
SQ
L

C
ha

pt
er

 3

65

3.1 SQL
	y SQL stands for Structured Query Language.
	y We use SQL as commercial relational database language.
	y Initially, SQL was known as Structured English QUERY Language(SEQUEL).

It was designed and implemented by IBM Research.
	y SQL is a standard way to add, delete, modify and obtain the data.
	y SQL is a declarative programming language. It means we need to declare

what we want, but we need not focus on how to get data. We do not
specify step by step procedure to obtain data.

Features of SQL languages are:
Embedded SQL:
Embedded SQL is a feature using which a host language can call an SQL
code.

Dynamic SQL:
In dynamic SQL, we perform queries at run time.

Security: SQL provides mechanisms to control user’s access to data objects
such as tables and views.

Transaction management:
A user is allowed to explicitly control how a transaction to be executed
using various commands.

Execution of SQL query:
The DBMS performs a number of steps while executing a query. The
conceptual view of this process is shown below.

SQL3

SQ
L

66

C
ha

pt
er

 3

Fig. 3.1 Execution of SQL Query

	y Terms like table, row and column in SQL are used for the relational model terms
like relation, tuple and attribute, respectively. We can use the corresponding terms
interchangeably.

	y SQL uses certain commands. These SQL commands are mainly:
1)	 DDL:	 Data Definition Language
2)	 DML:	 Data Manipulation Language
3)	 DQL:	 Data Query Language
4)	 DCL:	 Data Control Language

SQ
L

67

C
ha

pt
er

 3

Fig. 3.2 SQL Commands

DDL (Data Definition Language):
	y DDL is used for creating, deleting and modifying tables.
	y Common examples of DDL statements include CREATE, ALTER and DROP.

Example:	 DROP TABLE Employees

DML (Data Manipulation Language):
	y DML is used for inserting, deleting and modifying data in database.

Example:	 INSERT INTO Employees (Fname, Lname) VALUES (‘Shikha’, ‘Sharma’)

DQL (Data Query Language):
	y Data query language performs queries on the data within schema objects.
	y The DQL commands are used to get the relation based on whatever query we pass

to it.
	y To retrieve data from Database, we use SELECT Command.

DCL (Data Control Language):
	y Data Control Language feature is used to control access to data stored in a

database.
	y GRANT and REVOKE are examples of DCL.
	y GRANT: It is used to allow specified users to perform specific tasks.
	y REVOKE: It is used to remove the user accessibility to database objects.

SQ
L

68

C
ha

pt
er

 3

Basic structure of SQL queries:
	y The basic structure of an SQL queries:

SELECT, FROM and WHERE:
	y The SELECT clause projects the output desired attributes. It bears

similarity with the projection operation of relational algebra.
	y The FROM clause bears resemblance with the cartesian product of the

tables involved.
	y The WHERE clause deals with the specification of the condition to be

followed while fetching a record from the resultant of FROM clause.
	� The work which is done by WHERE clause is the same as the work done

by selection operation of the relational algebra.
	y A typical SQL query has the form:

	 SELECT <attributes list>
	 FROM <table list>
	 WHERE <condition>;
	 The query is equivalent to the relational-algebra expression:

n 1 n 1 n 2 n n 2
1 2 1 2 1 2(| A | | A |) | A | | A | | A | | A | 2 2 2 2 2- - - -= + - = + - = -∪ ∩

	� Each Ai is an attribute, and each ri is a relation and c is a condition. The
only difference is the result of a relational algebra expression do not
produce duplicate rows, but the result of the SQL query might produce
more than one copy of some rows.

	y SQL first does the cartesian product of the tables present in the
FROM clause, then it performs a relational-algebra selection using the
condition specified in the WHERE clause and then project the result
onto the attributes of the SELECT clause.

The SELECT clause:
Syntax: SELECT < attribute-list > FROM < table-list>;
Let us realise the above clauses through this query:
“Find the names of all employees in the Employee relation”.

Sol: SELECT Emp-name FROM Employee;
	y This query will result a table that consists of a single attribute with the

Empname as a heading.
	y SQL permits duplicates in the results.
	y Thus, the above query will give each employee name once for every row

in which it appears in the Employee table.
	y There are cases where we want to eliminate duplicates; for that, we use

keyword “distinct” after “select”.

SQ
L

69

C
ha

pt
er

 3

Example: SELECT DISTINCT Emp-name FROM Employee;
	y SELECT clause might also contain arithmetic expressions that involve the operators +, –,

/, and * operating on constants or attributes of tuples.

Example: SELECT Emp-name, Salary * 200 FROM Employee;
This will return a table containing columns Emp-name and Salary with the column Salary is
multiplied by 200.

The WHERE clause:
Let us consider the query on relation Employee:
“Find the names of all employees who works for department CS”.
In SQL: SELECT Emp-name FROM Employee WHERE dept = CS;

The FROM clause:
The FROM clause by itself defines a cartesian product of the tables in the clause.
Let us consider the query in relation to Employee and Department:
“Retrieve the employee id and name of the employees who works for the IT department”.

Table 3.1

In SQL: SELECT Emp_id, Emp_name FROM Employee, Department WHERE
Dept_no = Dept_id and Dept_name = ‘IT’;

	y The above SQL query will give the result as {3, puja}
	 Consider the following table definitions:
	 Shopkeepers (Sid: integer, Shname: string, Rating: integer, Age: integer)

SQ
L

70

C
ha

pt
er

 3

Table 3.2

PRACTICE QUESTIONS

Q1	 Find the names and ages of all Shopkeepers.

Sol:	 SELECT Shname, Age FROM Shopkeepers;

SQ
L

71

C
ha

pt
er

 3

Q2	 Find the names and ages of all Shopkeepers having no duplicate
names and ages.

Sol:	 SELECT DISTINCT Shname, Age from Shopkeepers;
Output:

We will all distinct <Shname, Age> if two or more Shopkeepers have
the same name and age, the answer will contain only one pair.

Q3	 Find all the Shopkeepers with a rating above 5.

Sol:	 SELECT * FROM Shopkeepers WHERE rating > 5;
Output:

SQ
L

72

C
ha

pt
er

 3

Note:

When we want to retrieve all columns, SQL provides a convenient shorthand: SELECT *.
This notation is useful for interactive querying but is poor for queries that are meant to be
reused and maintained.

Note:
Hey Learners!!!
Now, we will discuss DISTINCT keyword.
By default, an SQL query contains duplicates in the result. In order to get the distinct result,
we use DISTINCT Keyword.
We use DISTINCT to eliminate duplicate tuples.

The RENAME operation:
	y SQL provides a mechanism for renaming both relations and attributes.
	y It uses the AS clause.

Example:	 Consider the following given relation Employee and for each employee retrieve
employee’s id, name, salary and the name of his/her immediate supervisor.

Table 3.3

Sol:	� SELECT E. Emp_id AS “Employee_id”, E. sal AS “Salary”, E. Emp_name AS “Employee_
name”, S. Emp_name AS “Supervisor_name” FROM Employee AS E, Employee AS
S WHERE E. Sup_id = S. Emp_id;

SQ
L

73

C
ha

pt
er

 3

Rack Your Brain

Consider the following relation Department and Employee. Compute an SQL query that
lists out employees names and department names.

String operation:
	y Pattern matching is the most frequently used operation on strings that uses operator

named as LIKE.
	y There are two special characters that is used to describe patterns:

	 1)  % (percent): The % character matches any substring.
	 2)  _ (underscore): The underscore (_) character matches any character.
	y ‘A%’ matches any string that starts (begins) with ‘A’.
	y ‘%ai%’ matches any string containing “ai” as a substring. For example, ‘Rain’, ‘Paid’, ‘Sail’ etc.
	y ‘_ _’ matches any string of exactly two characters.
	y ‘_ _ _ %’ matches any string of at least three characters.
	y SQL uses the LIKE comparison operator to express patterns.

Note:
Patterns are case sensitive, i.e. uppercase characters are different than lowercase
characters or vice-versa.

Example:	 Following is the given relation Student.

Table 3.4

SQ
L

74

C
ha

pt
er

 3

Q1	 Retrieve the name of all the students whose name starts with ‘S’.

Sol:	 SELECT Name FROM Student WHERE Name LIKE ‘S%’;

Name

Q2	 Display the name of the students who secure 2 digit rank.

Sol:	 SELECT Name FROM Student WHERE Rank LIKE ‘_ _’;

Name

Q3	 Retrieve name, marks of all the students whose name includes substring ‘ind’.

Sol:	 SELECT Name, Marks FROM Student WHERE Name LIKE ‘%ind%’;
This will result a relation containing attribute (Name, Marks) as:

Note:
	y SQL uses escape character to include the special characters (% and _).
	y When the escape character is used just before a special pattern character, then the

special pattern character will be treated as a normal character.

PRACTICE QUESTIONS

SQ
L

75

C
ha

pt
er

 3

Example:	 SELECT Name FROM Student WHERE Marks LIKE ’90 \ %’;
gives names of the student whose marks is 90%.

Rack Your Brain

Consider the following relation Sailor.

Retrieve the list of ages of the shopkeepers whose name contains ‘A’
at start and end and is made up of three or more characters.
1)	 SELECT Age FROM Sailor WHERE Sname LIKE ‘A _ _%’;
2)	 SELECT Age FROM Sailor WHERE Sname LIKE ‘A_%A’;
3)	 SELECT Age FROM Sailor WHERE Sname LIKE ‘A%’;
4)	 None of these

ORDER BY:
The ORDER BY clause is used to sort/order the result of an SQL query in
ascending (or) descending order.
Syntax:	 SELECT <column_list> FROM <table_list> ORDER BY <column_1>
ASC/DESC, <column_2> ASC/DESC …;

Note:
	y By default, the ORDER BY sorts the result of an SQL query in ascending

order.
	y To specify the sort order, we need to specify explicitly

	 1) DESC for descending order
	 2) ASC for ascending order

SQ
L

76

C
ha

pt
er

 3

Example:	 Consider the following given table R.

Table 3.5

1)	 SELECT A, B, C FROM R ORDER BY A, B, C;
Output:

Table 3.6

Here, by default A, B, C are all in ascending order.

SQ
L

77

C
ha

pt
er

 3

2)	 SELECT A, B, C FROM R ORDER BY A DESC, B, C;
Output:

Table 3.7
Here, A will be ordered in descending order, and by default B, C will be
ordered in ascending order.

3)	 SELECT A, B, C FROM R ORDER BY A DESC, B, C DESC;
Output:

Table 3.8
Here, A will be arranged (sorted) in descending order; by default B will be
sorted in ascending order, and C will be sorted in descending order.

Set operations and Null values:
Set operations:
	y The SQL operations UNION, INTERSECT and EXCEPT operate on relations.
	y Similar to UNION, INTERSECTION and SET DIFFERENCE in relational

algebra, the relations participating in the operations must have the
same set of attributes.

SQ
L

78

C
ha

pt
er

 3

Hey Learners!!!
Do you know about IN, EXISTS, ALL, ANY set operations in SQL?
Let’s discuss these set operations now:
1)	 IN: It checks whether an element is present in a given set or not.
2)	 ALL, ANY: To match or correlate a specified value with the elements of a set associating

these operations with a comparison operator.
3)	 EXISTS: To examine if a set follows an empty condition.

Note:
“EXISTS and IN can be prefixed by NOT.”

Note:
	y By default, the UNION, INTERSECT, and EXCEPT commands remove all the duplicates.
	y If we want to retain all duplicates, we have to write UNION ALL, INTERSECT ALL,

EXCEPT ALL in place of UNION, INTERSECT and EXCEPT respectively.

Example:	 Consider the following relation ENROLL.

Table 3.9

Gulshan

SQ
L

79

C
ha

pt
er

 3

Q1	 Retrieve the list of ids of students who got either grade ‘A’ or grade ‘B’.

Sol:	 SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ UNION SELECT Stud_id FROM
ENROLL WHERE Grade = ‘B’;
Output:	

SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ UNION ALL SELECT Stud_id
FROM ENROLL WHERE Grade = ‘B’;
Output:	

Q2	 Retrieve the list of the ids of students who got both grade ‘A’ and grades ‘B’.

Sol:	 SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ INTERSECT SELECT Stud_id
FROM ENROLL WHERE Grade = ‘B’;
Output:	

PRACTICE QUESTIONS

SQ
L

80

C
ha

pt
er

 3

SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ INTERSECT ALL SELECT Stud_
id FROM ENROLL WHERE Grade = ‘B’;
Output:	

Q3	 Retrieve the list of studs Id’s who got grade ‘A’ but not grade ‘B’.

Sol:	 SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ EXCEPT SELECT Stud_id FROM
ENROLL WHERE Grade = ‘B’;
Output:	

SELECT Stud_id FROM ENROLL WHERE Grade = ‘A’ EXCEPT ALL SELECT Stud_id
FROM ENROLL WHERE Grade = ‘B’;
Output:	

Previous Years’ Question

SELECT Operation in SQL is equivalent to
1)	� The selection operation in relational algebra.
2)	� The selection operation in relational algebra, except that SELECT

in SQL retains duplicates.
3)	 The projection operation in relational algebra.
4)	� The projection operation in relational algebra, except that SELECT

in SQL retains duplicates.
Sol: Option 4)� (GATE-2021 Set-1)

SQ
L

81

C
ha

pt
er

 3

Arithmetic operators:
	y SQL allows the use of arithmetic operators (+,-,*, /) in queries on

attributes having numeric domains.

Example:	 Consider the relation schema Employee (Eid, Fname, Sex, Salary).
Increase the salary of the employee by 10 percent and display the salary
and employee’s first name.

Sol:	 In SQL: SELECT Fname, Salary * 1.1 FROM Employee;

Concatenate operator:
	y We use || (concatenate operator) to append two strings.

	 Example: SELECT Fname || Lname as “FULL-NAME” FROM Employee;
	y This will result in a relation having the attribute FULL-NAME, which
contains the concatenation of Fname and Lname (i.e. first name and
last name).

Between operator:
	y It is a comparison operator on the Numeric domain.
	y Syntax: SELECT column_name(s) FROM Table-Name WHERE column-

name BETWEEN value-1 AND value-2;

Example: List all staff whose payscale is between 50,000 and 70,000.
Relation Schema: Staff (Sid, Sname, Sex, Payscale)

Sol: SELECT * FROM Staff WHERE Payscale BETWEEN 50000 AND 70000;
	y It is also a comparison operator on text and dates.

Example: 	SELECT * FROM Staff WHERE Hire-date BETWEEN ‘01-JAN-2010’
AND ’31-DEC-2010’;

NULL values:
	y In SQL, NULL value is used to indicate that the information about the

value of an attribute is absent.
	y The special keyword NULL is used in a predicate to check for null values.
	y The output of an arithmetic expression that involves +,-,* or / is NULL if

any of the input is NULL.
	y The result is considered to be UNKNOWN (i.e. it may be true or false) if

a comparison operation implies NULL.

SQ
L

82

C
ha

pt
er

 3

Example:	 (1 < NULL) = UNKNOWN.
	y As WHERE clause condition can involve Boolean operations (AND, OR

and NOT) on the results of comparisons. Therefore, we can extend the
definition of boolean operations to deal with the UNKNOWN value.

	 1)	 AND:

Table 3.10
	 2)	 OR:

Table 3.11

SQ
L

83

C
ha

pt
er

 3

2)	 NOT:	 The result of NOT UNKNOWN is UNKONWN.
NOT (TRUE) = FALSE
NOT (FALSE) = TRUE
NOT (UNKONWN) = UNKNOWN

Note:
In SQL, there are operators that can check whether the value of an attribute
is NULL or not.
The IS or IS NOT clause is used to analyse if a given value is NULL or NOT.
Reason: Each NULL value is treated distinctly in SQL terminology. So, using
= or <> is not at all appropriate.

Example: Consider the following relation R(A, B)

Table 3.12

What is the output produced by the following query?
Example:	 SELECT A FROM R WHERE B is NULL;
Sol:		 Output:

Table 3.13

Example: SELECT A FROM R WHERE B IS NOT NULL;
Sol:		 Output:

Table 3.14

SQ
L

84

C
ha

pt
er

 3

Example:	 SELECT B FROM R;
Sol:		 Output:

Table 3.15

Example:	 SELECT DISTINCT B FROM R;
Sol:		 Output:

Table 3.16

Example: Consider the following relation Employee (Eid, Fname, Ssn, Sex,
Super-Ssn)

Table 3.17

SQ
L

85

C
ha

pt
er

 3

Example: write a SQL query that lists the names of all employees who is
not having supervisors.
Sol: SELECT Fname FROM Employee WHERE Super-Ssn IS NULL;
Output:

Table 3.18

Aggregate functions:

Definition

“Aggregate functions take a collection (a set of multiset) of values as
input and return a single value.”

	y SQL offers 5 built-in aggregate functions:
	 1)	 Average: AVG	 2)	 Minimum: MIN
	 3)	 Maximum: MAX	 4)	 Total: SUM
	 5)	 Count: COUNT

Example: Given Relation: Shopkeepers (sid, sname, rating, age)

Table 3.19

1)	 Find the average age of Shopkeepers with a rating of 9.

Sol: �SELECT AVG (age) Shopkeepers WHERE rating = 9;
Output: 17
2)	 List the name and age of the shopkeepers who are the older ones.
Sol: SELECT sname, MAX(age) FROM Shopkeepers; // Illegal query in SQL.

SQ
L

86

C
ha

pt
er

 3

Note:
	y In the SELECT clause, if an aggregate operation is used, then we must

use aggregate operations only unless GROUP BY is present in that query.
	y Thus, we cannot use MAX(age) as well as sname in the SELECT clause.
	y We can use the Nested query to compute the desired answer to this

question.

Nested query:
SELECT sname, age FROM Shopkeepers WHERE age = (SELECT MAX (age)
from Shopkeepers);
	y We will discuss later how the nested query works.

3)	 Count the number of Shopkeepers.
Sol: SELECT COUNT (*) FROM Shopkeepers;
⇒	 COUNT (*) will consider all columns and count the number of rows.
⇒	 It includes duplicates, i.e. it will not give distinct rows.
⇒	 Output = 4

4)	 Find the sum of rating of Shopkeepers.
Sol: SELECT SUM (rating) FROM Shopkeepers;
⇒	 The above query returns a single value which is the sum of all values in
attribute rating.
⇒	 Output = 36

5) Find the minimum age of Shopkeepers.
Sol: SELECT MIN (age) FROM Shopkeepers;
⇒	 The above query returns a single value which is the minimum age from
relation Shopkeepers.
⇒	 Output = 12.

6) Find the maximum age of Shopkeepers.
Sol: SELECT MAX (age) FROM Shopkeepers;
⇒	 The above query returns a single value which is maximum age from
relation Shopkeepers.
⇒	 Output = 22.

Dealing with NULL values in aggregate functions:
	y All aggregate functions except COUNT (*) ignore NULL values in their

input collections.
	y The count of an empty collection is zero(0).
	y All other aggregate functions give NULL value when it is applied to a set

which is empty.

SQ
L

87

C
ha

pt
er

 3

Example:	 Consider a relation R(A, B):

Table 3.20

1)	 COUNT (*) = 4
2)	 COUNT (A) = 3
3)	 COUNT (B) = 2
4)	 SUM (A) = 6
5)	 SUM (B) = 8
6)	 MAX (A) = 3

7)	 MAX (B) = 6
8)	 MIN (A) = 1
9)	 MIN (B) = 2
10)	 AVG (A) = 2
11)	 AVG (B) = 4

Nested queries in SQL:

Definition:

“A nested query is a query that has another query embedded in it; the
embedded query is called subquery.”

	y Mostly, a subquery presents within the WHERE clause of a query.

IN operators:
	y The IN operator in SQL is used to check whether a value is in a given

set of elements.

Note:
NOT IN is an operator is used to test whether a value is absent in given set
of elements.

EXISTS/NOT EXISTS:
	y EXISTS used with a subquery.
	y It is said to be met when the subquery return at least 1 row.
	y NOT EXISTS can be used to test which rows do not exist in a subquery.

ANY/SOME, ALL:
	y These operators are used in the Nested subquery to compare sets.
	y These operators are combined with (>, <, > =, < =, <>, =)

SQ
L

88

C
ha

pt
er

 3

	y “ANY returns true when any of the subquery values meet the condition.”
	y “ALL returns true when all of the subquery values meet the condition.”

Q1	 Following relations are given below:
	 Shopkeepers (shid, shname, shrating, shage)
	 Sales (shid, Iid, Day)
	 Items (Iid, Iname, Iprice);

Sol:	

Table 3.21

Table 3.22

SQ
L

89

C
ha

pt
er

 3

Table 3.23

Example: Write a SQL query that will find the name of shopkeepers who
have sold item 101.
Sol: SELECT sname FROM Shopkeepers WHERE sid IN (SELECT sid FROM
sales WHERE bid = 101);
⇒	 The nested subquery first gives the set of Shids for shopkeepers who
have sold item 101 (the set contains 1, 4 and 6 as Shid), and then the outer
(toplevel) query retrieves the names of shopkeepers whose Shid is in this set.
⇒	 Output {Rupa, Rani, Sonu}

Example: Write an SQL query to find the names of shopkeepers who have
sold item worth 20K.
Sol: SELECT Shname FROM Shopkeepers WHERE Shid IN (SELECT Shid
FROM Sales WHERE Iid IN (SELECT Iid FROM Items WHERE Iprice = ‘20K’));
⇒	 The inner subquery finds the set of Iids of items having a price of 20K,
which is 102 and 104.
⇒	 The one level above subquery finds the set of Shids of shopkeeper’s
who have sold one of these items. The set contains 1, 2 and 3 as Shid.
⇒	 Lastly, the outer top-level query gives the shopkeepers name whose
shid is present in this set of shids.
⇒	 Output {Rupa, Puja, Sonu}
Example: Write an SQL query to find the shopkeepers name who have not
sold an item worth 20K.
Sol: SELECT Shname FROM Shopkeepers WHERE Shid NOT IN (SELECT Shid
FROM Sales WHERE Iid IN (SELECT Iid FROM Items WHERE Iprice = ‘20K’));
⇒	 �The inner subquery finds the set of Iids having a price of 20K, which is

102 and 104.
⇒	 �The one level above subquery finds the set of Shid who have sold either

of these items. The set contains Shid as {1, 2, 3}.
⇒	� Finally, the top-level query will give the name of shopkeepers whose

Shid is not present in this Set {1, 2, 3}.
⇒	� Output {Rani, Mahima, Sonu}

SQ
L

90

C
ha

pt
er

 3

Correlated nested queries:

Definition:

“Whenever a condition in the WHERE clause of a nested query
references some attributes of a relation declared in the outer query,
the two queries are said to be correlated.”

Example: Write a query to find the names of shopkeepers who have sold
item number 101.
Sol: SELECT S. Shname FROM Shopkeepers S WHERE EXISTS (SELECT *
FROM Sales R WHERE R.Iid = 101 AND R.Shid = S.Shid);
⇒	� Here, for each shopkeepers in row S, we test whether the set of Sales

rows R such that R.Iid = 101 AND S.Shid = R.Shid is nonempty.
⇒	� If this is so, shopkeeper S has sold item 101, and we retrieve the name

of shopkeepers.
⇒	 Output {Rupa, Rani, Sonu}
⇒	� It clearly depicts the correlation(dependency) between inner and outer

query.

Example: Write an SQL query to find shopkeepers whose rating is better
than some shopkeepers whose name is Sonu.
Sol: SELECT S1.Shid FROM Shopkeepers S1 WHERE S1.Shrating > ANY
(SELECT S2.Shrating FROM Shopkeepers S2 WHERE S2.Shname = ‘Sonu’);
⇒	 The above query will give shid’s of shopkeepers whose rating is better
than rating 7 or 9.
⇒	 Output of the above query gives Shids 2, 3, 4, and 5.

Note:

	y The above query is a correlated subquery because for every shopkeeper
in the outer query, we need to run an inner query.

Note:

ANY is similar to SOME keyword in SQL.
Suppose if there are no shopkeepers named Sonu in the above query,
then S1.rating > ANY... will return false, and therefore, the query will return
an empty set as an answer.
It means the inner subquery must return at least one row to make the
comparison true in the case of ANY.

SQ
L

91

C
ha

pt
er

 3

Example: Write an SQL query to find shopkeepers whose rating is better than every
shopkeeper named Sonu.

Sol: SELECT S1.Shid FROM Shopkeepers S1 WHERE S1.Shrating > ALL (SELECT S2. Shrating
FROM Shopkeepers S2 WHERE S2. Shname = ‘Sonu’);
⇒	 The above query will give Shid of shopkeepers whose rating is better than rating 7 and 9.
⇒	 Output of the above query gives Shid 5.

Note:
	y If there are no shopkeepers named

sonu, then the comparison S1.Shrating
> ALL … is going to be true. In this case,
the above query will return the names
of all shopkeepers.

Q1	 Scan the below relational schema:
�Staff (Firstname, Lastname, Sex, Salary, Bno)
Branch (Bname, Bnumber)
Branch_locations (Bnumber, Blocation)

Sol:	

Table 3.24

Grey Matter Alert!

IN is equivalent to = ANY, and NOT IN is
equivalent to <> ALL.

SQ
L

92

C
ha

pt
er

 3

  
Table 3.25

Bname Bnumber

Table 3.26

Example: Write an SQL query to retrieve the First name of staff who works
for branches 1, and 4.

Sol: SELECT Fnames FROM Employee WHERE Dno IN (1, 4);

Example: Write an SQL query to find the First name and Last name of the
staff who works for the branch located in ‘Bangalore’.

Sol: SELECT Firstname, Lastname FROM Staff WHERE Bno IN (SELECT
Bnumber FROM Branch_locations WHERE Blocation = ‘Bangalore’);

Example: Write an SQL query to find out the First names of all the staff
where salary is greater than the salary of all staff in branch number 5.

Sol: SELECT Firstname FROM Staff WHERE Salary > ALL (SELECT Salary
FROM Staff WHERE Bno = 5);
⇒	 Output of this query gives First names = {Mahima, Rahul}

SQ
L

93

C
ha

pt
er

 3

Previous Years’ Question

Consider the following relation:
Cinema (theatre, address, capacity)
Which of the following options will be needed at the end of the SQL
query?
SELECT P1.address FROM Cinema P1
Such that it always finds the addresses of theatres with maximum
capacity.
1)	� WHERE P1.capacity > = ALL (Select P2 × capacity from Cinema P2)
2)	� WHERE P1.capacity > = ANY (Select P2 × capacity from Cinema P2)
3)	� WHERE P1.capacity > ALL (Select max (P2 × capacity) from Cinema

P2)
4)	� WHRE P1.capacity > ANY (Select max (P2 × capacity) from Cinema P2)
Sol: Option 1)� (GATE-2015 Set-3)

The GROUP BY and HAVING Clauses
Group by:
	y GROUP BY clause tells that a SQL SELECT statement can partition result

rows into groups depending on their values in one or several columns.
	y It is mandatory for all the attributes that are used along with the GROUP

BY clause to appear in the SELECT clause.
	y If an attribute is not present in the GROUP BY clause, then it must

appear only inside the aggregate function in the SELECT clause.

Note:
	y GROUP BY clause is often used with COUNT, MIN, MAX, SUM (i.e. with

aggregate function)
	y If the grouping column contains NULL values, then all NULL values are

grouped together.

Having clause:
	y SQL provides a HAVING clause, which is often used in conjunction with
a GROUP BY clause, to return only those group of tuples which satisfies
the provided condition.

Example:	 Consider the following relation schema:
Employee (Eid, Ename, Sex, Salary, Dno)

SQ
L

94

C
ha

pt
er

 3

The relation given is used to store information about the employees of a
company, where Eid is the key and Dno indicates the department to which
the employee is assigned.

Table 3.27

Q1	 Write a SQL query to find the average salary of staff in each branch.

Sol:	 SELECT Dno, AVG(Salary) as Avg-Salary FROM Employee GROUP BY Dno;

Q2	 What will be the output of the query ‘To find the average salary in each
branch’.

Sol:	 Output:	

SQ
L

95

C
ha

pt
er

 3

Q3	 Write a SQL query to list the branch numbers with an average salary greater
than 20,000.

Sol:	 SELECT Dno FROM Employee GROUP BY Dno HAVING AVG(Salary) > 17,000;
⇒	� This query results Dno = {1, 2} because department numbers 1 and 2 have an

average salary greater than 17,000.

Q4	 Consider the following relations:

The SQL query is given below
SELECT E. Emp_name, SUM(P.rating) FROM Employee E, Performance P
WHERE E. Emp_id = P. Emp_id GROUP BY E. Emp_name;
The number of tuples returned by the SQL query is ______

Sol:	 GROUP BY E. Emp_name means all employee names that are same should be
kept in one row. Here, there are 3 employee names, and all are distinct. So, no
need to execute the query, and we can tell the number of tuples returned = 3.

OR
Step 1:	 Perform cross product between Employee E and performance P, we
will get 15 rows-relation.
Step 2:	 Execute WHERE clause; WHERE E. Emp_id = P. Emp_id
Delete rows which does not satisfy WHERE condition.
Step 3:	 Execute GROUP BY clause: GROUP BY E. Emp_name and then SELECT
clause.
Output:

SQ
L

96

C
ha

pt
er

 3

Rack Your Brain

Consider the relation student with Roll no. as the key

The following SQL query is successfully executed on the relation
student.
SELECT avg(Marks) FROM student;
The output of the above query is:
1)	 93				 2) 93.5
3)	 94				 4) NULL

Having and Where clause:

Note:
Generally, HAVING is used in conjunction with GROUP BY, but it is not
mandatory.

SQ
L

97

C
ha

pt
er

 3

Example:	 SELECT Eid, Ename FROM Employee HAVING salary > 20,000;

Note:
If HAVING clause is used without GROUP BY, then it will work the same as the WHERE clause,
i.e. we can write the same above query as:
SELECT Sid, Sname FROM staff WHERE salary > 20000;

Q5	 Consider the following relations:

Output the result of the SQL query specified below:
SELECT S. Shrating, MIN(S. Shage) AS Minage FROM Shopkeepers S WHERE S.
Shage > = 23 GROUP BY S. Shrating HAVING COUNT (*) >1;

Sol:	 The above query will result in a relation containing two attributed rating and
minage.
Step 1: Condition in WHERE clause is given as S.Shage > = 23.
It will eliminate all the rows from the Shopkeeper relation which does not satisfy
the given condition.

SQ
L

98

C
ha

pt
er

 3

(Eliminate all other attributes Shid and Shname as they are not required.)
Step 2:	 Now, we will apply the GROUP BY clause and sort the table by grouping
the attribute rating.

Step 3: Finally, we will apply the HAVING clause condition, i.e. COUNT(*)>1.
The groups having rating 5,7 and 10 will be eliminated.
Final answer:

(As query will result a relation with two attributes rating and minage). Minage will
contain 23 corresponding to rating 9 as it is the minimum value among 23 and
28.

SQ
L

99

C
ha

pt
er

 3

Note:
Conditions specified in the WHERE clause are applied before forming the
groups and Conditions specified in the HAVING clause are applied only
after forming the groups

Order of keywords in SQL:
When we write a SQL query, then the order of keywords that we follow is
as follows:
1)	 SELECT
2)	 FROM
3)	 WHERE
4)	 GROUP BY
5)	 HAVING
6)	 ORDER BY

Order of execution in SQL:
1)	 FROM
2)	 WHERE
3)	 GROUP BY
4)	 HAVING
5)	 SELECT
6)	 ORDER BY

The WITH clause:

Definition:

“Using SQL WITH clause, we can give a sub-query block a name
(a process also called sub-query refactoring), and later it can be
referenced in several places within the main SQL query.”

	y We can define a temporary view using the WITH clause.
	y It is basically a drop-in replacement to the normal sub-query.
	y It’s not easy to read a query if a nested subquery is used to write it.
	y We can write any query using WITH clause in such a way that its logic

becomes clearer.
	y Also, it allows us to use view definition in multiple places within a query

Example:	 Consider the relational schemas specified below:
Account (account_number, branch_name, balance)

SQ
L

100

C
ha

pt
er

 3

Table 3.28

The number of tuples returned by the following SQL query is ______
WITH branch_total (branch_name, value) As

SELECT branch_name, SUM (balance)
FROM account
GROUP BY branch_name

WITH branch_total_avg (value) As
SELECT AVG (value)
FROM branch-total;

SELECT branch_name FROM branch_total, branch_total_avg WHERE
branch_total.value ≥ branch_total_avg.value;

Sol: The first query will return:

Table 3.29

Second query will return: branch_total_avg as average of (35,000, 25,000,
30,000) = 30,000.

SQ
L

101

C
ha

pt
er

 3

Now, the last query will give the name of the branch where branch-total,
value ≥ 30,000

Thus, 1 tuple will be returned.

Joins in SQL:
	y To integrate the record sets of two or more relations based on the equality

of the common attributes shared by them, the join operation is used.
	y Different types of join between relations.

1)	 NATURAL JOIN
2)	 INNER JOIN
3)	 LEFT OUTER JOIN
4)	 RIGHT OUTER JOIN
5)	 FULL OUTER JOIN

Consider the following relations R and S:

Table 3.30

SQ
L

102

C
ha

pt
er

 3

1)	 Natural join:
	y When we apply natural join on two relations R and S, no need to

specify any join condition explicitly.
	y Each such pair of common attributes is included only once in the

resulting relation.
Example: SELECT * FROM (R NATURAL JOIN S);

	y It will directly join R and S based on attribute A.
	y This is the same as query:
SELECT * FROM R NATURAL JOIN S ON R.A = S.A;

2)	 Inner join:
	y The default type of join in a joined relation.
	y Two or more relations are joined based on some join condition on

attributes of two relations.

Example: SELECT * FROM R INNER JOIN S ON R.A = S.A;

Table 3.31

Consider the relations R and S

Table 3.32

SQ
L

103

C
ha

pt
er

 3

1)	 SELECT * FROM R INNER JOIN S ON R.A = S.C;
Sol: It will give output:

Table 3.33

	y INNER JOIN can be represented diagrammatically as:

Fig. 3.3

Note:
INNER is a optional keyword. INNER JOIN is same as JOIN.

3)	 left outer join:
	y Along with the condition satisfying tuples, all the condition failing

records of the left-hand side relation must show up in the resultant
relation.

	y If the tuple from left-hand side relation that do not match any tuple
in right-hand side relation, then NULL values need to be added for
the columns of the right relation.

Example: SELECT * FROM R LEFT OUTER JOIN S ON R.A = S.C;
Output:	

SQ
L

104

C
ha

pt
er

 3

Table 3.34

Fig. 3.4

4)	 Right outer join:
	y Every tuple in the right relation must appear in the result.
	y If the tuples from the right hand side relation that do not match

any tuple in the left-hand side relation, then it is padded with NULL
values for the attribute of the right relation.

Example: SELECT * FROM R RIGHT OUTER JOIN S ON R.A = S. C;
Output:

  
			 Table 3.35				   Fig. 3.5

SQ
L

105

C
ha

pt
er

 3

5)	 Full outer join:
	y Full outer join includes results of both left and right outer join

combined.
	y The rows of the left and right-hand side relation that fails to satisfy the
JOIN condition are included in the resultant set with NULL values in the
right and left-hand relation attributes respectively.

Example: SELECT * FROM R FULL OUTER JOIN S ON R.A = S.C;

Fig. 3.6

Output:	

Table 3.36

SQ
L

106

C
ha

pt
er

 3

Q6	 Consider the following given relations.

Consider the SQL query specified below:
SELECT * FROM Restaurant R LEFT OUTER JOIN Food_item F ON R.
Rest_id= F. Rest_id;
What will be the number of tuples returned by the given query?

Sol:	 The above SQL query returns 8 tuples.
The resultant relation is

SQ
L

107

C
ha

pt
er

 3

Views in SQL:

Definition:

“known as Virtual Tables in SQL. A view in SQL is a single table that is
derived from the other tables; Here, these other tables can be base
tables or previously defined views.”

	y A view can be defined using the create view command.
	y We need to declare a view name along with the query that computes view.
	y Create view command is defined as:

CREATE VIEW V AS <query expression> where <query expression>.

Example: Consider the following relation schemas:
Staff(Firstname, Lastname, Sex, Salary,Ssn)
Works_for(Cno,Essn, Hours)
Company(Cname, Cnumber,Clocation,)
CREATE VIEW WORKS_FOR1 AS
SELECT Firstname, Lastname, Cname, Hours FROM Staff, Company,
Works_for WHERE Cno
= Cnumber AND Ssn = Essn;

	y Here, WORKS_FOR1 will take attribute names from given relations (Staff,
Works_for, Company) as we have not specified any new attribute names
for it.

We can also explicitly specify the name of attributes of a view.
Schema definition in SQL:
	y CREATE TABLE command is used to define a relation.

Syntax: CREATE TABLE <table name> (<column 1> datatype (width), <column 2>
datatype (width) ……, <integrity-constraint1>, ……, …… <integrity-constraintk>);
	y We have numerous datatypes in SQL

1)	 Numeric:	 Number, Float, int, Real, Decimal
2)	 Character:	 Char, Varchar2, Nchar, Long, Nvarchar2
3)	 Date:	 Date, Time, Interval
4)	 Boolean:	 Boolean

	y Constraints in SQL:
Sometimes while creating an SQL relation (table), we need to specify
some constraints on attributes.
These constraints are

SQ
L

108

C
ha

pt
er

 3

1)	 NOT NULL	 2)	 UNIQUE
3)	 PRIMARY KEY	 4)	 FOREIGN KEY
5)	 CHECK	 6)	 DEFAULT

Example: A SQL query having constraints where the requirement is as
follows: For a relation department: dept_id should be a primary key, dept_
name should be unique, and there should be an attribute location with
no constraints. Create a table (relation) department specifying the above
requirements.

Sol:	 Create table Department (dept_id NUMBER PRIMARY KEY, dept_name
VARCHAR2(30), location VARCHAR2(50), UNIQUE (dept_name));

Note:
Constraints in SQL can be defined at two levels.
1)	 Column level		 2) Table level

Constraints
1)	 NOT NULL: NOT NULL is a constraint

that is used when an attribute value is
not allowed to be NULL.

2)	 UNIQUE: UNIQUE constraint is used
when two rows in any relation should
not be same.

	 Syntax: UNIQUE (Aj1, Aj2, …, Ajm)
3)	 PRIMAR KEY: PRIMAR KEY (Aj1, Aj2, …,

Ajm) specification says that attributes Aj1, Aj2, …, Ajm form the primary
key for the relation. The primary key attributes have to be UNIQUE and
not NULL.

	 There will be only one primary key for one table.
4)	 FOREIGN KEY: FOREIGN KEY is used to show the referential integrity. By

default, the primary key attribute of a referenced table is referred by a
foreign key of another table.

5)	 CHECK (P): The CHECK clause specifies a condition C that needs to be
satisfied by every tuple in the relation.

	 Whenever a tuple is inserted or modified, the check clause checks the
specified condition on them.

6)	 DEFAULT: DEFAULT constraint is used to set a default value for a column.

Grey Matter Alert!

It is always better to mention a
primary key for any relation, but it is
not mandatory.

SQ
L

109

C
ha

pt
er

 3

Examples:
1)	 CREATE TABLE Customer (Customer-name char (20), Customer_street

char (30), Customer_city char (30), PRIMARY KEY (Customer-name));
2)	 CREATE TABLE Account (account_number char (10), branch_name char

(15), balance integer, PRIMARY KEY (account_number), CHECK (balance
> = 0));

INSERT, DELETE and UPDATE Statements in SQL:
These three commands are used to modify the database in SQL.

INSERT Command:
	y We use the INSERT command to insert(add) a new tuple to a relation.
	y We need to mention the name of the relation as well as the list of

attribute-values for the tuple.
	y All the attributes should be used with the INSERT command in the

same linear manner as in CREATE TABLE command.

Syntax: INSERT INTO <table name> VALUES (attr_value1, attr_value2, …);
Let us create a table Staff, and then we will insert values in it.
CREATE TABLE Employee
(Fname	 Varchar (15)	 NOT NULL,
	 Lname	 Varchar (15)	 NOT NULL,
	 Ssn	 Char (9)	 NOT NULL,
	 Bdate	 Date,
	 Sex	 Char,
	 Salary	 Decimal (10, 2),
	 Super_Ssn	 Char (9),
	 Dno	 int	 NOT NULL,
PRIMARY KEY (Ssn), FOREIGN KEY (Super_Ssn) REFERENCES Staff (Ssn),
FOREIGN KEY (Dno) REFERENCES Department ((Dnumber));
INSERT INTO Staff VALUES (‘Rohan’, ‘Sahni’, ‘653298653’, ‘1996-10-10’, ‘M’,
37000, ‘532467821’, 4);

Note:
	y User can also specify explicit attribute names that correspond to the

values given in the INSERT command.

Example:	 Suppose, we want to insert a tuple in a relation
Staff(Firstname,Lastname,Deptno, Ssn).
Then, we have to write:
INSERT INTO Staff(Firstname,Lastname,Deptno,Ssn)

SQ
L

110

C
ha

pt
er

 3

VALUES (‘Rohan’, ‘Sahni’, 4, ‘653298653’);
DELETE Command:
	y It removes tuple from a relation.
	y At once, Rows are deleted from only one table.

Note:
0,1, or more than 1 row can be deleted by a single DELETE command
depending on the number of rows selected by the condition specified in
the WHERE clause.
Syntax:	 DELETE FROM <table name> WHERE <condition>
Example:	 DELETE FROM employee WHERE Lname = ‘Sahni’
DELETE FROM employee WHERE Dno = 5
DELETE FROM employee // Deletes all rows from Employee table

UPDATE Command:
	y To modify values of attributes of one or more selected tuples, we use

UPDATE Command
	y In UPDATE Command, a WHERE clause is used, which selects all those

tuples we need to modify.
	y A SET clause is used in the UPDATE command to mention the attributes
to be modified with their new values.

Syntax: UPDATE <table name> SET <column name> = <value expression>{,
<column name> = <value expression>} [WHERE <selection condition>];

Example:	 Let us want to modify the location of Unacademy’s project
number 20 to ‘Chandigarh’ as well as controlling department number to
‘25’ in a relation UnacademyProject.
UnacademyProject-schema (Pname, Pnumber, Plocation, Dnum);
SQL Query: UPDATE Project SET Plocation = ‘Mumbai’, Dnum = 5 WHERE
Pnumber = 20;

Schema change statements in SQL:
	y There are some commands in SQL that are used to alter a schema.

DROP Command:
	y The DROP TABLE command is used to removes a relation from SQL

database.
	y In other words, The DROP TABLE command deletes all information

regarding the relation, which we are considering to drop from the
database.

Syntax:	 DROP TABLE <table name>;

SQ
L

111

C
ha

pt
er

 3

Note:
Difference between command DROP TABLE r and DELETE FROM r:
	y DROP TABLE r deletes not only all tuples of relation r, but also the

schema for r.
	y Once r is dropped, we need to recreate the table using CREATE TABLE

Command to insert new rows.
	y DELETE FROM r, retains relation r but deletes all tuple in r.

ALTER Command:
	y ALTER TABLE command is used for adding attributes to an existing

relation.
	y Syntax: ALTER TABLE <table name> ADD <column name> <column type>
	y We can drop attributes from a relation by the command

	 ALTER TABLE <table name> DROP <column name>

Rack Your Brain

Which of the following is a data manipulation command?
1)	 SELECT			 2) GRANT
3)	 DROP			 4) INSERT

3.2 RELATIONAL ALGEBRA
Introduction:
	y Relational algebra is a procedural query language.
	y In a procedural language, the user provides a specific procedure to

execute the operations on the database to get the desired output.
	y Relational algebra employs a set of operations that inputs one or two

tables and produces a resultant output relation based on some pre-
defined clauses.

	y Select, project, union, set difference, cartesian product, and rename
are the basic operations that summarises relational algebra.

	y There are several other operations such
as set intersection, natural join, and
division. We can define these operations
in terms of the fundamental operations.

	y The select, project and rename
operations operate on one relation. So,
they are known as unary operations.

Grey Matter Alert!

In a non-procedural language, the user
doesn’t provide any specific procedure
to obtain the information but specifies
the desired information.

SQ
L

112

C
ha

pt
er

 3

Selection and projection:
	y The SELECT operator chooses those tuples in the output that satisfy
the specified condition.

	y The select operation is denoted by
	 s<selection-condition> (Relation name)
	 Consider the relation Sailors:

Table 3.37

To select those tuples of Sailors relation where rating is greater than 8. We
can write:
srating > 8 (Sailors)

The output we get the relation shown below:

Table 3.38

Example:	 Consider the relation Employee:

Table 3.39

SQ
L

113

C
ha

pt
er

 3

The expression: ssalary > 10K AND Dno = 3 (Employee) evaluates to the relation.

	y Comaprison operators that can be used in selection conditions are:
	 <,<=,=,≠,>=,>.
	y The selection operation is applied to each tuple individually.
	y The degree (i.e. number of attributes) of the resultant relation after

applying the SELECT operation is going to have the same degree as of
relation R.

	y Number of rows in final output relation £ Number of rows in given input
relation(R).

	 i.e. |sc(R)| = |R| where c is any condition.

Note:
	y The select operation is commutative i.e.

s<cond 1> (s<cond 2> (R)) = s<cond 2> (s<cond 1> (R))

	y We can also write,

s<cond 1> (s<cond 2> (… (s<cond n> (R))…)) = s<cond 1> AND … <codn 2> … AND <cond n>(R)

Project operation:
	y The project operation is used to choose certain columns from the table
and trashes out the other attribute fields.

	y The projection operator is denoted by p.
	y One can visualise the result of the project operations as an input relation

is vertically separated into two relations. One having needed columns
(attributes) and the other comprising of the discarded columns.

	y The general form to represent the project operation is:

p<attribute list> (Relation)

	� where <attribute list> is the targeted sub-list of attributes belonging to
the relational attribute set.

	y The resultant relation after applying the project operation will contain
only those attributes that are mentioned in <attribute list> in the same
order as they are oriented in the list.

SQ
L

114

C
ha

pt
er

 3

Example:	 Consider the relation Employee:

Table 3.40

The expression, pSalary, Sex (Employee) evaluates to the relation:

Table 3.41

The expression pEname, Salary, Sex (Employee) evaluates to the relation:

Table 3.42

	y The project operation results in a set of a distinct tuple as the Project
operation removes duplicate tuples.

SQ
L

115

C
ha

pt
er

 3

Note:
	y p<list 1> (p<list 2> (R)) = p<list 1> (R)

is true if attributes in <list 1> is also present in <list 2>
	y Project operation is not commutative.

Note:
Projection operation in relational algebra is equivalent to SELECT DISTINCT
in SQL.
E.g. pSex, Salary (Employee)

		 is similar to
		 SELECT DISTINCT Sex, Salary FROM Employee;

Previous Years’ Question

Which of the following query transformations (i.e. replacing the LHS
expression by the RHS expression) is incorrect?
R1 and R2 are relation, C1 and C2 are selection conditions, and A1 and A2
are attributes of R1.

1)	 () ()12 21 C 1 C 1CC (R) (R)σ σσ → σ 	 2)	 () ()11 11 A 1 C 1AC (R) (R)π σσ → π

3)	
1 1 1C 1 2 C 1 C 2(R R) (R) (R)σ → σ σ  	 4)	 () ()11 11 C 1 A 1CA (R) (R)σ ππ → σ

Sol: Option 4)� (GATE-1998)

Rename operation:
	y Rename operation is used to rename either the relation name or the

attribute names or both.
	y The rename operator is denoted by rho (r).
	y The general rename operation when applied to a relation R of degree n

is denoted by any of the following three forms:
	

1 2 ns(B ,B , ...B) (R)ρ

	 (or)	 rs (R)

	 (or)	
1 2 n(B ,B , ...B) (R)ρ

	� where s is the new relation name, and B1, B2, … Bn are the new attribute
names.

	y
1 2 ns(B ,B , ...B) (R)ρ renames both the relation and its attributes.

	y rs (R) renames the relation only.

SQ
L

116

C
ha

pt
er

 3

	y
1 2, n(B ,B ...B) (R)ρ renames the attributes only.

	 E.g. Consider the relation customer:

Table 3.43

r(Customerid, Customername, Sex) (customer)

We will get

Table 3.44

Set operations:
	y The following standard operations on sets are available in relational

algebra:
	 1)	 Union

()

()

	 2)	 Intersection ()

()

	 3)	 Set-difference (–)
	y There are binary operations and they are applied to two sets.

Grey Matter Alert!

	y The two relations on which either union or intersection or set
difference operations are implemented upon must necessarily have
similar data types of tuples. This condition is called type compatibility.

	y Two relations R(A1, A2, … An) and Q(B1, B2, … Bn) are referred to as
type compatible if they have the same degree and domain (Ai) is
equal to the domain (Bi).

	y Type compatible is also called as union compatible.

SQ
L

117

C
ha

pt
er

 3

The union operation:
	y P  Q (P union Q): The resultant relation stores the record set comprising

of tuples available in P or Q or both.
	y The resultant relation has same schematic representation as that of P.
	y The UNION operation does not involve duplicate records in the final

relation.

The intersection operation:
	y Given two relations R and S, R  S gives the resultant relation that

includes all tuples that are in both relation R and S.
	y �We will assume that the schema of the resulting relation of R  S will

be the same as schema of R.

The set-difference operation:
	y Set-difference, denoted by R-S (R minus S), the result of this relation is

a relation that includes all tuples that are present in relation R but not
in relation S.

	y Here also, we assume that the schema of the resulting relation R-S is
same as schema of R.

Note:

	y (i) R  S = S  R (ii) R  S = S  R. It means union and intersection
both are commutative operations.

	y The set difference operation is not commutative i.e. R – S ≠ S – R.

Example:	 Consider a relation between employee E1 and E2.

Table 3.45

SQ
L

118

C
ha

pt
er

 3

Table 3.46

I)	 Now,	 E1  E2 will be:

Table 3.47

II)	 E1  E2 will be:

Table 3.48

SQ
L

119

C
ha

pt
er

 3

III)	E1 – E2 will be:

Table 3.49

IV)	E2 – E1 will be:

Table 3.50

Note:

	y Intersection can be expressed in terms of union and set-difference
as follows:

R  S = ((R  S) − (R − S)) − (S − R)

	y Both union and intersection are associative operations.

R  (S  T) = (R  S)  T
R  (S  T) = R  (S  T)

Cartesian product (cross product) operation:
	y It is also known as cross join, denoted by ×.
	y Cross Product is a binary set operation.
	y Relations on which we apply cross product need not be union compatible
	y The cartesian product operation, allows us to combine information from

any two relations.
	y R × S returns a relation whose schema contains all the attributes

of R followed by all the attribute of S, i.e. the result of R(A1, A2, …, An)
× S(B1, B2, .., Bm) will result in a relation T with degree n + m attributes.

	 T(A1, A2, … An, B1, B2, … Bm) in that order.
	y In cross product of R and S, if R has m tuples denoted as |R| = m and S

has n tuples denoted as |S| = n then R × S will have m × n tuples.

SQ
L

120

C
ha

pt
er

 3

Note:

The cartesian product operation is mostly useful when followed by a
selection.

Example:	 Consider the relation R and S:

Table 3.51

(R contains 3 tuples and 3 attributes. S contains 2 tuples and 2 attributes)
Then R × S will be:

Table 3.52

Containing 3 × 2 = 6 tuples and 3 + 2 = 5 attributes.
The expression sA = D (R × S) will give the result:

Table 3.53

SQ
L

121

C
ha

pt
er

 3

Division operations:
	y It is represented by ÷ and is useful for expressing certain kind of queries.
	y The Division operation is defined using the basic operators of the algebra.
	y Implementation of Division using basic operations:

		 R ÷ S
Step 1:	 T1 ← p(R-S) (R)
Step 2:	 T2 ← p(R-S) ((S × T1) – R)
Step 3:	 T ← T1 – T2

Example:	 Consider relation R and S as follows:

Table 3.54

Then R ÷ S will be : T ¬ R ← S

Step 1:	 T1 ← p(R-S)(R) = T1 ← pBR =

Table 3.55

SQ
L

122

C
ha

pt
er

 3

Step 2:	 (a)	 S × T1 =

Table 3.56

(b)	(S × T1) – R

	

	 T2 ← p(R-S)((S × T1) – R) will give:

	 Step 3:	 T ← T1 – T2

Table 3.57

Rename operation:
	y In relational algebra, we do not have any name for the results through

which we can refer them.
	y Most of the time result of a relational algebraic expression usually takes
name of field from the original relation.

SQ
L

123

C
ha

pt
er

 3

Previous Years’ Question

Consider a database that has the relation schema CR(StudentName,
CourseName). An instance of the schema CR is as given below:

The following query is made on the database.
	y T1 ← pCourseName (sStudentName = SA (CR))
	y T2 ← CR ¸ T1

The number of rows in T2 is ______
Sol: Range 4 to 4� (GATE Set-1-2017)

SQ
L

124

C
ha

pt
er

 3

	y But, It is always good to give them names, using the rename operator
denoted by r.

	y Given a relational-algebra expression E, the expression rx (E) returns the
result of expression E under the name x.

	y Another form of the rename operation is as follows:

rx(A1, A2 , ...An) (E)

	� returns the result of expression E under the name x and with attributes
renamed to A1, A2, …, An.

�Example: Rename the attributes Empno, Empname of relation employee to
Eno, Ename.

r(Eno, Ename) (Employee)

A complete set of relational algebra operations:
	y {s, p, U, –, ×} is a complete set of relational algebra operations.
	y It means using a sequence of operations from this set, any other

relational algebra operations can be expressed.

�Example: Intersection operation can be expressed using union and set-
difference as follows.

R  S º (R  S) − ((R − S)  (S − R))

Division operation can be implemented using p, x and – (set-difference)
Similarly, a join operation can be implemented using x(cartesian product)
and select operations.

3.3 JOINS
	y The join operations is one of the most useful operations in relational

algebra.
	y The join operation denoted by , is used to combine related tuples

from two relations.
	y Join operation is used more frequently than cross-product even though

a join is a cross product followed by a selection.
	y Reason behind it is cross-product produces a larger results compare to

result produce by join.
	y Thus, join is very important relational operation.

SQ
L

125

C
ha

pt
er

 3

Condition joins:
	y Conditional join operation takes a pair of relation instances as arguments

and a join condition c and returns a new relation.
	y It is defined as:

Example:	 Consider the relation Employee E and Project P.

Table 3.58

The result of is

Table 3.59

Equijoin:
	y Equijoin involves join condition with equality comparisons.
	y Equijoin is a join where = comparison operator is used.

Note:

In the result of an Equijoin, we always have one or more pairs of
attribute that have identical values in every tuples.

Consider the relation Employee and Drives as follows:

SQ
L

126

C
ha

pt
er

 3

Table 3.60

The result of

Table 3.61

Natural join:
	y Natural join is denoted by *.
	y Natural join is used to combine two relation R and S having a common

attribute(s) names.
	y If we apply Natural join on two relations R and S, then it is denoted as

R * S.
	y We don’t need to write equality conditions explicitly when two relations

are joined using natural join.

Note:

The standard definition of natural join requires that the two join
attributes should have the same name in both relations.
If not, then a renaming operation is applied first before applying
Natural join.

SQ
L

127

C
ha

pt
er

 3

Natural join returns similar attributes only once in the resulting relation.
Consider the relation between Student and Performance.

Table 3.62

The result of stu_per ← student * performance

Table 3.63

Note:

Condition join, Equijoin and Natural join are called Inner join.

Outer-join:
	y It is a variation of JOIN that efficiently deals with missing data.
	y Here, since the schema of the result includes all attributes from both
relations (table), if a tuple from the first relation does not match tuple
in the second relation, we simply put NULL values in the tuple of the
resulting relation on the attributes of the second relation.

SQ
L

128

C
ha

pt
er

 3

	y There are three forms of outer join:

1)	 Left outer join (): The left outer join takes all tuples in the left
relation that do not match with any tuple in the right relation, and
padded these tuples with NULL values for all the attributes of the
right relation. Add them to the result of inner join.

2)	 Right outer join (): It considers the records of the right-hand side
relations that fails to follow the JOIN condition. It pads NULL values
in the left-hand-side attributes for those records.

3)	 Full outer join (): In full outer join, along with the result of the inner
join of two relation, it will contain padding tuples from both left and
right relation that does not match with any tuples from other (right
and left relation respectively), relations.
E.g. Consider the two relations R and S as follows:

Table 3.64

i)	 The result of R will be

Table 3.65

ii)	 The result of R will be

SQ
L

129

C
ha

pt
er

 3

Table 3.66

iii)	The result of the full outer join
	 will be

Table 3.67

Note:

SQ
L

130

C
ha

pt
er

 3

Previous Years’ Question

Let R and S be two relations with the following schema.

R(P, Q, R1, R2, R3)

S(P, Q, S1, S2)

Where {P, Q} is the key for both schemas. Which of the following queries
are equivalent?

1)	 Only I and II	 	 2)  Only I and III
3)	 Only I, II and III		 4)  Only I, III and IV
Sol: Option 4)� (GATE-2008)

Extended relational algebra operations:
	y In basic relational algebra, we don’t have some features like arithmetic

operations, string concatenation etc.
	y Later, the basic relational algebra has been extended.
	y Example – To allow arithmetic operations as a part of the projection, to

allow aggregate operations etc.
	y We can extend the projection operation by allowing arithmetic functions

to be used in the projection list.

E.g. pid, name, dept_name, salary ¸ 12 (Instructor)

Relational calculus:
	y Relational calculus is an alternative to relational algebra.
	y Relational calculus is considered to be non-procedural language.

SQ
L

131

C
ha

pt
er

 3

	y Relational algebra, tuple relational calculus and domain relational
calculus are equivalent in power (expressive power of the languages is
identical).

	y Thus, relational algebra and relational calculus are relationally complete.

Tuple relational calculus:
	y In TRC, we specify the tuple variables.
	y A tuple relational calculus query is {t|COND (t)}

	 where t is a tuple variable and COND(t) is a conditional (Boolean)
expression that describes t.

	y Example: Shopkeeper(Firstname, Lastname, Rating)
	 To find all shopkeepers whose rating is more than 8. It can be represented

in TRC as:
	 {t | Shopkeeper(t) AND t.rating > 8}
	 It will give all the tuples from shopkeeper relation that satisfies t.rating

> 8 conditions.
	 When we want to list only some attributes from Shopkeeper relation ,we

can write
	 the following expression.
	 {t.Firstname, t.Lastname | Shopkeeper(t) AND t.rating > 8 }

	y A formula (Boolean condition) in TRC expression is made up of one or
more atoms connected using the logical operators AND, OR and NOT.

	y A formula is recursively defined as one of the following:
	 I)	 Any atomic formula
	 II)	 If p and q are formulas then so are
		 ¬p, p ∧ q, p ∨ q, p ⇒ q.
	 III)	 $t (p(t)), where t is a tuple variable.
	 IV)	 ∀t (p(t)), where t is a tuple variable.

Note:
$ represents existential quantifier
∀ represents universal quantifier

Free and bounded variables:
	y $ and ∀ are used to bind the variable.
	y In a formula, if it does not contain an occurrence of a quantifier that

binds, the variable then a variable is said to be free.

SQ
L

132

C
ha

pt
er

 3

Example:	
Consider the following relational schema:
Employee (Fname, Lname, Ssn, Sex, Salary, Bdate, Address, Super_Ssn, Dno)
Department (Dname, Dnumber, Mgr_Ssn, Mgr_start_date)
Dept_locations (Dnumber, Dlocation)
UnacademyProject (UPname, UPnumber, UPlocation, UDnum)
Works_on (Essn, Pno, Hours)
Dependent (Essn, Dependent_name, Sex, Bdate, Relationship)

Q1	 Project out the name and address information of the department number
ten employees.

Sol:	 {e×Fname, e×Address | Employee(e) ∧ e×Dno = 10}
	y Only the free tuple variables in a TRC expression need to appear to the left

of the vertical bar(|).
	y Whatever we want to display should be written left to the vertical bar.
	y Here, if a tuple satisfies the conditions specified after the bar then the

attributes Fnames and Address are retrieved for each such tuple.

Q2	 List out the names of the dependent(s) of the employee with first name
as ‘Ram’.

Sol:	 {d.Dependent_name | Dependent (d) ∧ ($e) (Employee (e) ∧ e.Ssn = d.Essn ∧
e.Fname = ‘Ram’)}
	y Here, d is free tuple variable, tuple variable e is bound to the existential
quantifier.

	y We are performing join between two relation Employee and Dependent and
then selecting those combinations of tuples that satisfy the condition.

	y Tuple variable d ranges over Dependent relation and tuple variable e ranges
over Employee relations.

SQ
L

133

C
ha

pt
er

 3

Q3	 Retrieve the first names and addreses of the ‘Research’ department
employees.

Sol:	 {e.Fname, e.Address | Employee (e) AND ($d) (Department(d) ∧ e.Dno= d.Dnumber
∧ d.Dname = ‘Research’}
	y Tuple variable e ranges over the relation Employee and, tuple variable d

ranges over the relation Department.

Q4	 Retrieve the project number, authority department number and respective
Ssn of the manager for all such projects having the base location in ‘Mumbai’.

Sol:	 {p.Pnumber, p.Dnum, d.Mgr_Ssn | Project (p) AND Department (d) ∧ p.location =
‘Mumbai’ ∧ p.Dnum = d.Dnumber}

Q5	 Retrieve the project number, authority department number and respective
last-name, DOB and address of the manager for all such projects having base
location in ‘Mumbai’.

Sol:	 {p.Pnumber, p.Dnum, e.Lname, e.Bdate, e..Address | Project (p) ∧ Employee (e) ∧
p×location = ‘Mumbai’ ∧ ($d) (Department (d) ∧ p.Dnum = d×Dnumber ∧ d×Mgr_
Ssn = e×Ssn)}
	y When there are two or more free tuple variables, take cartesian product

of those relations. Out of all possible combinations of tuples, only the
combinations that satisfy the condition are selected.

Q6	 Retrieve the project number in which people with teh last name ‘Kohli’ is
either a worker or a manager in control of the concerned department.

Sol:	 {p.Pnumber | Project (p) AND ((($e) ($w) (Employee (e) AND works-on (w) AND
w.Pno = p.Pnumber AND e.Lname = ‘Kohli’ AND e.Ssn = w.Essn)) OR (($m) ($d)
(Employee (m) AND Department (d) AND p.Dnum = d.Dnumber AND d.Mgr_Ssn=
m.Ssn AND m.Lname = ‘Kohli’)))}

SQ
L

134

C
ha

pt
er

 3

Q7	 List out the first names of the employees working on projects under depart-
ment number 7.

Sol:	 {e.Fname | Employee (e) AND (($(x)) ($(w)) (project(x) AND Works_on(w) AND
x.Dnum = 7 AND w.Essn = e.Ssn AND x.Pnumber = w.Pno))}

Note:

1)	 P → Q º ¬PVQ
2)	 ¬(∀x(p(x))) º $x(¬p(x))
3)	 (∀x) (p(x)) º ¬($x) (¬p(x))
4)	 ($x) (p(x)) º ¬(∀x) (¬p(x))

Q8	 Project out the employees first names with no dependents.

Sol:	 {e.Fname | Employee (e) AND (NOT ($d) (Dependent(d) AND e.Ssn = d.Essn))}

Rack Your Brain

Which of the following relational algebra expression is equivalent to
the given tuple calculus expression.
{t | t ≡ r ∧ (t[M] = 25 ∧ t[N] = 40)}
1)	 s(M = 25) (r) – s(N = 40) (r)		 2)  s(M = 25) (r) – s(N = 40) (r)
3)	 s(M = 25) (r) – s(N = 40) (r)		 4)  None of these

Unsafe relational calculus expression:
	y The expression is known to be a safe expression if it is guaranteed to yield a finite

number of tuples as its result.
	y If relational calculus is not yielding finite number of tuples as its result then expression

is unsafe.

E.g. {e | ¬ employee(e)}
There are infinitely many tuples that does not belong to employee relation.
So, the above example is unsafe.

SQ
L

135

C
ha

pt
er

 3

Previous Years’ Question

Which of the relational calculus expression is not safe?
1)	 {t | $u ≡ R1 (t[A] = u[A]) ∧ ¬$s ≡ R2 (t[A] = s[A])}
2)	 {t | ∀u ≡ R1 (u[A] = ∀x∀ ⇒ $s ≡ R2 (t[A] = s[A] ∧ s[A] = u[A]))}
3)	 {t | ¬ (t ≡ R1)}
4)	 {t | $u ≡ R1 (t[A] = u[A]) ∧ $s ≡ R2 (t[A] = s[A])}
Sol: Option 3)� (GATE-2001)

Note:

For every safe Tuple relational calculus query there is an equivalent
relational algebra query.

Domain relational calculus:
	y Another type of relational calculus is domain relational calculus.
	y Domain relational calculus uses Domain variables.
	y Variable that ranges over the values in the domain of some attributes is

known as domain Variable.
	y Domain relational calculus is equivalent in power to tuple relational

calculus.
	y A Domain relational calculus query is of the form

{x1, x2, x3, …, xn | P(x1, x2, …, xn)}

Where x1, x2, …, xn are domain variables and P represents a formula which is
made up of atoms. An atom in the domain relational calculus is of the form:
1)	 An atom of the form R(x1, x2, … xn) where R is a relation name.

Note:

To make a domain calculus expression more brief, we can write

{x1, x2, x3, … xn | R(x1 x2 x3) AND …}

Instead of {x1, x2, x3, … xn | R(x1, x2, x3) AND …}
by removing commas in a list of variables.

SQ
L

136

C
ha

pt
er

 3

2)	 An atom of the form x op y where x and y are domain variable and op is a comparison
operator {<, ≤, =, >, ≥, ≠}.

3)	 An atom of the form x op c where x is a domain variable and op comparison operator
and c is a constant.
	y Domain relational calculus formulae is build up from atoms using following rules:
	y Domain relational calculus formulae is build up from atoms similar to tuple

calculus relation

Example:	 Consider the relation schemas:
Employee (Fname, Lname, Ssn, Sex, Salary, Bdate, Address, Super_Ssn,
Dno)
Department (Dname, Dnumber, Mgr_Ssn, Mgr_start_date)
Project (Pname, Pnumber, Plocation, Dnum)
Works-on (Essn, Pno, Hours)
Dependent (Essn, Dependent × name, sex, Bdate, relationship)

Q1	 List the salary as well as address of the employee named ‘Somya Jain’.

Sol:	 Employee ()p qm n o r s t u
Fname,Lname,Ssn,Sex,Salary,Bdate,Address,Super_Ssn,Dno,

	y We need 9 variables for employee relation, ranging over each of the domains
of attributes of employee in order.

	y {q, s | ($m) ($n) ($o) ($p) ($r) ($t) ($u) (Employee (mnopqrstu) ∧ m = ‘Somya’ ∧
n = ‘Jain’)}

	y q and s are free variable, as they appear to the left of the vertical bar and not
bounded to any quantifier.

	y For convenience purpose, we generally quantify only those
	y variables that appears in the condition.

Q2	 List the first name, last name and address of all employees who work for the
department ‘Research’.

Sol:	 {m, n, s | ($g) ($h) ($u) (Employee (mnopqrstu) ∧ Department (ghij) ∧ g = ‘Research’
∧ h = u)}

()p qm n o r s t uEmployee Fname,Lname,Ssn,Sex,Salary,Bdate,Address,Super_Ssn,Dno,

SQ
L

137

C
ha

pt
er

 3

()g h i j
Dname, Dnumber, Mgr_Ssn, Mgr_start_dateDepartment

	y Here, we are joining two relation employee and department using h = u where
h is a domain variable ranges over attribute Dnumber of Department and u is
a domain variable ranges over attribute Dno of relation Employee.

Q3	 For every project located in ‘Mumbai’, list the project number, the controlling
department number and department manager’s surname and address

Sol:	 {x, z, n, s | ($y) ($h) ($i) ($o) (Project (wxyz) ∧ Employee (mnopqrstu) ∧ Department
(ghij) ∧ h = z ∧ i = o ∧ y = ‘Mumbai’)}

()p qm n o r s t uEmployee Fname,Lname,Ssn,Sex,Salary,Bdate,Address,Super_Ssn,Dno,

g h ji
Dname, Dnumber, Mgr_Ssn, Mgr_start_dateDepartment

w x y z
Pname, Pnumber, Plocation, DnumProject

Q4	 Find the names of employees who haven’t any dependents.

Sol:	 {m, n | $(o) (Employee (mnopqrstu) ∧ (Not ($a) (Dependent (abcde) ∧ o = a)))}

p qm n o r s t uEmployee Fname,Lname,Ssn,Sex,Salary,Bdate,Address,Super_Ssn,Dno,

a c d eb
Essn, Dependent_name, Sex, Bdate, RelationshipDepartment

SQ
L

138

C
ha

pt
er

 3

Previous Years’ Question

What is the optimized version of the relation algebra expression
()A F FA (((r)))π σ σπ , where A1, A2 are sets of attributes in r with 1 2A A⊂

and F1, F2 are Boolean expression based on the attributes in r?
1)	 ()1 21 (F F)A (r)∧σπ 			 2)  ()1 21 (F F)A (r)∧σπ

3)	 ()1 22 (F F)A (r)∧σπ 			 4)  ()1 22 (F F)A (r)∨σπ

Sol: Option 1)� (GATE Set-3-2014)

SQ
L

139

C
ha

pt
er

 3

Chapter Summary

	y SQL : SQL stands for Structured Query Language. It is used to add, delete, modify
or obtain data.

	y Types of SQL commands:
		 DDL, DML, DQL, DCL
	y SELECT Clause: SELECT clause is used to list all the desired attributes in the result

of a query.
	y A simple form of SQL query:

SELECT A1, A2, …, An

FROM r1, r2, …, rm

WHERE <Condition>;

	y LIKE : It is a operator that is used for pattern matching of strings.
	y Aggregate function in SQL:

SQL provides 5 inbuilt aggregate functions.
1) Average : AVG 2) Minimum : MIN
3) Maximum : MAX 4) Total : SUM
5) Count : COUNT

	y Correlated nested query: Two queries are said to be correlated when a condition
in the WHERE clause of the inner query captures and utilizes some fields of the
table name specified in the outer query.

	y Joins : It is used to combine two or more relation based on common attributes
between them.

	y Types of Joins:
1) Natural Join 2) Inner Join
3) Left Outer Join 4) Right Outer Join
5) Full Outer Join

	y Relational algebra: It is a procedural query language.
	y Fundamental operation on relational algebra:
	y Selection(s)
	y Projection(p)
	y Union(U)
	y Set-difference(-)
	y Cartesian Product (x)
	y Renaming(r)

	Chapter 03_Notes_DBMS

