backup does not take any action that affects other sites. Such
actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coor-
dinator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without
interruption.

The prime advantage to the backup approach is the ability to continue pro-
cessing immediately. If a backup were not ready to assume the coordinator’s re-
sponsibility, a newly appointed coordinator would have to seek information from
all sites in the system so that it could execute the coordination tasks. Frequently,
the only source of some of the requisite information is the failed coordinator. In
this case, it may be necessary to abort several (or all) active transactions, and to
restart them under the control of the new coordinator.

Thus, the backup-coordinator approach avoids a substantial amount of delay
while the distributed system recovers from a coordinator failure. The disadvan-
tage is the overhead of duplicate execution of the coordinator’s tasks. Further-
more, a coordinator and its backup need to communicate regularly to ensure that
their activities are synchronized.

In short, the backup-coordinator approach incurs overhead during normal
processing to allow fast recovery from a coordinator failure.

In the absence of a designated backup coordinator, or in order to handle
multiple failures, a new coordinator may be chosen dynamically by sites that are
live. Election algorithms enable the sites to choose the site for the new coordinator
in a decentralized manner. Election algorithms require that a unique identification
number be associated with each active site in the system.

The bully algorithm for election works as follows: To keep the notation
and the discussion simple, assume that the identification number of site S; is i
and that the chosen coordinator will always be the active site with the largest
identification number. Hence, when a coordinator fails, the algorithm must elect
the active site that has the largest identification number. The algorithm must send
this number to each active site in the system. In addition, the algorithm must
provide a mechanism by which a site recovering from a crash can identify the
current coordinator. Suppose that site S; sends a request that is not answered
by the coordinator within a prespecified time interval T. In this situation, it is
assumed that the coordinator has failed, and S; tries to elect itself as the site for
the new coordinator.
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Site S; sends an election message to every site that has a higher identification
number. Site S; then waits, for a time interval T, for an answer from any one
of these sites. If it receives no response within time T, it assumes that all sites
with numbers greater than i have failed, and it elects itself as the site for the
new coordinator and sends a message to inform all active sites with identification
numbers lower than i that it is the site at which the new coordinator resides.

If S; does receive an answer, it begins a time interval T”, to receive a message
informing it that a site with a higher identification number has been elected.
(Some other site is electing itself coordinator, and should report the results within
time T'.) If 5; receives no message within T’, then it assumes the site with a higher
number has failed, and site S; restarts the algorithm.

After a failed site recovers, it immediately begins execution of the same algo-
rithm. If there are no active sites with higher numbers, the recovered site forces
all sites with lower numbers to let it become the coordinator site, even if there is
a currently active coordinator with a lower number. It is for this reason that the
algorithm is termed the bully algorithm. If the network partitions, the bully algo-
rithm elects a separate coordinator in each partition; to ensure that at most one
coordinator is elected, winning sites should additionally verify that a majority of
the sites are in their partition.

19.6.6 Trading Off Consistency for Availability

The protocols we have seen so far require a (weighted) majority of sites be in
a partition for updates to proceed. Sites that are in a minority partition cannot
process updates; if a network failure results in more than two partitions, no
partition may have a majority of sites. Under such a situation, the system would
be completely unavailable for updates, and depending on the read-quorum, may
even become unavailable for reads. The write-all-available protocol which we
saw earlier provides availability, but not consistency.

Ideally, we would like to have consistency and availability, even in the face
of partitions. Unfortunately, this is not possible, a fact that is crystallized in the
so-called CAP theorem, which states that any distributed database can have at
most two of the following three properties:

¢ Consistency.
¢ Availability.

e Partition-tolerance.

The proof of the CAP theorem uses the following definition of consistency, with
replicated data: an execution of a set of operations (reads and writes) on replicated
data is said to be consistent if its result is the same as if the operations were
executed on a single site, in some sequential order, and the sequential order is
consistent with the ordering of operations issued by each process (transaction).
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The notion of consistency is similar to atomicity of transactions, but with each
operation treated as a transaction, and is weaker than the atomicity property of
transactions.

In any large-scale distributed system, partitions cannot be prevented, and as
a result either of availability or consistency has to be sacrificed. The schemes we
have seen earlier sacrifice availability for consistency in the face of partitions.

Consider a Web-based social-networking system that replicates its data on
three servers, and a network partition occurs that prevents the servers from
communicating with each other. Since none of the partitions has a majority, it
would not be possible to execute updates on any of the partitions. If one of these
servers is in the same partition as a user, the user actually has access to data,
but would be unable to update the data, since another user may be concurrently
updating the same object in another partition, which could potentially lead to
inconsistency. Inconsistency is not as great a risk in a social-networking system
as in a banking database. A designer of such a system may decide that a user
who can access the system should be allowed to perform updates on whatever
replicas are accessible, even at the risk of inconsistency.

In contrast to systems such as banking databases that require the ACID prop-
erties, systems such as the social-networking system mentioned above are said to
require the BASE properties:

¢ Basically available.
e Soft state.

¢ Eventually consistent.

The primary requirement is availability, even at the cost of consistency. Updates
should be allowed, even in the event of partitioning, following for example the
write-all-available protocol (which is similar to multimaster replication described
in Section 19.5.3). Soft state refers to the property that the state of the database may
not be precisely defined, with each replica possibly having a somewhat different
state due to partitioning of the network. Eventually consistent is the requirement
that once a partitioning is resolved, eventually all replicas will become consistent
with each other.

This last step requires that inconsistent copies of data items be identified; if
oneis an earlier version of the other, the earlier version can be replaced by the later
version. It is possible, however, that the two copies were the result of independent
updates to a common base copy. A scheme for detecting such inconsistent updates,
called the version-vector scheme, is described in Section 25.5.4.

Restoring consistency in the face of inconsistent updates requires that the
updates be merged in some way that is meaningful to the application. This step
cannot be handled by the database; instead the database detects and informs
the application about the inconsistency, and the application then decides how to
resolve the inconsistency.
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Distributed Query Processing

In Chapter 13, we saw that there are a variety of methods for computing the
answer to a query. We examined several techniques for choosing a strategy for
processing a query that minimize the amount of time that it takes to compute the
answer. For centralized systems, the primary criterion for measuring the cost of
a particular strategy is the number of disk accesses. In a distributed system, we
must take into account several other matters, including:

e The cost of data transmission over the network.

¢ The potential gain in performance from having several sites process parts of
the query in parallel.

The relative cost of data transfer over the network and data transfer to and from
disk varies widely depending on the type of network and on the speed of the
disks. Thus, in general, we cannot focus solely on disk costs or on network costs.
Rather, we must find a good trade-off between the two.

19.7.1 Query Transformation

Consider an extremely simple query: “Find all the tuples in the account relation.”
Although the query is simple—indeed, trivial —processing it is not trivial, since
the account relation may be fragmented, replicated, or both, as we saw in Sec-
tion 19.2. If the account relation is replicated, we have a choice of replica to make.
If no replicas are fragmented, we choose the replica for which the transmission
cost is lowest. However, if a replica is fragmented, the choice is not so easy to
make, since we need to compute several joins or unions to reconstruct the account
relation. In this case, the number of strategies for our simple example may be
large. Query optimization by exhaustive enumeration of all alternative strategies
may not be practical in such situations.
Fragmentation transparency implies that a user may write a query such as:

Obranchname =“Hillside” (acco unt)
Since account is defined as:
accounty U accounty
the expression that results from the name translation scheme is:
Ohranchname =“Hillside” (account; U accounty)

Using the query-optimization techniques of Chapter 13, we can simplify the
preceding expression automatically. The result is the expression:
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Ohranch-name =“Hillside” (account1) U Opranchname = “Hillside” (accounty)

which includes two subexpressions. The first involves only account;, and thus
can be evaluated at the Hillside site. The second involves only account,, and thus
can be evaluated at the Valleyview site.

There is a further optimization that can be made in evaluating;

Obranch-name = “Hillside” ( accounty )

Since accounti has only tuples pertaining to the Hillside branch, we can eliminate
the selection operation. In evaluating:

Ohranchname =“Hillside” (@ccounty)

we can apply the definition of the account, fragment to obtain:

Cbranchname = “Hillside” (Tbranchname = “Valleyview” (account))

This expression is the empty set, regardless of the contents of the account relation.
Thus, our final strategy is for the Hillside site to return account; as the result
of the query.

19.7.2 Simple Join Processing

As we saw in Chapter 13, a major decision in the selection of a query-processing
strategy is choosing a join strategy. Consider the following relational-algebra
expression:

account X depositor X branch

Assume that the three relations are neither replicated nor fragmented, and that
account is stored at site Sy, depositor at S, and branch at Ss. Let S; denote the site
at which the query was issued. The system needs to produce the result at site S;.
Among the possible strategies for processing this query are these:

¢ Ship copies of all three relations to site S;. Using the techniques of Chapter
13, choose a strategy for processing the entire query locally at site S;.

e Ship a copy of the account relation to site S;, and compute temp, = account X
depositor at S,. Ship temp; from S, to S3, and compute temp, = temp, X branch
at S3. Ship the result temp, to S;.

e Devise strategies similar to the previous one, with the roles of Si, S, S3
exchanged.

No one strategy is always the best one. Among the factors that must be
considered are the volume of data being shipped, the cost of transmitting a block
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of data between a pair of sites, and the relative speed of processing at each site.
Consider the first two strategies listed. Suppose indices present at S; and S; are
useful for computing the join. If we ship all three relations to S;, we would need to
either re-create these indices at S;, or use a different, possibly more expensive, join
strategy. Re-creation of indices entails extra processing overhead and extra disk
accesses. With the second strategy a potentially large relation (account X depositor)
must be shipped from S, to S3. This relation repeats the name of a customer once
for each account that the customer has. Thus, the second strategy may result in
extra network transmission compared to the first strategy.

19.7.3 Semijoin Strategy

Suppose that we wish to evaluate the expression r; X 7, where rq and r;, are
stored at sites S; and S, respectively. Let the schemas of r; and r, be R; and Ry.
Suppose that we wish to obtain the result at S;. If there are many tuples of r, that
do not join with any tuple of 71, then shipping r, to S; entails shipping tuples that
fail to contribute to the result. We want to remove such tuples before shipping
data to S;, particularly if network costs are high.

A possible strategy to accomplish all this is:

Compute temp, < Ig,nr, (1) at Si.
Ship temp; from S; to S,.
Compute temp, < ry X tempy at S,.
Ship temp, from S, to S;.

G W DR

Compute r; X temp; at S;. The resulting relation is the same as rq X 7.

Before considering the efficiency of this strategy, let us verify that the strategy
computes the correct answer. In step 3, temp, has the result of r, X TIg g, (r1).
In step 5, we compute:

r1 X ry M IR AR, (1)
Since join is associative and commutative, we can rewrite this expression as:

(7’1 X HR]ﬂRz (7’1)) X 72

Since r1 X TI(r,ngy (r1) = 71, the expression is, indeed, equal to r; X 7, the
expression we are trying to evaluate.

This strategy is particularly advantageous when relatively few tuples of r;
contribute to the join. This situation is likely to occur if r; is the result of a
relational-algebra expression involving selection. In such a case, temp, may have
significantly fewer tuples than ;. The cost savings of the strategy result from
having to ship only temp,, rather than all of r;, to S;. Additional cost is incurred
in shipping temp; to S,. If a sufficiently small fraction of tuples in r, contribute



19.8

19.8 Heterogeneous Distributed Databases 857

to the join, the overhead of shipping temp; will be dominated by the savings of
shipping only a fraction of the tuples in 7.

This strategy is called a semijoin strategy, after the semijoin operator of the
relational algebra, denoted ix. The semijoin of r{ with r,, denoted r1 x 1, is:

HR] (1’1 X 1’2)

Thus, r1 x r; selects those tuples of relation rq that contributed to r; X r,. In step
3, tempy =17 X 171.

For joins of several relations, this strategy can be extended to a series of
semijoin steps. A substantial body of theory has been developed regarding the
use of semijoins for query optimization. Some of this theory is referenced in the
bibliographical notes.

19.7.4 Join Strategies that Exploit Parallelism

Consider a join of four relations:
T X 1) X T3 X ra

where relation 7; is stored at site S;. Assume that the result must be presented
at site S;. There are many possible strategies for parallel evaluation. (We studied
the issue of parallel processing of queries in detail in Chapter 18.) In one such
strategy, r1 is shipped to S, and rq X r, computed at S,. At the same time, 3 is
shipped to S, and r3 X r4 computed at S;. Site S, can ship tuples of (11 X r;)
to S; as they are produced, rather than wait for the entire join to be computed.
Similarly, S4 can ship tuples of (r3 X r4) to S;. Once tuples of (r1 X r2) and (13 X r4)
arrive at S;, the computation of (r1 X rp) X (r3 X r4) can begin, with the pipelined
join technique of Section 12.7.2.2. Thus, computation of the final join result at
51 can be done in parallel with the computation of (r; X r;) at S,, and with the
computation of (r3 X r4) at S4.

Heterogeneous Distributed Databases

Many new database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and software en-
vironments. Manipulation of information located in a heterogeneous distributed
database requires an additional software layer on top of existing database sys-
tems. This software layer is called a multidatabase system. The local database
systems may employ different logical models and data-definition and data-
manipulation languages, and may differ in their concurrency-control and trans-
action-management mechanisms. A multidatabase system creates the illusion of
logical database integration without requiring physical database integration.

Full integration of heterogeneous systems into a homogeneous distributed
database is often difficult or impossible:
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¢ Technical difficulties. The investment in application programs based on ex-
isting database systems may be huge, and the cost of converting these appli-
cations may be prohibitive.

¢ Organizational difficulties. Even if integration is technically possible, it may
not be politically possible, because the existing database systems belong to
different corporations or organizations. In such cases, it is important for
a multidatabase system to allow the local database systems to retain a high
degree of autonomy over the local database and transactions running against
that data.

For these reasons, multidatabase systems offer significant advantages that
outweigh their overhead. In this section, we provide an overview of the challenges
faced in constructing a multidatabase environment from the standpoint of data
definition and query processing.

19.8.1 Unified View of Data

Each local database management system may use a different data model. For
instance, some may employ the relational model, whereas others may employ
older datamodels, such as the network model (see Appendix D) or the hierarchical
model (see Appendix E).

Since the multidatabase system is supposed to provide the illusion of a single,
integrated database system, a common data model must be used. A commonly
used choice is the relational model, with SQL as the common query language.
Indeed, there are several systems available today that allow SQL queries to a
nonrelational database-management system.

Another difficulty is the provision of a common conceptual schema. Each
local system provides its own conceptual schema. The multidatabase system must
integrate these separate schemas into one common schema. Schema integration
is a complicated task, mainly because of the semantic heterogeneity.

Schema integration is not simply straightforward translation between data-
definition languages. The same attribute names may appear in different local
databases but with different meanings. The data types used in one system may not
be supported by other systems, and translation between types may not be simple.
Even foridentical data types, problems may arise from the physical representation
of data: One system may use 8-bit ASCII, another 16-bit Unicode, and yet another
EBCDIC; floating-point representations may differ; integers may be represented
in big-endian or little-endian form. At the semantic level, an integer value for
length may be inches in one system and millimeters in another, thus creating an
awkward situation in which equality of integers is only an approximate notion
(as is always the case for floating-point numbers). The same name may appear
in different languages in different systems. For example, a system based in the
United States may refer to the city “Cologne,” whereas one in Germany refers to
it as “Koln.”

All these seemingly minor distinctions must be properly recorded in the com-
mon global conceptual schema. Translation functions must be provided. Indices
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must be annotated for system-dependent behavior (for example, the sort order of
nonalphanumeric characters is not the same in ASCII as in EBCDIC). As we noted
earlier, the alternative of converting each database to a common format may not
be feasible without obsoleting existing application programs.

19.8.2 Query Processing

Query processing in a heterogeneous database can be complicated. Some of the
issues are:

e Given a query on a global schema, the query may have to be translated
into queries on local schemas at each of the sites where the query has to be
executed. The query results have to be translated back into the global schema.

The task is simplified by writing wrappers for each data source, which
provide a view of the local data in the global schema. Wrappers also translate
queries on the global schema into queries on the local schema, and translate
results back into the global schema. Wrappers may be provided by individual
sites, or may be written separately as part of the multidatabase system.

Wrappers can even be used to provide a relational view of nonrelational
data sources, such as Web pages (possibly with forms interfaces), flat files,
hierarchical and network databases, and directory systems.

® Some data sources may provide only limited query capabilities; for instance,
they may support selections, but not joins. They may even restrict the form of
selections, allowing selections only on certain fields; Web data sources with
form interfaces are an example of such data sources. Queries may therefore
have to be broken up, to be partly performed at the data source and partly at
the site issuing the query.

¢ In general, more than one site may need to be accessed to answer a given
query. Answers retrieved from the sites may have to be processed to remove
duplicates. Suppose one site contains account tuples satisfying the selection
balance < 100, while another contains account tuples satisfying balance > 50.
A query on the entire account relation would require access to both sites and
removal of duplicate answers resulting from tuples with balance between 50
and 100, which are replicated at both sites.

e Global query optimization in a heterogeneous database is difficult, since
the query execution system may not know what the costs are of alternative
query plans at different sites. The usual solution is to rely on only local-level
optimization, and just use heuristics at the global level.

Mediator systems are systems that integrate multiple heterogeneous data
sources, providing an integrated global view of the data and providing query
facilities on the global view. Unlike full-fledged multidatabase systems, mediator
systems do not bother about transaction processing. (The terms mediator and
multidatabase are often used in an interchangeable fashion, and systems that are
called mediators may support limited forms of transactions.) The term virtual
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database is used to refer to multidatabase/mediator systems, since they provide
the appearance of a single database with a global schema, although data exist on
multiple sites in local schemas.

19.8.3 Transaction Management in Multidatabases

A multidatabase system supports two types of transactions:

1. Local transactions. These transactions are executed by each local database
system outside of the multidatabase system’s control.

2. Global transactions. These transactions are executed under the multidata-
base system’s control.

The multidatabase system is aware of the fact that local transactions may run at
the local sites, but it is not aware of what specific transactions are being executed,
or of what data they may access.

Ensuring thelocal autonomy of each database system requires that no changes
be made to its software. A database system at one site thus is not able to commu-
nicate directly with one at any other site to synchronize the execution of a global
transaction active at several sites.

Since the multidatabase system has no control over the execution of local
transactions, each local system must use a concurrency-control scheme (for exam-
ple, two-phase locking or timestamping) to ensure that its schedule is serializable.
In addition, in case of locking, the local system must be able to guard against the
possibility of local deadlocks.

The guarantee of local serializability is not sufficient to ensure global serial-
izability. As an illustration, consider two global transactions T; and T, each of
which accesses and updates two data items, A and B, located at sites S5; and S,
respectively. Suppose that the local schedules are serializable. It is still possible
to have a situation where, at site S;, T> follows T;, whereas, at S,, T; follows T,
resulting in a nonserializable global schedule. Indeed, even if there is no concur-
rency among global transactions (that is, a global transaction is submitted only
after the previous one commits or aborts), local serializability is not sufficient to
ensure global serializability (see Practice Exercise 19.14).

Depending on the implementation of the local database systems, a global
transaction may not be able to control the precise locking behavior of its local
subtransactions. Thus, even if all local database systems follow two-phase lock-
ing, it may be possible only to ensure that each local transaction follows the rules
of the protocol. For example, one local database system may commit its subtrans-
action and release locks, while the subtransaction at another local system is still
executing. If the local systems permit control of locking behavior and all systems
follow two-phase locking, then the multidatabase system can ensure that global
transactions lock in a two-phase manner and the lock points of conflicting transac-
tions would then define their global serialization order. If different local systems
follow different concurrency-control mechanisms, however, this straightforward
sort of global control does not work.
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There are many protocols for ensuring consistency despite concurrent execu-
tion of global and local transactions in multidatabase systems. Some are based on
imposing sufficient conditions to ensure global serializability. Others ensure only
a form of consistency weaker than serializability, but achieve this consistency by
less restrictive means. Section 26.6 describes approaches to consistency without
serializability; other approaches are cited in the bibliographical notes.

Early multidatabase systems restricted global transactions to be read only.
They thus avoided the possibility of global transactions introducing inconsistency
to the data, but were not sufficiently restrictive to ensure global serializability. It
is indeed possible to get such global schedules and to develop a scheme to ensure
global serializability, and we ask you to do both in Practice Exercise 19.15.

There are a number of general schemes to ensure global serializability in an
environment where update as well as read-only transactions can execute. Several
of these schemes are based on the idea of a ticket. A special data item called
a ticket is created in each local database system. Every global transaction that
accesses data at a site must write the ticket at that site. This requirement ensures
that global transactions conflict directly at every site they visit. Furthermore, the
global transaction manager can control the order in which global transactions are
serialized, by controlling the order in which the tickets are accessed. References
to such schemes appear in the bibliographical notes.

If we want to ensure global serializability in an environment where no direct
local conflicts are generated in each site, some assumptions must be made about
the schedules allowed by the local database system. For example, if the local
schedules are such that the commit order and serialization order are always
identical, we can ensure serializability by controlling only the order in which
transactions commit.

A related problem in multidatabase systems is that of global atomic commit.
If all local systems follow the two-phase commit protocol, that protocol can be
used to achieve global atomicity. However, local systems not designed to be part
of a distributed system may not be able to participate in such a protocol. Even if a
local system is capable of supporting two-phase commit, the organization owning
the system may be unwilling to permit waiting in cases where blocking occurs. In
such cases, compromises may be made that allow for lack of atomicity in certain
failure modes. Further discussion of these matters appears in the literature (see
the bibliographical notes).

Cloud-Based Databases

Cloud computing is a relatively new concept in computing that emerged in
the late 1990s and the 2000s, first under the name software as a service. Initial
vendors of software services provided specific customizable applications that
they hosted on their own machines. The concept of cloud computing developed
as vendors began to offer generic computers as a service on which clients could
run software applications of their choosing. A client can make arrangements
with a cloud-computing vendor to obtain a certain number of machines of a
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certain capacity as well as a certain amount of data storage. Both the number of
machines and the amount of storage can grow and shrink as needed. In addition
to providing computing services, many vendors also provide other services such
as data storage services, map services, and other services that can be accessed
using a Web-service application programming interface.

Many enterprises are finding the model of cloud computing and services
beneficial. It saves client enterprises the need to maintain a large system-support
staff and allows new enterprises to begin operation without having to make a
large, up-front capital investment in computing systems. Further, as the needs
of the enterprise grow, more resources (computing and storage) can be added
as required; the cloud-computing vendor generally has very large clusters of
computers, making it easy for the vendor to allocate resources on demand.

A variety of vendors offer cloud services. They include traditional computing
vendors as well as companies, such as Amazon and Google, that are seeking to
leverage the large infrastructure they have in place for their core businesses.

Web applications that need to store and retrieve data for very large numbers
of users (ranging from millions to hundreds of millions) have been a major driver
of cloud-based databases. The needs of these applications differ from those of
traditional database applications, since they value availability and scalability over
consistency. Several cloud-based data-storage systems have been developed in
recent years to serve the needs of such applications. We discuss issues in building
such data-storage systems on the cloud in Section 19.9.1.

In Section 19.9.2, we consider issues in running traditional database systems
on a cloud. Cloud-based databases have features of both homogeneous and het-
erogeneous systems. Although the data are owned by one organization (the client)
and are part of one unified distributed database, the underlying computers are
owned and operated by another organization (the service vendor). The comput-
ers are remote from the client’s location(s) and are accessed over the Internet. As a
result, some of the challenges of heterogeneous distributed systems remain, par-
ticularly as regards transaction processing. However, many of the organizational
and political challenges of heterogeneous systems are avoided.

Finally, in Section 19.9.3, we discuss several technical as well as nontechnical
challenges that cloud databases face today.

19.9.1 Data Storage Systems on the Cloud

Applications on the Web have extremely high scalability requirements. Popular
applications have hundreds of millions of users, and many applications have seen
their load increase manyfold within a single year, or even within a few months. To
handle the data management needs of such applications, data must be partitioned
across thousands of processors.

A number of systems for data storage on the cloud have been developed
and deployed over the past few years to address data management requirements
of such applications; these include Bigtable from Google, Simple Storage Service
(583) from Amazon, which provides a Web interface to Dynamo, which is a key-
value storage system, Cassandra, from FaceBook, which is similar to Bigtable, and



19.9 Cloud-Based Databases 863

Sherpa/PNUTS from Yahoo!, the data storage component of the Azure environment
from Microsoft, and several other systems.

In this section, we provide an overview of the architecture of such data-
storage systems. Although some people refer to these systems as distributed
database systems, they do not provide many of the features which are viewed as
standard on database systems today, such as support for SQL, or for transactions
with the ACID properties.

19.9.1.1 Data Representation

As an example of data management needs of Web applications, consider the pro-
file of a user, which needs to be accessible to a number of different applications that
are run by an organization. The profile contains a variety of attributes, and there
are frequent additions to the attributes stored in the profile. Some attributes may
contain complex data. A simple relational representation is often not sufficient
for such complex data.

Some cloud-based data-storage systems support XML (described in Chap-
ter 23) for representing such complex data. Others support the JavaScript Object
Notation (JSON) representation, which has found increasing acceptance for repre-
senting complex data. The XML and JSON representations provide flexibility in the
set of attributes that a record contains, as well as the types of these attributes. Yet
others, such as Bigtable, define their own data model for complex data including
support for records with a very large number of optional columns. We revisit the
Bigtable data model later in this section.

Further, many such Web applications either do not need extensive query
language support, or at least, can manage without such support. The primary
mode of data access is to store data with an associated key, and to retrieve data
with that key. In the above user profile example, the key for user-profile data
would be the user’s identifier. There are applications that conceptually require
joins, but implement the joins by a form of view materialization. For example,
in a social-networking application, each user should be shown new posts from
all her friends. Unfortunately, finding the set of friends and then querying each
one to find their posts may lead to a significant amount of delay when the data
are distributed across a large number of machines. An alternative is as follows:
whenever a user makes a post, a message is sent to all friends of that user, and
the data associated with each of the friends is updated with a summary of the
new post. When that user checks for updates, all required data are available in
one place and can be retrieved quickly.

Thus, cloud data-storage systems are, at their core, based on two primitive
functions, put(key, value), used to store values with an associated key, and get(key),
which retrieves the stored value associated with the specified key. Some systems
such as Bigtable additionally provide range queries on key values.

In Bigtable, a record is not stored as a single value, but is instead split into
component attributes that are stored separately. Thus, the key for an attribute
value conceptually consists of (record-identifier, attribute-name). Each attribute
value is just a string as far as Bigtable is concerned. To fetch all attributes of a
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JSON

JavaScript Object Notation, or JSON, is a textual representation of complex data
types which is widely used for transmitting data between applications, as well
as to store complex data. JSON supports the primitive data types integer, real and
string, as well as arrays, and “objects”, which are a collection of (attribute-name,
value) pairs. An example of a JSON object is:

{
W[5 TR
"name":
"firstname: "Albert",
"lastname: "Einstein"
}/
"deptname": "Physics",
"children": [
{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }
]
}

The above example illustrates objects, which contain (attribute-name, value)
pairs, as well as arrays, delimited by square brackets. JSON can be viewed as a
simplified form of XML; XML is covered in Chapter 23.

Libraries have been developed to transform data between the JSON represen-
tation and the object representation used in the JavaScript and PHP scripting
languages, as well as other programming languages.

record, a range query, or more precisely a prefix-match query consisting of just the
record identifier, is used. The get() function returns the attribute names along with
the values. For efficient retrieval of all attributes of a record, the storage system
stores entries sorted by the key, so all attribute values of a particular record are
clustered together.

In fact, the record identifier can itself be structured hierarchically, although

to Bigtable itself the record identifier is just a string. For example, an application
that stores pages retrieved from a web crawl could map a URL of the form:

www.cs.yale.edu/people/silberschatz.html

to the record identifier:

edu.yale.cs.www/people/silberschatz.html

so that pages are clustered in a useful order. As another example, the record shown
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in the JSON example (see example box on JSON) can be represented by a record
with identifier “22222”, with multiple attribute names such as “name.firstname”,
“deptname”, “children[1].firstname” or “children[2].]astname”.

Further, a single instance of Bigtable can store data for multiple applications,
with multiple tables per application, by simply prefixing the application name
and table name to the record identifier.

Data-storage systems typically allow multiple versions of data items to be
stored. Versions are often identified by timestamp, but may be alternatively iden-
tified by an integer value that is incremented whenever a new version of a data
item is created. Lookups can specify the required version of a data item, or can
pick the version with the highest version number. In Bigtable, for example, a key
actually consists of three parts: (record-identifier, attribute-name, timestamp).

19.9.1.2 Partitioning and Retrieving Data

Partitioning of data is, of course, the key to handling extremely large scale in
data-storage systems. Unlike regular parallel databases, it is usually not possible
to decide on a partitioning function ahead of time. Further, if load increases, more
servers need to be added and each server should be able to take on parts of the
load incrementally.

To solve both these problems, data-storage systems typically partition data
into relatively small units (small on such systems may mean of the order of
hundreds of megabytes). These partitions are often called tablets, reflecting the
fact that each tablet is a fragment of a table. The partitioning of data should be
done on the search key, so that a request for a specific key value is directed to a
single tablet; otherwise each request would require processing at multiple sites,
increasing the load on the system greatly. Two approaches are used: either range
partitioning is used directly on the key, or a hash function is applied on the key,
and range partitioning is applied on the result of the hash function.

The site to which a tablet is assigned acts as the master site for that tablet. All
updates are routed through this site, and updates are then propagated to replicas
of the tablet. Lookups are also sent to the same site, so that reads are consistent
with writes.

The partitioning of data into tablets is not fixed up front, but happens dy-
namically. As data are inserted, if a tablet grows too big, it is broken into smaller
parts. Further, even if a tablet is not large enough to merit being broken up, if the
load (get/put operations) on that tablet are excessive, the tablet may be broken
into smaller tablets, which can be distributed across two or more sites to share
the load. Usually the number of tablets is much larger than the number of sites,
for the same reason that virtual partitioning is used in parallel databases.

It is important to know which site in the overall system is responsible for a
particular tablet. This can be done by having a tablet controller site which tracks
the partitioning function, to map a get() request to one or more tablets, and a
mapping function from tablets to sites, to find which site were responsible for
which tablet. Each request coming into the system must be routed to the correct
site; if a single tablet controller site is responsible for this task, it would soon
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Figure 19.7 Architecture of a cloud data storage system.

get overloaded. Instead, the mapping information can be replicated on a set of
router sites, which route requests to the site with the appropriate tablet. Protocols
to update mapping information when a tablet is split or moved are designed in
such a way that no locking is used; a request may as a result end up at a wrong
site. The problem is handled by detecting that the site is no longer responsible for
the key specified by the request, and rerouting the request based on up-to-date
mapping information.

Figure 19.7 depicts the architecture of a cloud data-storage system, based
loosely on the PNUTS architecture. Other systems provide similar functionality,
although their architecture may vary. For example, Bigtable does not have sepa-
rate routers; the partitioning and tablet-server mapping information is stored in
the Google file system, and clients read the information from the file system, and
decide where to send their requests.

19.9.1.3 Transactions and Replication

Data-storage systems on the cloud typically do not fully support ACID trans-
actions. The cost of two-phase commit is too high, and two-phase commit can
lead to blocking in the event of failures, which is not acceptable to typical Web
applications. This means that such systems typically do not even support a trans-
actionally consistent secondary index: the secondary index would be partitioned
on a different attribute from the key used for storing the data, and an insert or
update would then need to update two sites, which would require two-phase
commit. At best, such systems support transactions on data within a single tablet,
which is controlled by a a single master site. Sherpa/PNUTS also provides a test-
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and-set function, which allows an update to a data item to be conditional on the
current version of the data item being the same as a specified version number. If
the current version number of the data item is more recent than the specified ver-
sion number, the update is not performed. The test-and-set function can be used
by applications to implement a limited form of validation-based concurrency
control, with validation restricted to data items in a single tablet.

In a system with thousands of sites, at any time it is almost guaranteed that
several of the sites will be down. A data-storage system on the cloud must be
able to continue normal processing even with many sites down. Such systems
replicate data (such as tablets) to multiple machines in a cluster, so that a copy of
the data is likely to be available even if some machines of a cluster are down. (A
cluster is a collection of machines in a data center.) For example, the Google File
System (GFS), which is a distributed fault-tolerant file system, replicates all file
system blocks at three or more nodes in a cluster. Normal operation can continue
as long as at least one copy of the data is available (key system data, such as
the mapping of files to nodes, is replicated at more nodes, a majority of which
need to be available). In addition, replication is also used across geographically
distributed clusters, for reasons that we shall see shortly.

Since each tablet is controlled by a single master site, if the site fails the tablet
should be reassigned to a different site that has a copy of the tablet, which becomes
the new master site for the tablet. Updates to a tablet are logged, and the log is
itself replicated. When a site fails, the tablets at the site are assigned to other sites;
the new master site of each tablet is responsible for performing recovery actions
using the log to bring its copy of the tablet to an up-to-date consistent state, after
which updates and lookups can be performed on the tablet.

In Bigtable, as an example, mapping information is stored in an index struc-
ture, and the index as well as the actual tablet data are stored in the file system.
Tablet data updates are not flushed immediately, but log data are. The file system
ensures that the file system data are replicated and will be available even in the
face of failure of a few nodes in the cluster. Thus, when a tablet is reassigned,
the new master site for the tablet has access to up-to-date log data. Yahoo!’s
Sherpa/PNUTS system, on the other hand, explicitly replicates tablets to multiple
nodes in a cluster, instead of using a distributed file system, and uses a reliable
distributed-messaging system to implement a highly available log.

Unfortunately, it is not uncommon for an entire data center to become unavail-
able-for example, due to natural disasters or fires. Replication at a remote site is
therefore essential for high availability. For many Web applications, round-trip
delays across a long-distance network can affect performance significantly, a
problem that is increasing with the use of Ajax applications that require multiple
rounds of communication between the browser and the application. To deal with
this problem, users are connected with application servers that are closest to them
geographically, and data are replicated at multiple data centers so that one of the
replicas is likely to be close to the application server.

However, the danger of partitioning of the network is increased as a result.
Given that most Web applications place a greater premium on availability than on
consistency, data-storage systems on the cloud usually allow updates to proceed
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even in the event of a partitioning, and provide support for restoring consis-
tency later, as discussed earlier in Section 19.6.6. Multimaster replication with
lazy propagation of updates, which we saw in Section 19.5.3, is typically used
for processing updates. Lazy propagation implies that updates are not propa-
gated to replicas as part of the updating transaction, although they are typically
propagated as soon as possible, typically using a messaging infrastructure.

In addition to propagating updates to replicas of a data item, updates to
secondary indices, or to certain kinds of materialized views (such as the updates
from friends, in a social-networking application we saw earlier in Section 19.9.1.1),
can be sent using the messaging infrastructure. Secondary indices are basically
tables, partitioned just like regular tables, based on the index search key; an
update of a record in a table can be mapped to updates of one or more tablets in a
secondary index on the table. There is no transactional guarantee on the updates
of such secondary indices or materialized views, and only a best-effort guarantee
in terms of when the updates reach their destination.

19.9.2 Traditional Databases on the Cloud

We now consider the issue of implementing a traditional distributed database
system, supporting ACID properties and queries, on a cloud.

The concept of computing utilities is an old one, envisioned back in the 1960s.
The first manifestation of the concept was in timesharing systems in which several
users shared access to a single mainframe computer. Later, in the late 1960s, the
concept of virtual machines was developed, in which a user was given the illusion
of having a private computer, while in reality a single computer simulated several
virtual machines.

Cloud computing makes extensive use of the virtual-machine concept to pro-
vide computing services. Virtual machines provide great flexibility since clients
may choose their own software environment including not only the application
software but also the operating system. Virtual machines of several clients can
run on a single physical computer, if the computing needs of the clients are low.
On the other hand, an entire computer can be allocated to each virtual machine
of a client whose virtual machines have a high load. A client may request several
virtual machines over which to run an application. This makes it easy to add or
subtract computing power as workloads grow and shrink simply by adding or
releasing virtual machines.

Having a set of virtual machines works well for applications that are easily
parallelized. Database systems, as we have seen, fall into this category. Each
virtual machine can run database system code locally and behave in a manner
similar to a site in a homogeneous distributed database system.

19.9.3 Challenges with Cloud-Based Databases

Cloud-based databases certainly have several important advantages compared
to building a computing infrastructure from scratch, and are in fact essential for
certain applications.
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However, cloud-based database systems also have several disadvantages that
we shall now explore. Unlike purely computational applications in which parallel
computations run largely independently, distributed database systems require
frequent communication and coordination among sites for:

® access to data on another physical machine, either because the data are owned
by another virtual machine or because the data are stored on a storage server
separate from the computer hosting the virtual machine.

e obtaining locks on remote data.

® ensuring atomic transaction commit via two-phase commit.

In our earlier study of distributed databases, we assumed (implicitly) that
the database administrator had control over the physical location of data. In a
cloud system, the physical location of data is under the control of the vendor,
not the client. As a result, the physical placement of data may be suboptimal in
terms of communication cost, and this may result in a large number of remote
lock requests and large transfers of data across virtual machines. Effective query
optimization requires that the optimizer have accurate cost measures for opera-
tions. Lacking knowledge of the physical placement of data, the optimizer has
to rely on estimates that may be highly inaccurate, resulting in poor execution
strategies. Because remote accesses are relatively slow compared to local access,
these issues can have a significant impact on performance.

The above issues are a particular challenge for implementing traditional
database applications on the cloud, although less challenging for simple data-
storage systems. The next few challenges we discuss apply equally to both appli-
cation scenarios.

The matter of replication further complicates cloud-based data management.
Cloud systems replicate client data for availability. Indeed many contracts have
clauses imposing penalties on the vendor if a certain level of availability is not
maintained. This replication is done by the vendor without specific knowledge
of the application. Since replication is under control of the cloud and not under
the control of the database system, care must be used when the database system
accesses data so as to ensure that the latest versions of the data are read. Failure
to take these issues properly into account can result in a loss of the atomicity or
isolation properties. In many current cloud database applications, the application
itself may need to take some responsibility for consistency.

Users of cloud computing must be willing to accept that their data are held
by another organization. This may present a variety of risks in terms of security
and legal liability. If the cloud vendor suffers a security breach, client data may
be divulged, causing the client to face legal challenges from its customers. Yet
the client has no direct control over cloud-vendor security. These issues become
more complex if the cloud vendor chooses to store data (or replicas of data) in
a foreign country. Various legal jurisdictions differ in their privacy laws. So, for
example, if a German company’s data are replicated on a server in New York,
then the privacy laws of the United States rather than those of Germany or the
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European Union apply. The cloud vendor might be required to release client data
to the U.S. government even though the client never knew that its data would
wind up under U.S. jurisdiction.

Specific cloud vendors offer their clients varying degrees of control over how
their data are distributed and replicated. Some vendors offer database services
directly to their clients rather than require clients to contract for raw storage and
virtual machines over which to run their own database systems.

The market for cloud services continues to evolve rapidly, but it is clear that
a database administrator who is contracting for cloud services has to consider
a wide variety of technical, economic, and legal issues in order to ensure the
privacy and security of data, guarantees of the ACID properties (or an acceptable
approximation thereof), and adequate performance despite the likelihood of data
being distributed over a wide geographic area. The bibliographical notes provide
some of the current thinking on these topics. Much new literature is likely to
appear in the next few years, and many of the current issues in cloud databases
are being addressed by the research community.

Directory Systems

Consider an organization that wishes to make data about its employees avail-
able to a variety of people in the organization; examples of the kinds of data
include name, designation, employee-id, address, email address, phone number,
fax number, and so on. In the precomputerization days, organizations would cre-
ate physical directories of employees and distribute them across the organization.
Even today, telephone companies create physical directories of customers.

In general, a directory is a listing of information about some class of objects
such as persons. Directories can be used to find information about a specific object,
or in the reverse direction to find objects that meet a certain requirement. In the
world of physical telephone directories, directories that satisfy lookups in the
forward direction are called white pages, while directories that satisfy lookups
in the reverse direction are called yellow pages.

In today’s networked world, the need for directories is still present and, if
anything, even more important. However, directories today need to be available
over a computer network, rather than in a physical (paper) form.

19.10.1 Directory Access Protocols

Directory information can be made available through Web interfaces, as many
organizations, and phone companies in particular, do. Such interfaces are good
for humans. However, programs too need to access directory information. Direc-
tories can be used for storing other types of information, much like file system
directories. For instance, Web browsers can store personal bookmarks and other
browser settings in a directory system. A user can thus access the same settings
from multiple locations, such as at home and at work, without having to share a
file system.
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Several directory access protocols have been developed to provide a stan-
dardized way of accessing data in a directory. The most widely used among them
today is the Lightweight Directory Access Protocol (LDAP).

Obviously all the types of data in our examples can be stored without much
trouble in a database system, and accessed through protocols such as JDBC or
ODBC. The question then is, why come up with a specialized protocol for accessing
directory information? There are at least two answers to the question.

¢ First, directory access protocols are simplified protocols that cater to a limited
type of access to data. They evolved in parallel with the database access
protocols.

¢ Second, and more important, directory systems provide a simple mecha-
nism to name objects in a hierarchical fashion, similar to file system directory
names, which can be used in a distributed directory system to specify what
information is stored in each of the directory servers. For example, a partic-
ular directory server may store information for Bell Laboratories employees
in Murray Hill, while another may store information for Bell Laboratories
employees in Bangalore, giving both sites autonomy in controlling their lo-
cal data. The directory access protocol can be used to obtain data from both
directories across a network. More important, the directory system can be
set up to automatically forward queries made at one site to the other site,
without user intervention.

For these reasons, several organizations have directory systems to make or-
ganizational information available online through a directory access protocol.
Information in an organizational directory can be used for a variety of purposes,
such as to find addresses, phone numbers, or email addresses of people, to find
which departments people are in, and to track department hierarchies. Directories
are also used to authenticate users: applications can collect authentication infor-
mation such as passwords from users and authenticate them using the directory.

As may be expected, several directory implementations find it beneficial to
use relational databases to store data, instead of creating special-purpose storage
systems.

19.10.2 LDAP: Lightweight Directory Access Protocol

In general a directory system is implemented as one or more servers, which service
multiple clients. Clients use the application programmer interface defined by the
directory system to communicate with the directory servers. Directory access
protocols also define a data model and access control.

The X.500 directory access protocol, defined by the International Organiza-
tion for Standardization (ISO), is a standard for accessing directory information.
However, the protocol is rather complex, and is not widely used. The Lightweight
Directory Access Protocol (LDAP) provides many of the X.500 features, but with
less complexity, and is widely used. In the rest of this section, we shall outline the
data model and access protocol details of LDAP.
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19.10.2.1 LDAP Data Model

In LDAP, directories store entries, which are similar to objects. Each entry must
have a distinguished name (DN), which uniquely identifies the entry. A DN is
in turn made up of a sequence of relative distinguished names (RDNs). For
example, an entry may have the following distinguished name:

cn=Silberschatz, ou=Computer Science, o=Yale University, c=USA

As you can see, the distinguished name in this example is a combination of a
name and (organizational) address, starting with a person’s name, then giving
the organizational unit (ou), the organization (0), and country (c). The order of
the components of a distinguished name reflects the normal postal address order,
rather than the reverse order used in specifying path names for files. The set of
RDNs for a DN is defined by the schema of the directory system.

Entries can also have attributes. LDAP provides binary, string, and time types,
and additionally the types tel for telephone numbers, and PostalAddress for
addresses (lines separated by a “$” character). Unlike those in the relational model,
attributes are multivalued by default, so it is possible to store multiple telephone
numbers or addresses for an entry.

LDAP allows the definition of object classes with attribute names and types.
Inheritance can be used in defining object classes. Moreover, entries can be spec-
ified to be of one or more object classes. It is not necessary that there be a single
most-specific object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to
their distinguished names. Entries at the leaf level of the tree usually represent
specific objects. Entries that are internal nodes represent objects such as orga-
nizational units, organizations, or countries. The children of a node have a DN
containing all the RDNs of the parent, and one or more additional RDNs. For in-
stance, an internal node may have a DN c=USA, and all entries below it have the
value USA for the RDN c.

The entire distinguished name need not be stored in an entry. The system can
generate the distinguished name of an entry by traversing up the DIT from the
entry, collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name—for example, an entry
for a person in more than one organization. To deal with such cases, the leaf level
of a DIT can be an alias, which points to an entry in another branch of the tree.

19.10.2.2 Data Manipulation

Unlike SQL, LDAP does not define either a data-definition language or a data-
manipulation language. However, LDAP defines a network protocol for carrying
out data definition and manipulation. Users of LDAP can either use an application
programming interface or use tools provided by various vendors to perform
data definition and manipulation. LDAP also defines a file format called LDAP
Data Interchange Format (LDIF) that can be used for storing and exchanging
information.
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The querying mechanism in LDAP is very simple, consisting of just selections
and projections, without any join. A query must specify the following:

¢ A base—that is, a node within a DIT—by giving its distinguished name (the
path from the root to the node).

e A search condition, which can be a Boolean combination of conditions on
individual attributes. Equality, matching by wild-card characters, and ap-
proximate equality (the exact definition of approximate equality is system
dependent) are supported.

® A scope, which can be just the base, the base and its children, or the entire
subtree beneath the base.

e Attributes to return.

¢ Limits on number of results and resource consumption.

The query can also specify whether to automatically dereference aliases; if alias
dereferences are turned off, alias entries can be returned as answers.

One way of querying an LDAP data source is by using LDAP URLs. Examples
of LDAP URLs are:

Idap:://codex.cs.yale.edu/o=Yale University,c=USA
Idap:://codex.cs.yale.edu/o=Yale University,c=USA??sub?cn=Silberschatz

The first URL returns all attributes of all entries at the server with organization
being Yale University, and country being USA. The second URL executes a search
query (selection) cn=Silberschatz on the subtree of the node with distinguished
name o=Yale University, c=USA. The question marks in the URL separate different
fields. The first field is the distinguished name, here o=Yale University,c=USA.
The second field, the list of attributes to return, is left empty, meaning return
all attributes. The third attribute, sub, indicates that the entire subtree is to be
searched. The last parameter is the search condition.

A second way of querying an LDAP directory is by using an application
programming interface. Figure 19.8 shows a piece of C code used to connect
to an LDAP server and run a query against the server. The code first opens a
connection to an LDAP server by Idap_open and Idap_bind. It then executes a
query by Idap_search_s. The arguments to Idap_search_s are the LDAP connection
handle, the DN of the base from which the search should be done, the scope of
the search, the search condition, the list of attributes to be returned, and an
attribute called attrsonly, which, if set to 1, would result in only the schema of the
result being returned, without any actual tuples. The last argument is an output
argument that returns the result of the search as an LDAPMessage structure.

The first for loop iterates over and prints each entry in the result. Note that an
entry may have multiple attributes, and the second for loop prints each attribute.
Since attributes in LDAP may be multivalued, the third for loop prints each value
of an attribute. The calls [dap_msgfree and Idap_value_free free memory that is
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#include <stdio.h>
#include <ldap.h>
main() {
LDAP *Id;
LDAPMessage *res, *entry;
char *dn, *attr, *attrList[] = {“telephoneNumber”, NULL};
BerElement *ptr;
int vals, i;
Id = Idap_open(“codex.cs.yale.edu”, LDAP_PORT);
Idap_simple_bind(ld, “avi”, “avi-passwd”) ;
Idap_search_s(Id, “o=Yale University, c=USA”, LDAP_SCOPE_SUBTREE,
“cn=Silberschatz”, attrList, /*attrsonly*/ 0, &res);
printf(“found %d entries”, Idap_count_entries(ld, res));
for (entry=Idap_first_entry(ld, res); entry != NULL;
entry = I[dap_next_entry(ld, entry))

{
dn = Idap_get_dn(ld, entry);
printf(“dn: %s”, dn);
Idap_memfree(dn);
for (attr = Idap_first_attribute(ld, entry, &ptr);
attr | NULL;
attr = |[dap_next_attribute(ld, entry, ptr))
{
printf(“%s: 7, attr);
vals = Idap_get_values(ld, entry, attr);
for (i=0; vals[i] != NULL; i++)
printf(“%s, 7, valsli]);
Idap_value_free(vals);
}
}

I[dap_msgfree(res);
Idap_unbind(ld);

Figure 19.8 Example of LDAP code in C.

allocated by the LDAP libraries. Figure 19.8 does not show code for handling error
conditions.

The LDAP API also contains functions to create, update, and delete entries, as
well as other operations on the DIT. Each function call behaves like a separate
transaction; LDAP does not support atomicity of multiple updates.

19.10.2.3 Distributed Directory Trees

Information about an organization may be split into multiple DITs, each of which
stores information about some entries. The suffix of a DIT is a sequence of
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RDN=value pairs that identify what information the DIT stores; the pairs are con-
catenated to the rest of the distinguished name generated by traversing from the
entry to the root. For instance, the suffix of a DIT may be o=Lucent, c=USA, while
another may have the suffix o=Lucent, c=India. The DITs may be organizationally
and geographically separated.

A node in a DIT may contain a referral to another node in another DIT; for
instance, the organizational unit Bell Labs under o=Lucent, c=USA may have its
own DIT, in which case the DIT for o=Lucent, c=USA would have a node ou=Bell
Labs representing a referral to the DIT for Bell Labs.

Referrals are the key component that help organize a distributed collection
of directories into an integrated system. When a server gets a query on a DIT, it
may return a referral to the client, which then issues a query on the referenced
DIT. Access to the referenced DIT is transparent, proceeding without the user’s
knowledge. Alternatively, the server itself may issue the query to the referred DIT
and return the results along with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control
of information across parts of an organization. The referral facility then helps
integrate all the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break
up information either by geography (for instance, an organization may maintain
a directory for each site where the organization has a large presence) or by orga-
nizational structure (for instance, each organizational unit, such as department,
maintains its own directory).

Many LDAP implementations support master-slave and multimaster repli-
cation of DITs, although replication is not part of the current LDAP version 3
standard. Work on standardizing replication in LDAP is in progress.

Summary

¢ A distributed database system consists of a collection of sites, each of which
maintains a local database system. Each site is able to process local transac-
tions: those transactions that access data in only that single site. In addition, a
site may participate in the execution of global transactions: those transactions
that access data in several sites. The execution of global transactions requires
communication among the sites.

¢ Distributed databases may be homogeneous, where all sites have a common
schema and database system code, or heterogeneous, where the schemas and
system codes may differ.

® There are several issues involved in storing a relation in the distributed data-
base, including replication and fragmentation. It is essential that the system
minimize the degree to which a user needs to be aware of how a relation is
stored.

¢ A distributed system may suffer from the same types of failure that can afflict
a centralized system. There are, however, additional failures with which we
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need to deal in a distributed environment, including the failure of a site,
the failure of a link, loss of a message, and network partition. Each of these
problems needs to be considered in the design of a distributed recovery
scheme.

To ensure atomicity, all the sites in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all sites or aborts at
all sites. To ensure this property, the transaction coordinator of T must execute
a commit protocol. The most widely used commit protocol is the two-phase
commit protocol.

The two-phase commit protocol may lead to blocking, the situation in which
the fate of a transaction cannot be determined until a failed site (the coordi-
nator) recovers. We can use the three-phase commit protocol to reduce the
probability of blocking.

Persistent messaging provides an alternative model for handling distributed
transactions. The model breaks a single transaction into parts that are exe-
cuted at different databases. Persistent messages (which are guaranteed to
be delivered exactly once, regardless of failures), are sent to remote sites
to request actions to be taken there. While persistent messaging avoids the
blocking problem, application developers have to write code to handle vari-
ous types of failures.

The various concurrency-control schemes used in a centralized system can
be modified for use in a distributed environment.

o In the case of locking protocols, the only change that needs to be incor-
porated is in the way that the lock manager is implemented. There are
a variety of different approaches here. One or more central coordinators
may be used. If, instead, a distributed-lock-manager approach is taken,
replicated data must be treated specially.

o Protocols for handling replicated data include the primary copy, majority,
biased, and quorum consensus protocols. These have different trade-offs
in terms of cost and ability to work in the presence of failures.

o In the case of timestamping and validation schemes, the only needed
change is to develop a mechanism for generating unique global times-
tamps.

o Many database systems support lazy replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the
update. Such facilities must be used with great care, since they may result
in nonserializable executions.

¢ Deadlock detection in a distributed-lock-manager environment requires co-

operation between multiple sites, since there may be global deadlocks even
when there are no local deadlocks.
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To provide high availability, a distributed database must detect failures, re-
configure itself so that computation may continue, and recover when a pro-
cessor or a link is repaired. The task is greatly complicated by the fact that it
is hard to distinguish between network partitions and site failures.

The majority protocol can be extended by using version numbers to permit
transaction processing to proceed even in the presence of failures. While the
protocol has a significant overhead, it works regardless of the type of failure.
Less-expensive protocols are available to deal with site failures, but they
assume network partitioning does not occur.

Some of the distributed algorithms require the use of a coordinator. To pro-
vide high availability, the system must maintain a backup copy thatis ready to
assume responsibility if the coordinator fails. Another approach is to choose
the new coordinator after the coordinator has failed. The algorithms that de-
termine which site should act as a coordinator are called election algorithms.

Queries on a distributed database may need to access multiple sites. Several
optimization techniques are available to identify the best set of sites to access.
Queries can be rewritten automatically in terms of fragments of relations and
then choices can be made among the replicas of each fragment. Semijoin
techniques may be employed to reduce data transfer involved in joining
relations (or fragments or relicas thereof) across distinct sites.

Heterogeneous distributed databases allow sites to have their own schemas
and database system code. A multidatabase system provides an environment
in which new database applications can access data from a variety of pre-
existing databases located in various heterogeneous hardware and software
environments. The local database systems may employ different logical mod-
els and data-definition and data-manipulation languages, and may differ in
their concurrency-control and transaction-management mechanisms. A mul-
tidatabase system creates the illusion of logical database integration, without
requiring physical database integration.

A large number of data-storage systems on the cloud have been built in
recent years, in response to data storage needs of extremely large-scale Web
applications. These data-storage systems allow scalability to thousands of
nodes, with geographic distribution, and high availability. However, they do
not support the usual ACID properties, and they achieve availability during
partitions at the cost of consistency of replicas. Current data-storage systems
also do not support SQL, and provide only a simple put()/get() interface.
While cloud computing is attractive even for traditional databases, there are
several challenges due to lack of control on data placement and geographic
replication.

Directory systems can be viewed as a specialized form of database, where
information is organized in a hierarchical fashion similar to the way files are
organized in a file system. Directories are accessed by standardized directory
access protocols such as LDAP. Directories can be distributed across multiple
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sites to provide autonomy to individual sites. Directories can contain referrals
to other directories, which help build an integrated view whereby a query
is sent to a single directory, and it is transparently executed at all relevant

directories.

Review Terms

* Homogeneous distributed
database

¢ Heterogeneous distributed
database

¢ Data replication
® Primary copy
¢ Data fragmentation

o Horizontal fragmentation

o Vertical fragmentation

¢ Data transparency

o Fragmentation transparency

o Replication transparency

o Location transparency

e Name server
e Aliases
e Distributed transactions

o Local transactions

o Global transactions

¢ Transaction manager

e Transaction coordinator
e System failure modes

® Network partition

¢ Commit protocols

¢ Two-phase commit protocol (2PC)

o Ready state
o In-doubt transactions

o Blocking problem

Three-phase commit protocol
(3rPC)

Persistent messaging
Concurrency control
Single lock manager
Distributed lock manager
Protocols for replicas

© Primary copy

o Majority protocol

o Biased protocol

© Quorum consensus protocol
Timestamping
Master—slave replication

Multimaster (update-anywhere)
replication

Transaction-consistent snapshot
Lazy propagation
Deadlock handling

o Local wait-for graph

o Global wait-for graph

o False cycles

Availability
Robustness

o Majority-based approach

o Read one, write all

o Read one, write all available
o Site reintegration

Coordinator selection



Practice Exercises 879

¢ Backup coordinator ¢ Cloud data storage

¢ Election algorithms e Tablet

¢ Bully algorithm ¢ Directory systems

¢ Distributed query processing ¢ LDAP: Lightweight Directory
¢ Semijoin strategy Access Protocol

® Multidatabase system

o Autonomy

o Global transactions

o Ensuring global serializability

o Distinguished name (DN)

o Relative distinguished names

o Mediators (RDNs)
o Local transactions o Directory information
tree (DIT)

e Distributed directory trees

o Ticket o DIT suffix

¢ Cloud computing o Referral

Practice Exercises

19.1

19.2

19.3

19.4

How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?

Tobuild a highly available distributed system, you must know what kinds
of failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a central-
ized system?

Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Practice Exercise 19.2a, explain how 2PC
ensures transaction atomicity despite the failure.

Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

® B goes down.
¢ The link between A and B goes down.

® Bis extremely overloaded and response time is 100 times longer than
normal.

What implications does your answer have for recovery in distributed
systems?
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19.5

19.6

19.7

19.8

19.9

19.10

The persistent messaging scheme described in this chapter depends on
timestamps combined with discarding of received messages if they are too
old. Suggest an alternative scheme based on sequence numbers instead
of timestamps.

Give an example where the read one, write all available approach leads
to an erroneous state.

Explain the difference between data replication in a distributed system
and the maintenance of a remote backup site.

Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master)

copy.

Consider the following deadlock-detection algorithm. When transaction
T;, at site 51, requests a resource from T}, at site S3, a request message with
timestamp 7 is sent. The edge (T;, T}, n) is inserted in the local wait-for
graph of S;. The edge (T;, T}, n) is inserted in the local wait-for graph of
S; only if T; has received the request message and cannot immediately
grant the requested resource. A request from T; to T; in the same site is
handled in the usual manner; no timestamps are associated with the edge
(T:, T}). A central coordinator invokes the detection algorithm by sending
an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

¢ The graph contains a vertex for every transaction in the system.
¢ The graph has an edge (T;, T;) if and only if:
© There is an edge (T;, T}) in one of the wait-for graphs.
o Anedge (T;, T}, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began.

Consider a relation that is fragmented horizontally by plant_number:

employee (name, address, salary, plant_number)
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Assume that each fragment has two replicas: one stored at the New York
site and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.
Find the average salary of all employees.

c. Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Vancouver, Montreal.

d. Find the lowest-paid employee in the company.

19.11 Compute r x s for the relations of Figure 19.9.

19.12 Give an example of an application ideally suited for the cloud and another
that would be hard to implement successfully in the cloud. Explain your
answer.

19.13 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?

19.14 Consider a multidatabase system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures
local serializability.

a. Suggest ways in which the multidatabase system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global
schedule to result despite the assumptions.

19.15 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such

a system.
b. Show how you could use a ticket scheme to ensure global serializ-
ability.
A [ B[ C| C[ D] E]
1 2 3 3 4 5
4 5 6 3 6 8
1 2 4 2 3 2
5 3 2 1 4 1
8 9 7 1 2 3
r s

Figure 19.9 Relations for Practice Exercise 19.11.
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Exercises

19.16
19.17

19.18

19.19

19.20

19.21

19.22

19.23

Discuss the relative advantages of centralized and distributed databases.

Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

When is it useful to have replication or fragmentation of data? Explain
your answer.

Explain the notions of transparency and autonomy. Why are these notions
desirable from a human-factors standpoint?

If we apply a distributed version of the multiple-granularity protocol of
Chapter 15 to a distributed database, the site responsible for the root of
the DAG may become a bottleneck. Suppose we modify that protocol as
follows:

¢ Only intention-mode locks are allowed on the root.

e All transactions are given all possible intention-mode locks on the
root automatically.

Show that these modifications alleviate this problem without allowing
any nonserializable schedules.

Study and summarize the facilities that the database system you are using
provides for dealing with inconsistent states that can be reached with lazy
propagation of updates.

Discuss the advantages and disadvantages of the two methods that we
presented in Section 19.5.2 for generating globally unique timestamps.

Consider the relations:

employee (name, address, salary, plant_number)
machine (machine_number, type, plant_number)

Assume that the employee relation is fragmented horizontally by plant
_number, and that each fragment is stored locally at its corresponding
plant site. Assume that the machine relation is stored in its entirety at the
Armonk site. Describe a good strategy for processing each of the following
queries.

a. Find all employees at the plant that contains machine number 1130.

b. Find all employees at plants that contain machines whose type is
“milling machine.”

c. Find all machines at the Almaden plant.

d. Find employee X machine.
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19.24 For each of the strategies of Exercise 19.23, state how your choice of a
strategy depends on:

a. The site at which the query was entered.
b. The site at which the result is desired.

19.25 Is the expression r; x r; necessarily equal to r; x 7;? Under what
conditions doesr; x r; = r; x r; hold?

19.26 If a cloud data-storage service is used to store two relations » and s and
we need to join r and s, why might it be useful to maintain the join
as a materialized view? In your answer, be sure to distinguish among
various meanings of “useful”: overall throughput, efficient use of space,
and response time to user queries.

19.27 Why do cloud-computing services support traditional database systems
best by using a virtual machine instead of running directly on the service
provider’s actual machine?

19.28 Describe how LDAP can be used to provide multiple hierarchical views of
data, without replicating the base-level data.
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