File Organization & Indexing

5.1 FILE ORGANIZATION AND INDEXING

Introduction:

® |n asystem, a database is stored in the form of files containing records.

e These files of records are stored in secondary memory like magnetic disks.

e Each file is partitioned into fixed-length blocks.

® One block can contain more than one data item.

® One of the reasons to use a database system is to decrease the number
of blocks that are transferred between disk and memory.

File organization:

File

|

Sequence of
Records

|

Collection
of Data

e Afile is organized as a sequence of blocks.
e A block is organized as a sequence of records.
e Records means a collection of data items(fact).

Primary file organization:
® |t describes how can we place file records on the disk as well as how
can we access them based on the primary field.

Secondary file organization:
® |n this, we can access the records of files based on alternate fields (not
primary fields).

Note:

File organization refers to the organization of the data of a file into
records, blocks and access structure.

* Aswe know, a block is the smallest unit that is used to transfer the data.

Chapter 5

File Organization & Indexing

Gulshan

Chapter 5

File Organization & Indexing

e So, we need to allocate records of the

file to disk blocks. Grey Matter Alert!
e When block size > record size, then one
block can have many records. e The file is termed as fixed-length
e But, we can not fit these records to one records where all the records are
block if the number of records present of exact same length.
are large.
Blocking factor:

It is defined as the maximum number of records that can be stored in a
disk block.

Let us consider, BS > RS where,

BS represents block size in bytes and

RS represents size of the fixed length records.

Average number of records per block is known as Blocking factor.

We can define _records per block. | | represents

floor function.

Note:

Sometimes record size does not divide block size exactly.

So, there will be some ESEGISPRCEIENESNSIOCKINENECON
RS)) bytes.

e Records can be organized in a database file using the following two
strategies:
1) Spanned
2) Unspanned

1) Spanned: In this strategy, records are allowed to span in more than

one block. i.e. it EloWSIPEEENPEINEiEEseEs)to be stored in a block.

Example: Consider the figure given below, which is depicts the spanned
strategy for storing files of records into a block.

R, R, R, R, Block B,

R, R R, R, Block B,

R, R, R, R, Block B,
Fig. 5.1

Gulshan

In this example, record R, is stored in block B, as well as Block B,. Similarly
record R_ is stored in block B, as well as B,.

Advantage of spanned strategy:
No wastage of memory.

Disadvantage of spanned strategy:
Number of block accesses to access a record increases.

Note:

This strategy is appropriate for storing those records whose length
is variable.

2) Unspanned strategy:
The records are not allowed to cross block boundaries, i.e. if no record
can be stored in more than one block then this strategy is known as
unspanned strategy.
Example: Consider the following example given below that depicts
unspanned strategy for storing records.

R, R, R, Block B,
R, R, R Block B,
Fig. 5.2

Advantage of unspanned strategy:
Number of block accesses to access a record reduces.

Disadvantage of unspanned strategy:
Wastage of memory.

Note:

This strategy is appropriate for storing those records whose
length is fixed.

Note:

If the average record size is large, it is beneficial to use spanned
organization, to reduce the space that is lost in each block.

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

The Number of blocks b required for a file of a ‘r’ records

Where [] is a ceiling function and it rounds the value up to the next

integer.

SOLVED EXAMPLES

Consider a file of size 2 MB, having 2K fixed length Blocks. Following are the
records which need to be stored in the blocks: R1(500B), R2(800B),
R3(300B) R4(1000B), R5(500B). If spanned organization of records is used.
What are the total number of Blocks required to store all the records?

1) 5 blocks 2) 4 blocks 3) 6 blocks 4) 3 blocks
2)
In spanned organization records are allowed to span in more than one Block.
. File size
Block size .
Number of Blocks in File
20

_ 2x2°"B _1KB

2x2'°

500+800+300+1000+500 = 3100 bytes

So, number of blocks required = 3100 bytes/1024 bytes’]
=[3.02 1

=4

Hence, 4 Blocks are required to store all the records.

Allocation of file blocks on disk:

File blocks can be allocated on the disk using the following techniques:
Continuous allocation: In continuous allocation, the file blocks are
allocated to consecutive disk blocks.

Linked allocation: In linked allocation; one file block is linked to the
other(next) file block with a pointer.

Disadvantage: This allocation makes it difficult and slow to read the
whole file.

Indexed allocation: In Indexed allocation, one or more index blocks
contain pointers that point to the existing file-blocks.

Files of unordered records:

e All records in file are inserted wherever there is place available for the
record.

e There is no ordering of records.

® Files of unordered records are also known as Heap files.

e Any particular record is searched using linear search.

e Advantage: Inserting a record is efficient.

e Disadvantage: Searching for a record is inefficient; it is expensive
procedure due to the involvement of linear search.

Note:

e For a file having ‘b’ blocks, on average, this requires searching (b/2)
blocks.

Files of ordered records:
e Advantage:
1) As there is no sorting required, we can efficiently read the records.
2) There is no requirement for additional block access.
3) Binary search is used to search for a record in a file that consists of
records in an ordered way, so access of to records will be faster.

Note:

A binary search access log,(b) blocks whether the record is found or not.

Average block access required for a file having ‘b’ blocks in basic file
organization

Types of Access/Search Average Blocks To Access
Organization Method A Specific Record

. Heap Linear Search b/2

) (unordered) (Sequential scan)

Linear Search

2

) Ordered (Sequential scan) o
3) Ordered Binary Search log, b

Table 5.1

Chapter 5

File Organization & Indexing

Chapiter 8§

File Organization & Indexing

Index structure:

Indexes are the auxiliary access structure.
It is used to increase search efficiency.
Using the index structure, we can easily access L
the records without creating any disturbance
to the records that are placed physically in
the main data file on disk. C
We can access records efficiently based on
the indexing fields.
Following are the different types of indexes used C
1) Single-level index
2) Tree data structures

(multilevel index, B+ trees).

5.2 SINGLE LEVEL INDEX

Single Level Index

Grey Matter Alert!

There is another type of
primary organization which is
based on hashing.

It provides very fast access
to records under certain
conditions.

This organization is called the
hash file.

! !

!

Primary Clustering Secondary
Indexing Indexing Indexing

An index structure is based on a field termed as indexing field.

1) Primary index:

It is an ordered-file where length of the records are fixed and contains

2 fields.

The 1st field consists the data type, which is Definitions

same as the primary key of the file where data

is present. “A primary index is specified
The second field consists a pointer pointing to on the ordered key field of an
a disk block. ordered file of records.”

For every block present in the data file, there
must be an index record in index file.

Note:

iSEZEBINNEEE here Bi refers to the total block count.

Note:

e Hey learners!!

Do you know what an anchor record is?

An anchor record is the first record in each block of the data file.
® Anchor record is also called as block anchor.

e Indexes are also characterized into two categories dense and sparse index.

Index
|
Dense Index Sparse Index
A Dense Index consists A Sparse Index
an index entry for every consists index
search key value in the entries for only some
datafile of the search values

e Structure of index files:
Index record consists of two fields: key and block pointer.

Key Block pointer

Pointer to the block where
key is available

e A sparse index stores lesser count of entries in comparison to the count of records in
the original database file.

Search Search
Key Key
Value Value
1 Somya 1
2 Kimi 2
1 ® 3 Lavanya Pointer
2 [4 Snigdha 1 [
3
3 [] 5 Rupa 3 []
4
4 [6 Puja 5 [
5 [] 7 Yami
6 [5
7 [6
Fig. 5.3 Dense Index Fig. 5.4 Spare Index

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

e As we can see in Fig. 51, for every search key, there exists an entry in the index file. Thus
it is classified as dense index.

e But, in Fig. 5.2, index entries are not available for every search key value. For every disk
block, there is subsists an index entry, thus, it is classified as sparse Index.

SOLVED EXAMPLES

Consider an ordered file that contains 30,000 records. These records are
stored in a disk. The Size of a block is 1024 bytes. The length of file records
are is 100 bytes and records cannot be spanned. A primary index structure is
employed that contains 9 bytes key and 6 bytes block pointer. Estimate the
mean number of block access needed without indexing and with indexing?

Given, size of the block = 1024 bytes

Size of each record = 100 bytes

Number of records per block = % =10.24

Since records are stored in unspanned manner, we can store only 10 records at

maximum.

Number of blocks required to store 30000 records = 301%00 = 3000

Without primary index
Number of block accesses = ﬂog2 3000—’ =12

Size of a index record = 9 bytes + 6 bytes = 15 bytes

1024

Number of index record per block = 68

As we got the number of blocks that is are required to store all these records
are= 3000

So, the total number of index records = 3000

“" 68 index records are present in 1 block.

3000 index records will be present in 3000/68 = 45 block.

With primary index
Total number of block accesses = ﬂog2 45} +1
=6+1=7

®* The main drawback of a primary index Definitions

is insertion of records and deletion of
records. C
® Movement of records is needed to put the
new records in the right place.
e But, this will also lead to changes of some
of in the index entries.
e Reason: Due to the movement of records,

“Clustering index is created on
data file whose file records are
physically ordered on a non key
field which may not be unique
for every record”

it is a high possibility that anchor-records of some of the blocks

might get changed.

2) Clustering indexes:

e A clustering index is an ordered file with two fields:
15t field contains the data type that is similar to the clustering field

of actual file where data is present.
2n field contains a block-pointer.

Note:

Clustering Index: An example of a non-dense index.

In clustering indexing, there is an a unique value for every record in the file.

Dept_Name Job Salary
Clustering Block A
field value pointer
B
A []
C
B []
C [] C
D ® D
E [] E
F []
< E
E
F

Fig. 5.5 Diagram Represents Clustering Indexing

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

* The number of block access usingjEilSEHNEIcExSliCERIEE

where Bi refers to the total block count.
3) Secondary indexes:

Definitions

e A secondary index gives a secondary way to access a data file where
primary index or clustering index are already defined.
e Data file records might be ordered, hashed, or unordered.

Note:

The secondary index is based on an unordered field that is
1) CK(Candidate key).

(OR)
2) Non-key field with duplicate values.

The secondary index: ordered file having two fields:

The data type of the first field is same as that of the clustering field of
the actual database file.

The second field captures the block pointer.

Indexing field
(Secondary key field)
4
Index field Block

value pointer 2
1 [3
2 [] T

3 ([]
4 ® 5
5 [1
6 [] 6

7 ([]

Fig. 5.6 A Dense Secondary Index on a Non-Ordering Key Field of a File

Note:

Number of index entries at first level in secondary index = number of
records in the database file.

Previous Years’ Question Q

A file is organized so that the ordering of data records is the same as
or close to the ordering of data entries in some index. Then that index
is called.

1) Dense 2) Sparse
3) Clustered 4) Unclustered
Sol: Option 3) (GATE-2015 Set-1)

SOLVED EXAMPLES

Assume a database file with 45,000 tuples. This file is organized block-wise
in hard-disk. A secondary index structure is used to access the file with

key size of 7 bytes. If the sizes of the block, block pointer and record are
2048, 7 and 100 bytes, respectively. If the database follows an unspanned
organization, estimate the feasible count of block accesses with and without
utilizing index structure.

Block size = 1024 bytes

2048 B
100 B

Number of data records per block - —20.48

We can put a maximum of 20 records only in 1 block.

45000

Number of blocks required by data file = = 2250 blocks

Number of index records = number of data records = 45000
Size of index record =7 + 7 = 14 bytes.

Number of index records per block = V?;:SJ =146 entries per block

45,000
146

So, without using secondary indexing, we will perform linear search on the file

that is equal to 9 - @ = 1125 block accesses on the average.
2 2

45,000 entries with 146 entries/block: = = 308 blocks for the index.

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

With indexing:
A binary search on this secondary index needs [logQ 303"‘ =6 block accesses.

We need one more block-access for searching a record if secondary
indexing is used.

Therefore, Total block-access=

6 block access + 1 extra block access = 7 block accesses.

5.3 MULTILEVEL INDEX

A binary search takes log2bi block access for an index having bi blocks.
Reason: In each step, part of the index file will reduce by a factor of 2.
That is why we use a log to the base 2 as a function.

Due to multilevel indexing, searching becomes much faster.

Do you know why we need multilevel indexing?

Sometimes, we have a larger database, and we cannot fit indexes in a
single block of a disk.

Therefore, we need multilevel indexing.

In multilevel indexing, in order to access a disk block, firstly outer level
index block is accessed, and a particular entry in the outer level index
points to a block in the inner level index block which will point to the
disk block which containing the required record.

y 1I/O cost to access a record using multilevel indexing having K levels
= K+1.

—
—
E

Inner level

Outer level Inner level

Inner level Blocks

Fig. 5.7

B Tree and B* tree:

B tree and B* trees are special case of well-known search data structure
trees.

Search trees:

Definitions

A search tree is used to search if a record exists or not in the relation
based on a given set of field values.

e Suppose P is the order of the Search
tree. Then:

e 1) Maximum search key a node can Grey Matter Alert!
contain=(P-1)

e 2) Maximum block pointers a node can
contain=P

e Structure: <P,K,P,K,...,P
where m < P (order of tree).

* Where, P, is a pointer pointing to a child
node and Ki is a search key value.

e Application: The Search tree is useful
for searching records that are present
within a disk-file.

® There are two constraints that need to
be followed by a search tree.

Do you know anything about the TREE
data structure?

-t P 1) “A tree is defined recursively as a
collection of nodes.”

2) A root node is present in a tree.

3) Except root node, other nodes are
having 1 parent.

4) Also, other nodes can have either
no child or more than 0 children.
Leaf nodes: It is a node with no

K

m-1?

children.

) Every node should contain the 5) Internal Node : all nodes other than
search key value such that, K, < K, leet fedles,
<. <K .

ii) For all values S in the subtree
pointed by P,

We have: Grey Matter Alert!
A KA - - K. ke PRI - - Koo Poe

A Tree contains the values

from one of the file fields,
known as search field.

S <K, K., <S <K K., <S

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

Example:
ol 6 |o
el 3 7 |s| 10 |*
1 8 9 15
Fig. 5.8 Search Tree of Order P = 3
5.4 B-TREES

e There is an auxiliary condition in B-tree which confirms that the tree is
always balanced.

®* |n B-trees, at every level, we are going to have key and data pointer
pointing to either block or record.

e A B-tree of order P can be defined as
i) Internal node of the B tree is as follows:

<p,, <k, pr>, p,, <k, pr,>, ... <k, pr__>, p >

where m < p (order of tree).

1) Here, each p, is a tree pointer, and each pr, is a data pointer.

Tree pointer (Block pointer): A pointer to another node in the B-tree.
Datajpeinter: |t is a pointer that PoiNESIEONtheNrecord containingKiasithe]
searchikey value.

2) For each internal node, k, <k, <k, ... <k_

3) Presume S is a search key value in the subtree pointed by p,. Then:
K,<X<kfor1<i<m
X<k fori=1
K_,<Xfori=m

4) Maximum count of tree pointers possible is P for each node.

Tree Data Tree Data Tree Data
pointer pointer pointer pointer pointer pointer

@12

[5To]| |[o]°]

[1]o]| |[2]] [7lo]] [[]e] [oo]| {[12]o]

Fig. 5.9 A B-Tree of Prder = 3

B-tree properties:
1)Reoetinode: A root node can have minimum 2 children (Block pointer)
and maximum P children.

Where P — order of tree.

Note:

Order of tree: The Order of a tree represents the maximum number of
block pointers a node can have. (default definition)
2) Internal nodes:
The Internal node has atleast [(P/2) | tree pointers (Block pointer). It means
the internal node can have children between [P/2] and p.

3) Leaf nodes:
e All leaf nodes are at the same level.
® Also leaf node have the same structure as internal nodes except
that all of their pointers p, are NULL.

Note:

A node with m tree pointers, where m < p(order of the tree) has m-1 data
(record) pointers as well as m-1 Search key items(values).

Example: Consider a B-tree of order p = 5. Then the minimum and the
maximum number of keys for root, internal and leaf nodes are as follows:

Root 1 4
Internal node |_5/2-| —1=2 p-1=4
Leaf node |_5/2-| -1=2 p-1=4

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

SOLVED EXAMPLES

Consider a B-tree with given data: Size of search key value = 10 bytes, block
size of 512 bytes, block pointer is of 5 bytes, and the data pointer is of 8
bytes. What will be the order of the B-tree?

Let n is the order of the B-tree

k represents the key size

p, represents record pointer

p, represents block pointer

BS represents block size

A/Q, Given: k =10 bytes, BS = 512 bytes, p, = 8 bytes, p, = 5 bytes.
nxp, +(n-1) x(k+p)<Block size

= nx5+ (-1 x(0+8)<512

= bn+18n -18 <512

= 23n -18 <512

530
= nN<——
23

n <£23.04
S, n=23
Thus, the order of B-tree = n = 23.

What will be the minimum and maximum number of keys in the B-tree of
order 23 for internal nodes?

For internal nodes,
Minimum number of keys = [p/2|-1=[23/2]-1=11

Maximum number of keys = p —1=23 - 1=22

Consider a B-tree with a search key size of 9 bytes, block size of 512 bytes,
record pointer is of 7 bytes, and block pointer is 6 bytes. What is the order of
B-tree?

pb | kw: pr1 | pb | kz’ prz

kn’ prn pb

block pointer record pointer

Given, k = key size = 9 bytes, p_= record pointer = 7 bytes
p, = block pointer = 6 bytes, BS = block size = 512 bytes
Now, Let ‘n’ is the order of B-tree
n(p,) + (n = 1) (k + p) < 512
= n@G) +{n-1(9+7)<512

6n +16n — 16 < 512

-

= 22n <512 +16
528

= <

22
n<24
n = order of B-tree = 24.

Suppose order of B-tree is 23. Then how many maximum index records are
stored in 4 levels [including root as 1 level] across the B-tree?

Given, The order of the B-tree is 23.

In level 1: There will be 23 pointers which are equal to the number of block

pointer.
L | | | | | | J

Level 1 contains a maximum of 22 index records.

In level 2:1n level 1, there are 23 children, and each contains 22 index records at
maximum. Thus level 2 will contain at maximum (23) (22) index records.

@15

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

Similarly, level 3: (23) (23) (22) index records at maximum
level 4: (23) (23) (23) (22) index records at maximum

Thus, overall the maximum index records stored in 4 levels (including
root as 1-level) in given B-tree of order 23 = 22 + 23 x 22 + 23 x 23
X 22 + 23 x 23 x 23 x 22

=22 (1+23+23 x 23+ 23 x 23 x 23)
=22 (1423 (1+ 23+ 23 x 23))

=22 (1+23(1+ 2301+ 23))

=22 (1 + 23 (553))

= 279840

Searching algorithm in B-tree:

Searching a B-tree is similar to a binary search tree,
However rather than moving left or right at each node, we
need to perform a p-way search to see which subtree to
probe.

Consider an B-tree of order-4.

| X |- -

<15, D>

| <18, D>

|| <000 [<200 || || [|<eoe|] oo] [| []<e0e]]<000>

Fig. 5.10 Partially Drawn B-tree of Order 4.

Algorithm:

e Consider a key value K that needs to be searched.

e Searching is done from the root and then we traverse down recursively.

e |f Kis smaller than the root value, goto left subtree; if K is greater than the root value,
search the right subtree.

e |f Kis found in the node, directly return the node.

e |f the node does not contain K, then traverse down to the child with a greater key.

e if Kis not found in the tree, return NULL.

E.g. Suppose we wish to search for index record with key value is 17.

Search will start from the root. 17 is not present here and K = 17 is less
than root value = 25. We will search in left search tree. Still, K =17 was not
found. Traverse down, K =17 is greater than value = 15. Thus, search in the
right subtree of value 15. Here in the right subtree, we finally found K = 17.
Thus, we will return the node.

Time complexity:
Time Complexity of the searching in B-tree = log n where p = order of
B-tree and n = number of the search key.

Underflow and overflow in B-trees:

Underflow: If the node has too few values, i.e. has less value than what it
is actually required, then this situation is known as underflow.
For roots: If number of search key values < 1., then underflow occurs.

For internal nodes: If the number of search key values < [%1—1 then
underflow occurs.

Overflow: Consider a B-tree of order p, if
number of search key values in a B-tree Rack Your Brain
node exceeds ‘p-1, then this condition is

@

known as overflow. Consider a B-tree with a search key
This is valid for both root nodes as well as size of 12 bytes, block size of 1 KB, data
internal nodes. pointer is of 5 bytes and blocks pointer
is of 8 bytes. Calculate the order of the
E.g. B-tree?
<7, p> <8, p,> <10, p,> <12, p,> 1) 40 2) 41
3) 42 4) 43

Consider the above B-tree of order 5. If we
will try to insert new node 9 then overflow occurs.

Insertion in B-tree:

1) At level 0, a B-TREE will contain only one node known as the root node.

2) When level-0 is full, and we have to insert more entries, then the root
node will split. We will get one more level as level-1.

Steps:

1) Search to determine which leaf node will hold a key.

2) If the leaf node have space, insert the key in ascending order.

3) Otherwise, split leaf node’s keys into two parts and promote median
key to the parent.

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

4) If the parent node is full, recursively split and put the median key to its
parent.

5) If a promotion is made to a full root node, split and create a new root
having only the promoted the median key.

SOLVED EXAMPLES

Consider the B-tree of order 4; and insert A,B,C,D,E, F, G, H, I, J.

As given, the order of B-tree = 4.
Thus, maximum number of keys = 3.

The minimum number of keys = {%—l -1=1

AllB]|C

Insert A, B, C:
Insert D: When we try to insert D, overflow occurs. Split the leaf node’s into two
parts and promote the median key to the parent.

Insert E: When we try to insert E, there will be no overflow. So, just insert E.

Insert F: When we will insert F into B-tree, then overflow will occur. Split the leaf
node’s into two parts and promote median keys to the parent.

A Cc HE 7

Insert G: When we will insert G, there will be no overflow as space is already
available.

A c ”E FIIG

Insert H: When we will insert H into B-tree, then overflow will occur, split the leaf
node into two parts and promote the median key to the parent.

A C |TE G||H

: : I i

Insert J: When we will insert J into B-tree, then overflow will occur, split the leaf
node into two parts and promote the median key to the parent. Thus now, parent
node is also full, so split this node also and promote the median key D to above
the level.

. |EICIN

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

Consider the B-tree of order 4.
Insert 2, 5,10,11, 1, 6, 9, 4, 3, 12, 18, 20, 25 into B-tree.

As given, the order of B-tree = 4.

Thus, the minimum number of keys = {%—‘ -1=1

maximum number of keys =4 -1=3

21]5||10

Inert 2, 5, 10:
Insert 11: When we try to insert 11, there will be an overflow. Overflow splits the
leaf node’s into two parts and promotes the median key to the parent.

Insert 1: When we try to insert 1 into B-tree, there will be no overflow.

Insert 6: When we try to insert 6 into B-tree, there will be no overflow.

Insert 9: Leaf node will have overflow now. So split the leaf nodes into two parts
and promote median key to the parent.

aigl

Insert 4 and 3: When we insert 4, there will be no overflow, but when we insert
3 there will be overflow and thus split the leaf node and into two parts and
promote the median key, which is k = 2 to parent.

1 3|14 HES H‘lO i

Insert 12: When we try to insert 12 then there will be no overflow.

25|9|

1 31|14 HG H']O 1M]]12

Insert 18: Now leaf node will have overflow; thus, we will split leaf node and
promote 11 to the upper (parent) level.

Further, the parent level will also get overflowed. So, split nodes and promote 5
to upper level. This is shown below.

1 31|14 6 ”‘IO ”12 18

Inset 20: When we try to insert 20 into B-tree then, there will be no overflow

1 3|4 6 ”10 ”12 18120

Insert 25: When we will insert 25, the leaf node will have an overflow, so split the
leaf node and promote key value 18 to parent node.

(221)

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

3|4 6 ”‘IO ”12 ”20 25

Previous Years’ Question 9

A B-tree used as an index for a large database table has four levels,
including the root node. If a new key is inserted in this index, then the
maximum number of nodes that could be newly created in the process
are

1) 5 2) 4 3) 3 4) 2

Sol: Option 1) (GATE-IT-2005)

Deletion from B-tree:
Steps:

1)

2)

3)

4)
5)

6)

If a non-leaf key value is to be deleted, interchange it with its successor
or predecessor and delete it from its new leaf node position.

If a leaf node block stores more than the minimum possible count of
keys, simply delete the targeted key from the leaf node block. Again,
if there exists a minimum count of keys in a leaf node block, the two
immediate sibling leaf nodes are to be considered as described in
further points.

If any sibling leaf node contains more than the minimum permissible
count of keys, transfer the median key value to the parent node and a
key from the parent to the node with deficit of keys.

If both of them contains exactly the minimum allowed count of keys, the
deficit node is merged along with one of the siblings and a parent key.
If the above steps result in to less number of keys in parent node,
repeat all the steps in an upward manner.

If this leaves the parent node with too few keys, then the process is
propagated upward.

Let removing a key from a leaf node leaves |-keys in the leaf node.

i) Ifl> [%-’ —1, then we can stop, i.e. no underflow.

@22

ii) If l < {%—!—1, then this is a condition for underflow and we must

rebalance the tree.

SOLVED EXAMPLES

Consider the B-tree of order 5 given below:

DI|G

Delete F and D from the B-tree.

Since the order of B-tree = 5.

So, the maximum number of keys in leaf/internal node = 4 and the minimum
number of keys in leaf/internal node = {%—! -1=2.

Delete F: Borrow Method; since F is present in the leaf node and the minimum
number of keys which should be present in leaf node is 2. Thus, when we delete
node F, we need to rebalance the B-tree. For that, we will Borrow a node from
one of the siblings if the siblings have more than a minimum number of keys.
Redistribute one key from this sibling to the parent node and one key from the
parent to the deficient node.

CHl[RG

ii) Delete D: Coalesce —» merging method.
D is present in the leaf node, and the minimum number of keys which should
present in the leaf node is 2.
Thus when we delete node D from the leaf; and both immediate siblings
have exactly the minimum number of keys, we will merge deficient node
with one of the sibling node, an one entry from the parent node.

(223)

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

IC G
AllB DI|E HH
Delete it
G
A B @® E ”H

5.5 B* TREES
A variation of B tree that is more efficient in searching for an element.
Hey learners!!

Do you know why we use the B+ tree?

In the B tree, the number of entries that can be present within a node
is less as the structure of the B tree contains a data pointer along with

the search key.

B+ tree eliminates this drawback.

In the B+ tree, the data pointer can be
stored only at the leaf nodes.

Thus, the structure of the leaf node and
internal node both are different.

In the B+ tree, all the key values must be
present in the leaf node.

One leaf node is linked to the other leaf
node so that we can access the search key
in an ordered way.

There are some repeated search field
values present in leaf node that is also
present in internal nodes of the B+ tree.

o

Consider a B tree having search key 12
bytes long, data pointer B bytes long,
block pointer 4 bytes long, and block
size of 1024 bytes. What will be the
maximum number of children a node
can have ?

Rack Your Brain

Internal node: Consider P= order of a B+Tree.

Structure:

1) Internal node can be represented as :
<P, K, P, K, .. Pm-‘l; K. . P> where each P, is tree pointer.

2) Each internal node must have, K, < K, <K, ... < K__

3) For every internal nodes, maximum P tree pointer is possible.

4) Each internal node except the root has atleast [%] tree pointers.

5) Internal node has {%1 —1 to P — 1 search key values.

Root node: The root node contains atleast 2 tree pointers.
Leaf node: Structure of the leaf nodes of a B* tree of order P:
<<K, Pr>,<K,, Pr>, ..., <K ., Pr_> P >

where m < P (order of tree), Pr, = record/data pointer and P
pointing to the next leaf node of B* - tree.

= pointer

next

|_ * P, T R R PP K. Pm.

/\ £\

Fig. 5.11 Non-leaf Structure of a B* Tree

next ¥

| K, |Pr1.| | K, | Pr2| ----- | K, |Pri| ----- | Ko | Pr... | P

Data pointer Pointer to next
leaf node in tree

Fig. 5.12 Leaf Node Structure of a B* Tree

K <K, <K, ... <K__, where m < p (order of tree)
[within each leaf node]
Each leaf node has at least {%—I values.

All leaf nodes need to be at the same level

Note:

An internal node of a B+ tree contains more entries than a B tree.

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

Note:

As we got to know that the structure of leaf nodes and internal nodes are different for a
B+ tree, therefore order can also be different.

e P s the order of internal nodes.

* P_,isthe order for leaf nodes.

e Order of leaf represents maximum number of data pointers in a leaf node.

e Order of non-leaf (internal) node represents maximum number of children a node can

have.

SOLVED EXAMPLES

Consider the data given below for the B+ Tree:

i) Size of the Search key field is 9 bytes long

ii) Size of block = 512 bytes

iii) Size of record pointer = 7 bytes

iv) Size of block pointer = 6 bytes

What will be the order of the leaf node and internal node?

For internal node:

As we know, an internal node of the B+ tree has pointers = P and search key value

Thus, P * (block pointer) + (P — 1) * (key field) < Block Size
= P*(P)+(P-1) (V)< block size

= P*@®)+(P-1)*(9) <512

= 15 P <521

= P=34

- Opon_teat = Order of non-leaf (internal node)

P =34

Structure of Leaf node

[(K,, P) (Kgy P corore (K, PE P |

P (K+ Pr)+ P_<Block size
Where K = search key field
Pr = record pointer
Pb = block pointer

= P_,(@+7)+6<512
= P,,*16<512

506
= leaf S —

16

| Peos = order of leaf = 31

Searching a record with key value K in B*
tree of order P
Algorithm:

Start the search from the root, look
for the largest key value K. in the node,
which is less than equal to key value K.
Follow the pointer P, . to the next value
until reach the leaf node.

| KK, K,

If K'is found to be equal to K in the leaf,
then follow Pr, to search record.
Insertion in B* - tree:

Overflow condition in B* tree: When the
number of search key values exceed“P-1"
then this condition is overflow in B* - tree.
Case 1: Overflow in a leaf node, then,
Split the leaf node into 2 nodes.

First node will contain {(P _1%—‘ values

where [] denotes ceil function.

Second node will contain the remaining
values.

Copy the smallest search key value of
the second node to the parent node.
Case 2: Overflow in non-leaf node then,
Split the non-leaf node into two nodes.

First node will contain (%1—1 values/
keys.

Move the smallest of the remaining keys
to the parent.

®

The order of a leaf node in a B* tree is
the maximum number of (value, data
record pointer) pairs it can hold. Given
that the block size is 1K bytes, data
record pointer is 7 bytes long, the value
field is 9 bytes long and a block pointer
is 6 bytes long, what is the order of the
leaf node?

1) 63

3) 67

Sol: Option 1)

Previous Years’ Question

2) 64
4) 68
(GATE-2007)

o

Which of the following are correct

about B-tree and B* tree?

S1: InaB-tree, everyvalue of the search
field appears at once at some level
in the tree.

S2: An internal node in B* tree with
n pointers have (n + 1) search key
field values.

1) Only S1

2) Only S2

3) Both S1and S2

4) Neither S1 nor S2

Rack Your Brain

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

e Second node will contain remaining keys.

Example: Consider the B* tree of order 5.

TI19(]|13|[15]]

Insert 8

e As the order of B* tree = 5. Thus, the maximum number of search keys
values present inside a leaf = 4.

e When we try to insert K = 8 in the given B* tree, overflow occurs.

e Split the leaf nodes such that the first node contains {(P - 1%-‘ =2 key

value (i.e. 7 and 8).

e Second node will contain the remaining key values (i.e. 9, 13, and 15).

e Smallest search key value of the second node will be copied to the
parent node.

SOLVED EXAMPLES

Construct a B* tree for the insertion sequence

1,4,7,10,17,21,31,25 withP=4and P_, = 4
AsP =4 and P__ = 4 is given. It means maximum number of key value present in
either leaf or non-leaf nodeis P - 1=3.
1) Insert1, 4,7

1(14a]]71|]-e
2) Insert 10 (overflow) ; [(P _1% =2

7
1|4 . 7 |]10 o

3) Insert 17 (No overflow): Insert it into the right leaf.

7

10|17

4) Insert 21 (overflow) calculate [(P_1%—’ :2 split the leaf node

such that the first node will contain 2 elements, and the

remaining elements will be present in other node.

T\|17

10

’717

21

5) Insert 31 (no overflow):

717J_|

10

[

21

31

6) Inert 25 (overflow): Split the leaf node such that the first node

will contain

key values (i.e. 17 and 21), and the second node will contain the
remaining key values (i.e. 25 and 31), and the smallest search key

value i.e 25 will be copied to the parent node.

(] TRLL Qﬂ-l

H17 21

=

k|

Chapter 5

File Organization & Indexing

Chapter 5

File Organization & Indexing

Deletion of an entry from B* trees:

e When we have to delete any entry from Previous Years’ Question Q
B* trees, first it will be deleted from the
leaf node.

e |f the same entry is also present in an
internal node, it is required to remove
that entry from here also.

e Deletion leads to the underflow situation
as it will decrease the number of entries
less than the required one in the leaf
node.

In a B* tree, if the search key value is 8
bytes long, the block size is 512 bytes
and the pointer size is 2B, then the
maximum order of the B* tree is
Sol: Range: 52 to 52.

(GATE-2017 Set-2)

Steps:
e Start at root, find leaf L where entry belongs.
e Remove the entry

i) If L contains at least (%—‘ —1 entries, done.

ii) If L has only {%} ~2 entries.

1) Redistribution of entries means take borrow from the adjacent node whose parents
are the same as L (also known as a sibling).
2) If redistributing fails, merge L and a sibling.
e |f a merge has occurred, then corresponding entry from parent must be deleted.
e Merge could propagate to root, decreasing height.
e |f the deleted entry is present in internal node, replace it with inorder successor.

Example: Consider the B* tree of order P = 5. Deletion sequence: 19, 22
1) Delete 19:

[N
[l T 1] zoffoo]]]| |
1131 0 0 1231 2 S DT 12 R DI D

Delete 19 (No underflow, delete it)

2) Delete 22:

Deleting 22 leads to underflow as [g-‘ —1=2 but leaf contains < 2 entries after deleting

22. Thus, redistribute borrowing from a sibling.

15221
W=l 1 1] | 22 2|

R T T T r[loof [[{lselle={l=2]]=]]

Chapter 5

File Organization & Indexing

Chapter Summary [(E

Files: It is organised as a sequence of records.

Unordered file: Records are placed in no particular order.

Blocking factor: Average number of records per block.
Strategies to store file of records

into block
Spanned Unspanned
Advantage : Disadvantage : Advantage : Disadvantage :
No wastage of Number of block Number of block Wastage of memory.
memory. accesses to accesses to
access a record access a record
increases. reduces.

Techniques for allocating the blocks
of a file on disk.

l l

Continuous Linked Indexed
allocation allocation allocation

File organization: It refers to the organization of the data of a file into records,
blocks and access structure

Types of Access/Search Average blocks to access.
Organization Method a specific record
. Heap Linear Search b/2
i) (unordered) (Sequential scan)
.. Linear Search
i) Ordered (Sequential scan) o
iiii) Ordered Binary Search log, b

There are types of indices based on ordered files (single-level-indexes) and tree
data structures (multilevel indexes, B* trees).

Single Level Index

l l

Primary Clustering Secondary
Index Index Index

Anchor record: The anchor record is the first record in each block of the data file.
Dense index: If an index entry is created for every search key value, then that index
is called the dense index.

Sparse index: If an index is created only for some search key value, then that index
is called the sparse index.

The number of blocks accesses using clustering index > ﬂog2 Bi] + 1 where Bi
refers to the total block count.

The secondary index may be created on an unordered field that is the non-key field
or candidate key.

Number of index entries in secondary index = number of records.

Multilevel index: It is used to speed up the search operations.

Search tree: It contains maximum (P-1) keys, P pointers if P is defined as order of
a search tree.

B-tree and B* trees are special cases of search data-structure trees.

B-tree: A B-tree of order P can be defined as:

(233)

Chapter 5

File Organization & Indexing

Each internal node in the B-tree is of the form
<P, <K, Pr>, P,, <K, Pr,>, <K__

Where m < P (order of tree), Pi is the tree pointer, and Pri is a data pointer.

e All leaf nodes in B-tree are at the same level.

e Order of tree: the order of the tree represents the maximum number of children
(Block pointer) a node can have.

e Time complexity of searching in B-tree = logpn where p = order of B-tree and n =
number of the search key.

	Chapter-05_File Organization _ Indexing

