Query Processing

Overview

Measures of Query Cost
Selection Operation
Sorting

Join Operation

Other Operations

O O O O O O 0O

Evaluation of Expressions

Database System Concepts - 6t Edition 12.1 ©Silberschatz, Korth and Sudarshan

1. Parsing and translation

2. Optimization
3. Evaluation

query

query
output

Database System Concepts - 6t Edition

parser and
translator

evaluation engine

=l

data

12.2

relational-algebra
expression

<

'execution plan

Basic Steps in Query Processing

U

statistics

about data

©Silberschatz, Korth and Sudarshan

Basic Steps in Query Processing
(Cont.)

0 Parsing and translation

translate the query into its internal form. This is then
translated into relational algebra.

Parser checks syntax, verifies relations
0 Evaluation

The query-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query.

Database System Concepts - 6t Edition 12.3 ©Silberschatz, Korth and Sudarshan

_-3 Basic Steps in Query Processing
o Optimization
0 A relational algebra expression may have many equivalent
expressions

E.Q., Osalary<75000(Isaary/(INStructor)) is equivalent to

1_[salary(Gs,aIary<75000(i nstructor))

0 Each relational algebra operation can be evaluated using one of
several different algorithms

Correspondingly, a relational-algebra expression can be
evaluated in many ways.

0 Annotated expression specifying detailed evaluation strategy is
called an evaluation-plan.

E.g., can use an index on salary to find instructors with salary <
75000,

or can perform complete relation scan and discard instructors
with salary > 75000

Database System Concepts - 6t Edition 12.4 ©Silberschatz, Korth and Sudarshan

= Basic Steps: Optimization (Cont.)

0 Query Optimization: Amongst all equivalent evaluation plans
choose the one with lowest cost.

Cost is estimated using statistical information from the
database catalog

» e.g. number of tuples in each relation, size of tuples, etc.
0 In this chapter we study
How to measure query costs
Algorithms for evaluating relational algebra operations

How to combine algorithms for individual operations in
order to evaluate a complete expression

0 In Chapter 14

We study how to optimize queries, that is, how to find an
evaluation plan with lowest estimated cost

Database System Concepts - 6t Edition 12.5 ©Silberschatz, Korth and Sudarshan

i Measures of Query Cost

0 Costis generally measured as total elapsed time for answering
query
Many factors contribute to time cost

disk accesses, CPU, or even network communication

0 Typically disk access is the predominant cost, and is also
relatively easy to estimate. Measured by taking into account

Number of seeks * average-seek-cost
Number of blocks read * average-block-read-cost
Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block

data is read back after being written to ensure that the
write was successful

Database System Concepts - 6t Edition 12.6 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost (Cont.)

0 For simplicity we just use the number of block transfers from disk
and the number of seeks as the cost measures

t; — time to transfer one block
s — time for one seek

Cost for b block transfers plus S seeks
b*t +S*tg

0 We ignore CPU costs for simplicity
Real systems do take CPU cost into account
0 We do not include cost to writing output to disk in our cost formulae

Database System Concepts - 6t Edition 12.7 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost (Cont.)

0 Several algorithms can reduce disk 10 by using extra buffer
space

Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during
execution

» We often use worst case estimates, assuming only the
minimum amount of memory needed for the operation is
available

0 Required data may be buffer resident already, avoiding disk 1/O
But hard to take into account for cost estimation

Database System Concepts - 6t Edition 12.8 ©Silberschatz, Korth and Sudarshan

- Selection Operation

O File scan

0 Algorithm Al (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

Cost estimate = b, block transfers + 1 seek

» b, denotes number of blocks containing records from relation r
If selection is on a key attribute, can stop on finding record

» cost = (b, /2) block transfers + 1 seek
Linear search can be applied regardless of

» selection condition or

» ordering of records in the file, or
» availability of indices

0 Note: binary search generally does not make sense since data is not
stored consecutively

except when there is an index available,
and binary search requires more seeks than index search

Database System Concepts - 6t Edition 12.9 ©Silberschatz, Korth and Sudarshan

Selections Using Indices

0 Index scan — search algorithms that use an index
selection condition must be on search-key of index.

0 A2 (primary index, equality on key). Retrieve a single record
that satisfies the corresponding equality condition

Cost=(h;+ 1) * (t; + t)

0 A3 (primary index, equality on nonkey) Retrieve multiple
records.

Records will be on consecutive blocks
» Let b = number of blocks containing matching records

Cost=h,*(t; +t5) +ts+t:*b

Database System Concepts - 6t Edition 12.10 ©Silberschatz, Korth and Sudarshan

Selections Using Indices

0 A4 (secondary index, equality on nonkey).
Retrieve a single record if the search-key is a candidate key
» Cost=(h, + 1) * (t; + tg)
Retrieve multiple records if search-key is not a candidate key
» each of n matching records may be on a different block
» Cost= (h;+n)* (t; + tg)
Can be very expensive!

Database System Concepts - 6t Edition 12.11 ©Silberschatz, Korth and Sudarshan

== Selections Involving Comparisons

0 Can implement selections of the form o, (r) or 6, /(r) by using
a linear file scan,
or by using indices in the following ways:

0 Ab (primary index, comparison). (Relation is sorted on A)

» For o, »\(r) use index to find first tuple > v and scan relation
sequentially from there

» For 6, () Just scan relation sequentially till first tuple > v; do not
use index

0 A6 (secondary index, comparison).

» For o, »(r) use index to find first index entry > v and scan index
sequentially from there, to find pointers to records.

» For o, () Just scan leaf pages of index finding pointers to
records, till first entry > v

» In either case, retrieve records that are pointed to
requires an 1/O for each record
Linear file scan may be cheaper

Database System Concepts - 6t Edition 12.12 ©Silberschatz, Korth and Sudarshan

Implementation of Complex Selections

0 Conjunction: GgiA goA. -« - gn(l)
0 A7 (conjunctive selection using one index).

Select a combination of 6, and algorithms Al through A7 that
results in the least cost for o (r).

Test other conditions on tuple after fetching it into memory buffer.
0 AS8 (conjunctive selection using composite index).
Use appropriate composite (multiple-key) index if available.
0 A9 (conjunctive selection by intersection of identifiers).
Requires indices with record pointers.

Use corresponding index for each condition, and take intersection
of all the obtained sets of record pointers.

Then fetch records from file

If some conditions do not have appropriate indices, apply test in
memory.

Database System Concepts - 6t Edition 12.13 ©Silberschatz, Korth and Sudarshan

Algorithms for Complex Selections

0 Disjunction:Gg;V gp V. . . g (1).
0 A10 (disjunctive selection by union of identifiers).
Applicable if all conditions have available indices.

» Otherwise use linear scan.

Use corresponding index for each condition, and take union
of all the obtained sets of record pointers.

Then fetch records from file
0 Negation: c_y(r)
Use linear scan on file
If very few records satisfy —0, and an index is applicable to 0
» Find satisfying records using index and fetch from file

Database System Concepts - 6t Edition 12.14 ©Silberschatz, Korth and Sudarshan

- Sorting

0 We may build an index on the relation, and then use the index to

read the relation in sorted order. May lead to one disk block
access for each tuple.

0 For relations that fit in memory, techniques like quicksort can be
used. For relations that don’ t fit in memory, external
sort-merge is a good choice.

External Sort-Merge
Let M denote memory size (in pages).

1. Create sorted runs. Leti be O initially.

Repeatedly do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run R;; increment I.

Let the final value of i be N

2. Merge the runs (next slide).....

Database System Concepts - 6t Edition 12.15 ©Silberschatz, Korth and Sudarshan

= External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N <
M.

Use N blocks of memory to buffer input runs, and 1 block to
buffer output. Read the first block of each run into its buffer

page
repeat

1. Select the first record (in sort order) among all buffer
pages

2. Write the record to the output buffer. If the output buffer
IS full write it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.

until all input buffer pages are empty:

Database System Concepts - 6t Edition 12.16 ©Silberschatz, Korth and Sudarshan

External Sort-Merge (Cont.)

0 If N> M, several merge passes are required.
In each pass, contiguous groups of M - 1 runs are merged.

A pass reduces the number of runs by a factor of M -1 and
creates runs longer by the same factor.

» E.g. If M=11, and there are 90 runs, one pass reduces
the number of runs to 9, each 10 times the size of the
Initial runs

Repeated passes are performed till all runs have been
merged into one.

Database System Concepts - 6t Edition 12.17 ©Silberschatz, Korth and Sudarshan

=% Example: External Sorting Using Sort-Merge

=
B a|19
g |24 d |31 bl 14 a|l4
a |19 g (24 1 c 33 a|l19
d |31 . q031 b |14
lc; C;)i) — % o | 16 c |33
e |16 g | 24 47
e (16 d| 21
p| 2 > m| 3
d|7 a (14 I B p| 2
a |14 d| 7 P r |16
o p|2 r |1
initial sorted
relation runs runs output
create merge merge
runs pass—1 pass—2

Database System Concepts - 6t Edition 12.18 ©Silberschatz, Korth and Sudarshan

= External Merge Sort (Cont.)

0 Cost analysis:

1 block per run leads to too many seeks during merge

» Instead use by, buffer blocks per run
=>» read/write b, blocks at a time

» Can merge [M/b, -1 runs in one pass

Total number of merge passes required: | log | M/bb H(br/M)T.

Block transfers for initial run creation as well as in each pass is 2b,
» for final pass, we don’ t count write cost

we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

» Thus total number of block transfers for external sorting:
b, (2110 (w1 (b, / M) [+ 1) [

Seeks: next slide

Database System Concepts - 6t Edition 12.19 ©Silberschatz, Korth and Sudarshan

External Merge Sort (Cont.)

0 Cost of seeks

During run generation: one seek to read each run and one
seek to write each run

» 21 b,/ M|
During the merge phase
» Need 2| b, / b,ﬂ seeks for each merge pass
except the final one which does not require a write

» Total number of seeks:
2[b,/ MT+[b,/by1 (2100 yLi(b,/ M)1-1)

Database System Concepts - 6t Edition 12.20 ©Silberschatz, Korth and Sudarshan

= Join Operation

0 Several different algorithms to implement joins

Nested-loop join
Block nested-loop join
Indexed nested-loop join
Merge-join
Hash-join
0 Choice based on cost estimate
0 Examples use the following information
Number of records of student: 5,000
Number of blocks of student: 100

Database System Concepts - 6t Edition 12.21

takes:
takes:

10,000
400

©Silberschatz, Korth and Sudarshan

- Nested-Loop Join

0 To compute the theta join r Mys
for each tuple t, in r do begin

for each tuple t; in s do begin
test pair (t,t;) to see if they satisfy the join condition 6

if they do, add t, « £, to the result.
end
end

0 r is called the outer relation and s the inner relation of the join.

0 Requires no indices and can be used with any kind of join
condition.

0 EXpensive since it examines every pair of tuples in the two
relations.

Database System Concepts - 6t Edition 12.22 ©Silberschatz, Korth and Sudarshan

O

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each
relation, the estimated cost is

n, * b, + b, block transfers, plus
n.+b, seeks

If the smaller relation fits entirely in memory, use that as the inner relation.
Reduces cost to b, + b, block transfers and 2 seeks
Assuming worst case memory availability cost estimate is
with student as outer relation:
» 5000 * 400 + 100 = 2,000,100 block transfers,
» 5000 + 100 = 5100 seeks
with takes as the outer relation
» 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks

If smaller relation (student) fits entirely in memory, the cost estimate will be
500 block transfers.

Block nested-loops algorithm (next slide) is preferable.

Database System Concepts - 6t Edition 12.23 ©Silberschatz, Korth and Sudarshan

- Block Nested-Loop Join

0 Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block B, of r do begin
for each block B, of s do begin
for each tuple t, in B, do begin
for each tuple t. in B; do begin
Check if (t,,t5) satisfy the join condition
if they do, add t, « t; to the result.
end
end

end
end

Database System Concepts - 6t Edition 12.24 ©Silberschatz, Korth and Sudarshan

E Block Nested-Loop Join (Cont.)

0 Worst case estimate: b, = b, + b, block transfers + 2 * b, seeks

Each block in the inner relation s is read once for each block
In the outer relation

0 Bestcase: b, + b, block transfers + 2 seeks.
0 Improvements to nested loop and block nested loop algorithms:

In block nested-loop, use M — 2 disk blocks as blocking unit
for outer relations, where M = memory size in blocks; use
remaining two blocks to buffer inner relation and output

Cost= [b, / (M-2) | = bg + b, block transfers +
2[b, / (M-2) | seeks

If equi-join attribute forms a key or inner relation, stop inner
loop on first match

Scan inner loop forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

Use index on inner relation if available (next slide)

Database System Concepts - 6t Edition 12.25 ©Silberschatz, Korth and Sudarshan

O

Indexed Nested-Loop Join

Index lookups can replace file scans if
join is an equi-join or natural join and
an index is available on the inner relation’ s join attribute
Can construct an index just to compute a join.

For each tuple t, in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple t..

Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

Cost of the join: b, (t;+t5) +n, * C

Where c is the cost of traversing index and fetching all matching s
tuples for one tuple orr

c can be estimated as cost of a single selection on s using the join
condition.

If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

Database System Concepts - 6t Edition 12.26 ©Silberschatz, Korth and Sudarshan

= E£xample of Nested-Loop Join Costs

P

0 Compute student x| takes, with student as the outer relation.

0 Lettakes have a primary B*-tree index on the attribute ID, which
contains 20 entries in each index node.

0 Since takes has 10,000 tuples, the height of the tree is 4, and one
more access IS needed to find the actual data

0 student has 5000 tuples
0 Cost of block nested loops join
400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
» assuming worst case memory
» may be significantly less with more memory
0 Cost of indexed nested loops join

100 + 5000 *5 = 25,100 block transfers and seeks.

CPU cost likely to be less than that for block nested loops join

Database System Concepts - 6t Edition 12.27 ©Silberschatz, Korth and Sudarshan

e Merge-Join

1. Sort both relations on their join attribute (if not already sorted on
the join attributes).

2. Merge the sorted relations to join them

Join step is similar to the merge stage of the sort-merge
algorithm.

Main difference is handling of duplicate values in join
attribute — every pair with same value on join attribute must
be matched al a2 al a3

Detailed algorithm in book P’ ps
—>

3 — >

1
8
13

TZ Q>

5 le|o|o|

Q| B |~ |al ol o

Database System Concepts - 6t Edition 12.28 ©Silberschatz, Korth and Sudarshan

iy Merge-Join (Cont.)

0 Can be used only for equi-joins and natural joins

0 Each block needs to be read only once (assuming all tuples for any
given value of the join attributes fit in memory

0 Thus the cost of merge join is:
b, + b, block transfers +|[b,/b,|+[bs/b,| seeks

+ the cost of sorting if relations are unsorted.

0 hybrid merge-join: If one relation is sorted, and the other has a
secondary B*-tree index on the join attribute

Merge the sorted relation with the leaf entries of the B*-tree .
Sort the result on the addresses of the unsorted relation’ s tuples

Scan the unsorted relation in physical address order and merge
with previous result, to replace addresses by the actual tuples

Sequential scan more efficient than random lookup

Database System Concepts - 6t Edition 12.29 ©Silberschatz, Korth and Sudarshan

e Hash-Join

0 Applicable for equi-joins and natural joins.
0 A hash function h is used to partition tuples of both relations

0 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the
common attributes of r and s used in the natural join.

ro, 1, .- - -, Iy denote partitions of r tuples

Each tuple t, e ris putin partition r; where | = h(t, [JoinAttrs]).
ro. 1. . ., I denotes partitions of s tuples

Each tuple tg s is put in partition s;, where | = h(tg [JOINALtrs]).

O Note: In book, r; Is denoted as H,; s;is denoted as Hg; and
nis denoted as ny,

Database System Concepts - 6t Edition 12.30 ©Silberschatz, Korth and Sudarshan

Hash-Join (Cont.)

Ul |0
- :\/‘
- 1 <> 1 C
2| > |2 :

3| («—> |3
S

a 4 4

partitions partitions
of r of s

Database System Concepts - 6t Edition 12.31 ©Silberschatz, Korth and Sudarshan

-! Hash-Join (Cont.)

0 r tuplesinr, need only to be compared with s tuples in s;
Need not be compared with s tuples in any other partition,
since:

an r tuple and an s tuple that satisfy the join condition
will have the same value for the join attributes.

If that value is hashed to some value i, the r tuple has
to be inr; and the s tuple in s,

Database System Concepts - 6t Edition 12.32 ©Silberschatz, Korth and Sudarshan

- Hash-Join Algorithm

The hash-join of r and s is computed as follows.

1. Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.
3. Foreachi:

(a) Load s; into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h.

(b) Read the tuples in r; from the disk one by one. For each
tuple t, locate each matching tuple t, in s; using the in-
memory hash index. Output the concatenation of their
attributes.

Relation s is called the build input and r is called the probe input.

Database System Concepts - 6t Edition 12.33 ©Silberschatz, Korth and Sudarshan

g Hash-Join algorithm (Cont.)

0 The value n and the hash function h is chosen such that each
s; should fit in memory.

Typically n is chosen as [bg/M|* f where fis a “fudge
factor”, typically around 1.2

The probe relation partitions s; need not fit in memory

0 Recursive partitioning required if number of partitions n is
greater than number of pages M of memory.

Instead of partitioning n ways, use M — 1 partitions for s

Further partition the M — 1 partitions using a different hash
function

Use same partitioning method on r

Rarely required: e.g., with block size of 4 KB, recursive
partitioning not needed for relations of < 1GB with memory
size of 2MB, or relations of < 36 GB with memory of 12 MB

Database System Concepts - 6t Edition 12.34 ©Silberschatz, Korth and Sudarshan

Handling of Overflows

Partitioning is said to be skewed if some partitions have significantly
more tuples than some others

Hash-table overflow occurs in partition s; if s; does not fit in memory.
Reasons could be

Many tuples in s with same value for join attributes
Bad hash function
Overflow resolution can be done in build phase
Partition s, is further partitioned using different hash function.
Partition r; must be similarly partitioned.

Overflow avoidance performs partitioning carefully to avoid overflows
during build phase

E.g. partition build relation into many partitions, then combine them
Both approaches fail with large numbers of duplicates
Fallback option: use block nested loops join on overflowed partitions

Database System Concepts - 6t Edition 12.35 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6t Edition 12.36 ©Silberschatz, Korth and Sudarshan

Cost of Hash-Join

If recursive partitioning is not required: cost of hash join is
3(b, + b,) +4 * n,, block transfers +

2([b,/b, 1+ b/ by]) seeks
If recursive partitioning required:

number of passes required for partitioning build relation s to
less than M blocks per partition is rlogLM,bb J_l(bS/Mﬂ

best to choose the smaller relation as the build relation.

Total cost estimate is:
2(b, + b)) 109 s L1(0/M) 1+ b, + by block transfers +

2(Ib,/ b, 1+ b/ by) [10g s 1 (0/M) T seeks

If the entire build input can be kept in main memory no
partitioning is required

Cost estimate goes down to b, + b..

= Example of Cost of Hash-Join

Instructor [Xteaches

0 Assume that memory size is 20 blocks

I:l binStl’UCtor: 100 and b — 400

0 instructor is to be used as build input. Partition it into five
partitions, each of size 20 blocks. This partitioning can be done
In one pass.

teaches

0 Similarly, partition teaches into five partitions,each of size 80.
This is also done in one pass.

0 Therefore total cost, ignoring cost of writing partially filled
blocks:

3(100 + 400) = 1500 block transfers +
2([100/31+[400/3 1) = 336 seeks

Database System Concepts - 6t Edition 12.37 ©Silberschatz, Korth and Sudarshan

E Hybrid Hash-Join

0 Useful when memory sized are relatively large, and the build
Input is bigger than memory.

0 Main feature of hybrid hash join:
Keep the first partition of the build relation in memory.

0 E.g. With memory size of 25 blocks, instructor can be partitioned
Into five partitions, each of size 20 blocks.

Division of memory:
The first partition occupies 20 blocks of memory

1 block is used for input, and 1 block each for buffering the other
4 partitions.

0 teaches is similarly partitioned into five partitions each of size 80
the first is used right away for probing, instead of being written out

0 Costof 3(80 + 320) + 20 +80 = 1300 block transfers for
hybrid hash join, instead of 1500 with plain hash-join.

0 Hybrid hash-join most useful if M >> /by

Database System Concepts - 6t Edition 12.38 ©Silberschatz, Korth and Sudarshan

Complex Joins

0 Join with a conjunctive condition:
M o1n02n.. A0S
Either use nested loops/block nested loops, or
Compute the result of one of the simpler joins r X 4; S

» final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

O1n.. . AD_1AD A A0,

0 Join with a disjunctive condition

X
r 01v02v...vOnS
Either use nested loops/block nested loops, or

Compute as the union of the records in individual joins r X iS:
(r Mels)u(r Mezs)u...u(rmens)

Database System Concepts - 6t Edition 12.39 ©Silberschatz, Korth and Sudarshan

= Other Operations

0 Duplicate elimination can be implemented via hashing or
sorting.

On sorting duplicates will come adjacent to each other, and all
but one set of duplicates can be deleted.

Optimization: duplicates can be deleted during run generation
as well as at intermediate merge steps in external sort-merge.

Hashing is similar — duplicates will come into the same
bucket.

0 Projection:
perform projection on each tuple
followed by duplicate elimination.

Database System Concepts - 6t Edition 12.40 ©Silberschatz, Korth and Sudarshan

= Other Operations : Aggregation

0 Aggregation can be implemented in a manner similar to duplicate
elimination.

Sorting or hashing can be used to bring tuples in the same
group together, and then the aggregate functions can be
applied on each group.

Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values

» For count, min, max, sum: keep aggregate values on tuples
found so far in the group.

When combining partial aggregate for count, add up the
aggregates

» For avg, keep sum and count, and divide sum by count at
the end

Database System Concepts - 6t Edition 12.41 ©Silberschatz, Korth and Sudarshan

— - Other Operations : Set Operations

0 Set operations (U, N and —): can either use variant of merge-join
after sorting, or variant of hash-join.

0 E.g., Set operations using hashing:
Partition both relations using the same hash function
Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash
iIndex on r;.

2. Process s; as follows
rus:

1.

Database System Concepts - 6t Edition

Add tuples in s; to the hash index if they are not
already in it.

At end of s; add the tuples in the hash index to the
result.

12.42 ©Silberschatz, Korth and Sudarshan

== Other Operations : Set Operations

0 E.g., Set operations using hashing:
as before partition r and s,
as before, process each partition i as follows

1. build a hash index on r;
2. Process s; as follows
rns:

1. output tuples in s; to the result if they are already
there in the hash index

r—S.

1. for each tuple in s, if it is there in the hash index,
delete it from the index.

2. Atend of s, add remaining tuples in the hash
index to the result.

Database System Concepts - 6t Edition 12.43 ©Silberschatz, Korth and Sudarshan

it Other Operations : Outer Join

0 Outer join can be computed either as

A join followed by addition of null-padded non-participating
tuples.

by modifying the join algorithms.

0 Modifying merge join to compute r x| S
Inr _[X]s, non participating tuples are those in r — Ig(r X s)
Modify merge-join to compute r _X|s:

» During merging, for every tuple t, from r that do not match
any tuple in s, output t. padded with nulls.

Right outer-join and full outer-join can be computed similarly.

Database System Concepts - 6t Edition 12.44 ©Silberschatz, Korth and Sudarshan

Other Operations : Outer Join

0 Modifying hash join to compute r _X| s

If ris probe relation, output non-matching r tuples padded
with nulls

If r is build relation, when probing keep track of which
r tuples matched s tuples. At end of s; output
non-matched r tuples padded with nulls

Database System Concepts - 6t Edition 12.45 ©Silberschatz, Korth and Sudarshan

Evaluation of Expressions

0 So far: we have seen algorithms for individual operations
0 Alternatives for evaluating an entire expression tree

Materialization: generate results of an expression whose
Inputs are relations or are already computed, materialize
(store) it on disk. Repeat.

Pipelining: pass on tuples to parent operations even as an
operation is being executed

0 We study above alternatives in more detalil

Database System Concepts - 6t Edition 12.46 ©Silberschatz, Korth and Sudarshan

-! Materialization

0 Materialized evaluation: evaluate one operation at a time,
starting at the lowest-level. Use intermediate results materialized
Into temporary relations to evaluate next-level operations.

0 E.g.,in figure below, compute and store

Gbuilding:"Watsori'(department)

then compute the store its join with instructor, and finally compute
the projection on name.

name

X

N

o ... instructor
building = “Watson”

department
Database System Concepts - 6t Edition 12.47 ©Silberschatz, Korth and Sudarshan

Materialization (Cont.)

0 Materialized evaluation is always applicable
0 Cost of writing results to disk and reading them back can be
quite high

Our cost formulas for operations ignore cost of writing
results to disk, so

» Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

0 Double buffering: use two output buffers for each operation,
when one is full write it to disk while the other is getting filled

Allows overlap of disk writes with computation and reduces
execution time

Database System Concepts - 6t Edition 12.48 ©Silberschatz, Korth and Sudarshan

Pipelining

Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the next.

E.g., in previous expression tree, don’ t store result of

O building-"Watsor (department)
instead, pass tuples directly to the join.. Similarly, don’ t store
result of join, pass tuples directly to projection.

Much cheaper than materialization: no need to store a temporary
relation to disk.

Pipelining may not always be possible — e.g., sort, hash-join.

For pipelining to be effective, use evaluation algorithms that
generate output tuples even as tuples are received for inputs to the
operation.

Pipelines can be executed in two ways: demand driven and
producer driven

Database System Concepts - 6t Edition 12.49 ©Silberschatz, Korth and Sudarshan

= Pipelining (Cont.)

0 Indemand driven or lazy evaluation

system repeatedly requests next tuple from top level operation

Each operation requests next tuple from children operations as
required, in order to output its next tuple

In between calls, operation has to maintain “state” so it knows what to
return next

0 In producer-driven or eager pipelining

Operators produce tuples eagerly and pass them up to their parents

» Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

» if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

System schedules operations that have space in output buffer and can
process more input tuples

0 Alternative name: pull and push models of pipelining

Database System Concepts - 6t Edition 12.50 ©Silberschatz, Korth and Sudarshan

Pipelining (Cont.)

0 Implementation of demand-driven pipelining

Each operation is implemented as an iterator implementing the
following operations

» open()
E.g. file scan: initialize file scan
» State: pointer to beginning of file
E.g.merge join: sort relations;
» state: pointers to beginning of sorted relations

» next()

E.g. for file scan: Output next tuple, and advance and store
file pointer

E.g. for merge join: continue with merge from earlier state
till
next output tuple is found. Save pointers as iterator state.

» close()

Database System Concepts - 6t Edition 12.51 ©Silberschatz, Korth and Sudarshan

g Evaluation Algorithms for Pipelining

-‘
-)

0 Some algorithms are not able to output results even as they get
Input tuples
E.g. merge join, or hash join
iIntermediate results written to disk and then read back
0 Algorithm variants to generate (at least some) results on the fly, as
Input tuples are read in

E.g. hybrid hash join generates output tuples even as probe relation
tuples in the in-memory partition (partition 0) are read in

Double-pipelined join technique: Hybrid hash join, modified to
buffer partition O tuples of both relations in-memory, reading them as
they become available, and output results of any matches between
partition O tuples

» When a new ry tuple is found, match it with existing s tuples,
output matches, and save itin r,

» Symmetrically for s tuples

Database System Concepts - 6t Edition 12.52 ©Silberschatz, Korth and Sudarshan

End of Evaluation

Database System Concepts - 6t" Edition 12.53 ©Silberschatz, Korth and Sudarshan

	Slide 1: Query Processing
	Slide 2: Basic Steps in Query Processing
	Slide 3: Basic Steps in Query Processing (Cont.)
	Slide 4: Basic Steps in Query Processing : Optimization
	Slide 5: Basic Steps: Optimization (Cont.)
	Slide 6: Measures of Query Cost
	Slide 7: Measures of Query Cost (Cont.)
	Slide 8: Measures of Query Cost (Cont.)
	Slide 9: Selection Operation
	Slide 10: Selections Using Indices
	Slide 11: Selections Using Indices
	Slide 12: Selections Involving Comparisons
	Slide 13: Implementation of Complex Selections
	Slide 14: Algorithms for Complex Selections
	Slide 15: Sorting
	Slide 16: External Sort-Merge (Cont.)
	Slide 17: External Sort-Merge (Cont.)
	Slide 18: Example: External Sorting Using Sort-Merge
	Slide 19: External Merge Sort (Cont.)
	Slide 20: External Merge Sort (Cont.)
	Slide 21: Join Operation
	Slide 22: Nested-Loop Join
	Slide 23: Nested-Loop Join (Cont.)
	Slide 24: Block Nested-Loop Join
	Slide 25: Block Nested-Loop Join (Cont.)
	Slide 26: Indexed Nested-Loop Join
	Slide 27: Example of Nested-Loop Join Costs
	Slide 28: Merge-Join
	Slide 29: Merge-Join (Cont.)
	Slide 30: Hash-Join
	Slide 31: Hash-Join (Cont.)
	Slide 32: Hash-Join (Cont.)
	Slide 33: Hash-Join Algorithm
	Slide 34: Hash-Join algorithm (Cont.)
	Slide 35: Handling of Overflows
	Slide 36: Cost of Hash-Join
	Slide 37: Example of Cost of Hash-Join
	Slide 38: Hybrid Hash–Join
	Slide 39: Complex Joins
	Slide 40: Other Operations
	Slide 41: Other Operations : Aggregation
	Slide 42: Other Operations : Set Operations
	Slide 43: Other Operations : Set Operations
	Slide 44: Other Operations : Outer Join
	Slide 45: Other Operations : Outer Join
	Slide 46: Evaluation of Expressions
	Slide 47: Materialization
	Slide 48: Materialization (Cont.)
	Slide 49: Pipelining
	Slide 50: Pipelining (Cont.)
	Slide 51: Pipelining (Cont.)
	Slide 52: Evaluation Algorithms for Pipelining
	Slide 53

