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Basic Concepts

▪ Indexing mechanisms used to speed up access to desired data.

• E.g., author catalog in library

▪ Search Key - attribute to set of attributes used to look up records in a 

file.

▪ An index file consists of records (called index entries) of the form

▪ Index files are typically much smaller than the original file 

▪ Two basic kinds of indices:

• Ordered indices:  search keys are stored in sorted order

• Hash indices: search keys are distributed uniformly across 

“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation Metrics

▪ Access types supported efficiently.  E.g., 

• Records with a specified value in the attribute

• Records with an attribute value falling in a specified range of values.

▪ Access time

▪ Insertion time

▪ Deletion time

▪ Space overhead



©Silberschatz, Korth and Sudarshan14.5Database System Concepts - 7th Edition

Ordered Indices

▪ In an ordered index, index entries are stored sorted on the search key 

value.  

▪ Clustering index: in a sequentially ordered file, the index whose search 

key specifies the sequential order of the file.

• Also called primary index

• The search key of a primary index is usually but not necessarily the 

primary key.

▪ Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called 

nonclustering index.

▪ Index-sequential file: sequential file ordered on a search key, with a 

clustering index on the search key.
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Dense Index Files

▪ Dense index — Index record appears for every search-key value in the 

file. 

▪ E.g. index on ID attribute of instructor relation 
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Dense Index Files (Cont.)

▪ Dense index on dept_name, with instructor file sorted on dept_name
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Sparse Index Files

▪ Sparse Index:  contains index records for only some search-key 

values.

• Applicable when records are sequentially ordered on search-key

▪ To locate a record with search-key value K we:

• Find index record with largest search-key value < K

• Search file sequentially starting at the record to which the index 

record points
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Sparse Index Files (Cont.)

▪ Compared to dense indices:

• Less space and less maintenance overhead for insertions and deletions.

• Generally slower than dense index for locating records.

▪ Good tradeoff: 

• for clustered index: sparse index with an index entry for every block in file, 

corresponding to least search-key value in the block.

• For unclustered index: sparse index on top of dense index (multilevel index)
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Secondary Indices Example

▪ Secondary index on salary field of instructor

▪ Index record points to a bucket that contains pointers to all the actual 

records with that particular search-key value.

▪ Secondary indices have to be dense
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Multilevel Index

▪ If index does not fit in memory, access becomes expensive.

▪ Solution: treat index kept on disk as a sequential file and construct a 

sparse index on it.

• outer index – a sparse index of the basic index

• inner index – the basic index file

▪ If even outer index is too large to fit in main memory, yet another level of 

index can be created, and so on.

▪ Indices at all levels must be updated on insertion or deletion from the file.
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Multilevel Index (Cont.)



©Silberschatz, Korth and Sudarshan14.16Database System Concepts - 7th Edition

Indices on Multiple Keys

▪ Composite search key  

• E.g., index on instructor relation on attributes (name, ID)

• Values are sorted lexicographically

▪ E.g.  (John, 12121) < (John, 13514)  and 

        (John, 13514) < (Peter, 11223)

• Can query on just name, or on (name, ID)



©Silberschatz, Korth and Sudarshan14.18Database System Concepts - 7th Edition

Example of B+-Tree
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B+-Tree Index Files (Cont.)

▪ All paths from root to leaf are of the same length

▪ Each node that is not a root or a leaf has between n/2 and n 

children.

▪ A leaf node has between (n–1)/2 and n–1 values

▪ Special cases: 

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it 

can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:
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B+-Tree Node Structure

▪ Typical node

• Ki are the search-key values 

• Pi are pointers to children (for non-leaf nodes) or pointers to records or 

buckets of records (for leaf nodes).

▪ The search-keys in a node are ordered 

   K1 < K2 < K3 < . . . < Kn–1

        (Initially assume no duplicate keys, address duplicates later)
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Leaf Nodes in B+-Trees

▪ For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key value 

Ki, 

▪ If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal 

to Lj’s search-key values

▪ Pn points to next leaf node in search-key order

Properties of a leaf node:
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Non-Leaf Nodes in B+-Trees

▪ Non leaf nodes form a multi-level sparse index on the leaf nodes.  For a 

non-leaf node with m pointers:

• All the search-keys in the subtree to which P1 points are less than K1 

• For 2  i  n – 1, all the search-keys in the subtree to which Pi points 

have values greater than or equal to Ki–1 and less than Ki 

• All the search-keys in the subtree to which Pn points have values 

greater than or equal to Kn–1

• General structure
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Example of B+-tree

▪ B+-tree for instructor file (n = 6)

▪ Leaf nodes must have between 3 and 5 values 

((n–1)/2 and n –1, with n = 6).

▪ Non-leaf nodes other than root must have between 3 and 6 

children ((n/2 and n with n =6).

▪ Root must have at least 2 children.
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Observations about B+-trees

▪ Since the inter-node connections are done by pointers, “logically” close 

blocks need not be “physically” close.

▪ The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

▪ The B+-tree contains a relatively small number of levels

▪ Level below root has at least 2* n/2 values

▪ Next level has at least 2* n/2 * n/2 values

▪ .. etc.

• If there are K search-key values in the file, the tree height is no more 

than  logn/2(K)

• thus searches can be conducted efficiently.

▪ Insertions and deletions to the main file can be handled efficiently, as the 

index can be restructured in logarithmic time (as we shall see).
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Queries on B+-Trees

function find(v)

1.    C=root

2.    while (C is not a leaf node)

1. Let i be least number s.t. V  Ki.

2. if there is no such number i then 

3.      Set C = last non-null pointer in C 

4. else if (v = C.Ki ) Set C = Pi +1  

5. else set C = C.Pi

3.    if for some i, Ki = V  then return C.Pi

4.    else return null /* no record with search-key value v exists. */
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Queries on B+-Trees (Cont.)

▪ Range queries find all records with search key values in a given range

• See book for details of function findRange(lb, ub) which returns set 

of all such records

• Real implementations usually provide an iterator interface to fetch 

matching records one at a time, using a next() function
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Queries on B+-Trees (Cont.)

▪ If there are K search-key values in the file, the height of the tree is no 

more than logn/2(K).

▪ A node is generally the same size as a disk block, typically 4 kilobytes

• and n is typically around 100 (40 bytes per index entry).

▪ With 1 million search key values and n = 100

• at most log50(1,000,000) = 4 nodes are accessed in a lookup 

traversal from root to leaf.

▪ Contrast this with a balanced binary tree with 1 million search key values 

— around 20 nodes are accessed in a lookup

• above difference is significant since every node access may need a 

disk I/O, costing around 20 milliseconds
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Non-Unique Keys

▪ If a search key ai is not unique, create instead an index on a composite 

key (ai , Ap), which is unique

• Ap could be a primary key, record ID, or any other attribute that 

guarantees uniqueness

▪ Search for ai = v can be implemented by a range search on composite 

key, with range (v, - ∞) to (v, + ∞)

▪ But more I/O operations are needed to fetch the actual records

• If the index is clustering, all accesses are sequential

• If the index is non-clustering, each record access may need an I/O 

operation
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Updates on B+-Trees:  Insertion

Assume record already added to the file.  Let 

l pr be pointer to the record, and let 

l v be the search key value of the record

1. Find the leaf node in which the search-key value would appear

1. If there is room in the leaf node, insert (v, pr) pair in the leaf node

2. Otherwise, split the node (along with the new (v, pr)  entry) as 

discussed in the next slide, and propagate updates to parent nodes.
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Updates on B+-Trees:  Insertion (Cont.)

▪ Splitting a leaf node:

• take the n (search-key value, pointer) pairs (including the one being 

inserted) in sorted order.  Place the first n/2 in the original node, and 

the rest in a new node.

• let the new node be p, and let k be the least key value in p.  Insert 

(k,p) in the parent of the node being split. 

• If the parent is full, split it and propagate the split further up.

▪ Splitting of nodes proceeds upwards till a node that is not full is found. 

• In the worst case the root node may be split increasing the height of 

the tree by 1. 

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams

Next step: insert entry with (Califieri, pointer-to-new-node) into parent
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B+-Tree  Insertion

B+-Tree before and after insertion of “Adams”

Affected nodes
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B+-Tree  Insertion

B+-Tree before and after insertion of “Lamport”
Affected nodes

Affected nodes
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▪ Splitting a non-leaf node: when inserting (k,p) into an already full internal 

node N

• Copy N to an in-memory area M with space for n+1 pointers and n 

keys

• Insert (k,p) into M

• Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

• Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N'

• Insert (K n/2,N') into parent N

▪ Example

▪ Read pseudocode in book!

Insertion in B+-Trees (Cont.)
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Examples of B+-Tree Deletion

▪ Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes
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Examples of B+-Tree Deletion (Cont.)

▪ Leaf containing Singh and Wu became underfull, and borrowed a value 

Kim from its left sibling

▪ Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes
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Example of B+-tree Deletion (Cont.)

▪ Node with Gold and Katz became underfull, and was merged with its sibling 

▪ Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging

▪ Root node then has only one child, and is deleted

Before and after deletion of “Gold”
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Updates on B+-Trees: Deletion

Assume record already deleted from file.  Let V be the search key value of the 

record, and Pr be the pointer to the record.

▪ Remove (Pr, V) from the leaf node 

▪ If the node has too few entries due to the removal, and the entries in the 

node and a sibling fit into a single node, then merge siblings:

• Insert all the search-key values in the two nodes into a single node 

(the one on the left), and delete the other node.

• Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node, 

from its parent, recursively using the above procedure.
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Updates on B+-Trees:  Deletion

▪ Otherwise, if the node has too few entries due to the removal, but the 

entries in the node and a sibling do not fit into a single node, then 

redistribute pointers:

• Redistribute the pointers between the node and a sibling such that 

both have more than the minimum number of entries.

• Update the corresponding search-key value in the parent of the node.

▪ The node deletions may cascade upwards till a node which has  n/2 or 

more pointers is found.  

▪ If the root node has only one pointer after deletion, it is deleted and the 

sole child becomes the root. 
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Complexity of Updates

▪ Cost (in terms of number of I/O operations) of insertion and deletion of a 

single entry proportional to height of the tree

• With K entries and maximum fanout of n, worst case complexity of 

insert/delete of an entry is O(logn/2(K))

▪ In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer

• Splits/merges are rare, most insert/delete operations only affect a leaf 

node

▪ Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order
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Non-Unique Search Keys

▪ Alternatives to scheme described earlier

• Buckets on separate block (bad idea)

• List of tuple pointers with each key

▪ Extra code to handle long lists

▪ Deletion of a tuple can be expensive if there are many duplicates 

on search key (why?)

• Worst case complexity may be linear!

▪ Low space overhead, no extra cost for queries

• Make search key unique by adding a record-identifier

▪ Extra storage overhead for keys

▪ Simpler code for insertion/deletion

▪ Widely used
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B+-Tree File Organization

▪ B+-Tree File Organization:

• Leaf nodes in a B+-tree file organization store records, instead of 

pointers

• Helps keep data records clustered even when there are 

insertions/deletions/updates

▪ Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number of 

records that can be stored in a leaf node is less than the number of 

pointers in a nonleaf node.

▪ Insertion and deletion are handled in the same way as insertion and 

deletion of entries in a B+-tree index.
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B+-Tree File Organization (Cont.)

▪ Example of B+-tree File Organization

▪ Good space utilization important since records use more space than 

pointers.  

▪ To improve space utilization, involve more sibling nodes in redistribution 

during splits and merges

• Involving 2 siblings in redistribution (to avoid split / merge where 

possible) results in each node having at least     entries 3/2n
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Other Issues in Indexing

▪ Record relocation and secondary indices

• If a record moves, all secondary indices that store record pointers 

have to be updated 

• Node splits in B+-tree file organizations become very expensive

• Solution: use search key of B+-tree file organization instead of record 

pointer in secondary index

▪ Add record-id if B+-tree file organization search key is non-unique

▪ Extra traversal of file organization to locate record

• Higher cost for queries, but node splits are cheap
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Indexing Strings

▪ Variable length strings as keys

• Variable fanout

• Use space utilization as criterion for splitting, not number of pointers

▪ Prefix compression

• Key values at internal nodes can be prefixes of full key

▪ Keep enough characters to distinguish entries in the subtrees 

separated by the key value

• E.g., “Silas” and “Silberschatz” can be separated by “Silb”

• Keys in leaf node can be compressed by sharing common prefixes
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Bulk Loading and Bottom-Up Build

▪ Inserting entries one-at-a-time into a B+-tree requires  1 IO per entry 

• assuming leaf level does not fit in memory

• can be very inefficient for loading a large number of entries at a time 

(bulk loading)

▪ Efficient alternative 1:

• sort entries first (using efficient external-memory sort algorithms 

discussed later in Section 12.4)

• insert in sorted order

▪ insertion will go to existing page (or cause a split)

▪ much improved IO performance, but most leaf nodes half full

▪ Efficient alternative 2: Bottom-up B+-tree construction

• As before sort entries

• And then create tree layer-by-layer, starting with leaf level

▪ details as an exercise

• Implemented as part of bulk-load utility by most database systems
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B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data
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Indexing on Flash

▪ Random I/O cost much lower on flash

• 20 to 100 microseconds for read/write

▪ Writes are not in-place, and (eventually) require a more expensive erase

▪ Optimum page size therefore much smaller

▪ Bulk-loading still useful since it minimizes page erases

▪ Write-optimized tree structures (discussed later) have been adapted to 

minimize page writes for flash-optimized search trees
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Indexing in Main Memory

▪ Random access in memory 

• Much cheaper than on disk/flash

• But still expensive compared to cache read

• Data structures that make best use of cache preferable

• Binary search for a key value within a large B+-tree node results in 

many cache misses

▪ B+- trees with small nodes that fit in cache line are preferable to reduce 

cache misses

▪ Key idea:  use large node size to optimize disk access, but structure data 

within a node using a tree with small node size, instead of using an array.
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Hashing
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Static Hashing

▪ A bucket is a unit of storage containing one or more entries (a bucket 

is typically a disk block). 

• we obtain the bucket of an entry from its search-key value using a 

hash function

▪ Hash function h is a function from the set of all search-key values K to 

the set of all bucket addresses B.

▪ Hash function is used to locate entries for access, insertion as well as 

deletion.

▪ Entries with different search-key values may be mapped to the same 

bucket; thus entire bucket has to be searched sequentially to locate an 

entry. 

▪ In a hash index, buckets store entries with pointers to records

▪ In a hash file-organization buckets store records
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Handling of Bucket Overflows

▪ Bucket overflow can occur because of 

• Insufficient buckets 

• Skew in distribution of records.  This can occur due to two reasons:

▪ multiple records have same search-key value

▪ chosen hash function produces non-uniform distribution of key 

values

▪ Although the probability of bucket overflow can be reduced, it cannot be 

eliminated; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

▪ Overflow chaining – the overflow buckets of a given bucket are chained 

together in a linked list.

▪ Above scheme is called closed addressing (also called closed hashing 

or open hashing depending on the book you use)  

• An alternative, called 

open addressing 

(also called 

open hashing or 

closed hashing 

depending on the                                                                                    

book you use) which                                                                           

does not use over-                                                                                     

flow buckets, is not                                                                         

suitable for database                                                                               

applications.
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Example of Hash File Organization 

Hash file organization of instructor file, using dept_name as key.
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Deficiencies of Static Hashing

▪ In static hashing, function h maps search-key values to a fixed set of B of 

bucket addresses. Databases grow or shrink with time. 

• If initial number of buckets is too small, and file grows, performance 

will degrade due to too much overflows.

• If space is allocated for anticipated growth, a significant amount of 

space will be wasted initially (and buckets will be underfull).

• If database shrinks, again space will be wasted.

▪ One solution: periodic re-organization of the file with a new hash function

• Expensive, disrupts normal operations

▪ Better solution: allow the number of buckets to be modified dynamically. 
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Dynamic Hashing

▪ Periodic rehashing

• If number of entries in a hash table becomes (say) 1.5 times size of 

hash table, 

▪ create new hash table of size  (say) 2 times the size of the 

previous hash table

▪ Rehash all entries to new table

▪ Linear Hashing

• Do rehashing in an incremental manner

▪ Extendable Hashing

• Tailored to disk based hashing, with buckets shared by multiple hash 

values

• Doubling of # of entries in hash table, without doubling # of buckets
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Comparison of Ordered Indexing and Hashing

▪ Cost of periodic re-organization

▪ Relative frequency of insertions and deletions

▪ Is it desirable to optimize average access time at the expense of worst-

case access time?

▪ Expected type of queries:

• Hashing is generally better at retrieving records having a specified 

value of the key.

• If range queries are common, ordered indices are to be preferred

▪ In practice:

• PostgreSQL supports hash indices, but discourages use due to poor 

performance

• Oracle supports static hash organization, but not hash indices

• SQLServer supports only B+-trees
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Multiple-Key Access

▪ Use multiple indices for certain types of queries.

▪ Example: 

select ID

from instructor

where dept_name = “Finance” and salary = 80000

▪ Possible strategies for processing query using indices on single attributes:

1. Use index on dept_name to find instructors with department name 
Finance; test salary = 80000 

2. Use index on salary to find instructors with a salary of $80000; test 
dept_name = “Finance”.

3. Use dept_name index to find pointers to all records pertaining to the 
“Finance” department.  Similarly use index on salary.  Take 
intersection of both sets of pointers obtained.
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Indices on Multiple Keys

▪ Composite search keys are search keys containing more than one 

attribute

• E.g., (dept_name, salary)

▪ Lexicographic ordering: (a1, a2) < (b1, b2) if either 

• a1 < b1, or 

• a1=b1 and  a2 < b2
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Indices on Multiple Attributes

▪  With the where clause

           where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only records that 

satisfy both conditions.

• Using separate indices in less efficient — we may fetch many 

records (or pointers) that satisfy only one of the conditions.

▪ Can also efficiently handle 

           where dept_name = “Finance” and salary < 80000

▪ But cannot efficiently handle

          where dept_name < “Finance” and balance = 80000

• May fetch many records that satisfy the first but not the second 

condition

Suppose we have an index on combined search-key

 (dept_name, salary).
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Other Features

▪ Covering indices

• Add extra attributes to index so (some) queries can avoid fetching the 

actual records

• Store extra attributes only at leaf

▪ Why?

▪ Particularly useful for secondary indices 

• Why?
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Creation of Indices

▪ Example

  create index takes_pk on takes (ID,course_ID, year, semester, section)

  drop index takes_pk

▪ Most database systems allow specification of type of index, and 

clustering.

▪ Indices on primary key created automatically by all databases

• Why?

▪ Some database also create indices on foreign key attributes

• Why might such an index be useful for this query:

▪ takes ⨝ σname='Shankar' (student)

▪ Indices can greatly speed up lookups, but impose cost on updates

• Index tuning assistants/wizards supported on several databases to 

help choose indices, based on query and update workload
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Index Definition in SQL

▪ Create an index

  create index <index-name> on <relation-name>

   (<attribute-list>)

E.g.,:  create index b-index on branch(branch_name)

▪ Use create unique index to indirectly specify and enforce the condition 

that the search key is a candidate key is a candidate key.

• Not really required if SQL unique integrity constraint is supported

▪ To drop an index 

   drop index <index-name>

▪ Most database systems allow specification of type of index, and 

clustering.
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Write Optimized Indices

▪ Performance of  B+-trees can be poor for write-intensive workloads

• One I/O per leaf, assuming all internal nodes are in memory

• With magnetic disks, < 100 inserts per second per disk

• With flash memory, one page overwrite per insert

▪ Two approaches to reducing cost of writes

• Log-structured merge tree

• Buffer tree
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Log Structured Merge (LSM) Tree

▪ Consider only inserts/queries for 

now

▪ Records inserted first into in-

memory tree (L0 tree)

▪ When in-memory tree is full, 

records moved to disk (L1 tree)

• B+-tree constructed using 

bottom-up build by merging 

existing L1 tree with records 

from L0 tree

▪ When L1 tree exceeds some 

threshold, merge into L2 tree

• And so on for more levels

• Size threshold for Li+1 tree 

is k times size threshold for 

Li tree 
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LSM Tree (Cont.)

▪ Benefits of LSM approach

• Inserts are done using only sequential I/O operations

• Leaves are full, avoiding space wastage

• Reduced number of I/O operations per record inserted as compared 

to normal B+-tree (up to some size)

▪ Drawback of LSM approach

• Queries have to search multiple trees

• Entire content of each level copied multiple times

▪ Stepped-merge index

• Variant of LSM tree with multiple trees at each level

• Reduces write cost compared to LSM tree

• But queries are even more expensive

▪ Bloom filters to avoid lookups in most trees 

▪ Details are covered in Chapter 24 
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LSM Trees (Cont.)

▪ Deletion handled by adding special “delete” entries

• Lookups will find both original entry and the delete entry, and must 

return only those entries that do not have matching delete entry

• When trees are merged, if we find a delete entry matching an original 

entry, both are dropped.

▪ Update handled using insert+delete

▪ LSM trees were introduced for disk-based indices

• But useful to minimize erases with flash-based indices

• The stepped-merge variant of LSM trees is used in many BigData 

storage systems

▪ Google BigTable, Apache Cassandra, MongoDB

▪ And more recently in SQLite4, LevelDB, and MyRocks storage 

engine of MySQL 
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Buffer Tree

▪ Alternative to LSM tree

▪ Key idea: each internal node of B+-tree has a buffer to store inserts

• Inserts are moved to lower levels when buffer is full

• With a large buffer, many records are moved to lower level each time

• Per record I/O decreases correspondingly 

▪ Benefits

• Less overhead on queries

• Can be used with any tree index structure

• Used in PostgreSQL Generalized Search Tree (GiST) indices

▪ Drawback: more random I/O than LSM tree
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Bitmap Indices

▪ Bitmap indices are a special type of index designed for efficient querying 

on multiple keys

▪ Records in a relation are assumed to be numbered sequentially from, 

say, 0

• Given a number n it must be easy to retrieve record n

▪ Particularly easy if records are of fixed size

▪ Applicable on attributes that take on a relatively small number of distinct 

values

• E.g., gender, country, state, …

• E.g., income-level (income broken up into a small number of  levels 

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

▪ A bitmap is simply an array of bits
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Bitmap Indices (Cont.)

▪ In its simplest form a bitmap index on an attribute has a bitmap for each 

value of the attribute

• Bitmap has as many bits as records

• In a bitmap for value v, the bit for a record is 1 if the record has the 

value v for the attribute, and is 0 otherwise

▪ Example
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Bitmap Indices (Cont.)

▪ Bitmap indices are useful for queries on multiple attributes 

• not particularly useful for single attribute queries

▪ Queries are answered using bitmap operations

• Intersection (and)

• Union (or)

▪ Each operation takes two bitmaps of the same size and applies the 

operation on corresponding bits to get the result bitmap

• E.g.,   100110  AND 110011 = 100010

                100110  OR  110011 = 110111

                       NOT 100110  = 011001

• Males with income level L1:   10010 AND 10100 = 10000

▪ Can then retrieve required tuples.

▪ Counting number of matching tuples is even faster
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Bitmap Indices (Cont.)

▪ Bitmap indices generally very small compared with relation size

• E.g., if record is 100 bytes, space for a single bitmap is 1/800 of 

space used by relation.  

▪ If number of distinct attribute values is 8, bitmap is only 1% of 

relation size
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Efficient Implementation of Bitmap Operations

▪ Bitmaps are packed into words;  a single word and (a basic CPU 

instruction) computes and of 32 or 64 bits at once

• E.g., 1-million-bit maps can be and-ed with just 31,250 instruction

▪ Counting number of 1s can be done fast by a trick:

• Use each byte to index into a precomputed array of 256 elements 

each storing the count of 1s in the binary representation

▪ Can use pairs of bytes to speed up further at a higher memory 

cost

• Add up the retrieved counts

▪ Bitmaps can be used instead of Tuple-ID lists at leaf levels of 

B+-trees, for values that have a large number of matching records

• Worthwhile if > 1/64 of the records have that value, assuming a tuple-

id is 64 bits

• Above technique merges benefits of bitmap and B+-tree indices
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Spatial and Temporal Indices
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Spatial Data

▪ Databases can store data types such as lines, polygons, in addition to 

raster images 

• allows relational databases to store and retrieve spatial information

• Queries can use spatial conditions (e.g. contains or overlaps).

• queries can mix spatial and nonspatial conditions 

▪ Nearest neighbor queries, given a point or an object, find the nearest 

object that satisfies given conditions.

▪ Range queries deal with spatial regions. e.g., ask for objects that lie 

partially or fully inside a specified region.

▪ Queries that compute intersections or unions of regions.

▪ Spatial join of two spatial relations with the location playing the role of join 

attribute.
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Indexing of Spatial Data

▪ k-d tree - early structure used for 

indexing in multiple dimensions.

▪ Each level of a k-d  tree partitions the 

space into two.

• Choose one dimension for 

partitioning at the root level of the 

tree.

• Choose another dimensions for 

partitioning in nodes at the next 

level and so on, cycling through the 

dimensions.

▪ In each node, approximately half of the 

points stored in the sub-tree fall on one 

side and half on the other.

▪ Partitioning stops when a node has less 

than a given number of points.

3 1 3

2

3 3

2

▪ The k-d-B tree extends the k-d 
tree to allow multiple child 
nodes for each internal node; 
well-suited for secondary 
storage.
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Division of Space by Quadtrees

▪ Each node of a quadtree is associated with  a rectangular region of space; 
the top node is associated with the entire target space.

▪ Each non-leaf  nodes divides its region into four equal sized quadrants

•  correspondingly each such node has four child nodes corresponding 
to the four quadrants and so on

▪ Leaf nodes have between zero and some fixed maximum number of 
points (set to 1 in example).
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R-Trees

▪ R-trees are a N-dimensional extension of B+-trees, useful for indexing sets 

of rectangles and other polygons.

▪ Supported in many modern database systems, along with variants like R+ -

trees and R*-trees.

▪ Basic idea: generalize the notion of a one-dimensional interval associated 

with each B+ -tree node to an 

N-dimensional interval, that is, an N-dimensional rectangle.

▪ Will consider only the two-dimensional case (N = 2) 

• generalization for N > 2 is  straightforward, although R-trees work well 

only for relatively small N

▪ The bounding box of a node is a minimum  sized rectangle that contains 

all the rectangles/polygons associated with the node

• Bounding boxes of children of a node are allowed to overlap
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Example R-Tree

▪ A set of rectangles (solid line) and the bounding boxes (dashed line) of the 

nodes of an R-tree for the rectangles.

▪ The R-tree is shown on the right.
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Search in R-Trees

▪ To find data items intersecting a given query point/region, do the following, 

starting from the root node:

• If the node is a leaf node, output the data items whose keys intersect 

the given query point/region.

• Else, for each child of the current node whose bounding box intersects 

the query point/region, recursively search the child

▪ Can be very inefficient in worst case since multiple paths may need to be 

searched, but works acceptably in practice.
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Indexing Temporal Data

▪ Temporal data refers to data that has an associated time period (interval)

• Example: a temporal version of the course relation

▪ Time interval has a start and end time

• End time set to infinity (or large date such as 9999-12-31) if a tuple is 

currently valid and its validity end time is not currently known

▪ Query may ask for all tuples that are valid at a point in time or during a 

time interval

• Index on valid time period speeds up this task
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Indexing Temporal Data (Cont.)

▪ To create a temporal index on attribute a:

• Use spatial index, such as R-tree, with attribute a as one dimension, 

and time as another dimension

▪ Valid time forms an interval in the time dimension

• Tuples that are currently valid cause problems, since value is infinite 

or very large

▪ Solution:  store all current tuples (with end time as infinity) in a 

separate index, indexed on (a, start-time)

• To find tuples valid at a point in time t in the current tuple index, 

search for tuples in the range (a, 0) to (a,t) 

▪ Temporal index on primary key can help enforce temporal primary key 

constraint
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End of Indexing


	Slide 1: Indexing
	Slide 2: Outline
	Slide 3: Basic Concepts
	Slide 4: Index Evaluation Metrics
	Slide 5: Ordered Indices
	Slide 6: Dense Index Files
	Slide 7: Dense Index Files (Cont.)
	Slide 8: Sparse Index Files
	Slide 9: Sparse Index Files (Cont.)
	Slide 10: Secondary Indices Example
	Slide 12: Multilevel Index
	Slide 13: Multilevel Index (Cont.)
	Slide 16: Indices on Multiple Keys
	Slide 18: Example of B+-Tree
	Slide 19: B+-Tree Index Files (Cont.)
	Slide 20: B+-Tree Node Structure
	Slide 21: Leaf Nodes in B+-Trees
	Slide 22: Non-Leaf Nodes in B+-Trees
	Slide 23: Example of B+-tree
	Slide 24: Observations about B+-trees
	Slide 25: Queries on B+-Trees
	Slide 26: Queries on B+-Trees (Cont.)
	Slide 27: Queries on B+-Trees (Cont.)
	Slide 28: Non-Unique Keys
	Slide 29: Updates on B+-Trees:  Insertion
	Slide 30: Updates on B+-Trees:  Insertion (Cont.)
	Slide 31: B+-Tree  Insertion
	Slide 32: B+-Tree  Insertion
	Slide 33: Insertion in B+-Trees (Cont.)
	Slide 34: Examples of B+-Tree Deletion
	Slide 35: Examples of B+-Tree Deletion (Cont.)
	Slide 36: Example of B+-tree Deletion (Cont.)
	Slide 37: Updates on B+-Trees: Deletion
	Slide 38: Updates on B+-Trees:  Deletion
	Slide 39: Complexity of Updates
	Slide 40: Non-Unique Search Keys
	Slide 41: B+-Tree File Organization
	Slide 42: B+-Tree File Organization (Cont.)
	Slide 43: Other Issues in Indexing
	Slide 44: Indexing Strings
	Slide 45: Bulk Loading and Bottom-Up Build
	Slide 48: B-Tree Index File Example
	Slide 49: Indexing on Flash
	Slide 50: Indexing in Main Memory
	Slide 51
	Slide 52: Static Hashing
	Slide 53: Handling of Bucket Overflows
	Slide 54: Handling of Bucket Overflows (Cont.)
	Slide 56: Example of Hash File Organization 
	Slide 57: Deficiencies of Static Hashing
	Slide 58: Dynamic Hashing
	Slide 59: Comparison of Ordered Indexing and Hashing
	Slide 60: Multiple-Key Access
	Slide 61: Indices on Multiple Keys
	Slide 62: Indices on Multiple Attributes
	Slide 63: Other Features
	Slide 64: Creation of Indices
	Slide 65: Index Definition in SQL
	Slide 66: Write Optimized Indices
	Slide 67: Log Structured Merge (LSM) Tree
	Slide 68: LSM Tree (Cont.)
	Slide 69: LSM Trees (Cont.)
	Slide 70: Buffer Tree
	Slide 71: Bitmap Indices
	Slide 72: Bitmap Indices (Cont.)
	Slide 73: Bitmap Indices (Cont.)
	Slide 74: Bitmap Indices (Cont.)
	Slide 75: Efficient Implementation of Bitmap Operations
	Slide 76
	Slide 77: Spatial Data
	Slide 78: Indexing of Spatial Data
	Slide 79: Division of Space by Quadtrees
	Slide 80: R-Trees
	Slide 81: Example R-Tree
	Slide 82: Search in R-Trees
	Slide 83: Indexing Temporal Data
	Slide 84: Indexing Temporal Data (Cont.)
	Slide 85: End of Indexing

