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8. Query Processing

Goals: Understand the basic concepts underlying the steps
In query processing and optimization and estimating query
processing cost; apply query optimization techniques;

Contents:

e Overview

Catalog Information for Cost Estimation
Measures of Query Cost

Selection

Join Operations

Other Operations

Evaluation and Transformation of Expressions

Query Processing & Optimization

Task: Find an efficient physical query plan (aka execution plan)
for an SQL query

Goal: Minimize the evaluation time for the query, i.e., compute
query result as fast as possible

Cost Factors: Disk accesses, read/write operations, [I/O, page
transfer] (CPU time is typically ignored)
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Basic Steps in Processing an SQL Query

SQL Query Parser & Relational Algebra
Translator Expression

Optimizer

Statistics

Query Result <—@Evaluatlon Engme Executlon Plan| (System Catalogs)

8 @ Data Files

e Parsing and Translating

— Translate the query into its internal form (parse tree).
This is then translated into an expression of the relational
algebra.

Parser checks syntax, validates relations, attributes and
access permissions

e Evaluation

— The query execution engine takes a physical query plan
(aka execution plan), executes the plan, and returns the
result.

e Optimization: Find the “cheapest” execution plan for a
query

8. Query Processing and Optimization
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e A relational algebra expression may have many equivalent
expressions, e.g.,

7TCName(O'price>5ooo((CUSTDMERS X DRDER.S) X DFFERS))

WCNme((CUSTOMERS X ORDERS) X (O'price>5ooo(OFFERS)))

Representation as logical query plan (a tree):

T|rCName

o Price > 5000 T|rCName

D> D>
D> OFFERS D>
/ \ / \ <|f Price > 5000

CUSTOMERS ORDERS CUSTOMERS ORDERS OFFERS

Non-leaf nodes = operations of relational algebra (with
parameters); Leaf nodes = relations

e A relational algebra expression can be evaluated in many
ways. An annotated expression specifying detailed evaluation
strategy is called the execution plan (includes, e.g., whether
index is used, join algorithms, . . . )

e Among all semantically equivalent expressions, the one with
the least costly evaluation plan is chosen. Cost estimate of a
plan is based on statistical information in the system catalogs.

8. Query Processing and Optimization
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Catalog Information for Cost Estimation

Information about relations and attributes:

Ng: number of tuples in the relation R.
Br: number of blocks that contain tuples of the relation R.
Sg: size of a tuple of R.

Fr: blocking factor; number of tuples from R that fit into one
block (FR = (NR/BR—‘)

V(A,R): number of distinct values for attribute A in R.
SC(A,R): selectivity of attribute A

= average number of tuples of R that satisfy an
equality condition on A.

SC(A,R) = Na/V(A,R).

Information about indexes:

HT:: number of levels in index I (B™-tree). W

LB:: number of blocks occupied by leaf nodes in index I
(first-level blocks).

Valr: number of distinct values for the search key.

Some relevant tables in the Oracle system catalogs:

USER_TABLES USER_TAB_COLUMNS USER_INDEXES

NUM_ROWS NUM_DISTINCT BLEVEL

BLOCKS LOW_VALUE LEAF_BLOCKS
EMPTY_BLOCKS HIGH_VALUE DISTINCT_KEYS

AVG_SPACE DENSITY AVG_LEAF_BLOCKS_PER_KEY
CHAIN_CNT NUM_BUCKETS

AVG_ROW_LEN LAST_ANALYZED
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Measures of Query Cost

e There are many possible ways to estimate cost, e.g., based on
disk accesses, CPU time, or communication overhead.

e Disk access is the predominant cost (in terms of time);
relatively easy to estimate; therefore, number of block
transfers from/to disk is typically used as measure.

— Simplifying assumption: each block transfer has the same
cost.

e Cost of algorithm (e.g., for join or selection) depends on
database buffer size; more memory for DB buffer reduces disk
accesses. Thus DB buffer size is a parameter for estimating
cost.

e We refer to the cost estimate of algorithm S as cost(.S). We
do not consider cost of writing output to disk.

Selection Operation

oa—q(R) where a is a constant value, A an attribute of R

e File Scan — search algorithms that locate and retrieve records
that satisfy a selection condition

e S1 — Linear search

cost(S1)= By
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Selection Operation (cont.)

e S2 — Binary search, i.e., the file ordered based on attribute A
(primary index)

cost(S2) = [log,(Br)| + [M-‘ —1

Fr
— [log,(Br)| = cost to locate the first tuple using binary

search

— Second term = blocks that contain records satisfying the
selection.

— If A is primary key, then SC(A,R) =1, hence
cost(S2) = [log,(Br)].

8. Query Processing and Optimization
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e Example (for Employee DB)
- FEmployee = 10;
V(Deptno, Employee) = 50 (different departments)

— Ngmpioyee = 10, 000 (Relation Employee has 10,000 tuples)

— Assume selection Opeptno—20(Employee) and Employee is
sorted on search key Deptno :

—> 10,000/50 = 200 tuples in Employee belong to
Deptno 20;

(assuming an equal distribution)
200/10 = 20 blocks for these tuples

—> A binary search finding the first block would require
[log,(1,000)] = 10 block accesses

Total cost of binary search is 10420 block accesses
(versus 1,000 for linear search and Employee not sorted by
Deptno).

8. Query Processing and Optimization
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e Index scan — search algorithms that use an index (here, a
B*-tree); selection condition is on search key of index

e S3 — Primary index I for A, A primary key, equality A = a
cost(S3) = HT; 4+ 1 (only 1 tuple satisfies condition)

e S4 — Primary index I on non-key A equality A = a

s8]

cost(S4) = HT; + |7
Fg

e S5 — Non-primary (non-clustered) index on non-key A,
equality A = a

cost(S5) = HT; + SC(A,R)

Worst case: each matching record resides in a different block.

e Example (Cont.):
— Assume primary (B*-tree) index for attribute Deptno

— 200/10=20 blocks accesses are required to read Employee
tuples

— If BT-tree index stores 20 pointers per (inner) node, then
the BT-tree index must have between 3 and 5 leaf nodes
and the entire tree has a depth of 2
—> a total of 22 blocks must be read.
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Selections Involving Comparisons

e Selections of the form o,<,(R) or oy>,(R) are implemented
using a file scan or binary search, or by using either a

— S6 — A primary index on A, or

— S7 — A secondary index on A (in this case, typically a
linear file scan may be cheaper; but this depends on the
selectivity of A)

Complex Selections

e General pattern:
— Conjunction — gg a...nen(R)
— Disjunction — g, v...ve, (R)
— Negation — o_g(R)

e The selectivity of a condition ©; is the probability that a tuple
in the relation R satisfies ©;. If s; is the number of tuples in
R that satisfy ©;, then ©;'s selectivity is estimated as s; /Nj.

8. Query Processing and Optimization
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Join Operations

There are several different algorithms that can be used to
implement joins (natural-, equi-, condition-join)

— Nested-Loop Join

— Block Nested-Loop Join

— Index Nested-Loop Join

— Sort-Merge Join

— Hash-Join

Choice of a particular algorithm is based on cost estimate

For this, join size estimates are required and in particular
cost estimates for outer-level operations in a relational algebra
expression.

Example:

Assume the query CUSTOMERS X ORDERS (with join
attribute only being CName)

— Ncystamers = 5,000 tuples
- FCUSTOMERS = 20, i.e., BCUSTOMERS = 5,000/20 = 250 blOCkS

— Norprrs = 10,000 tUpleS
- FORDERS = 25, i.e., BORDERS = 400 blocks

— V(CName, ORDERS) = 2,500, meaning that in this relation,
on average, each customer has four orders

— Also assume that CName in ORDERS is a foreign key on
CUSTOMERS

8. Query Processing and Optimization
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Estimating the Size of Joins

e The Cartesian product R X S results in Ny * Ng tuples; each
tuple requires Sg + Sg bytes.

e If schema(R) N schema(S) = primary key for R, then a tuple
of S will match with at most one tuple from R.
Therefore, the number of tuples in RXS is not greater than Ng

If schema(R) N schema(S) = foreign key in S referencing R,
then the number of tuples in RXS is exactly Ng.

Other cases are symmetric.

e In the example query CUSTOMERS X ORDERS, CName in
ORDERS is a foreign key of CUSTOMERS; the result thus
has exactly Ngrpers = 10,000 tuples

e If schema(R) N schema(S) = {A} is not a key for R or S;
assume that every tuple in R produces tuples in R XI'S. Then

. . . Ng * Ng
the number of tuples in R X' S is estimated to be:
V(A,S)
. . . Ny * Ng
If the reverse is true, the estimate is
V(A,R)

and the lower of the two estimates is probably the more
accurate one.

8. Query Processing and Optimization
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e Size estimates for CUSTOMERS X ORDERS without using
information about foreign keys:
— V(CName, CUSTOMERS) = 5,000, and
V(CName, ORDERS) = 2,500

— The two estimates are 5,000*10,000/2,500=20,000 and
5,000*10,000/5,000=10,000.

e We choose the lower estimate, which, in this case, is the same
as our earlier computation using foreign key information.

8. Query Processing and Optimization
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Nested-Loop Join

Evaluate the condition join R X S

for each tuple tr in R do begin
for each tuple tg in S do begin
check whether pair (tg, ts) satisfies join condition
if they do, add tr o tg to the result
end
end

R is called the outer and S the inner relation of the join.

Requires no indexes and can be used with any kind of join
condition.

Worst case: db buffer can only hold one block of each relation
— By + Ny * Bg disk accesses

Best case: both relations fit into db buffer
—> B + Bg disk accesses.

8. Query Processing and Optimization
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An Improvement: Block Nested-Loop Join

Evaluate the condition join R X S

for each block Br of R do begin
for each block Bg of S do begin
for each tuple tg in By do
for each tuple tgs in Bs do
check whether pair (tg, ts)
satisfies join condition
if they do, add tr o ts to the result
end end end end

Also requires no indexes and can be used with any kind of
join condition.

Worst case: db buffer can only hold one block of each relation
— By -+ By * Bg disk accesses.

Best case: both relations fit into db buffer
— By + Bg disk accesses.

If smaller relation completely fits into db buffer, use that as
inner relation. Reduces the cost estimate to By + Bg disk
accesses.

8. Query Processing and Optimization
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Block Nested-Loop Join (cont.)

Some improvements of block nested-loop algorithm

— If equi-join attribute is the key on inner relation, stop inner
loop with first match

— Use M — 2 disk blocks as blocking unit for outer relation,
where M = db buffer size in blocks; use remaining two
blocks to buffer inner relation and output.

Reduces number of scans of inner relation greatly.

— Scan inner loop forward and backward alternately, to make
use of blocks remaining in buffer (with LRU replacement
strategy)

— Use index on inner relation, if available . . .

8. Query Processing and Optimization
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Index Nested-Loop Join

e If an index is available on the inner loop’s join attribute and

join is an equi-join or natural join, more efficient index lookups
can replace file scans.

e It is even possible (reasonable) to construct index just to
compute a join,

e For each tuple ty in the outer relation R, use the index to
lookup tuples in S that satisfy join condition with ty

e Worst case: db buffer has space for only one page of R and
one page of the index associated with S:

— Bg disk accesses to read R, and for each tuple in R, perform
index lookup on S.

— Cost of the join: By + N * c, where c is the cost of a
single selection on S using the join condition.

e |f indexes are available on both R and S, use the one with the
fewer tuples as the outer relation.

8. Query Processing and Optimization
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e Example:

— Compute CUSTOMERS X ORDERS, with CUSTOMERS
as the outer relation.

— Let ORDERS have a primary BT-tree index on the join-
attribute CName, which contains 20 entries per index node

— Since ORDERS has 10,000 tuples, the height of the tree is
4, and one more access is needed to find the actual data
records (based on tuple identifier).

— Since Ncystomers 1S 5,000, the total cost is 250 + 5000 * 5
— 25,250 disk accesses.

— This cost is lower than the 100,250 accesses needed for a
block nested-loop join.

8. Query Processing and Optimization
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Sort-Merge Join

e Basic idea: first sort both relations on join attribute (if not
already sorted this way)

e Join steps are similar to the merge stage in the external
sort-merge algorithm (discussed later)

e Every pair with same value on join attribute must be matched.

values of join attributes

e N

Relation R Relation S

BRERE

-

[l ]o]o]—]

e If no repeated join attribute values, each tuple needs to be
read only once. As a result, each block is read only once.
Thus, the number of block accesses is By + Bs (plus the cost
of sorting, if relations are unsorted).

e Worst case: all join attribute values are the same. Then the
number of block accesses is By + By * Bg.

e If one relation is sorted and the other has a secondary B -tree
index on the join attribute, a hybrid merge-join is possible.
The sorted relation is merged with the leaf node entries of
the BT-tree. The result is sorted on the addresses (rids) of
the unsorted relation’s tuples, and then the addresses can be
replaced by the actual tuples efficiently.

8. Query Processing and Optimization
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Hash-Join

— only applicable in case of equi-join or natural join
— a hash function is used to partition tuples of both relations into
sets that have the same hash value on the join attribute

Partitioning Phase: 2 * (Bg 4+ Bs) block accesses

Matching Phase: By + Bs block accesses

(under the assumption that one partition of each relation fits into
the database buffer)

Cost Estimates for other Operations

Sorting:

e If whole relation fits into db buffer ~» quick-sort

e Or, build index on the relation, and use index to read relation
in sorted order.

e Relation that does not fit into db buffer ~» external sort-merge
1. Phase: Create runs by sorting portions of the relation

in db buffer
2. Phase: Read runs from disk and merge runs in sort order

8. Query Processing and Optimization
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Duplicate Elimination:

e Sorting: remove all but one copy of tuples having identical
value(s) on projection attribute(s)

e Hashing: partition relation using hash function on projection
attribute(s); then read partitions into buffer and
create in-memory hash index; tuple is only inserted
into index if not already present

Set Operations:

e Sorting or hashing

e Hashing: Partition both relations using the same hash
function; use in-memory index for partitions R;
R U S: if tuple in Ry or in S5, add tuple to result
N: if tuple in R; and in S5, . . .
—: if tuple in Ry and not in S;, . . .

Grouping and aggregation:
e Compute groups via sorting or hashing.
e Hashing: while groups (partitions) are built, compute

partial aggregate values (for group attribute
A, V(A,R) tuples to store values)

8. Query Processing and Optimization
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Evaluation of Expressions

e Strategy 1. materialization. Evaluate one operation at a
time, starting at the lowest level. Use intermediate results
materialized in temporary relations to evaluate next level
operation(s).

T
‘ CName

/
/ \ \ Price>5000

CUSTOMERS ORDERS OFFERS

e First compute and store oprice~5000( OFFERS); then compute
and store join of CUSTOMERS and ORDERS; finally, join the
two materialized relations and project on to CName.

e Strategy 2: pipelining. evaluate several operations
simultaneously, and pass the result (tuple- or block-wise)
on to the next operation.

In the example above, once a tuple from OFFERS satisfying
selection condition has been found, pass it on to the join.
Similarly, don't store result of (final) join, but pass tuples
directly to projection.

e Much cheaper than materialization, because temporary
relations are not generated and stored on disk.

8. Query Processing and Optimization
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Evaluation of Expressions (cont.)

e Pipelining is not always possible, e.g., for all operations that
include sorting (blocking operation).

e Pipelining can be executed in either demand driven or producer
driven fashion.

8. Query Processing and Optimization
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Transformation of Relational Expressions

e Generating a query-evaluation plan for an expression of the
relational algebra involves two steps:

1. generate logically equivalent expressions
2. annotate these evaluation plans by specific algorithms and
access structures to get alternative query plans

e Use equivalence rules to transform a relational algebra
expression into an equivalent one.

e Based on estimated cost, the most cost-effective annotated
plan is selected for evaluation. The process is called cost-based
query optimization.

Equivalence of Expressions

Result relations generated by two equivalent relational algebra
expressions have the same set of attributes and contain the same
set of tuples, although their attributes may be ordered differently.

8. Query Processing and Optimization
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Equivalence Rules (for expressions E, E;, E2, conditions F;)

Applying distribution and commutativity of relational algebra
operations

1.

2.

or,(0r,(E)) = or, r,(E)
or(E; [U, N, =] E2) = o%(Ey) [U, N, —] or(Ez)

or(E1 X Ea) = oro(0r1(E1) X or2(Ea));
F = FO A F1 A F2, Fi contains only attributes of E;, 1 = 1, 2.

JA:B(El X E2> = E, AD:qB Eo

ma(Es [U, N, —] Eo) Z wa(Ed) [U, N, —] 7a(Es)

7TA(E1 X EQ) Eﬂ'Al(El) X 7TA2(E2),
with Ai = A N { attributes in E; },i = 1, 2.

Eq [U, ﬂ] E, = E, [U, ﬂ] Eq
(E;t UE;) UE3 = E; U (E; UE3) (the analogous holds for M)

E1 X Ey = 7TA1,A2(E2 X E1)
(El X EQ) X Es = E4 X (EQ X E3)
(El X EQ) X E3 W((El X E3) X Eg)

E{ XE, = E, X E; (Eleg)MEg,EElM(EQME:g,)

The application of equivalence rules to a relational algebra
expression is also sometimes called algebraic optimization.

8. Query Processing and Optimization
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Examples:

e Selection:

— Find the name of all customers who have ordered a product
for more than $5,000 from a supplier located in Davis.

TeoNane (T spddress 1ike /%Davis%/ A Price>5000
(CUSTOMERS X (ORDERS M (OFFERS X SUPPLIERS))))

Perform selection as early as possible (but take existing
indexes on relations into account)

Trcname (CUSTOMERS X! (ORDERS X
(JPrice>5000(OFFERS) X (USAddress like /%Davis%’<SUPPLIER‘S)))))

e Projection:
— TcName,account (CUSTOMERS X 0p, o 4name—’cp—raov’ (ORDERS) )

Reduce the size of argument relation in join
T oName, account (CUSTOMERS X Teyane (Oprognane—’c_row’ (ORDERS)))
Projection should not be shifted before selections, because

minimizing the number of tuples in general leads to more
efficient plans than reducing the size of tuples.

8. Query Processing and Optimization
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Join Ordering

e For relations Ry, Ry, Rg,

(R1 NRQ) NR3 = R; X (R2 NR3)

e If (Ry X R3) is quite large and (R; X Ry) is small, we choose

(Ry X Ry) X Rg

so that a smaller temporary relation is computed and
materialized

Example: List the name of all customers who have ordered a
product from a supplier located in Dauvis.

WCName(G SAddress like '%Davis%/
(SUPPLIERS >X}XI ORDERS X CUSTOMERS))

ORDERS X CUSTOMERS is likely to be a large relation. Because
it is likely that only a small fraction of suppliers are from
Davis, we compute the join

Ospddress like ’%Davis%’(SUPPLIERS X ORDERS)

first.

Summary of Algebraic Optimization Rules

1.

2.
3.
4

Perform selection as early as possible
Replace Cartesian Product by join whenever possible
Project out useless attributes early.

If there are several joins, perform most restrictive join first

8. Query Processing and Optimization
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Evaluation Plan

An evaluation plan for a query exactly defines what algorithm is
used for each operation, which access structures are used (tables,
indexes, clusters), and how the execution of the operations is
coordinated.

Example of Annotated Evaluation Plan

Query: List the name of all customers who have ordered a
product that costs more than $5,000.

Assume that for both CUSTOMERS and ORDERS an index on
CName exists: I;(CName, CUSTOMERS), I,(CName, ORDERS).

T CName (sort to remove duplicates)

B> block nested—loop join

get tuples for tldV \
P> index—nested loop join

O Price > 5000

p1V \pehne full table scan

I;(CName, CUSTOMERS) I(CName, ORDERS) ORDERS

8. Query Processing and Optimization
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Choice of an Evaluation Plan

e Must consider interaction of evaluation techniques when
choosing evaluation plan: choosing the algorithm with the
least cost for each operation independently may not yield the
best overall algorithm.

e Practical query optimizers incorporate elements of the
following two optimization approaches:
— Cost-based: enumerate all the plans and choose the best
plan in a cost-based fashion.
— Rule-based: Use rules (heuristics) to choose plan.

e Remarks on cost-based optimization:
— Finding a join order for Ry X Ry X ... X Ry:

n! different left-deep join orders
x For example, for n = 9, the number is 362880.
~~ use of dynamic programming techniques

e Heuristic (or rule-based) optimization transforms a given
query tree by using a set of rules that typically (but not in all
cases) improve execution performance:

— Perform selection early (reduces number of tuples)
— Perform projection early (reduces number of attributes)

— Perform most restrictive selection and join operations
before other similar operations.

8. Query Processing and Optimization



