PARALLEL AND DISTRIBUTED
DATABASES

Unit Structure:

1.1
1.2

1.3

1.4

1.5

1.6

Architectures for Parallel Databases

Parallel Query Evaluation

1.2.1 Data Partitioning

1.2.2 Parallelizing Sequential Operator Evaluation Code
Parallelizing Individual Operations

1.3.1 Bulk Loading and Scanning

1.3.2 Sorting

1.3.3 Joins

Distributed Databases

1.4.1 Introduction to DBMS

1.4.2 Architecture of DDBs

Storing data in DDBs

1.5.1 Fragmentation

1.5.2 Replication

1.5.3 Distributed catalog management

1.5.4 Distributed query processing
Distributed concurrency control and recovery

1.6.1 Concurrency Control and Recovery in Distributed

Databases

1.6.2 Lock management can be distributed across sites in

many ways
1.6.3 Distributed Deadlock
1.6.4 Distributed Recovery

A parallel database system is one that seeks to improve
performance through parallel implementation of various operations

such as loading data, building indexes, and evaluating queries.

In a distributed database system, data is physically stored
across several sites, and each site is typically managed by a DBMS

that is capable of running independently of the other sites.

1.1 ARCHITECTURES FOR PARALLEL DATABASES

Three main architectures are proposed for building parallel
databases:

1. Shared - memory system, where multiple CPUs are attached
to an interconnection network and can access a common
region of main memory.

2. Shared - disk system, where each CPU has a private
memory and direct access to all disks through an
interconnection network.

3. Shared - nothing system, where each CPU has local main
memory and disk space, but no two CPUs can access the
same storage area; all communication between CPUs is
through a network connection.

e T 5SS o &

Fig 1.1 Architectures for Parallel Databases

» Scaling the system is an issue with shared memory and shared
disk architectures because as more CPUs are added, existing
CPUs are slowed down because of the increased contention for
memory accesses and network bandwidth.

» The Shared Nothing Architecture has shown:
a) Linear Speed Up: the time taken to execute
operations decreases in proportion to the increase in
the number of CPU’s and disks

b) Linear Scale Up: the performance is sustained if the
number of CPU’s and disks are increased in
proportion to the amount of data.

6

1.2. PARALLEL QUERY EVALUATION

Parallel evaluation of a relational query in a DBMS with a
shared-nothing architecture is discussed. Parallel execution of a
single query has been emphasized.

A relational query execution plan is a graph of relational algebra
operators and the operators in a graph can be executed in
parallel. If an operator consumes the output of a second
operator, we have pipelined parallelism.

Each individual operator can also be executed in parallel by
partitioning the input data and then working on each partition in
parallel and then combining the result of each partition. This
approach is called Data Partitioned parallel Evaluation.

1.2.1 Data Partitioning:

Here large datasets are partitioned horizontally across

several disk, this enables us to exploit the 1/0O bandwidth of the
disks by reading and writing them in parallel. This can be done in
the following ways:

a.

b.

a. Round Robin Partitioning
b. Hash Partitioning
c. Range Partitioning

Round Robin Partitioning :If there are n processors, the i
tuple is assigned to processor i mod n

Hash Partitioning : A hash function is applied to (selected
fields of) a tuple to determine its processor.

Hash partitioning has the additional virtue that it keeps data
evenly distributed even if the data grows and shrinks over time.

Range Partitioning : Tuples are sorted (conceptually), and n
ranges are chosen for the sort key values so that each range
contains roughly the same number of tuples; tuples in range i
are assigned to processor |.

Range partitioning can lead to data skew; that is, partitions with
widely varying numbers of tuples across partitions or disks.
Skew causes processors dealing with large partitions to become
performance bottlenecks.

1.2.2 Parallelizing Sequential Operator Evaluation Code:

Input data streams are divided into parallel data streams.

The output of these streams are merged as needed to provide as

7

inputs for a relational operator, and the output may again be split as
needed to parallelize subsequent processing.

1.3. PARALLELIZING INDIVIDUAL OPERATIONS

Various operations can be implemented in parallel in a
sharednothing architecture.

1.3.1 Bulk Loading and Scanning:

Pages can be read in parallel while scanning a relation and the
retrieved tuples can then be merged, if the relation is partitioned
across several disks.

If a relation has associated indexes, any sorting of data entries
required for building the indexes during bulk loading can also be
done in parallel.

1.3.2 Sorting:

Sorting could be done by redistributing all tuples in the relation
using range partitioning.

Ex. Sorting a collection of employee tuples by salary whose
values are in a certain range.

For N processors each processor gets the tuples which lie in
range assigned to it. Like processor 1 contains all tuples in
range 10 to 20 and so on.

Each processor has a sorted version of the tuples which can
then be combined by traversing and collecting the tuples in the
order on the processors (according to the range assigned)

The problem with range partitioning is data skew which limits
the scalability of the parallel sort. One good approach to range
partitioning is to obtain a sample of the entire relation by taking
samples at each processor that initially contains part of the
relation. The (relatively small) sample is sorted and used to
identify ranges with equal numbers of tuples. This set of range
values, called a splitting vector, is then distributed to all
processors and used to range partition the entire relation.

1.3.3 Joins:

Here we consider how the join operation can be parallelized

Consider 2 relations A and B to be joined using the age
attribute. A and B are initially distributed across several disks in
a way that is not useful for join operation

8

= So we have to decompose the join into a collection of k smaller
joins by partitioning both A and B into a collection of k logical
partitions.

= |f same partitioning function is used for both A and B then the
union of k smaller joins will compute to the join of A and B.

1.4 DISTRIBUTED DATABASES

» The abstract idea of a distributed database is that the data
should be physically stored at different locations but its
distribution and access should be transparent to the user.

1.4.1 Introduction to DBMS:
A Distributed Database should exhibit the following properties:

1) Distributed Data Independence: - The user should be able
to access the database without having the need to know the
location of the data.

2) Distributed Transaction Atomicity: - The concept of
atomicity should be distributed for the operation taking place
at the distributed sites.

» Types of Distributed Databases are:-

a) Homegeneous Distributed Database is where the
data stored across multiple sites is managed by same
DBMS software at all the sites.

b) Heterogeneous Distributed Database is where
multiple sites which may be autonomous are under
the control of different DBMS software.

1.4.2 Architecture of DDBs :
There are 3 architectures: -

1.4.2.1Client-Server:

= A Client-Server system has one or more client processes
and one or more server processes, and a client process
can send a query to any one server process. Clients are
responsible for user-interface issues, and servers
manage data and execute transactions.

» Thus, a client process could run on a personal computer
and send queries to a server running on a mainframe.

Advantages: -

1. Simple to implement because of the centralized
server and separation of functionality.

2. Expensive server machines are not underutilized with
simple user interactions which are now pushed on to
inexpensive client machines.

3. The users can have a familiar and friendly client side
user interface rather than unfamiliar and unfriendly
server interface

1.4.2.2 Collaborating Server:

1.4.2.3

In the client sever architecture a single query cannot be
split and executed across multiple servers because the
client process would have to be quite complex and
intelligent enough to break a query into sub queries to be
executed at different sites and then place their results
together making the client capabilities overlap with the
server. This makes it hard to distinguish between the client
and server

In Collaborating Server system, we can have collection of
database servers, each capable of running transactions
against local data, which cooperatively execute
transactions spanning multiple servers.

When a server receives a query that requires access to
data at other servers, it generates appropriate sub queries
to be executed by other servers and puts the results
together to compute answers to the original query.

Middleware:

Middleware system is as special server, a layer of software
that coordinates the execution of queries and transactions
across one or more independent database servers.

The Middleware architecture is designed to allow a single
query to span multiple servers, without requiring all
database servers to be capable of managing such multi
site execution strategies. It is especially attractive when
trying to integrate several legacy systems, whose basic
capabilities cannot be extended.

We need just one database server that is capable of
managing queries and transactions spanning multiple
servers; the remaining servers only need to handle local
queries and transactions.

10

1.5 STORING DATA IN DDBS

Data storage involved 2 concepts

1. Fragmentation
2. Replication

1.5.1 Fragmentation:

= |t is

the process in which a relation is broken into smaller

relations called fragments and possibly stored at different sites.
= ltis of 2 types

1

. Horizontal Fragmentation where the original relation is

broken into a number of fragments, where each fragment
is a subset of rows.

The union of the horizontal fragments should reproduce
the original relation.

2. Vertical Fragmentation where the original relation is

broken into a number of fragments, where each fragment
consists of a subset of columns.

The system often assigns a unique tuple id to each tuple
in the original relation so that the fragments when joined
again should from a lossless join.

The collection of all vertical fragments should reproduce
the original relation.

1.5.2 Replication:

" Replication occurs when we store more than one copy of a
relation or its fragment at multiple sites.

= Advantages:-

1.

Increased availability of data: If a site that contains a
replica goes down, we can find the same data at other
sites. Similarly, if local copies of remote relations are
available, we are less vulnerable to failure of
communication links.

Faster query evaluation: Queries can execute faster by
using a local copy of a relation instead of going to a
remote site.

1.5.3 Distributed catalog management :

Naming Object

= |t's related to the unique identification of each fragment
that has been either partitioned or replicated.

11
This can be done by using a global name server that
can assign globally unique names.

This can be implemented by using the following two
fields:-

1. Local name field — locally assigned name by the site where
the relation is created. Two objects at different sites can
have same local names.

2. Birth site field — indicates the site at which the relation is
created and where information about its fragments and
replicas is maintained.

Catalog Structure:

A centralized system catalog is used to maintain the
information about all the transactions in the distributed
database but is vulnerable to the failure of the site
containing the catalog.

This could be avoided by maintaining a copy of the
global system catalog but it involves broadcast of every
change done to a local catalog to all its replicas.

Another alternative is to maintain a local catalog at
every site which keeps track of all the replicas of the
relation.

Distributed Data Independence:

It means that the user should be able to query the
database without needing to specify the location of the
fragments or replicas of a relation which has to be done
by the DBMS

Users can be enabled to access relations without
considering how the relations are distributed as follows:
The local name of a relation in the system catalog is a
combination of a user name and a user-defined relation
name.

When a query is fired the DBMS adds the user name to
the relation name to get a local name, then adds the
user's site-id as the (default) birth site to obtain a global
relation name. By looking up the global relation name in
the local catalog if it is cached there or in the catalog at
the birth site the DBMS can locate replicas of the
relation.

12

1.5.4 Distributed query processing:

» In a distributed system several factors complicates the query
processing.

» One of the factors is cost of transferring the data over network.

» This data includes the intermediate files that are transferred to
other sites for further processing or the final result files that may
have to be transferred to the site where the query result is
needed.

= Although these cost may not be very high if the sites are
connected via a high local n/w but sometime they become quit
significant in other types of network.

= Hence, DDBMS query optimization algorithms consider the goal
of reducing the amount of data transfer as an optimization
criterion in choosing a distributed query execution strategy.

= Consider an EMPLOYEE relation.
= The size of the employee relation is 100 * 10,000=10"6 bytes
» The size of the department relation is 35 * 100=3500 bytes

EMPLOYEE

|Fname |Lname SN |Bdate |Add Gender [Salary [Dnum

10,000 records

Each record is 100 bytes
Fname field is 15 bytes long
SSN field is 9 bytes long
Lname field is 15 bytes long
Dnum field is 4 byte long

DEPARTMENT

Dname Dnumber MGRSSN MgrStartDate

= 100records

= Each record is 35 bytes long

* Dnumber field is 4 bytes long

= Dname field is 10 bytes long

= MGRSSN field is 9 bytes long

= Now consider the following query:

“For each employee, retrieve the employee name and the name
of the department for which the employee works.”

13

= Using relational algebra this query can be expressed as
FNAME, LNAME, DNAME
(EMPLOYEE * DNO=DNUMBER DEPARTMENT)

= If we assume that every employee is related to a department
then the result of this query will include 10,000 records.

= Now suppose that each record in the query result is 40 bytes
long and the query is submitted at a distinct site which is the
result site.

= Then there are 3 strategies for executing this distributed query:

1. Transfer both the EMPLOYEE and the DEPARTMENT
relations to the site 3 that is your result site and perform the
join at that site. In this case a total of 1,000,000 + 3500 =
1,003,500 bytes must be transferred.

2. Transfer the EMPLOYEE relation to site 2 (site where u
have Department relation) and send the result to site 3. the
size of the query result is 40 * 10,000 = 400,000 bytes so
400,000 + 1,000,000 = 1,400,000 bytes must be transferred.

3. Transfer the DEPARTEMNT relation to site 1 (site where u
have Employee relation) and send the result to site 3. in this
case 400,000 + 3500 = 403,500 bytes must be transferred.

1.5.4.1 Nonjoin Queries in a Distributed DBMS:

» Consider the following two relations:
Sailors (sid: integer, sname:string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: date, rname: string)

» Now consider the following query:
SELECT S.age
FROM Sailors S
WHERE S.rating > 3 AND S.rating <7

» Now suppose that sailor relation is horizontally fragmented
with all the tuples having a rating less than 5 at Shanghais
and all the tuples having a rating greater than 5 at Tokyo.

» The DBMS will answer this query by evaluating it both sites
and then taking the union of the answer.

1.5.4.2 Joins in a Distributed DBMS:

= Joins of a relation at different sites can be very expensive so
now we will consider the evaluation option that must be
considered in a distributed environment.

14

» Suppose that Sailors relation is stored at London and
Reserves relation is stored at Paris. Hence we will consider
the following strategies for computing the joins for Sailors and
Reserves.

» In the next example the time taken to read one page from disk
(or to write one page to disk) is denoted as td and the time
taken to ship one page (from any site to another site) as ts.

2.5.1 Fetch as needed:

= We can do a page oriented nested loops joins in London with
Sailors as the outer join and for each Sailors page we will
fetch all Reserves pages form Paris.

= If we cache the fetched Reserves pages in London until the
join is complete , pages are fetched only once, but lets
assume that Reserves pages are not cached, just to see how
bad result we can get:

= To scan Sailors the cost is 500td for each Sailors page, plus
the cost of scanning and shipping all of Reserves is
1000(td+ts). Therefore the total cost is 500td+500000(td+ts).

* In addition if the query was not submitted at the London site
then we must add the cost of shipping the result to the query
site and this cost depends on the size of the result.

= Because sid a key for the Sailors. So, the number of tuples in
the result is 100,000 (which is the number of tuples in
Reserves) and each tuple is 40+50=90 bytes long.

= Thus (4000 is the size of the result) 4000/90=44 result tuples
fit on a page and the result size is 100000/44=2273 pages.

1.5.4.3 Ship to one site:
= There are three possibilities to compute the result at one site:
 Ship the Sailors from London to Paris and carry out the join.
» Ship the Reserves form Paris to London and carry out the
join.
» Ship both i.e. Sailors and Reserves to the site where the
query was posed and compute the join.
= And the cost will be:

» The cost of scanning and shipping Sailors form London to
Paris and doing the join at Paris is 500(2td+ ts) + 4500td.

» The cost shipping Reserves form Paris to London and then
doing the join at London is 1000 (2td + ts) + 4500td.

2.5.2

15

Semi joins and bloomjoins:

» Consider the strategy of shipping Reserves from Paris to

London and computing the joins at London.

* [t may happen that some tuples in Reserves do not join with any

tuple in the Sailors, so we could somehow identify the tuples
that are guaranteed not to join with any Sailors tuples and we
could avoid shipping them.

= Semijoins:

The basic idea of Semijoins can be proceed in three steps:

1) At London compute the projection of Sailors onto the
join columns, and ship this projection to Paris.

2) At Paris, compute the natural join of the projection
received from the first site with the Reserves relation.
The result of this join is called the reduction of
Reserves with respect to Sailors because only those
Reserves tuples in the reduction will join with tuples in
the Sailors relation. Therefore, ship the reduction of
Reserves to London, rather than the entire Reserves
relation.

3) At London, compute the join of the reduction of
Reserves with Sailors.

= Computing the cost of Sailors and Reserves using Semijoin:

Assume we have a projection based on first scanning Sailors
and creating a temporary relation with tuples that have only
an sid field, then sorting the temporary and scanning the
sorted temporary to eliminate duplicates.

If we assume that the size of the sid field is 10 bytes, then
the cost of projection is 500td for scanning Sailors, plus
100td for creating the temporary, plus 400td for sorting it,
plus 100td for the final scan, plus 100td for writing the result
into another temporary relation, that is total is 1200td.

500td + 100td + 400td + 100td + 100td = 1200td.

The cost of computing the projection and shipping them it to
Paris is 1200td + 100ts.

The cost of computing the reduction of Reserves is 3 *
(100+1000)=3300td.

= But what is the size of Reduction?

If every sailor holds at least one reservation then the
reduction includes every tuple of Reserves and the effort
invested in shipping the projection and reducing Reserves is
a total waste.

16

» So because of this observation we can say that Semijoin is
especially useful in conjunction with a selection on one of the
relations.

* For example if we want to compute the join of Sailors tuples
with a rating>8 of the Reserves relation, then the size of the
projection on sid for tuples that satisfy the selection would be
just 20% of the original projection that is 20 pages.

» Bloomijoin:
* Bloomjoin is quit similar to semijoins.
* The steps of Bloomjoins are:

Step 1:

The main difference is that a bit-vector is shipped in first step,
instead of the projection of Sailors.

A bit-vector (some chosen tuple) of size k is computed by
hashing each tuple of Sailors into the range 0 to k-1 and
setting bit | to 1 if some tuple hashes to | and 0 otherwise.

Step 2:
The reduction of Reserves is computed by hashing each tuple

of Reserves (using the sid field) into the range 0 to k-1, using
the same hash function which is used to construct the bit-
vector and discard the tuples whose hash values corresponds
to 0 bit.

Because no Sailors tuples hash to such an i and no Sailors
tuples can join with any Reserves tuple that is not in the
reduction.

= Thus the cost of shipping a bit-vector and reducing Reserves
using the vector are less than the corresponding costs is
Semijoins.

1.5.4.4 Cost-Based Query Optimization:

A query involves several operations and optimizing a query in a
distributed database poses some challenges:

= Communication cost must be considered. If we have several
copies of a real time then we will have to decide which copy to
use.

= |f the individual sites are run under the control of different DBMS
then the autonomy of each site must be respected while doing
global query planning.

