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Basic Concepts

= |ndexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

= Search Key - attribute to set of attributes used to look up records in a
file.

= An index file consists of records (called index entries) of the form

search-key | pointer

= |ndex files are typically much smaller than the original file
= Two basic kinds of indices:
Ordered indices: search keys are stored in sorted order

Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.
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Index Evaluation Metrics

= Access types supported efficiently. E.qg.,
Records with a specified value in the attribute
Records with an attribute value falling in a specified range of values.
= Access time
= |nsertion time
= Deletion time
= Space overhead
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Ordered Indices

= |n an ordered index, index entries are stored sorted on the search key
value.

= Clustering index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called primary index

The search key of a primary index is usually but not necessarily the
primary key.

= Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
nonclustering index.

= |ndex-sequential file: sequential file ordered on a search key, with a
clustering index on the search key.
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Dense Index Files

= Dense index — Index record appears for every search-key value in the

file.

= E.g.index on ID attribute of instructor relation
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12121  |Wu Finance 90000
15151 |(Mozart Music 40000
22222 | Einstein Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 |Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. 80000
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Dense Index Files (Cont.)

= Dense index on dept_name, with instructor file sorted on dept_name
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Physics
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76766 | Crick Biology 72000 i
10101 | Srinivasan| Comp. Sci. | 65000 .

45565 | Katz Comp. Sci. | 75000 -7
83821 | Brandt Comp. Sci. | 92000 _7
98345 | Kim Elec. Eng. 80000 _7
12121 | Wu Finance | 90000 | |«
76543 | Singh Finance 80000 _7
32343 | El Said History 60000 1
58583 | Califieri History 62000 _7
15151 | Mozart Music 40000 1
22222 | Einstein | Physics 95000 | |«
33465 | Gold Physics 87000 | __ |«
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Sparse Index Files

= Sparse Index: contains index records for only some search-key
values.

Applicable when records are sequentially ordered on search-key
= To locate a record with search-key value K we:
Find index record with largest search-key value < K

Search file sequentially starting at the record to which the index
record points

10101 ~ 10101 |Srinivasan| Comp. Sci.| 65000 i

32343 12121 |Wu Finance 90000 |

76766 15151 |Mozart | Music 20000 |
22222 |Einstein | Physics 95000 _7
32343 |El Said History 60000 _7
33456 |Gold Physics 87000 —7
45565 |Katz Comp. Sci.| 75000 _7
58583 |Califieri | History 62000 _7
76543 |Singh Finance 80000 _7
76766 |Crick Biology 72000 —7
83821 |Brandt Comp. Sci.| 92000 _7
98345 |Kim Elec. Eng. | 80000 _7

L
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Sparse Index Files (Cont.)

= Compared to dense indices:
Less space and less maintenance overhead for insertions and deletions.
Generally slower than dense index for locating records.

= Good tradeoff:

for clustered index: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

P

data
A block 0

data
@lock |

For unclustered index: sparse index on top of dense index (multilevel index)
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= Secondary index on salary field of instructor
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Secondary Indices Example

10101 | Srinivasan | Comp. Sci. | 65000 _p
12121 |Wu Finance 90000 —>
15151 | Mozart Music 40000 —

22222 | Einstein | Physics 95000 _P
32343 | El Said History 60000 __P
33456 |Gold Physics 87000 __>
45565 |Katz Comp. Sci. | 75000 __>
58583 |Califieri | History 62000 __>
76543 | Singh Finance 80000 __>
76766 | Crick Biology 72000 _>
83821 |Brandt Comp. Sci. | 92000 _7
98345 | Kim Elec. Eng. | 80000 _P

L

= |ndex record points to a bucket that contains pointers to all the actual
records with that particular search-key value.

= Secondary indices have to be dense
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Multilevel Index

= |findex does not fit in memory, access becomes expensive.

= Solution: treat index kept on disk as a sequential file and construct a
sparse index on it.

outer index — a sparse index of the basic index
inner index — the basic index file

= |f even outer index is too large to fit in main memory, yet another level of
index can be created, and so on.

= |ndices at all levels must be updated on insertion or deletion from the file.
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Multilevel Index (Cont.)

index data
| block 0 block O
.
-
-
L]
. _| data
index block 1
block 1
.
. -
outer index inner index .
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Indices on Multiple Keys

=  Composite search key
E.g., index on instructor relation on attributes (name, ID)
Values are sorted lexicographically

= E.g. (John, 12121) < (John, 13514) and
(John, 13514) < (Peter, 11223)

Can query on just name, or on (name, ID)
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Example of B*-Tree

|1| Mozart |l| I I I |< ------------------------------------------ Root node
|||Einsteir1| I Gold ||| —I_I ITIS—rinivasanH I I I | ;‘—“' Internal nodes
Leaf nodes-q:
Brandtl |Ein!tein| IEI Saidl | H—»' | Gold | | Katz | | KimH—»'lIMozartlll Singh | | H—»' ISrinivasanIll Wu | |

ICaliﬁeriI | Crickl l—|—>|

N
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10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

©Silberschatz, Korth and Sudarshan



B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

= All paths from root to leaf are of the same length

= Each node that is not a root or a leaf has between [n/2 ] and n
children.

= A leaf node has between [ (n—1)/2|and n-1 values
= Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in the tree), it
can have between 0 and (n—1) values.
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B*-Tree Node Structure

=  Typical node

Pq K1 Py e P, 1 K1 P,

K; are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to records or
buckets of records (for leaf nodes).

= The search-keys in a node are ordered
Ki<K,<Kj;<...<K. 4

(Initially assume no duplicate keys, address duplicates later)
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Leaf Nodes in B*-Trees

Properties of a leaf node:
= Fori=1,2,..., n-1, pointer P, points to a file record with search-key value
Ki,

= IfL, Lare leaf nodes and i <j, L," s search-key values are less than or equal
to Lj’ s search-key values

= P, points to next leaf node in search-key order
leaf node

|| Brandt ||| Califieri |,| Crick |1 > Pointer to next leaf node

10101 | Srinivasan | Comp. Sci.| 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 80000

33456 | Gold Physics 87000
45565 | Katz Comp. Sci.| 75000
> 58583 | Califieri | History 60000
76543 | Singh Finance 80000
> 76766 | Crick Biology 72000
> 83821 | Brandt Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000
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Non-Leaf Nodes In B*-Trees

= Non leaf nodes form a multi-level sparse index on the leaf nodes. For a
non-leaf node with m pointers:

All the search-keys in the subtree to which P, points are less than K,

For 2 <i<n -1, all the search-keys in the subtree to which P, points
have values greater than or equal to K,_; and less than K;

All the search-keys in the subtree to which P, points have values
greater than or equal to K, _,

General structure

Pq K1y P, e P, 1 K1 1P
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Example of B*-tree

= B*-tree for instructor file (n = 6)

| El Said | Mozart

7

Brandt| | Califieri| | Crick| [Einstein

Y
1
=
|98}
()

=5
(oW
Q
o

—
(oW

Katz Kim Mozart Singh Srinivasan | |Wu

= | eaf nodes must have between 3 and 5 values
((n-1)/21and n -1, with n = 6).

= Non-leaf nodes other than root must have between 3 and 6
children ( (n/21and n with n =6).

=  Root must have at least 2 children.
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Observations about B*-trees

= Since the inter-node connections are done by pointers, “logically” close
blocks need not be “physically” close.

= The non-leaf levels of the B*-tree form a hierarchy of sparse indices.
= The B*-tree contains a relatively small number of levels

Level below root has at least 2* [ n/2 | values

Next level has at least 2* [ n/2 | *[ n/2] values

.. etc.

If there are K search-key values in the file, the tree height is no more
than [ logr,1(K) |

thus searches can be conducted efficiently.

Insertions and deletions to the main file can be handled efficiently, as the
index can be restructured in logarithmic time (as we shall see).
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Queries on B*-Trees

function find(v)
C=root
while (C is not a leaf node)
Let i be least number s.t. V <K.
if there is no such number i then
Set C = last non-null pointer in C
elseif(v=C.K,)SetC=P,,,
else set C = C.P,
if for some i, K, =V then return C.P,
else return null /* no record with search-key value v exists. */

| [Mozart], I ]

7@ |Emstem|<\ls<
Adamsl IBrandtl | H—>| |Ca11ﬁer1| |Cr1ck| | H->| IEmstelnl |E1 Sa1d| | H->| IGoldI IKatzI IK1mH->| IMozartI ISinghI | H->\|Srinivasan| |Wu| | | |
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Queries on B*-Trees (Cont.)

= Range queries find all records with search key values in a given range

See book for details of function findRange(lb, ub) which returns set
of all such records

Real implementations usually provide an iterator interface to fetch
matching records one at a time, using a next() function

[ [Mozar] I Il

7@111@4%\&&
Adamsl IBrandtI I H—>| ICahﬁerlI ICrlckI I H->| IEmstemI IEl Saldl I H->| IGoldI IKatzI IKlmI IMozartI ISinghI I H->\|Srinivasan| IWuI I I |
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Queries on B*Trees (Cont.)

= |f there are K search-key values in the file, the height of the tree is no
more than [ log,,1(K) .

= A node is generally the same size as a disk block, typically 4 kilobytes
and n is typically around 100 (40 bytes per index entry).
= With 1 million search key values and n = 100

at most logs,(1,000,000) = 4 nodes are accessed in a lookup
traversal from root to leaf.

= Contrast this with a balanced binary tree with 1 million search key values
— around 20 nodes are accessed in a lookup

above difference is significant since every node access may need a
disk 1/0O, costing around 20 milliseconds
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Non-Unique Keys

= |If a search key a; is not unique, create instead an index on a composite
key (&, Ap), which is unique

A, could be a primary key, record ID, or any other attribute that
guarantees unigueness

= Search for a; = v can be implemented by a range search on composite
key, with range (v, - «) to (v, + «)
= But more I/O operations are needed to fetch the actual records
If the index is clustering, all accesses are sequential

If the index is non-clustering, each record access may need an I/O
operation
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Updates on B*-Trees: Insertion

Assume record already added to the file. Let
pr be pointer to the record, and let
v be the search key value of the record
1. Find the leaf node in which the search-key value would appear
If there is room in the leaf node, insert (v, pr) pair in the leaf node

Otherwise, split the node (along with the new (v, pr) entry) as
discussed in the next slide, and propagate updates to parent nodes.
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Updates on B*-Trees: Insertion (Cont.)

= Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first| n/2|in the original node, and
the rest in a new node.

let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being spilit.

If the parent is full, split it and propagate the split further up.
= Splitting of nodes proceeds upwards till a node that is not full is found.

In the worst case the root node may be split increasing the height of
the tree by 1.

||Adams| |Brandt| | |[+——,| Califieri|,| Crick || +—

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent
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B*-Tree Insertion

|1| Mozartlll | | | |< ----------------------------------------- Root node

|I|Einstein| | Gold ||| —I_I ms—rinivasanlll | | | | ;‘—“- Internal nodes

Leaf nodes-,

BrandtI}ICaliﬁeriI ICrickI{-I—»UEinsteinI%IEl Saidl I H—»'{I Gold I%I Katz I%I KimH—»l}IMozartI}I Singh I I I-I-»'{ISrinivasanI%IWu I I I | E,‘—*i—-
[Mozar | [[ ]
Affected nodes
\
ITI—CaliﬁerilllEinsteinI l|Gold| 1| |I|Srinivasan|l| | | | |
Adamsl IBrandtI I H—>| ICaliﬁeriI ICrickI I H->| IEinsteinI IEl Saidl I H->| IGoldI IKatzI IKimH-»\IMozartI ISinghI I H-> ISrinivasanI IWuI I I |

B*-Tree before and after insertion of “Adams”
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B*-Tree Insertion

| [Mozart] I L]
7 IElnStemls\lsK
Adamsl IBrandtl | H—>| ICahﬁerl |Cr1ck| | H—>| IEmsteml |E1 Saldl | H->| IGoldI IKatZ |K1m|-|-> IMozartI ISinghI | H-> ISrinivasanl |Wu| | | |

B+*-Tree before and after insertion of “Lamport” \

Affected nodes

Califieri | | Einstein [ | || [] xim ] T Tl [ [ srinivasan [T ] T

[Tadams [ [pranae [ | T3 [Catiner] [cack] | ] [Einstein] [Er50ia] | | [Gota] [Katz [ | [3-{ [ ] [Lamport [ [2-{ [ozart] [simgn [ | [1] [Srimivasan [ [we] | 1]

\/

Affected nodes
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Insertion in B*-Trees (Cont.)

= Splitting a non-leaf node: when inserting (k,p) into an already full internal
node N

Copy N to an in-memory area M with space for n+1 pointers and n
keys

Insert (k,p) into M
Copy P,,Ky, ..., Krz11,P rz1 from M back into node N

Copy Prootn Kzl - KnPrys from M into newly allocated node N'
Insert (K,,7,N') into parent N
= Example

/E | Cotfer ]
rd
/ / \

|,ﬁ'a.darn5| Brandt Califieri Crick| gﬁ.dams.Eﬁrandt. |  Crick |
f { y f f 4 ' i |

/ '|I | | IIl \ [
! ! " 1 Nt \

= Read pseudocode in book!
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Examples of B*-Tree Deletion

[ [Mozard| I I
7 IElnStemls\I&
Adamsl IBrandtI I H—>| ICahﬁerlI ICrlckI I H->| IEmstemI IEl Saldl I H->| IGoldI IKatzI |K1m|-|-> IMozartI ISinghI I H->\|Srinivasan| IWuI I I |

Before and after deleting “Srinivasan”

Gold

Affected nodes

Califieri 1 Einstein 1 Mozart 1

Adams| | Brandt <|—> Califieri| | Crick -+ | Einstein| [El Said| | |Gold | |Katz [ |Kim |1 | Mozart| | Singh| | Wu

= Deleting “Srinivasan” causes merging of under-full leaves
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Examples of B*-Tree Deletion (Cont.)

Lo || ][ ]]

| Caliﬁeri|l|Eins’cein|l| | | :| Mozart|l| | | | |

Adams| |Brandt| | |-|—>| |Caliﬁeri| |Crick| | |-|—>| |Einstein| |El Said| | |-|—>| |Gold| |Katz| |Kim|-|—>| |Mozart| |Singh| |Wu| |
Before and after deleting “Singh” and “Wu”
L[ Goa || [ 1]

\ Affected nodes

rr/ I [ [T 111 4

Adams| [Brandt[[  [>| [catifieri[ [criek[] [} [Binstein] [Ersaid[ [ [ [Gotd] [Katz[T [+ [xim [ [Mozart[[ ]

= Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

= Search-key value in the parent changes as a result
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Example of B*-tree Deletion (Cont.)
Joou [l 1| |

Califiert] [Enstem] | || T xm [T 1]

Adams I I Brandt I I

[ [catifieri] [ crick[ [ [ [Einstein] [E1said] [ 4] [Gold] [Katz] | [ [ xim [ [Mozart[[ ]
Before and after deletion of “Gold”

Califieri Emsteln Gold

—— [

HAdams Brandt +| |Califieri | | Crick 1| [Einstein| |El Said Katz | |[Kim| |Mozart

= Node with Gold and Katz became underfull, and was merged with its sibling
= Parent node becomes underfull, and is merged with its sibling

Value separating two nodes (at the parent) is pulled down when merging
= Root node then has only one child, and is deleted
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Updates on B*-Trees: Deletion

Assume record already deleted from file. Let V be the search key value of the
record, and Pr be the pointer to the record.

= Remove (Pr, V) from the leaf node

= |f the node has too few entries due to the removal, and the entries in the
node and a sibling fit into a single node, then merge siblings:

Insert all the search-key values in the two nodes into a single node
(the one on the left), and delete the other node.

Delete the pair (K._;, P;), where P, is the pointer to the deleted node,
from its parent, recursively using the above procedure.
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Updates on B*-Trees: Deletion

Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then
redistribute pointers:

Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.

Update the corresponding search-key value in the parent of the node.

The node deletions may cascade upwards till a node which has [n/2]or
more pointers is found.

If the root node has only one pointer after deletion, it is deleted and the
sole child becomes the root.
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Complexity of Updates

= Cost (in terms of number of I/O operations) of insertion and deletion of a
single entry proportional to height of the tree

With K entries and maximum fanout of n, worst case complexity of
insert/delete of an entry is O(logr,,1(K))

= |n practice, number of I/O operations is less:
Internal nodes tend to be in buffer

Splits/merges are rare, most insert/delete operations only affect a leaf
node

= Average node occupancy depends on insertion order
2/3rds with random, %2 with insertion in sorted order
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Non-Unique Search Keys

= Alternatives to scheme described earlier
Buckets on separate block (bad idea)
List of tuple pointers with each key
= Extra code to handle long lists

= Deletion of a tuple can be expensive if there are many duplicates
on search key (why?)

Worst case complexity may be linear!
= Low space overhead, no extra cost for queries
Make search key unique by adding a record-identifier
= Extra storage overhead for keys
= Simpler code for insertion/deletion
= Widely used
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B*-Tree File Organization

= B*-Tree File Organization:

Leaf nodes in a B*-tree file organization store records, instead of
pointers

Helps keep data records clustered even when there are
insertions/deletions/updates

= |eaf nodes are still required to be half full

Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node.

= |nsertion and deletion are handled in the same way as insertion and
deletion of entries in a B*-tree index.

Database System Concepts - 7t" Edition 14.41 ©Silberschatz, Korth and Sudarshan



B*-Tree File Organization (Cont.)

= Example of B+-tree File Organization

nf'mimi

_— e,
' e
S e

NENG TIKM]

[]

|:;4_3] s | [Licn] oy ke,a]]-]--[_ﬂ?.ﬂ | i5.3) [|H.3]||—|

}
L{u.m | 1.8 |4+

= Good space utilization important since records use more space than
pointers.

¥
e | we | [+ ma | ine | P

= To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where
possible) results in each node having at least |2n/3] entries
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Other Issues In Indexing

= Record relocation and secondary indices

If a record moves, all secondary indices that store record pointers
have to be updated

Node splits in B*-tree file organizations become very expensive

Solution: use search key of B*-tree file organization instead of record
pointer in secondary index

= Add record-id if B*-tree file organization search key is non-unique
= Extra traversal of file organization to locate record
Higher cost for queries, but node splits are cheap
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Indexing Strings

= Variable length strings as keys

Variable fanout

Use space utilization as criterion for splitting, not number of pointers
= Prefix compression

Key values at internal nodes can be prefixes of full key

= Keep enough characters to distinguish entries in the subtrees
separated by the key value

E.g., “Silas” and “Silberschatz” can be separated by “Silb”
Keys in leaf node can be compressed by sharing common prefixes
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Bulk Loading and Bottom-Up Build

= |nserting entries one-at-a-time into a B*-tree requires > 1 IO per entry
assuming leaf level does not fit in memory

can be very inefficient for loading a large number of entries at a time
(bulk loading)

= Efficient alternative 1:

sort entries first (using efficient external-memory sort algorithms
discussed later in Section 12.4)

insert in sorted order
insertion will go to existing page (or cause a split)
much improved IO performance, but most leaf nodes half full
= Efficient alternative 2: Bottom-up B*-tree construction
As before sort entries
And then create tree layer-by-layer, starting with leaf level
details as an exercise
Implemented as part of bulk-load utility by most database systems
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B-Tree Index File Example

| Einstein | | |Katz| | |Singh|,

v/

Katz Singh
record record

| Califieri | Crick | El Said | Gold 1 | Kim | Mozart | Srinivasan| |Wu

R Vo oo

Brandt Califieri
record  record

... and soon for other records...

B-tree (above) and B+-tree (below) on same data

|1| Mozart III | | | |<- ----------------------------------------- Root node

HEinsteinI | Gold ||| —I_I ms—rinivasanlll | | | | i‘—“- Internal nodes

Leaf nodes-,

BrandtIIICaliﬁeril ICrickH—»lllEinsteinlllEl Saidl | H—»'II Gold ||| Katz ||| KimH—»'llMozartllI Singh | | |-|->|I|Srinivasan|l|Wu | | | | ;‘—*:--
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Indexing on Flash

= Random I/O cost much lower on flash
20 to 100 microseconds for read/write
= Writes are not in-place, and (eventually) require a more expensive erase
= Optimum page size therefore much smaller
= Bulk-loading still useful since it minimizes page erases

=  Write-optimized tree structures (discussed later) have been adapted to
minimize page writes for flash-optimized search trees
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Indexing in Main Memory

= Random access in memory
Much cheaper than on disk/flash
But still expensive compared to cache read
Data structures that make best use of cache preferable

Binary search for a key value within a large B*-tree node results in
many cache misses

= B*- trees with small nodes that fit in cache line are preferable to reduce
cache misses

= Key idea: use large node size to optimize disk access, but structure data
within a node using a tree with small node size, instead of using an array.
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Hashing
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Static Hashing

= A bucket is a unit of storage containing one or more entries (a bucket
is typically a disk block).

we obtain the bucket of an entry from its search-key value using a
hash function

= Hash function h is a function from the set of all search-key values K to
the set of all bucket addresses B.

= Hash function is used to locate entries for access, insertion as well as
deletion.

= Entries with different search-key values may be mapped to the same
bucket; thus entire bucket has to be searched sequentially to locate an
entry.

*= |n a hash index, buckets store entries with pointers to records
= |n a hash file-organization buckets store records
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Handling of Bucket Overflows

= Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two reasons:
= multiple records have same search-key value

= chosen hash function produces non-uniform distribution of key
values

= Although the probability of bucket overflow can be reduced, it cannot be
eliminated,; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

=  Qverflow chaining — the overflow buckets of a given bucket are chained
together in a linked list.

= Above scheme is called closed addressing (also called closed hashing
or open hashing depending on the book you use)

An alternative, called

open addressing bucket 0
(also called

open hashing or
closed hashing
depending on the
book you use) which
does not use over-
flow buckets, is not bucket 2
suitable for database
applications.

bucket 1

Y
Y

overflow buckets for bucket 1

bucket 3
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Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.

bucket 0 bucket 4
12121 | Wu Finance (90000

76543 | Singh Finance |80000

bucket 1 bucket 5
15151 Mozart Music (40000 76766| Crick Biology |72000
bucket 2 bucket 6
32343| ElSaid | History ]80000 10101 |Srinivasan [Comp. Sci.[65000
58583 Califieri | History |60000 45565 |Katz Comp. Sci.[75000

83821 |Brandt  |Comp. Sci.[92000

bucket 3 bucket 7
22222| Einstein | Physics [95000
33456| Gold Physics 87000
98345| Kim Elec. Eng.|80000
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Deficiencies of Static Hashing

= |n static hashing, function h maps search-key values to a fixed set of B of
bucket addresses. Databases grow or shrink with time.

If initial number of buckets is too small, and file grows, performance
will degrade due to too much overflows.

If space is allocated for anticipated growth, a significant amount of
space will be wasted initially (and buckets will be underfull).

If database shrinks, again space will be wasted.

= One solution: periodic re-organization of the file with a new hash function
Expensive, disrupts normal operations

= Better solution: allow the number of buckets to be modified dynamically.
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Dynamic Hashing

= Periodic rehashing

If number of entries in a hash table becomes (say) 1.5 times size of
hash table,

= create new hash table of size (say) 2 times the size of the
previous hash table

= Rehash all entries to new table

Linear Hashing
Do rehashing in an incremental manner

Extendable Hashing

Tailored to disk based hashing, with buckets shared by multiple hash
values

Doubling of # of entries in hash table, without doubling # of buckets
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Comparison of Ordered Indexing and Hashing

= Cost of periodic re-organization
= Relative frequency of insertions and deletions

= |s it desirable to optimize average access time at the expense of worst-
case access time?

= Expected type of queries:

Hashing is generally better at retrieving records having a specified
value of the key.

If range queries are common, ordered indices are to be preferred
= |n practice:

PostgreSQL supports hash indices, but discourages use due to poor
performance

Oracle supports static hash organization, but not hash indices
SQLServer supports only B*-trees
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Multiple-Key Access

Use multiple indices for certain types of queries.
Example:
select ID
from instructor
where dept_name = “Finance” and salary = 80000
Possible strategies for processing query using indices on single attributes:

1. Use index on dept_name to find instructors with department name
Finance; test salary = 80000

2. Use index on salary to find instructors with a salary of $80000; test
dept_name = “Finance”.

3. Use dept_name index to find pointers to all records pertaining to the
“Finance” department. Similarly use index on salary. Take
intersection of both sets of pointers obtained.
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Indices on Multiple Keys

=  Composite search keys are search keys containing more than one
attribute

E.g., (dept_name, salary)

= Lexicographic ordering: (a,, a,) < (b,, b,) if either
a, <by, or
a,=b, and a, <b,
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Indices on Multiple Attributes

Suppose we have an index on combined search-key
(dept_name, salary).

= With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only records that
satisfy both conditions.

Using separate indices in less efficient — we may fetch many
records (or pointers) that satisfy only one of the conditions.

= Can also efficiently handle
where dept_name = “Finance” and salary < 80000

= But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

May fetch many records that satisfy the first but not the second
condition
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Other Features

= Covering indices

Add extra attributes to index so (some) queries can avoid fetching the
actual records

Store extra attributes only at leaf
= Why?
= Particularly useful for secondary indices
Why?
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Creation of Indices

=  Example
create index takes_pk on takes (ID,course_ID, year, semester, section)
drop index takes pk

= Most database systems allow specification of type of index, and
clustering.

= |ndices on primary key created automatically by all databases
Why?
= Some database also create indices on foreign key attributes
Why might such an index be useful for this query:
takes DX Op4me=shankar (StUdEN)
= |ndices can greatly speed up lookups, but impose cost on updates

Index tuning assistants/wizards supported on several databases to
help choose indices, based on query and update workload
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Index Definition in SQL

=  Create an index

create index <index-name> on <relation-name>
(<attribute-list>)

E.g.,: create index b-index on branch(branch_name)

= Use create unique index to indirectly specify and enforce the condition
that the search key is a candidate key is a candidate key.

Not really required if SQL unique integrity constraint is supported
= To drop an index
drop index <index-name>

= Most database systems allow specification of type of index, and
clustering.
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Write Optimized Indices

=  Performance of B*-trees can be poor for write-intensive workloads
One 1/O per leaf, assuming all internal nodes are in memory
With magnetic disks, < 100 inserts per second per disk
With flash memory, one page overwrite per insert

= Two approaches to reducing cost of writes
Log-structured merge tree
Buffer tree
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Log Structured Merge (LSM) Tree

= Consider only inserts/queries for
now

= Records inserted first into in- Lo Memory
memory tree (L, tree)

=  When in-memory tree is full,

records moved to disk (L, tree) Ly i E
Disk

B*-tree constructed using

bottom-up build by merging
existing L, tree with records L,
from L tree

= When L, tree exceeds some

threshold, merge into L, tree

And so on for more levels L3
Size threshold for L, ; tree
IS k times size threshold for

L, tree
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LSM Tree (Cont.)

= Benefits of LSM approach
Inserts are done using only sequential I/O operations
Leaves are full, avoiding space wastage

Reduced number of I/O operations per record inserted as compared
to normal B*-tree (up to some size)

= Drawback of LSM approach
Queries have to search multiple trees
Entire content of each level copied multiple times
=  Stepped-merge index
Variant of LSM tree with multiple trees at each level
Reduces write cost compared to LSM tree
But queries are even more expensive
Bloom filters to avoid lookups in most trees
= Details are covered in Chapter 24
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LSM Trees (Cont.)

Deletion handled by adding special “delete” entries

Lookups will find both original entry and the delete entry, and must
return only those entries that do not have matching delete entry

When trees are merged, if we find a delete entry matching an original
entry, both are dropped.

Update handled using insert+delete

LSM trees were introduced for disk-based indices
But useful to minimize erases with flash-based indices

The stepped-merge variant of LSM trees is used in many BigData
storage systems

Google BigTable, Apache Cassandra, MongoDB

And more recently in SQLite4, LevelDB, and MyRocks storage
engine of MySQL
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Buffer Tree

= Alternative to LSM tree

= Key idea: each internal node of B*-tree has a buffer to store inserts
Inserts are moved to lower levels when buffer is full
With a large buffer, many records are moved to lower level each time
Per record I/O decreases correspondingly

= Benefits
Less overhead on queries
Can be used with any tree index structure
Used in PostgreSQL Generalized Search Tree (GiST) indices

= Drawback: more random I/O than LSM tree

Internal node

{')1 ky plz ks 1!)3 ky Pﬁ k4 P\s ks Pﬁ\ Buffer
/ ! ! ! ! \

Database System Concepts - 7t" Edition 14.70 ©Silberschatz, Korth and Sudarshan



Bitmap Indices

= Bitmap indices are a special type of index designed for efficient querying
on multiple keys

= Records in arelation are assumed to be numbered sequentially from,
say, O

Given a number n it must be easy to retrieve record n
Particularly easy if records are of fixed size

= Applicable on attributes that take on a relatively small number of distinct
values

E.g., gender, country, state, ...

E.g., income-level (income broken up into a small number of levels
such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

= A bitmap is simply an array of bits
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Bitmap Indices (Cont.)

= |n its simplest form a bitmap index on an attribute has a bitmap for each
value of the attribute

Bitmap has as many bits as records

In a bitmap for value v, the bit for a record is 1 if the record has the
value v for the attribute, and is O otherwise

= Example
Bitmaps for gender Bitmaps for
record income_level
number| ID gender | income_level m 10010
L1 10100
0 76766 | m L1 f 01101
1 22022 f L2 L2 01000
2 12121 f L1 L3 00001
3 15151 m L4 14 00010
4 58583 | f L3
L5 00000
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Bitmap Indices (Cont.)

= Bitmap indices are useful for queries on multiple attributes
not particularly useful for single attribute queries

= Queries are answered using bitmap operations
Intersection (and)
Union (or)

= Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap

E.g., 100110 AND 110011 = 100010

100110 OR 110011 =110111
NOT 100110 = 011001

Males with income level L1: 10010 AND 10100 = 10000
Can then retrieve required tuples.
Counting number of matching tuples is even faster
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Bitmap Indices (Cont.)

= Bitmap indices generally very small compared with relation size

E.g., if record is 100 bytes, space for a single bitmap is 1/800 of
space used by relation.

= If number of distinct attribute values is 8, bitmap is only 1% of
relation size
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Efficient Implementation of Bitmap Operations

= Bitmaps are packed into words; a single word and (a basic CPU
instruction) computes and of 32 or 64 bits at once

E.g., 1-million-bit maps can be and-ed with just 31,250 instruction
= Counting number of 1s can be done fast by a trick:

Use each byte to index into a precomputed array of 256 elements
each storing the count of 1s in the binary representation

Can use pairs of bytes to speed up further at a higher memory
cost

Add up the retrieved counts

= Bitmaps can be used instead of Tuple-ID lists at leaf levels of
B*-trees, for values that have a large number of matching records

Worthwhile if > 1/64 of the records have that value, assuming a tuple-
id is 64 bits

Above technique merges benefits of bitmap and B*-tree indices
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Spatial and Temporal Indices
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Spatial Data

= Databases can store data types such as lines, polygons, in addition to
raster images

allows relational databases to store and retrieve spatial information
Queries can use spatial conditions (e.g. contains or overlaps).
gueries can mix spatial and nonspatial conditions

= Nearest neighbor queries, given a point or an object, find the nearest
object that satisfies given conditions.

= Range queries deal with spatial regions. e.g., ask for objects that lie
partially or fully inside a specified region.

= Queries that compute intersections or unions of regions.

= Spatial join of two spatial relations with the location playing the role of join
attribute.
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= k-d tree - early structure used for
indexing in multiple dimensions.

= Eachlevel of a k-d tree partitions the
space into two.

Choose one dimension for
partitioning at the root level of the
tree.

Choose another dimensions for
partitioning in nodes at the next
level and so on, cycling through the
dimensions.

= |n each node, approximately half of the
points stored in the sub-tree fall on one
side and half on the other.

= Partitioning stops when a node has less
than a given number of points.
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The k-d-B tree extends the k-d
tree to allow multiple child
nodes for each internal node;
well-suited for secondary
storage.
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Division of Space by Quadtrees

= Each node of a quadtree is associated with a rectangular region of space;
the top node is associated with the entire target space.

= Each non-leaf nodes divides its region into four equal sized quadrants

correspondingly each such node has four child nodes corresponding
to the four quadrants and so on

= |Leaf nodes have between zero and some fixed maximum number of
points (set to 1 in example).
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R-Trees

= R-trees are a N-dimensional extension of B*-trees, useful for indexing sets
of rectangles and other polygons.

= Supported in many modern database systems, along with variants like R* -
trees and R*-trees.

= PBasic idea: generalize the notion of a one-dimensional interval associated
with each B+ -tree node to an
N-dimensional interval, that is, an N-dimensional rectangle.

= Will consider only the two-dimensional case (N = 2)

generalization for N > 2 is straightforward, although R-trees work well
only for relatively small N

= The bounding box of a node is a minimum sized rectangle that contains
all the rectangles/polygons associated with the node

Bounding boxes of children of a node are allowed to overlap
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Example R-Tree

= A set of rectangles (solid line) and the bounding boxes (dashed line) of the
nodes of an R-tree for the rectangles.

= The R-tree is shown on the right.

iy s
1! | i
L C : |
P CoTT T o BB;| |BBy| |BBs|
i: ------------------- E G i: /\// /
e ] 3!
L Hi " |A|B|C||D|E|F||G|H|I
L I L
i P L1
12, ERREE b
o E 5 :
N L — | | i
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Search in R-Trees

= To find data items intersecting a given query point/region, do the following,
starting from the root node:

If the node is a leaf node, output the data items whose keys intersect
the given query point/region.

Else, for each child of the current node whose bounding box intersects
the query point/region, recursively search the child

= Can be very inefficient in worst case since multiple paths may need to be
searched, but works acceptably in practice.

______________________

_____________________________________
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Indexing Temporal Data

= Temporal data refers to data that has an associated time period (interval)

Example: a temporal version of the course relation

course_id | title dept_name credits start end

| BIO-101 | Intro. to Biology | Biology 4 1985-01-01 | 9999-12-31
CS5-201 Intro. to C Comp. Sci. 4 1985-01-01 1999-01-01
C5-201 Intro, to Java Comp. Sci. 4 1999-01-01 2010-01-01
CS5-201 Intro. to Python Comp. Sci. 4 2010-01-01 9999-12-31

=  Time interval has a start and end time

End time set to infinity (or large date such as 9999-12-31) if a tuple is
currently valid and its validity end time is not currently known

= Query may ask for all tuples that are valid at a point in time or during a

time interval

Index on valid time period speeds up this task
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Indexing Temporal Data (Cont.)

= To create a temporal index on attribute a:

Use spatial index, such as R-tree, with attribute a as one dimension,
and time as another dimension

= Valid time forms an interval in the time dimension

Tuples that are currently valid cause problems, since value is infinite
or very large

= Solution: store all current tuples (with end time as infinity) in a
separate index, indexed on (a, start-time)

To find tuples valid at a point in time t in the current tuple index,
search for tuples in the range (a, 0) to (a,t)

= Temporal index on primary key can help enforce temporal primary key

constraint
course_id | title dept_name credits start end
BIO-101 | Intro. to Biology | Biology 4 1985-01-01 | 9999-12-31
CS-201 Intro. to C Comp. Sci. 4 1985-01-01 | 1999-01-01
CS-201 Intro. to Java Comp. Sci. 4 1999-01-01 | 2010-01-01
CS-201 Intro. to Python | Comp. Sci. 4 2010-01-01 | 9999-12-31
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End of Indexing
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