
©Silberschatz, Korth and Sudarshan12.1Database System Concepts - 6th Edition

Query Processing

Overview

Measures of Query Cost

Selection Operation

Sorting

Join Operation

Other Operations

Evaluation of Expressions

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 6th Edition

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan12.3Database System Concepts - 6th Edition

Basic Steps in Query Processing

(Cont.)

Parsing and translation

translate the query into its internal form. This is then

translated into relational algebra.

Parser checks syntax, verifies relations

Evaluation

The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query.

©Silberschatz, Korth and Sudarshan12.4Database System Concepts - 6th Edition

Basic Steps in Query Processing :

Optimization
A relational algebra expression may have many equivalent

expressions

E.g., salary75000(salary(instructor)) is equivalent to

salary(salary75000(instructor))

Each relational algebra operation can be evaluated using one of

several different algorithms

Correspondingly, a relational-algebra expression can be

evaluated in many ways.

Annotated expression specifying detailed evaluation strategy is

called an evaluation-plan.

E.g., can use an index on salary to find instructors with salary <

75000,

or can perform complete relation scan and discard instructors

with salary  75000

©Silberschatz, Korth and Sudarshan12.5Database System Concepts - 6th Edition

Basic Steps: Optimization (Cont.)

Query Optimization: Amongst all equivalent evaluation plans

choose the one with lowest cost.

Cost is estimated using statistical information from the

database catalog

e.g. number of tuples in each relation, size of tuples, etc.

In this chapter we study

How to measure query costs

Algorithms for evaluating relational algebra operations

How to combine algorithms for individual operations in

order to evaluate a complete expression

In Chapter 14

We study how to optimize queries, that is, how to find an

evaluation plan with lowest estimated cost

©Silberschatz, Korth and Sudarshan12.6Database System Concepts - 6th Edition

Measures of Query Cost

Cost is generally measured as total elapsed time for answering

query

Many factors contribute to time cost

disk accesses, CPU, or even network communication

Typically disk access is the predominant cost, and is also

relatively easy to estimate. Measured by taking into account

Number of seeks * average-seek-cost

Number of blocks read * average-block-read-cost

Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block

– data is read back after being written to ensure that the

write was successful

©Silberschatz, Korth and Sudarshan12.7Database System Concepts - 6th Edition

Measures of Query Cost (Cont.)

For simplicity we just use the number of block transfers from disk

and the number of seeks as the cost measures

tT – time to transfer one block

tS – time for one seek

Cost for b block transfers plus S seeks

b * tT + S * tS

We ignore CPU costs for simplicity

Real systems do take CPU cost into account

We do not include cost to writing output to disk in our cost formulae

©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 6th Edition

Measures of Query Cost (Cont.)

Several algorithms can reduce disk IO by using extra buffer

space

Amount of real memory available to buffer depends on other

concurrent queries and OS processes, known only during

execution

We often use worst case estimates, assuming only the

minimum amount of memory needed for the operation is

available

Required data may be buffer resident already, avoiding disk I/O

But hard to take into account for cost estimation

©Silberschatz, Korth and Sudarshan12.9Database System Concepts - 6th Edition

Selection Operation

File scan

Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

Cost estimate = br block transfers + 1 seek

br denotes number of blocks containing records from relation r

If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek

Linear search can be applied regardless of

 selection condition or

 ordering of records in the file, or

 availability of indices

Note: binary search generally does not make sense since data is not
stored consecutively

except when there is an index available,

and binary search requires more seeks than index search

©Silberschatz, Korth and Sudarshan12.10Database System Concepts - 6th Edition

Selections Using Indices

Index scan – search algorithms that use an index

selection condition must be on search-key of index.

A2 (primary index, equality on key). Retrieve a single record

that satisfies the corresponding equality condition

Cost = (hi + 1) * (tT + tS)

A3 (primary index, equality on nonkey) Retrieve multiple

records.

Records will be on consecutive blocks

Let b = number of blocks containing matching records

Cost = hi * (tT + tS) + tS + tT * b

©Silberschatz, Korth and Sudarshan12.11Database System Concepts - 6th Edition

Selections Using Indices

A4 (secondary index, equality on nonkey).

Retrieve a single record if the search-key is a candidate key

Cost = (hi + 1) * (tT + tS)

Retrieve multiple records if search-key is not a candidate key

each of n matching records may be on a different block

Cost = (hi + n) * (tT + tS)

– Can be very expensive!

©Silberschatz, Korth and Sudarshan12.12Database System Concepts - 6th Edition

Selections Involving Comparisons

Can implement selections of the form AV (r) or A  V(r) by using

a linear file scan,

or by using indices in the following ways:

A5 (primary index, comparison). (Relation is sorted on A)

For A  V(r) use index to find first tuple  v and scan relation
sequentially from there

For AV (r) just scan relation sequentially till first tuple > v; do not
use index

A6 (secondary index, comparison).

For A  V(r) use index to find first index entry  v and scan index
sequentially from there, to find pointers to records.

For AV (r) just scan leaf pages of index finding pointers to
records, till first entry > v

 In either case, retrieve records that are pointed to

– requires an I/O for each record

– Linear file scan may be cheaper

©Silberschatz, Korth and Sudarshan12.13Database System Concepts - 6th Edition

Implementation of Complex Selections

Conjunction: 1 2. . . n(r)

A7 (conjunctive selection using one index).

Select a combination of i and algorithms A1 through A7 that

results in the least cost for i (r).

Test other conditions on tuple after fetching it into memory buffer.

A8 (conjunctive selection using composite index).

Use appropriate composite (multiple-key) index if available.

A9 (conjunctive selection by intersection of identifiers).

Requires indices with record pointers.

Use corresponding index for each condition, and take intersection

of all the obtained sets of record pointers.

Then fetch records from file

If some conditions do not have appropriate indices, apply test in

memory.

©Silberschatz, Korth and Sudarshan12.14Database System Concepts - 6th Edition

Algorithms for Complex Selections

Disjunction:1 2 . . . n (r).

A10 (disjunctive selection by union of identifiers).

Applicable if all conditions have available indices.

Otherwise use linear scan.

Use corresponding index for each condition, and take union

of all the obtained sets of record pointers.

Then fetch records from file

Negation: (r)

Use linear scan on file

If very few records satisfy , and an index is applicable to 

 Find satisfying records using index and fetch from file

©Silberschatz, Korth and Sudarshan12.15Database System Concepts - 6th Edition

Sorting
We may build an index on the relation, and then use the index to

read the relation in sorted order. May lead to one disk block

access for each tuple.

For relations that fit in memory, techniques like quicksort can be

used. For relations that don ’ t fit in memory, external

sort-merge is a good choice.

External Sort-Merge

1. Create sorted runs. Let i be 0 initially.

 Repeatedly do the following till the end of the relation:

 (a) Read M blocks of relation into memory

 (b) Sort the in-memory blocks

 (c) Write sorted data to run Ri; increment i.

Let the final value of i be N

2. Merge the runs (next slide)…..

Let M denote memory size (in pages).

©Silberschatz, Korth and Sudarshan12.16Database System Concepts - 6th Edition

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N <

M.

1. Use N blocks of memory to buffer input runs, and 1 block to

buffer output. Read the first block of each run into its buffer

page

2. repeat

1. Select the first record (in sort order) among all buffer

pages

2. Write the record to the output buffer. If the output buffer

is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

 read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

©Silberschatz, Korth and Sudarshan12.17Database System Concepts - 6th Edition

External Sort-Merge (Cont.)

If N  M, several merge passes are required.

In each pass, contiguous groups of M - 1 runs are merged.

A pass reduces the number of runs by a factor of M -1 and

creates runs longer by the same factor.

E.g. If M=11, and there are 90 runs, one pass reduces

the number of runs to 9, each 10 times the size of the

initial runs

Repeated passes are performed till all runs have been

merged into one.

©Silberschatz, Korth and Sudarshan12.18Database System Concepts - 6th Edition

Example: External Sorting Using Sort-Merge

g

a

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

a 19

b 14

c 33

d 31

e 16

g 24

a 14

d 7

d 21

m 3

p 2

r 16

a 19

d 31

g 24

b 14

c 33

e 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 6th Edition

External Merge Sort (Cont.)

Cost analysis:

1 block per run leads to too many seeks during merge

 Instead use bb buffer blocks per run

➔ read/write bb blocks at a time

 Can merge M/bb–1 runs in one pass

Total number of merge passes required: log M/bb–1(br/M).

Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost

– we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

 Thus total number of block transfers for external sorting:
 br (2 log M/bb–1 (br / M) + 1) 

Seeks: next slide

©Silberschatz, Korth and Sudarshan12.20Database System Concepts - 6th Edition

External Merge Sort (Cont.)

Cost of seeks

During run generation: one seek to read each run and one

seek to write each run

 2 br / M

During the merge phase

 Need 2 br / bb seeks for each merge pass

– except the final one which does not require a write

Total number of seeks:

 2 br / M + br / bb (2 logM/bb–1(br / M) -1)

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 6th Edition

Join Operation

Several different algorithms to implement joins

Nested-loop join

Block nested-loop join

Indexed nested-loop join

Merge-join

Hash-join

Choice based on cost estimate

Examples use the following information

Number of records of student: 5,000 takes: 10,000

Number of blocks of student: 100 takes: 400

©Silberschatz, Korth and Sudarshan12.22Database System Concepts - 6th Edition

Nested-Loop Join

To compute the theta join r  s
for each tuple tr in r do begin

 for each tuple ts in s do begin

 test pair (tr,ts) to see if they satisfy the join condition 

 if they do, add tr • ts to the result.

 end

end

r is called the outer relation and s the inner relation of the join.

Requires no indices and can be used with any kind of join

condition.

Expensive since it examines every pair of tuples in the two

relations.

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 6th Edition

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each

relation, the estimated cost is

 nr  bs + br block transfers, plus

 nr + br seeks

If the smaller relation fits entirely in memory, use that as the inner relation.

 Reduces cost to br + bs block transfers and 2 seeks

Assuming worst case memory availability cost estimate is

with student as outer relation:

 5000  400 + 100 = 2,000,100 block transfers,

 5000 + 100 = 5100 seeks

with takes as the outer relation

 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

If smaller relation (student) fits entirely in memory, the cost estimate will be

500 block transfers.

Block nested-loops algorithm (next slide) is preferable.

©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 6th Edition

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner

relation is paired with every block of outer relation.

 for each block Br of r do begin

 for each block Bs of s do begin

 for each tuple tr in Br do begin

 for each tuple ts in Bs do begin

 Check if (tr,ts) satisfy the join condition

 if they do, add tr
 • ts to the result.

 end

 end

 end

 end

©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 6th Edition

Block Nested-Loop Join (Cont.)

Worst case estimate: br  bs + br block transfers + 2 * br seeks

Each block in the inner relation s is read once for each block
in the outer relation

Best case: br + bs block transfers + 2 seeks.

Improvements to nested loop and block nested loop algorithms:

In block nested-loop, use M — 2 disk blocks as blocking unit
for outer relations, where M = memory size in blocks; use
remaining two blocks to buffer inner relation and output

 Cost = br / (M-2)  bs + br block transfers +
 2 br / (M-2) seeks

If equi-join attribute forms a key or inner relation, stop inner
loop on first match

Scan inner loop forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

Use index on inner relation if available (next slide)

©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 6th Edition

Indexed Nested-Loop Join

Index lookups can replace file scans if

join is an equi-join or natural join and

an index is available on the inner relation’s join attribute

 Can construct an index just to compute a join.

For each tuple tr in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple tr.

Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

Cost of the join: br (tT + tS) + nr  c

Where c is the cost of traversing index and fetching all matching s
tuples for one tuple or r

c can be estimated as cost of a single selection on s using the join
condition.

If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 6th Edition

Example of Nested-Loop Join Costs

Compute student takes, with student as the outer relation.

Let takes have a primary B+-tree index on the attribute ID, which

contains 20 entries in each index node.

Since takes has 10,000 tuples, the height of the tree is 4, and one

more access is needed to find the actual data

student has 5000 tuples

Cost of block nested loops join

400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks

 assuming worst case memory

 may be significantly less with more memory

 Cost of indexed nested loops join

100 + 5000 * 5 = 25,100 block transfers and seeks.

CPU cost likely to be less than that for block nested loops join

©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 6th Edition

Merge-Join

1. Sort both relations on their join attribute (if not already sorted on
the join attributes).

2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge
algorithm.

2. Main difference is handling of duplicate values in join
attribute — every pair with same value on join attribute must
be matched

3. Detailed algorithm in book

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 6th Edition

Merge-Join (Cont.)

Can be used only for equi-joins and natural joins

Each block needs to be read only once (assuming all tuples for any

given value of the join attributes fit in memory

Thus the cost of merge join is:

 br + bs block transfers + br / bb + bs / bb seeks

+ the cost of sorting if relations are unsorted.

hybrid merge-join: If one relation is sorted, and the other has a

secondary B+-tree index on the join attribute

Merge the sorted relation with the leaf entries of the B+-tree .

Sort the result on the addresses of the unsorted relation’s tuples

Scan the unsorted relation in physical address order and merge

with previous result, to replace addresses by the actual tuples

Sequential scan more efficient than random lookup

©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 6th Edition

Hash-Join

Applicable for equi-joins and natural joins.

A hash function h is used to partition tuples of both relations

h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the

common attributes of r and s used in the natural join.

r0, r1, . . ., rn denote partitions of r tuples

Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]).

r0,, r1. . ., rn denotes partitions of s tuples

Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).

Note: In book, ri is denoted as Hri, si is denoted as Hsi and

 n is denoted as nh.

©Silberschatz, Korth and Sudarshan12.31Database System Concepts - 6th Edition

Hash-Join (Cont.)

©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 6th Edition

Hash-Join (Cont.)

r tuples in ri need only to be compared with s tuples in si

Need not be compared with s tuples in any other partition,
since:

an r tuple and an s tuple that satisfy the join condition

will have the same value for the join attributes.

If that value is hashed to some value i, the r tuple has

to be in ri and the s tuple in si.

©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 6th Edition

Hash-Join Algorithm

1. Partition the relation s using hashing function h. When

partitioning a relation, one block of memory is reserved as

the output buffer for each partition.

2. Partition r similarly.

3. For each i:

(a) Load si into memory and build an in-memory hash index

on it using the join attribute. This hash index uses a

different hash function than the earlier one h.

(b) Read the tuples in ri from the disk one by one. For each

tuple tr locate each matching tuple ts in si using the in-

memory hash index. Output the concatenation of their

attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and r is called the probe input.

©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 6th Edition

Hash-Join algorithm (Cont.)

The value n and the hash function h is chosen such that each

si should fit in memory.

Typically n is chosen as bs/M * f where f is a “fudge

factor”, typically around 1.2

The probe relation partitions si need not fit in memory

Recursive partitioning required if number of partitions n is

greater than number of pages M of memory.

instead of partitioning n ways, use M – 1 partitions for s

Further partition the M – 1 partitions using a different hash

function

Use same partitioning method on r

Rarely required: e.g., with block size of 4 KB, recursive

partitioning not needed for relations of < 1GB with memory

size of 2MB, or relations of < 36 GB with memory of 12 MB

©Silberschatz, Korth and Sudarshan12.35Database System Concepts - 6th Edition

Handling of Overflows

Partitioning is said to be skewed if some partitions have significantly

more tuples than some others

Hash-table overflow occurs in partition si if si does not fit in memory.

Reasons could be

Many tuples in s with same value for join attributes

Bad hash function

Overflow resolution can be done in build phase

Partition si is further partitioned using different hash function.

Partition ri must be similarly partitioned.

Overflow avoidance performs partitioning carefully to avoid overflows

during build phase

E.g. partition build relation into many partitions, then combine them

Both approaches fail with large numbers of duplicates

Fallback option: use block nested loops join on overflowed partitions

©Silberschatz, Korth and Sudarshan12.36Database System Concepts - 6th Edition

Cost of Hash-Join

If recursive partitioning is not required: cost of hash join is

 3(br + bs) +4  nh block transfers +

 2(br / bb + bs / bb) seeks

If recursive partitioning required:

number of passes required for partitioning build relation s to

less than M blocks per partition is logM/bb–1(bs/M)

best to choose the smaller relation as the build relation.

Total cost estimate is:

 2(br + bs) logM/bb–1(bs/M) + br + bs block transfers +

 2(br / bb + bs / bb) logM/bb–1(bs/M)  seeks

If the entire build input can be kept in main memory no

partitioning is required

Cost estimate goes down to br + bs.

©Silberschatz, Korth and Sudarshan12.37Database System Concepts - 6th Edition

Example of Cost of Hash-Join

Assume that memory size is 20 blocks

binstructor= 100 and bteaches = 400.

instructor is to be used as build input. Partition it into five

partitions, each of size 20 blocks. This partitioning can be done

in one pass.

Similarly, partition teaches into five partitions,each of size 80.

This is also done in one pass.

Therefore total cost, ignoring cost of writing partially filled

blocks:

3(100 + 400) = 1500 block transfers +

2(100/3 + 400/3) = 336 seeks

instructor teaches

©Silberschatz, Korth and Sudarshan12.38Database System Concepts - 6th Edition

Hybrid Hash–Join

Useful when memory sized are relatively large, and the build
input is bigger than memory.

Main feature of hybrid hash join:

 Keep the first partition of the build relation in memory.

E.g. With memory size of 25 blocks, instructor can be partitioned
into five partitions, each of size 20 blocks.

 Division of memory:

 The first partition occupies 20 blocks of memory

 1 block is used for input, and 1 block each for buffering the other
4 partitions.

teaches is similarly partitioned into five partitions each of size 80

the first is used right away for probing, instead of being written out

Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for
 hybrid hash join, instead of 1500 with plain hash-join.

Hybrid hash-join most useful if M >> sb

©Silberschatz, Korth and Sudarshan12.39Database System Concepts - 6th Edition

Complex Joins

Join with a conjunctive condition:

 r 1  2...   n s

Either use nested loops/block nested loops, or

Compute the result of one of the simpler joins r i s

 final result comprises those tuples in the intermediate result

that satisfy the remaining conditions

 1  . . .  i –1  i +1  . . .  n

Join with a disjunctive condition

 r 1  2 ...  n s

Either use nested loops/block nested loops, or

Compute as the union of the records in individual joins r  i s:

 (r 1 s)  (r 2 s)  . . .  (r n s)

©Silberschatz, Korth and Sudarshan12.40Database System Concepts - 6th Edition

Other Operations

Duplicate elimination can be implemented via hashing or

sorting.

On sorting duplicates will come adjacent to each other, and all

but one set of duplicates can be deleted.

Optimization: duplicates can be deleted during run generation

as well as at intermediate merge steps in external sort-merge.

Hashing is similar – duplicates will come into the same

bucket.

Projection:

perform projection on each tuple

followed by duplicate elimination.

©Silberschatz, Korth and Sudarshan12.41Database System Concepts - 6th Edition

Other Operations : Aggregation

Aggregation can be implemented in a manner similar to duplicate

elimination.

Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be

applied on each group.

Optimization: combine tuples in the same group during run

generation and intermediate merges, by computing partial

aggregate values

For count, min, max, sum: keep aggregate values on tuples

found so far in the group.

– When combining partial aggregate for count, add up the

aggregates

For avg, keep sum and count, and divide sum by count at

the end

©Silberschatz, Korth and Sudarshan12.42Database System Concepts - 6th Edition

Other Operations : Set Operations

Set operations (,  and ⎯): can either use variant of merge-join
after sorting, or variant of hash-join.

E.g., Set operations using hashing:

1. Partition both relations using the same hash function

2. Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash
index on ri.

2. Process si as follows

r  s:

1. Add tuples in si to the hash index if they are not
already in it.

2. At end of si add the tuples in the hash index to the
result.

©Silberschatz, Korth and Sudarshan12.43Database System Concepts - 6th Edition

Other Operations : Set Operations

E.g., Set operations using hashing:

1. as before partition r and s,

2. as before, process each partition i as follows

1. build a hash index on ri

2. Process si as follows

r  s:

1. output tuples in si to the result if they are already

there in the hash index

 r – s:

1. for each tuple in si, if it is there in the hash index,

delete it from the index.

2. At end of si add remaining tuples in the hash

index to the result.

©Silberschatz, Korth and Sudarshan12.44Database System Concepts - 6th Edition

Other Operations : Outer Join

Outer join can be computed either as

A join followed by addition of null-padded non-participating

tuples.

by modifying the join algorithms.

Modifying merge join to compute r s

In r s, non participating tuples are those in r – R(r s)

Modify merge-join to compute r s:

During merging, for every tuple tr from r that do not match

any tuple in s, output tr padded with nulls.

Right outer-join and full outer-join can be computed similarly.

©Silberschatz, Korth and Sudarshan12.45Database System Concepts - 6th Edition

Other Operations : Outer Join

Modifying hash join to compute r s

If r is probe relation, output non-matching r tuples padded

with nulls

If r is build relation, when probing keep track of which

r tuples matched s tuples. At end of si output

non-matched r tuples padded with nulls

©Silberschatz, Korth and Sudarshan12.46Database System Concepts - 6th Edition

Evaluation of Expressions

So far: we have seen algorithms for individual operations

Alternatives for evaluating an entire expression tree

Materialization: generate results of an expression whose

inputs are relations or are already computed, materialize

(store) it on disk. Repeat.

Pipelining: pass on tuples to parent operations even as an

operation is being executed

We study above alternatives in more detail

©Silberschatz, Korth and Sudarshan12.47Database System Concepts - 6th Edition

Materialization

Materialized evaluation: evaluate one operation at a time,

starting at the lowest-level. Use intermediate results materialized

into temporary relations to evaluate next-level operations.

E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute

the projection on name.

)("Watson" departmentbuilding=

©Silberschatz, Korth and Sudarshan12.48Database System Concepts - 6th Edition

Materialization (Cont.)

Materialized evaluation is always applicable

Cost of writing results to disk and reading them back can be

quite high

Our cost formulas for operations ignore cost of writing

results to disk, so

Overall cost = Sum of costs of individual operations +

 cost of writing intermediate results to disk

Double buffering: use two output buffers for each operation,

when one is full write it to disk while the other is getting filled

Allows overlap of disk writes with computation and reduces

execution time

©Silberschatz, Korth and Sudarshan12.49Database System Concepts - 6th Edition

Pipelining

Pipelined evaluation : evaluate several operations
simultaneously, passing the results of one operation on to the next.

E.g., in previous expression tree, don’t store result of

instead, pass tuples directly to the join.. Similarly, don’t store
result of join, pass tuples directly to projection.

Much cheaper than materialization: no need to store a temporary
relation to disk.

Pipelining may not always be possible – e.g., sort, hash-join.

For pipelining to be effective, use evaluation algorithms that
generate output tuples even as tuples are received for inputs to the
operation.

Pipelines can be executed in two ways: demand driven and
producer driven

)("Watson" departmentbuilding=

©Silberschatz, Korth and Sudarshan12.50Database System Concepts - 6th Edition

Pipelining (Cont.)

In demand driven or lazy evaluation

system repeatedly requests next tuple from top level operation

Each operation requests next tuple from children operations as

required, in order to output its next tuple

In between calls, operation has to maintain “state” so it knows what to

return next

In producer-driven or eager pipelining

Operators produce tuples eagerly and pass them up to their parents

 Buffer maintained between operators, child puts tuples in buffer,

parent removes tuples from buffer

 if buffer is full, child waits till there is space in the buffer, and then

generates more tuples

System schedules operations that have space in output buffer and can

process more input tuples

Alternative name: pull and push models of pipelining

©Silberschatz, Korth and Sudarshan12.51Database System Concepts - 6th Edition

Pipelining (Cont.)

Implementation of demand-driven pipelining

Each operation is implemented as an iterator implementing the
following operations

open()

– E.g. file scan: initialize file scan

» state: pointer to beginning of file

– E.g.merge join: sort relations;

» state: pointers to beginning of sorted relations

 next()

– E.g. for file scan: Output next tuple, and advance and store
file pointer

– E.g. for merge join: continue with merge from earlier state
till
next output tuple is found. Save pointers as iterator state.

close()

©Silberschatz, Korth and Sudarshan12.52Database System Concepts - 6th Edition

Evaluation Algorithms for Pipelining

Some algorithms are not able to output results even as they get

input tuples

E.g. merge join, or hash join

intermediate results written to disk and then read back

Algorithm variants to generate (at least some) results on the fly, as

input tuples are read in

E.g. hybrid hash join generates output tuples even as probe relation

tuples in the in-memory partition (partition 0) are read in

Double-pipelined join technique: Hybrid hash join, modified to

buffer partition 0 tuples of both relations in-memory, reading them as

they become available, and output results of any matches between

partition 0 tuples

 When a new r0 tuple is found, match it with existing s0 tuples,

output matches, and save it in r0

 Symmetrically for s0 tuples

©Silberschatz, Korth and Sudarshan12.53Database System Concepts - 6th Edition

End of Evaluation

	Slide 1: Query Processing
	Slide 2: Basic Steps in Query Processing
	Slide 3: Basic Steps in Query Processing (Cont.)
	Slide 4: Basic Steps in Query Processing : Optimization
	Slide 5: Basic Steps: Optimization (Cont.)
	Slide 6: Measures of Query Cost
	Slide 7: Measures of Query Cost (Cont.)
	Slide 8: Measures of Query Cost (Cont.)
	Slide 9: Selection Operation
	Slide 10: Selections Using Indices
	Slide 11: Selections Using Indices
	Slide 12: Selections Involving Comparisons
	Slide 13: Implementation of Complex Selections
	Slide 14: Algorithms for Complex Selections
	Slide 15: Sorting
	Slide 16: External Sort-Merge (Cont.)
	Slide 17: External Sort-Merge (Cont.)
	Slide 18: Example: External Sorting Using Sort-Merge
	Slide 19: External Merge Sort (Cont.)
	Slide 20: External Merge Sort (Cont.)
	Slide 21: Join Operation
	Slide 22: Nested-Loop Join
	Slide 23: Nested-Loop Join (Cont.)
	Slide 24: Block Nested-Loop Join
	Slide 25: Block Nested-Loop Join (Cont.)
	Slide 26: Indexed Nested-Loop Join
	Slide 27: Example of Nested-Loop Join Costs
	Slide 28: Merge-Join
	Slide 29: Merge-Join (Cont.)
	Slide 30: Hash-Join
	Slide 31: Hash-Join (Cont.)
	Slide 32: Hash-Join (Cont.)
	Slide 33: Hash-Join Algorithm
	Slide 34: Hash-Join algorithm (Cont.)
	Slide 35: Handling of Overflows
	Slide 36: Cost of Hash-Join
	Slide 37: Example of Cost of Hash-Join
	Slide 38: Hybrid Hash–Join
	Slide 39: Complex Joins
	Slide 40: Other Operations
	Slide 41: Other Operations : Aggregation
	Slide 42: Other Operations : Set Operations
	Slide 43: Other Operations : Set Operations
	Slide 44: Other Operations : Outer Join
	Slide 45: Other Operations : Outer Join
	Slide 46: Evaluation of Expressions
	Slide 47: Materialization
	Slide 48: Materialization (Cont.)
	Slide 49: Pipelining
	Slide 50: Pipelining (Cont.)
	Slide 51: Pipelining (Cont.)
	Slide 52: Evaluation Algorithms for Pipelining
	Slide 53

