Chapter 26: Advanced Transaction
Processing

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

Chapter 26: Advanced Transaction Processing

Transaction-Processing Monitors
Transactional Workflows
m High-Performance Transaction Systems
e Main memory databases
e Real-Time Transaction Systems
® Long-Duration Transactions

® Transaction management in multidatabase systems

Database System Concepts - 6th Edition 26.2 ©Silberschatz, Korth and Sudarshan

q

== [ransaction Processing Monitors

o

® TP monitors initially developed as multithreaded servers to support
large numbers of terminals from a single process.

® Provide infrastructure for building and administering complex transaction
processing systems with a large number of clients and multiple servers.

® Provide services such as:
Presentation facilities to simplify creating user interfaces
Persistent queuing of client requests and server responses
Routing of client messages to servers

Coordination of two-phase commit when transactions access
multiple servers.

® Some commercial TP monitors: CICS from IBM, Pathway from Tandem,
Top End from NCR, and Encina from Transarc

Database System Concepts - 6th Edition 26.3 ©Silberschatz, Korth and Sudarshan

TP Monitor Architectures

O

O -
. =
O _
5 -
remote server files remote server files
clients clients

(a) Process-per-client model (b) Single-server model

remote router servers files remote routers servers files
clients clients

(c) Many-server, single-router model (d) Many-server, many-router model

Database System Concepts - 6th Edition 26.4 ©Silberschatz, Korth and Sudarshan

g TP Monitor Architectures (Cont.)

m Process per client model - instead of individual login session per
terminal, server process communicates with the terminal, handles
authentication, and executes actions.

Memory requirements are high

Multitasking- high CPU overhead for context switching between
processes

m Single process model - all remote terminals connect to a single
server process.

Used in client-server environments

Server process is multi-threaded; low cost for thread switching
No protection between applications

Not suited for parallel or distributed databases

Database System Concepts - 6th Edition 26.5 ©Silberschatz, Korth and Sudarshan

g TP Monitor Architectures (Cont.)

®m Many-server single-router model - multiple application server
processes access a common database; clients communicate with the
application through a single communication process that routes

requests.
Independent server processes for multiple applications
Multithread server process
Run on parallel or distributed database

® Many server many-router model - multiple processes communicate
with clients.

Client communication processes interact with router processes
that route their requests to the appropriate server.

Controller process starts up and supervises other processes.

Database System Concepts - 6th Edition 26.6 ©Silberschatz, Korth and Sudarshan

Detailed Structure of a TP Monitor

input queue

Y

authorization

!

4 lock manager
. recovery manager
application
servers

log manager

| Hdatabase and
resource managers
__/Y & |

network output queue

Database System Concepts - 6th Edition 26.7 ©Silberschatz, Korth and Sudarshan

ﬂ Detailed Structure of a TP Monitor

o

Queue manager handles incoming messages

Some queue managers provide persistent or durable message
gueueing contents of queue are safe even if systems fails.

® Durable queueing of outgoing messages is important

application server writes message to durable queue as part of a
transaction

once the transaction commits, the TP monitor guarantees
message is eventually delivered, regardless of crashes.

ACID properties are thus provided even for messages sent
outside the database

® Many TP monitors provide locking, logging and recovery services,
to enable application servers to implement ACID properties by
themselves.

Database System Concepts - 6th Edition 26.8 ©Silberschatz, Korth and Sudarshan

__-! Application Coordination Using
= TP Monitors

® A TP monitor treats each subsystem as a resource manager that
provides transactional access to some set of resources.

® The interface between the TP monitor and the resource manager is
defined by a set of transaction primitives

® The resource manager interface is defined by the X/Open Distributed
Transaction Processing standard.

® TP monitor systems provide a transactional remote procedure call
(transactional RPC) interface to their service

Transactional RPC provides calls to enclose a series of RPC calls
within a transaction.

Updates performed by an RPC are carried out within the scope of the
transaction, and can be rolled back if there is any failure.

Database System Concepts - 6th Edition 26.9 ©Silberschatz, Korth and Sudarshan

Workflow Systems

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

Transactional Workflows

Workflows are activities that involve the coordinated execution of
multiple tasks performed by different processing entities.

With the growth of networks, and the existence of multiple autonomous
database systems, workflows provide a convenient way of carrying out
tasks that involve multiple systems.

Example of a workflow delivery of an email message, which goes
through several mails systems to reach destination.

Each mailer performs a tasks: forwarding of the mail to the next
mailer.

If a mailer cannot deliver mail, failure must be handled semantically
(delivery failure message).

Workflows usually involve humans: e.g. loan processing, or purchase
order processing.

Database System Concepts - 6th Edition 26.11 ©Silberschatz, Korth and Sudarshan

Examples of Workflows

Workflow Typical Typical processing
application task entity
electronic-mail routing electronic-mail message | mailers
humans,
loan processing form processing application software
humans, application
purchase-order processing | form processing software, DBMSs

Database System Concepts - 6th Edition 26.12 ©Silberschatz, Korth and Sudarshan

Loan Processing Workflow

loan
application

loan officer

customer

verification

loan
disbursement

superior
officer

®m In the past, workflows were handled by creating and forwarding
paper forms

m Computerized workflows aim to automate many of the tasks. But
the humans still play role e.g., in approving loans.

Database System Concepts - 6th Edition 26.13 ©Silberschatz, Korth and Sudarshan

..;*I Transactional Workflows

® Must address following issues to computerize a workflow.

Specification of workflows - detailing the tasks that must be
carried out and defining the execution requirements.

Execution of workflows - execute transactions specified in the
workflow while also providing traditional database safeguards
related to the correctness of computations, data integrity, and
durability.

E.g.: Loan application should not get lost even if system fails.
m Extend transaction concepts to the context of workflows.

m State of a workflow - consists of the collection of states of its
constituent tasks, and the states (i.e., values) of all variables in the
execution plan.

Database System Concepts - 6th Edition 26.14 ©Silberschatz, Korth and Sudarshan

ﬂ Workflow Specification

e,

m Static specification of task coordination:

Tasks and dependencies among them are defined before the
execution of the workflow starts.

Can establish preconditions for execution of each task: tasks are
executed only when their preconditions are satisfied.

Defined preconditions through dependencies:
» Execution states of other tasks.
“task t; cannot start until task t;has ended”
» Output values of other tasks.
“task t; can start If task t; returns a value greater than 25"
» External variables, that are modified by external events.

“task t; must be started within 24 hours of the completion of task t”

Database System Concepts - 6th Edition 26.15 ©Silberschatz, Korth and Sudarshan

Workflow Specification (Cont.)

B Dynamic task coordination
E.g., Electronic mail routing system in which the text to be schedule

for a given mail message depends on the destination address and on
which intermediate routers are functioning.

Database System Concepts - 6th Edition 26.16 ©Silberschatz, Korth and Sudarshan

ﬂ Failure-Automicity Requirements

-,

m Usual ACID transactional requirements are too strong/
unimplementable for workflow applications.

m However, workflows must satisfy some limited transactional
properties that guarantee a process is not left in an inconsistent
state.

m Acceptable termination states - every execution of a workflow will
terminate in a state that satisfies the failure-atomicity requirements
defined by the designer.

Committed - objectives of a workflow have been achieved.

Aborted - valid termination state in which a workflow has failed to
achieve its objectives.

m A workflow must reach an acceptable termination state even in the
presence of system failures.

Database System Concepts - 6th Edition 26.17 ©Silberschatz, Korth and Sudarshan

-! Execution of Workflows

Workflow management systems include:

m Scheduler - program that process workflows by submitting various
tasks for execution, monitoring various events, and evaluation
conditions related to intertask dependencies

m Task agents - control the execution of a task by a processing entity.
® Mechanism to query to state of the workflow system.

Database System Concepts - 6th Edition 26.18 ©Silberschatz, Korth and Sudarshan

,L‘ g—' Workflow Management System Architectures

.

m Centralized - a single scheduler schedules the tasks for all concurrently
executing workflows.

used in workflow systems where the data is stored in a central
database.

easier to keep track of the state of a workflow.

m Partially distributed - has one (instance of a) scheduler for each
workflow.

m Fully distributed - has no scheduler, but the task agents coordinate their
execution by communicating with each other to satisfy task dependencies
and other workflow execution requirements.

used in simplest workflow execution systems
based on electronic malil

Database System Concepts - 6th Edition 26.19 ©Silberschatz, Korth and Sudarshan

-“! Workflow Scheduler

®m I|deally scheduler should execute a workflow only after ensuring that it
will terminate in an acceptable state.

m Consider a workflow consisting of two tasks S; and S,. Let the failure-
atomicity requirement be that either both or neither of the
subtransactions should be committed.

Suppose systems executing S; and S, do not provide prepared-
to-commit states and S; or S, do not have compensating
transactions.

It is then possible to reach a state where one subtransaction is
committed and the other aborted. Both cannot then be brought to
the same state.

Workflow specification is unsafe, and should be rejected.

m Determination of safety by the scheduler is not possible in general,
and is usually left to the designer of the workflow.

Database System Concepts - 6th Edition 26.20 ©Silberschatz, Korth and Sudarshan

Recovery of a Workflow

Ensure that is a failure occurs in any of the workflow-processing
components, the workflow eventually reaches an acceptable
termination state.

Failure-recovery routines need to restore the state information of the
scheduler at the time of failure, including the information about the
execution states of each task. Log status information on stable
storage.

Handoff of tasks between agents should occur exactly once in spite
of failure.

Problem: Repeating handoff on recovery may lead to duplicate
execution of task; not repeating handoff may lead to task not being
executed.

Solution: Persistent messaging systems

Database System Concepts - 6th Edition 26.21 ©Silberschatz, Korth and Sudarshan

e Recovery of a Workflow (Cont.)

m Persistent messages: messages are stored in permanent message
gueue and therefore not lost in case of failure.

Described in detail in Chapter 19 (Distributed Databases)

m Before an agent commits, it writes to the persistent message queue
whatever messages need to be sent out.

® The persistent message system must make sure the messages get
delivered eventually if and only if the transaction commits.

® The message system needs to resend a message when the site
recovers, if the message is not known to have reached its destination.

® Messages must be logged in stable storage at the receiving end to
detect multiple receipts of a message.

Database System Concepts - 6th Edition 26.22 ©Silberschatz, Korth and Sudarshan

High Performance
Transaction Systems

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

g High-Performance Transaction Systems

® High-performance hardware and parallelism help improve the rate
of transaction processing, but are insufficient to obtain high
performance:

Disk 1/0O is a bottleneck — 1/O time (10 milliseconds) has no
decreased at a rate comparable to the increase in processor
speeds.

Parallel transactions may attempt to read or write the same
data item, resulting in data conflicts that reduce effective

parallelism

®m We can reduce the degree to which a database system is disk
bound by increasing the size of the database buffer.

Database System Concepts - 6th Edition 26.24 ©Silberschatz, Korth and Sudarshan

s Main-Memory Database

m Commercial 64-bit systems can support main memories of tens of
gigabytes.
® Memory resident data allows faster processing of transactions.
m Disk-related limitations:
Logging is a bottleneck when transaction rate is high.

Use group-commit to reduce number of output operations (Will
study two slides ahead.)

If the update rate for modified buffer blocks is high, the disk
data-transfer rate could become a bottleneck.

If the system crashes, all of main memory is lost.

Database System Concepts - 6th Edition 26.25 ©Silberschatz, Korth and Sudarshan

.,-'é Main-Memory Database Optimizations

® To reduce space overheads, main-memory databases can use
structures with pointers crossing multiple pages. In disk databases,
the 1/O cost to traverse multiple pages would be excessively high.

® No need to pin buffer pages in memory before data are accessed,
since buffer pages will never be replaced.

®m Design query-processing techniques to minimize space overhead -
avoid exceeding main memory limits during query evaluation.

® |Improve implementation of operations such as locking and latching, so
they do not become bottlenecks.

m Optimize recovery algorithms, since pages rarely need to be written
out to make space for other pages.

Database System Concepts - 6th Edition 26.26 ©Silberschatz, Korth and Sudarshan

o Group Commit

®m I|dea: Instead of performing output of log records to stable storage as
soon as a transaction is ready to commit, wait until

log buffer block is full, or

a transaction has been waiting sufficiently long after being ready to
commit

® Results in fewer output operations per committed transaction, and
correspondingly a higher throughput.

® However, commits are delayed until a sufficiently large group of
transactions are ready to commit, or a transaction has been waiting
long enough-leads to slightly increased response time.

m Above delay acceptable in high-performance transaction systems
since log buffer blocks will fill up quickly.

Database System Concepts - 6th Edition 26.27 ©Silberschatz, Korth and Sudarshan

s Real-Time Transaction Systems

®m |n systems with real-time constraints, correctness of execution involves
both database consistency and the satisfaction of deadlines.

Hard deadline — Serious problems may occur if task is not
completed within deadline

Firm deadline - The task has zero value if it completed after the
deadline.

Soft deadline - The task has diminishing value if it is completed
after the deadline.

®m The wide variance of execution times for read and write operations on
disks complicates the transaction management problem for time-
constrained systems

main-memory databases are thus often used

Waits for locks, transaction aborts, contention for resources remain
as problems even if data is in main memory

m Design of a real-time system involves ensuring that enough processing
power exists to meet deadline without requiring excessive hardware
resources.

Database System Concepts - 6th Edition 26.28 ©Silberschatz, Korth and Sudarshan

...}"*I Long Duration Transactions

Traditional concurrency control techniques do not work

well when user interaction is required:

Long duration: Design edit sessions are very long

Exposure of uncommitted data: E.g., partial update to a
design

Subtasks: support partial rollback

Recoverability: on crash state should be restored even for
yet-to-be committed data, so user work is not lost.

m Performance: fast response time is essential so user time is
not wasted.

Database System Concepts - 6th Edition 26.29 ©Silberschatz, Korth and Sudarshan

...}"*I Long-Duration Transactions

® Represent as a nested transaction
atomic database operations (read/write) at a lowest level.
m If transaction fails, only active short-duration transactions abort.

®m Active long-duration transactions resume once any short duration
transactions have recovered.

®m The efficient management of long-duration waits, and the possibility
of aborts.

B Need alternatives to waits and aborts; alternative techniques must
ensure correctness without requiring serializability.

Database System Concepts - 6th Edition 26.30 ©Silberschatz, Korth and Sudarshan

...;.‘*I Concurrency Control

m Correctness without serializability:

Correctness depends on the specific consistency constraints for
the databases.

Correctness depends on the properties of operations performed
by each transaction.

® Use database consistency constraints as to split the database into
subdatabases on which concurrency can be managed separately.

® Treat some operations besides read and write as fundamental low-
level operations and extend concurrency control to deal with them.

Database System Concepts - 6th Edition 26.31 ©Silberschatz, Korth and Sudarshan

A non-conflict-serializable
schedule that preserves
the sumof A+ B

Database System Concepts - 6th Edition

Concurrency Control (Cont.)

I I

read(A)

A:A-50

write(A) read(B)
B:B-10

read(B) write(B)

B:B+50

write(B) read(A)
A:A+10
write(A)

26.32

©Silberschatz, Korth and Sudarshan

Database System Concepts - 6th Edition 26.33 ©Silberschatz, Korth and Sudarshan

Nested and Multilevel Transactions

A nested or multilevel transaction T is represented by a set
T={t,, t,, ..., t.} of subtransactions and a partial order P on T.

A subtransaction t; in T may abort without forcing T to abort.
Instead, T may either restart t;, or simply choose not to run t,.

If tt commits, this action does not make t;, permanent (unlike the
situation in Chapter 15). Instead, t, commits to T, and may still abort
(or require compensation) if T aborts.

An execution of T must not violate the partial order P, i.e., if an edge t,
— t; appears in the precedence graph, then t, — t, must not be in the
transitive closure of P.

g Nested and Multilevel Transactions (Cont.)

B Subtransactions can themselves be nested/multilevel transactions.
Lowest level of nesting: standard read and write operations.

®m Nesting can create higher-level operations that may enhance
concurrency.

m Types of nested/ multilevel transactions:

Multilevel transaction: subtransaction of T is permitted to release
locks on completion.

Saga: multilevel long-duration transaction.

Nested transaction: locks held by a subtransaction t; of T are
automatically assign to T on completion of t,.

Database System Concepts - 6th Edition 26.34 ©Silberschatz, Korth and Sudarshan

wy Example of Nesting

® Rewrite transaction T, using subtransactions T, and T, that perform
increment or decrement operations:

T, consists of
» T1,1, Which subtracts 50 from A
» T1,,, Which adds 50 to B

®m Rewrite transaction T, using subtransactions T and T, that perform
increment or decrement operations:

T, consists of
» T,,1, Which subtracts 10 from B
» T,,,, Which adds 10 to A

® No ordering is specified on subtransactions; any execution generates
a correct result.

Database System Concepts - 6th Edition 26.35 ©Silberschatz, Korth and Sudarshan

- Compensating Transactions

m Alternative to undo operation; compensating transactions deal with the
problem of cascading rollbacks.

B Instead of undoing all changes made by the failed transaction, action
Is taken to “compensate” for the failure.

m Consider a long-duration transaction T, representing a travel
reservation, with subtransactions T, ;, which makes airline

reservations, T;, which reserves rental cars, and T, ; which reserves a
hotel room.

Hotel cancels the reservation.

Instead of undoing all of T;, the failure of T;,; is compensated for by
deleting the old hotel reservation and making a new one.

Requires use of semantics of the failed transaction.

Database System Concepts - 6th Edition 26.36 ©Silberschatz, Korth and Sudarshan

-y Implementation Issues

® For long-duration transactions to survive system crashes, we must log
not only changes to the database, but also changes to internal system
data pertaining to these transactions.

® Logging of updates is made more complex by physically large data items
(CAD design, document text); undesirable to store both old and new
values.

® Two approaches to reducing the overhead of ensuring the recoverability
of large data items:

Operation logging. Only the operation performed on the data item
and the data-item name are stored in the log.

Logging and shadow paging. Use logging from small data items; use
shadow paging for large data items. Only modified pages need to be
stored in duplicate.

Database System Concepts - 6th Edition 26.37 ©Silberschatz, Korth and Sudarshan

¢ Transaction Management in

= Multidatabase Systems

® Transaction management is complicated in multidatabase systems
because of the assumption of autonomy

Global 2PL -each local site uses a strict 2PL (locks are released
at the end); locks set as a result of a global transaction are
released only when that transaction reaches the end.

» Guarantees global serializability

Due to autonomy requirements, sites cannot cooperate and
execute a common concurrency control scheme

» E.g., no way to ensure that all databases follow strict 2PL
®m Solutions:
provide very low level of concurrent execution, or
use weaker levels of consistency

Database System Concepts - 6th Edition 26.38 ©Silberschatz, Korth and Sudarshan

"il

— Transaction Management

e,

B Local transactions are executed by each local DBMS, outside of the
MDBS system control.

® Global transactions are executed under multidatabase control.

® Local autonomy - local DBMSs cannot communicate directly to
synchronize global transaction execution and the multidatabase has
no control over local transaction execution.

local concurrency control scheme needed to ensure that DBMS'’s
schedule is serializable

in case of locking, DBMS must be able to guard against local
deadlocks.

need additional mechanisms to ensure global serializability

Database System Concepts - 6th Edition 26.39 ©Silberschatz, Korth and Sudarshan

- Two-Level Serializability

B DBMS ensures local serializability among its local transactions,
including those that are part of a global transaction.

® The multidatabase ensures serializability among global transactions
alone- ignoring the orderings induced by local transactions.

m 2LSR does not ensure global serializability, however, it can fulfill
requirements for strong correctness.

1. Preserve consistency as specified by a given set of constraints

2. Guarantee that the set of data items read by each transaction is
consistent

m Global-read protocol: Global transactions can read, but not update,
local data items; local transactions do not have access to global data.
There are no consistency constraints between local and global data
items.

Database System Concepts - 6th Edition 26.40 ©Silberschatz, Korth and Sudarshan

—- Two-Level Serializability (Cont.)

®m Local-read protocol: Local transactions have read access to global
data; disallows all access to local data by global transactions.

®m A transaction has a value dependency if the value that it writes to a
data item at one site depends on a value that it read for a data item on
another site.

®m For strong correctness: No transaction may have a value dependency.

m Global-read-write/local-read protocol: Local transactions have read
access to global data; global transactions may read and write all data;

® No consistency constraints between local and global data items.
® No transaction may have value dependency.

Database System Concepts - 6th Edition 26.41 ©Silberschatz, Korth and Sudarshan

Global Serializability

® Even if no information is available concerning the structure of the
various concurrency control schemes, a very restrictive protocol that
ensures serializability is available.

®m Transaction-graph : a graph with vertices being global transaction
names and site hames.

® Anundirected edge (T;, S,) exists if T, is active at site S,.

m Global serializability is assured if transaction-graph contains no
undirected cycles.

Database System Concepts - 6th Edition 26.42 ©Silberschatz, Korth and Sudarshan

..g Ensuring Global Serializability

m Each site S; has a special data item, called ticket
m Every transaction T, that runs at site S, writes to the ticket at site S,

®m Ensures global transactions are serialized at each site, regardless of
local concurrency control method, so long as the method guarantees
local serializability

®m Global transaction manager decides serial ordering of global
transactions by controlling order in which tickets are accessed

®m However, above protocol results in low concurrency between global
transactions.

Database System Concepts - 6th Edition 26.43 ©Silberschatz, Korth and Sudarshan

End of Chapter 26

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

Figure 26.01

O

O

O

O

O

remote server files remote server files

clients clients

(a) Process-per-client model (b) Single-server model
remote router servers files remote routers servers files
clients clients
(c) Many-server, single-router model (d) Many-server, many-router model

Database System Concepts - 6th Edition 26.45 ©Silberschatz, Korth and Sudarshan

Figure 26.02

O -
O —
e
O o
O -
o |
remote server files remote server files
clients clients
(a) Process-per-client model (b) Single-server model
M—]
-
N
e
-
A
N~
-
remote router servers files remote routers servers files
clients clients
(c) Many-server, single-router model (d) Many-server, many-router model

Database System Concepts - 6th Edition 26.46 ©Silberschatz, Korth and Sudarshan

Figure 26.03

Workflow Typical Typical processing
application task entity
electronic-mail routing electronic-mail message | mailers
humans,
loan processing form processing application software
humans, application
purchase-order processing | form processing software, DBMSs

Database System Concepts - 6th Edition 26.47 ©Silberschatz, Korth and Sudarshan

Figure 26.04

loan
application

y

customer loan officer

verification

loan
disbursement

superior
officer

Database System Concepts - 6th Edition 26.48 ©Silberschatz, Korth and Sudarshan

Figure 26.05

I I

read(A)

A:A-50

write(A) read(B)
B:B-10

read(B) write(B)

B:B+50

write(B) read(A)
A:A+10
write(A)

Database System Concepts - 6th Edition 26.49 ©Silberschatz, Korth and Sudarshan

Extra slides

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

ol Weak Levels Consistency

m Use alternative notions of consistency that do not ensure serializability,
to improve performance.

m Degree-two consistency avoids cascading aborts without necessarily
ensuring serializability.

Unlike two-phase locking, S-locks may be released at any time, and
licks may be acquired at any time.

X-locks be released until the transaction either commits or aborts.

Database System Concepts - 6th Edition 26.51 ©Silberschatz, Korth and Sudarshan

""‘!! Example Schedule with Degree-Two Consistency

e

Nonserializable schedule with degree-two consistency (Figure 20.5) where
T, reads the value if Q before and after that value is written by T,

T T,
lock-S (Q)
read (Q)
unlock (Q) lock-X (Q)
read (Q)
write (Q)
lock-S (Q) unlock (Q)
read (Q)
unlock (Q)

Database System Concepts - 6th Edition 26.52 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6th Edition 26.53 ©Silberschatz, Korth and Sudarshan

Cursor Stability

Form of degree-two consistency designed for programs written in
general-purpose, record-oriented languages (e.g., Pascal, C,
Cobol, PL/I, Fortran).

Rather than locking the entire relation, cursor stability ensures that

The tuple that is currently being processed by the iteration is
locked in shared mode.

Any modified tuples are locked in exclusive mode until the
transaction commits.

Used on heavily accessed relations as a means of increasing
concurrency and improving system performance.

Use is limited to specialized situations with simple consistency
constraints.

	Chapter 26: Advanced Transaction Processing
	Chapter 26: Advanced Transaction Processing
	Transaction Processing Monitors
	TP Monitor Architectures
	TP Monitor Architectures (Cont.)
	TP Monitor Architectures (Cont.)
	Detailed Structure of a TP Monitor
	Detailed Structure of a TP Monitor
	Application Coordination Using �TP Monitors
	Workflow Systems
	Transactional Workflows
	Examples of Workflows
	Loan Processing Workflow
	Transactional Workflows
	Workflow Specification
	Workflow Specification (Cont.)
	Failure-Automicity Requirements
	Execution of Workflows
	Workflow Management System Architectures
	Workflow Scheduler
	Recovery of a Workflow
	Recovery of a Workflow (Cont.)
	High Performance �Transaction Systems
	High-Performance Transaction Systems
	Main-Memory Database
	Main-Memory Database Optimizations
	Group Commit
	Real-Time Transaction Systems
	Long Duration Transactions
	Long-Duration Transactions
	Concurrency Control
	Concurrency Control (Cont.)
	Nested and Multilevel Transactions
	Nested and Multilevel Transactions (Cont.)
	Example of Nesting
	Compensating Transactions
	Implementation Issues
	Transaction Management in Multidatabase Systems
	Transaction Management
	Two-Level Serializability
	Two-Level Serializability (Cont.)
	Global Serializability
	Ensuring Global Serializability
	End of Chapter 26
	Figure 26.01
	Figure 26.02
	Figure 26.03
	Figure 26.04
	Figure 26.05
	Extra slides
	Weak Levels Consistency
	Example Schedule with Degree-Two Consistency
	Cursor Stability

