
ECS-165A 136

8. Query Processing

Goals: Understand the basic concepts underlying the steps
in query processing and optimization and estimating query
processing cost; apply query optimization techniques;

Contents:

• Overview

• Catalog Information for Cost Estimation

• Measures of Query Cost

• Selection

• Join Operations

• Other Operations

• Evaluation and Transformation of Expressions

Query Processing & Optimization

Task: Find an e�cient physical query plan (aka execution plan)
for an SQL query

Goal: Minimize the evaluation time for the query, i.e., compute
query result as fast as possible

Cost Factors: Disk accesses, read/write operations, [I/O, page
transfer] (CPU time is typically ignored)

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 137

Basic Steps in Processing an SQL Query

(System Catalogs)

SQL Query Relational Algebra
Expression

Optimizer

Statistics

Execution PlanEvaluation EngineQuery Result

Data Files

Parser &
Translator

• Parsing and Translating

– Translate the query into its internal form (parse tree).
This is then translated into an expression of the relational
algebra.

– Parser checks syntax, validates relations, attributes and
access permissions

• Evaluation

– The query execution engine takes a physical query plan
(aka execution plan), executes the plan, and returns the
result.

• Optimization: Find the “cheapest” execution plan for a
query

8. Query Processing and Optimization

ludaesch
Highlight

ECS-165A 138

• A relational algebra expression may have many equivalent
expressions, e.g.,

⇡CName(�Price>5000((CUSTOMERS 1 ORDERS) 1 OFFERS))

⇡CName((CUSTOMERS 1 ORDERS) 1 (�Price>5000(OFFERS)))

Representation as logical query plan (a tree):

o

o

CName

Price > 5000 CName

Price > 5000

CUSTOMERS ORDERS OFFERSORDERS

OFFERS

CUSTOMERS

Non-leaf nodes ⌘ operations of relational algebra (with
parameters); Leaf nodes ⌘ relations

• A relational algebra expression can be evaluated in many
ways. An annotated expression specifying detailed evaluation
strategy is called the execution plan (includes, e.g., whether
index is used, join algorithms, . . .)

• Among all semantically equivalent expressions, the one with
the least costly evaluation plan is chosen. Cost estimate of a
plan is based on statistical information in the system catalogs.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 139

Catalog Information for Cost Estimation

Information about relations and attributes:

• NR: number of tuples in the relation R.

• BR: number of blocks that contain tuples of the relation R.

• SR: size of a tuple of R.

• FR: blocking factor; number of tuples from R that fit into one
block (FR = dNR/BRe)

• V(A, R): number of distinct values for attribute A in R.

• SC(A, R): selectivity of attribute A
⌘ average number of tuples of R that satisfy an

equality condition on A.

SC(A, R) = NR/V(A, R).

Information about indexes:

• HTI: number of levels in index I (B+-tree).

• LBI: number of blocks occupied by leaf nodes in index I
(first-level blocks).

• ValI: number of distinct values for the search key.

Some relevant tables in the Oracle system catalogs:
USER TABLES USER TAB COLUMNS USER INDEXES
NUM ROWS NUM DISTINCT BLEVEL
BLOCKS LOW VALUE LEAF BLOCKS
EMPTY BLOCKS HIGH VALUE DISTINCT KEYS
AVG SPACE DENSITY AVG LEAF BLOCKS PER KEY
CHAIN CNT NUM BUCKETS
AVG ROW LEN LAST ANALYZED

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Pencil

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 140

Measures of Query Cost

• There are many possible ways to estimate cost, e.g., based on
disk accesses, CPU time, or communication overhead.

• Disk access is the predominant cost (in terms of time);
relatively easy to estimate; therefore, number of block
transfers from/to disk is typically used as measure.

– Simplifying assumption: each block transfer has the same
cost.

• Cost of algorithm (e.g., for join or selection) depends on
database bu↵er size; more memory for DB bu↵er reduces disk
accesses. Thus DB bu↵er size is a parameter for estimating
cost.

• We refer to the cost estimate of algorithm S as cost(S). We
do not consider cost of writing output to disk.

Selection Operation

�A=a

(R) where a is a constant value, A an attribute of R

• File Scan – search algorithms that locate and retrieve records
that satisfy a selection condition

• S1 – Linear search

cost(S1)= BR

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 141

Selection Operation (cont.)

• S2 – Binary search, i.e., the file ordered based on attribute A
(primary index)

cost(S2) = dlog2(BR)e+

‰
SC(A, R)

FR

ı
� 1

– dlog2(BR)e ⌘ cost to locate the first tuple using binary
search

– Second term ⌘ blocks that contain records satisfying the
selection.

– If A is primary key, then SC(A, R) = 1, hence
cost(S2) = dlog2(BR)e.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 142

• Example (for Employee DB)

– FEmployee = 10;
V(Deptno, Employee) = 50 (di↵erent departments)

– NEmployee = 10, 000 (Relation Employee has 10,000 tuples)

– Assume selection �Deptno=20(Employee) and Employee is
sorted on search key Deptno :

=) 10,000/50 = 200 tuples in Employee belong to
Deptno 20;

(assuming an equal distribution)

200/10 = 20 blocks for these tuples

=) A binary search finding the first block would require
dlog2(1, 000)e = 10 block accesses

Total cost of binary search is 10+20 block accesses
(versus 1,000 for linear search and Employee not sorted by
Deptno).

8. Query Processing and Optimization

ECS-165A 143

• Index scan – search algorithms that use an index (here, a
B+-tree); selection condition is on search key of index

• S3 – Primary index I for A, A primary key, equality A = a

cost(S3) = HTI + 1 (only 1 tuple satisfies condition)

• S4 – Primary index I on non-key A equality A = a

cost(S4) = HTI +

‰
SC(A, R)

FR

ı

• S5 – Non-primary (non-clustered) index on non-key A,
equality A = a

cost(S5) = HTI + SC(A, R)

Worst case: each matching record resides in a di↵erent block.

• Example (Cont.):

– Assume primary (B+-tree) index for attribute Deptno

– 200/10=20 blocks accesses are required to read Employee
tuples

– If B+-tree index stores 20 pointers per (inner) node, then
the B+-tree index must have between 3 and 5 leaf nodes
and the entire tree has a depth of 2
=) a total of 22 blocks must be read.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 144

Selections Involving Comparisons

• Selections of the form �Av(R) or �A�v(R) are implemented
using a file scan or binary search, or by using either a

– S6 – A primary index on A, or

– S7 – A secondary index on A (in this case, typically a
linear file scan may be cheaper; but this depends on the
selectivity of A)

Complex Selections

• General pattern:

– Conjunction – �⇥1^...^⇥n(R)

– Disjunction – �⇥1_..._⇥n(R)

– Negation – �¬⇥(R)

• The selectivity of a condition ⇥

i

is the probability that a tuple
in the relation R satisfies ⇥

i

. If s

i

is the number of tuples in
R that satisfy ⇥

i

, then ⇥

i

’s selectivity is estimated as si/NR.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 145

Join Operations

• There are several di↵erent algorithms that can be used to
implement joins (natural-, equi-, condition-join)
– Nested-Loop Join
– Block Nested-Loop Join
– Index Nested-Loop Join
– Sort-Merge Join
– Hash-Join

• Choice of a particular algorithm is based on cost estimate

• For this, join size estimates are required and in particular
cost estimates for outer-level operations in a relational algebra
expression.

• Example:

Assume the query CUSTOMERS 1 ORDERS (with join
attribute only being CName)

– NCUSTOMERS = 5,000 tuples
– FCUSTOMERS = 20, i.e., BCUSTOMERS = 5,000/20 = 250 blocks

– NORDERS = 10,000 tuples
– FORDERS = 25, i.e., BORDERS = 400 blocks

– V(CName, ORDERS) = 2,500, meaning that in this relation,
on average, each customer has four orders

– Also assume that CName in ORDERS is a foreign key on
CUSTOMERS

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 146

Estimating the Size of Joins

• The Cartesian product R⇥ S results in NR ⇤ NS tuples; each
tuple requires SR + SS bytes.

• If schema(R) \ schema(S) = primary key for R, then a tuple
of S will match with at most one tuple from R.
Therefore, the number of tuples in R1S is not greater than NS

If schema(R) \ schema(S) = foreign key in S referencing R,
then the number of tuples in R1S is exactly NS.

Other cases are symmetric.

• In the example query CUSTOMERS 1 ORDERS, CName in
ORDERS is a foreign key of CUSTOMERS; the result thus
has exactly NORDERS = 10,000 tuples

• If schema(R) \ schema(S) = {A} is not a key for R or S;
assume that every tuple in R produces tuples in R 1 S. Then

the number of tuples in R 1 S is estimated to be:
NR ⇤ NS
V(A, S)

If the reverse is true, the estimate is
NR ⇤ NS
V(A, R)

and the lower of the two estimates is probably the more
accurate one.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 147

• Size estimates for CUSTOMERS 1 ORDERS without using
information about foreign keys:

– V(CName, CUSTOMERS) = 5,000, and
V(CName, ORDERS) = 2,500

– The two estimates are 5,000*10,000/2,500=20,000 and
5,000*10,000/5,000=10,000.

• We choose the lower estimate, which, in this case, is the same
as our earlier computation using foreign key information.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 148

Nested-Loop Join

• Evaluate the condition join R 1
C

S

• for each tuple t

R

in R do begin
for each tuple t

S

in S do begin
check whether pair (t

R

, t

S

) satisfies join condition
if they do, add t

R

� t

S

to the result
end

end

• R is called the outer and S the inner relation of the join.

• Requires no indexes and can be used with any kind of join
condition.

• Worst case: db bu↵er can only hold one block of each relation
=) BR + NR ⇤ BS disk accesses

• Best case: both relations fit into db bu↵er
=) BR + BS disk accesses.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 149

An Improvement: Block Nested-Loop Join

• Evaluate the condition join R 1
C

S

• for each block B

R

of R do begin
for each block B

S

of S do begin
for each tuple t

R

in B

R

do
for each tuple t

S

in B

S

do
check whether pair (t

R

, t

S

)
satisfies join condition
if they do, add t

R

� t

S

to the result
end end end end

• Also requires no indexes and can be used with any kind of
join condition.

• Worst case: db bu↵er can only hold one block of each relation
=) BR + BR ⇤ BS disk accesses.

• Best case: both relations fit into db bu↵er
=) BR + BS disk accesses.

• If smaller relation completely fits into db bu↵er, use that as
inner relation. Reduces the cost estimate to BR + BS disk
accesses.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 150

Block Nested-Loop Join (cont.)

• Some improvements of block nested-loop algorithm

– If equi-join attribute is the key on inner relation, stop inner
loop with first match

– Use M � 2 disk blocks as blocking unit for outer relation,
where M = db bu↵er size in blocks; use remaining two
blocks to bu↵er inner relation and output.
Reduces number of scans of inner relation greatly.

– Scan inner loop forward and backward alternately, to make
use of blocks remaining in bu↵er (with LRU replacement
strategy)

– Use index on inner relation, if available . . .

8. Query Processing and Optimization

ludaesch
Highlight

ECS-165A 151

Index Nested-Loop Join

• If an index is available on the inner loop’s join attribute and
join is an equi-join or natural join, more e�cient index lookups
can replace file scans.

• It is even possible (reasonable) to construct index just to
compute a join.

• For each tuple tR in the outer relation R, use the index to
lookup tuples in S that satisfy join condition with tR

• Worst case: db bu↵er has space for only one page of R and
one page of the index associated with S:

– BR disk accesses to read R, and for each tuple in R, perform
index lookup on S.

– Cost of the join: BR + NR ⇤ c, where c is the cost of a
single selection on S using the join condition.

• If indexes are available on both R and S, use the one with the
fewer tuples as the outer relation.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 152

• Example:

– Compute CUSTOMERS 1 ORDERS, with CUSTOMERS
as the outer relation.

– Let ORDERS have a primary B+-tree index on the join-
attribute CName, which contains 20 entries per index node

– Since ORDERS has 10,000 tuples, the height of the tree is
4, and one more access is needed to find the actual data
records (based on tuple identifier).

– Since NCUSTOMERS is 5,000, the total cost is 250 + 5000 ⇤ 5
= 25,250 disk accesses.

– This cost is lower than the 100,250 accesses needed for a
block nested-loop join.

8. Query Processing and Optimization

ECS-165A 153

Sort-Merge Join

• Basic idea: first sort both relations on join attribute (if not
already sorted this way)

• Join steps are similar to the merge stage in the external
sort-merge algorithm (discussed later)

• Every pair with same value on join attribute must be matched.

1 1
2 2
2 3
3 3
4 5
5

Relation SRelation R

values of join attributes

• If no repeated join attribute values, each tuple needs to be
read only once. As a result, each block is read only once.
Thus, the number of block accesses is BR + BS (plus the cost
of sorting, if relations are unsorted).

• Worst case: all join attribute values are the same. Then the
number of block accesses is BR + BR ⇤ BS.

• If one relation is sorted and the other has a secondary B+-tree
index on the join attribute, a hybrid merge-join is possible.
The sorted relation is merged with the leaf node entries of
the B+-tree. The result is sorted on the addresses (rids) of
the unsorted relation’s tuples, and then the addresses can be
replaced by the actual tuples e�ciently.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 154

Hash-Join

– only applicable in case of equi-join or natural join
– a hash function is used to partition tuples of both relations into

sets that have the same hash value on the join attribute

Partitioning Phase: 2 ⇤ (BR + BS) block accesses
Matching Phase: BR + BS block accesses
(under the assumption that one partition of each relation fits into
the database bu↵er)

Cost Estimates for other Operations

Sorting:

• If whole relation fits into db bu↵er ; quick-sort

• Or, build index on the relation, and use index to read relation
in sorted order.

• Relation that does not fit into db bu↵er ; external sort-merge

1. Phase: Create runs by sorting portions of the relation
in db bu↵er

2. Phase: Read runs from disk and merge runs in sort order

8. Query Processing and Optimization

ECS-165A 155

Duplicate Elimination:

• Sorting: remove all but one copy of tuples having identical
value(s) on projection attribute(s)

• Hashing: partition relation using hash function on projection
attribute(s); then read partitions into bu↵er and
create in-memory hash index; tuple is only inserted
into index if not already present

Set Operations:

• Sorting or hashing

• Hashing: Partition both relations using the same hash
function; use in-memory index for partitions Ri
R [S: if tuple in Ri or in Si, add tuple to result
\: if tuple in Ri and in Si, . . .
�: if tuple in Ri and not in Si, . . .

Grouping and aggregation:

• Compute groups via sorting or hashing.

• Hashing: while groups (partitions) are built, compute
partial aggregate values (for group attribute
A, V(A,R) tuples to store values)

8. Query Processing and Optimization

ECS-165A 156

Evaluation of Expressions

• Strategy 1: materialization. Evaluate one operation at a
time, starting at the lowest level. Use intermediate results
materialized in temporary relations to evaluate next level
operation(s).

o Price > 5000

CName

CUSTOMERS ORDERS OFFERS

• First compute and store �Price>5000(OFFERS); then compute
and store join of CUSTOMERS and ORDERS; finally, join the
two materialized relations and project on to CName.

• Strategy 2: pipelining. evaluate several operations
simultaneously, and pass the result (tuple- or block-wise)
on to the next operation.

In the example above, once a tuple from OFFERS satisfying
selection condition has been found, pass it on to the join.
Similarly, don’t store result of (final) join, but pass tuples
directly to projection.

• Much cheaper than materialization, because temporary
relations are not generated and stored on disk.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 157

Evaluation of Expressions (cont.)

• Pipelining is not always possible, e.g., for all operations that
include sorting (blocking operation).

• Pipelining can be executed in either demand driven or producer
driven fashion.

8. Query Processing and Optimization

ludaesch
Highlight

ECS-165A 158

Transformation of Relational Expressions

• Generating a query-evaluation plan for an expression of the
relational algebra involves two steps:

1. generate logically equivalent expressions
2. annotate these evaluation plans by specific algorithms and

access structures to get alternative query plans

• Use equivalence rules to transform a relational algebra
expression into an equivalent one.

• Based on estimated cost, the most cost-e↵ective annotated
plan is selected for evaluation. The process is called cost-based
query optimization.

Equivalence of Expressions

Result relations generated by two equivalent relational algebra
expressions have the same set of attributes and contain the same
set of tuples, although their attributes may be ordered di↵erently.

8. Query Processing and Optimization

ludaesch
Highlight

ludaesch
Highlight

ECS-165A 159

Equivalence Rules (for expressions E, E
1

, E
2

, conditions F
i

)

Applying distribution and commutativity of relational algebra
operations

1. �F1(�F2(E)) ⌘ �F1^F2(E)

2. �F(E1 [[,\,�] E2) ⌘ �F(E1) [[,\,�] �F(E2)

3. �F(E1 ⇥ E2) ⌘ �F0(�F1(E1)⇥ �F2(E2));

F ⌘ F0 ^ F1 ^ F2, Fi contains only attributes of Ei, i = 1, 2.

4. �A=B(E1 ⇥ E2) ⌘ E1 1
A=B

E2

5. ⇡

A

(E1 [[,\,�] E2) 6⌘ ⇡

A

(E1) [[,\,�] ⇡

A

(E2)

6. ⇡

A

(E1 ⇥ E2) ⌘ ⇡

A1

(E1) ⇥ ⇡

A2

(E2),

with Ai = A \ { attributes in Ei}, i = 1, 2.

7. E1 [[,\] E2 ⌘ E2 [[,\] E1
(E1 [E2) [E3 ⌘ E1 [(E2 [E3) (the analogous holds for \)

8. E1 ⇥ E2 ⌘ ⇡

A1,A2

(E2 ⇥ E1)

(E1 ⇥ E2)⇥ E3 ⌘ E1 ⇥ (E2 ⇥ E3)

(E1 ⇥ E2)⇥ E3 ⌘ ⇡((E1 ⇥ E3)⇥ E2)

9. E1 1 E2 ⌘ E2 1 E1 (E1 1 E2) 1 E3 ⌘ E1 1 (E2 1 E3)

The application of equivalence rules to a relational algebra
expression is also sometimes called algebraic optimization.

8. Query Processing and Optimization

ludaesch
Highlight

ECS-165A 160

Examples:

• Selection:

– Find the name of all customers who have ordered a product
for more than $5,000 from a supplier located in Davis.

⇡CName(�SAddress like 0%Davis%0 ^ Price>5000

(CUSTOMERS 1 (ORDERS 1 (OFFERS 1 SUPPLIERS))))

Perform selection as early as possible (but take existing
indexes on relations into account)

⇡CName(CUSTOMERS 1 (ORDERS 1

(�Price>5000(OFFERS) 1 (�SAddress like 0%Davis%0(SUPPLIERS)))))

• Projection:

– ⇡CName,account(CUSTOMERS 1 �Prodname=0CD�ROM0(ORDERS))

Reduce the size of argument relation in join

⇡CName,account(CUSTOMERS 1 ⇡CName(�Prodname=0CD�ROM0(ORDERS)))

Projection should not be shifted before selections, because
minimizing the number of tuples in general leads to more
e�cient plans than reducing the size of tuples.

8. Query Processing and Optimization

ECS-165A 161

Join Ordering

• For relations R
1

, R
2

, R
3

,

(R1 1 R2) 1 R3 ⌘ R1 1 (R2 1 R3)

• If (R2 1 R3) is quite large and (R1 1 R2) is small, we choose

(R1 1 R2) 1 R3

so that a smaller temporary relation is computed and
materialized

• Example: List the name of all customers who have ordered a
product from a supplier located in Davis.

⇡CName(�SAddress like 0%Davis%0

(SUPPLIERS 1 ORDERS 1 CUSTOMERS))

ORDERS 1 CUSTOMERS is likely to be a large relation. Because
it is likely that only a small fraction of suppliers are from
Davis, we compute the join

�SAddress like 0%Davis%0(SUPPLIERS 1 ORDERS)

first.

Summary of Algebraic Optimization Rules

1. Perform selection as early as possible

2. Replace Cartesian Product by join whenever possible

3. Project out useless attributes early.

4. If there are several joins, perform most restrictive join first

8. Query Processing and Optimization

ECS-165A 162

Evaluation Plan

An evaluation plan for a query exactly defines what algorithm is
used for each operation, which access structures are used (tables,
indexes, clusters), and how the execution of the operations is
coordinated.

Example of Annotated Evaluation Plan

• Query: List the name of all customers who have ordered a
product that costs more than $5,000.

Assume that for both CUSTOMERS and ORDERS an index on
CName exists: I1(CName, CUSTOMERS), I2(CName, ORDERS).

o
index−nested loop join

block nested−loop join

I (CName, ORDERS) ORDERS

Price > 5000

I (CName, CUSTOMERS)1 2

CName (sort to remove duplicates)

2

pipeline pipeline

get tuples for tids of I

full table scan

8. Query Processing and Optimization

ECS-165A 163

Choice of an Evaluation Plan

• Must consider interaction of evaluation techniques when
choosing evaluation plan: choosing the algorithm with the
least cost for each operation independently may not yield the
best overall algorithm.

• Practical query optimizers incorporate elements of the
following two optimization approaches:

– Cost-based: enumerate all the plans and choose the best
plan in a cost-based fashion.

– Rule-based: Use rules (heuristics) to choose plan.

• Remarks on cost-based optimization:

– Finding a join order for R1 1 R2 1 . . . 1 Rn:

n! di↵erent left-deep join orders
⇤ For example, for n = 9, the number is 362880.
; use of dynamic programming techniques

• Heuristic (or rule-based) optimization transforms a given
query tree by using a set of rules that typically (but not in all
cases) improve execution performance:

– Perform selection early (reduces number of tuples)

– Perform projection early (reduces number of attributes)

– Perform most restrictive selection and join operations
before other similar operations.

8. Query Processing and Optimization

