
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 19: Distributed Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan19.2Database System Concepts - 6th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases

 Distributed Data Storage
 Distributed Transactions
 Commit Protocols

 Concurrency Control in Distributed Databases

 Availability

 Distributed Query Processing

 Heterogeneous Distributed Databases

 Directory Systems

©Silberschatz, Korth and Sudarshan19.3Database System Concepts - 6th Edition

Distributed Database System

 A distributed database system consists of loosely coupled sites that share
no physical component

 Database systems that run on each site are independent of each other

 Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan19.4Database System Concepts - 6th Edition

Homogeneous Distributed Databases

 In a homogeneous distributed database

 All sites have identical software

 Are aware of each other and agree to cooperate in processing user
requests.

 Each site surrenders part of its autonomy in terms of right to change
schemas or software

 Appears to user as a single system

 In a heterogeneous distributed database

 Different sites may use different schemas and software

 Difference in schema is a major problem for query processing

 Difference in software is a major problem for transaction
processing

 Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

©Silberschatz, Korth and Sudarshan19.5Database System Concepts - 6th Edition

Distributed Data Storage

 Assume relational data model

 Replication

 System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

 Fragmentation

 Relation is partitioned into several fragments stored in distinct sites

 Replication and fragmentation can be combined

 Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

©Silberschatz, Korth and Sudarshan19.6Database System Concepts - 6th Edition

Data Replication

 A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

 Full replication of a relation is the case where the relation is stored at all
sites.

 Fully redundant databases are those in which every site contains a
copy of the entire database.

©Silberschatz, Korth and Sudarshan19.7Database System Concepts - 6th Edition

Data Replication (Cont.)

 Advantages of Replication

 Availability: failure of site containing relation r does not result in
unavailability of r is replicas exist.

 Parallelism: queries on r may be processed by several nodes in parallel.

 Reduced data transfer: relation r is available locally at each site
containing a replica of r.

 Disadvantages of Replication
 Increased cost of updates: each replica of relation r must be updated.

 Increased complexity of concurrency control: concurrent updates to
distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

 One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy

©Silberschatz, Korth and Sudarshan19.8Database System Concepts - 6th Edition

Data Fragmentation

 Division of relation r into fragments r1, r2, …, rn which contain
sufficient information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

 Vertical fragmentation: the schema for relation r is split into
several smaller schemas

 All schemas must contain a common candidate key (or
superkey) to ensure lossless join property.

 A special attribute, the tuple-id attribute may be added to
each schema to serve as a candidate key.

©Silberschatz, Korth and Sudarshan19.9Database System Concepts - 6th Edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = branch_name=“Hillside” (account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = branch_name=“Valleyview” (account)

©Silberschatz, Korth and Sudarshan19.10Database System Concepts - 6th Edition

Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = branch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = account_number, balance, tuple_id (employee_info)

©Silberschatz, Korth and Sudarshan19.11Database System Concepts - 6th Edition

Advantages of Fragmentation

 Horizontal:

 allows parallel processing on fragments of a relation

 allows a relation to be split so that tuples are located where
they are most frequently accessed

 Vertical:

 allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

 tuple-id attribute allows efficient joining of vertical fragments

 allows parallel processing on a relation

 Vertical and horizontal fragmentation can be mixed.

 Fragments may be successively fragmented to an arbitrary
depth.

©Silberschatz, Korth and Sudarshan19.12Database System Concepts - 6th Edition

Data Transparency

 Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system

 Consider transparency issues in relation to:

 Fragmentation transparency

 Replication transparency

 Location transparency

©Silberschatz, Korth and Sudarshan19.13Database System Concepts - 6th Edition

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items autonomously.

©Silberschatz, Korth and Sudarshan19.14Database System Concepts - 6th Edition

Centralized Scheme - Name Server

 Structure:

 name server assigns all names

 each site maintains a record of local data items

 sites ask name server to locate non-local data items

 Advantages:

 satisfies naming criteria 1-3

 Disadvantages:

 does not satisfy naming criterion 4

 name server is a potential performance bottleneck

 name server is a single point of failure

©Silberschatz, Korth and Sudarshan19.15Database System Concepts - 6th Edition

Use of Aliases

 Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.

 Fulfills having a unique identifier, and avoids problems associated
with central control.

 However, fails to achieve network transparency.

 Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.

 The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.

©Silberschatz, Korth and Sudarshan19.16Database System Concepts - 6th Edition

Distributed Transactions
and 2 Phase Commit

©Silberschatz, Korth and Sudarshan19.17Database System Concepts - 6th Edition

Distributed Transactions

 Transaction may access data at several sites.

 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes

 Participating in coordinating the concurrent execution of the
transactions executing at that site.

 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.

 Distributing subtransactions at appropriate sites for execution.

 Coordinating the termination of each transaction that originates at
the site, which may result in the transaction being committed at all
sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan19.18Database System Concepts - 6th Edition

Transaction System Architecture

©Silberschatz, Korth and Sudarshan19.19Database System Concepts - 6th Edition

System Failure Modes

 Failures unique to distributed systems:

 Failure of a site.

 Loss of massages

 Handled by network transmission control protocols such as
TCP-IP

 Failure of a communication link

 Handled by network protocols, by routing messages via
alternative links

 Network partition

 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

– Note: a subsystem may consist of a single node

 Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan19.20Database System Concepts - 6th Edition

Commit Protocols

 Commit protocols are used to ensure atomicity across sites

 a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

 not acceptable to have a transaction committed at one site and
aborted at another

 The two-phase commit (2PC) protocol is widely used

 The three-phase commit (3PC) protocol is more complicated and
more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

©Silberschatz, Korth and Sudarshan19.21Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

 Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

 The protocol involves all the local sites at which the transaction
executed

 Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan19.22Database System Concepts - 6th Edition

Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction Ti.

 Ci adds the records <prepare T> to the log and forces log to
stable storage

 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at site determines if it
can commit the transaction

 if not, add a record <no T> to the log and send abort T message
to Ci

 if the transaction can be committed, then:

 add the record <ready T> to the log

 force all records for T to stable storage

 send ready T message to Ci

©Silberschatz, Korth and Sudarshan19.23Database System Concepts - 6th Edition

Phase 2: Recording the Decision

 T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

 Coordinator sends a message to each participant informing it of the
decision (commit or abort)

 Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan19.24Database System Concepts - 6th Edition

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

 Log contain <commit T> record: txn had completed, nothing to be done

 Log contains <abort T> record: txn had completed, nothing to be done

 Log contains <ready T> record: site must consult Ci to determine the
fate of T.

 If T committed, redo (T); write <commit T> record

 If T aborted, undo (T)

 The log contains no log records concerning T:

 Implies that Sk failed before responding to the prepare T message
from Ci

 since the failure of Sk precludes the sending of such a response,
coordinator C1 must abort T

 Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan19.25Database System Concepts - 6th Edition

Handling of Failures- Coordinator Failure

 If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must be
committed.

2. If an active site contains an <abort T> record in its log, then T must be
aborted.

3. If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator Ci cannot have decided to commit T.

 Can therefore abort T; however, such a site must reject any
subsequent <prepare T> message from Ci

4. If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).

 In this case active sites must wait for Ci to recover, to find decision.

 Blocking problem: active sites may have to wait for failed coordinator to
recover.

©Silberschatz, Korth and Sudarshan19.26Database System Concepts - 6th Edition

Handling of Failures - Network Partition

 If the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

 If the coordinator and its participants belong to several partitions:

 Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.

 No harm results, but sites may still have to wait for decision
from coordinator.

 The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

 Again, no harm results

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 6th Edition

Recovery and Concurrency Control

 In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

 The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.

 Recovery algorithms can note lock information in the log.

 Instead of <ready T>, write out <ready T, L> L = list of locks held
by T when the log is written (read locks can be omitted).

 For every in-doubt transaction T, all the locks noted in the
<ready T, L> log record are reacquired.

 After lock reacquisition, transaction processing can resume; the
commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:

 No network partitioning

 At any point, at least one site must be up.

 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.

 Every site is ready to commit if instructed to do so

 Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

 In phase 2 coordinator makes a decision as in 2PC (called the pre-commit
decision) and records it in multiple (at least K) sites

 In phase 3, coordinator sends commit/abort message to all participating
sites,

 Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

 Avoids blocking problem as long as < K sites fail

 Drawbacks:

 higher overheads

 assumptions may not be satisfied in practice

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 6th Edition

Alternative Models of Transaction
Processing

 Notion of a single transaction spanning multiple sites is inappropriate
for many applications

 E.g. transaction crossing an organizational boundary

 No organization would like to permit an externally initiated
transaction to block local transactions for an indeterminate period

 Alternative models carry out transactions by sending messages

 Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates

 Isolation cannot be guaranteed, in that intermediate stages are
visible, but code must ensure no inconsistent states result due
to concurrency

 Persistent messaging systems are systems that provide
transactional properties to messages

 Messages are guaranteed to be delivered exactly once

 Will discuss implementation techniques later

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 6th Edition

Alternative Models (Cont.)
 Motivating example: funds transfer between two banks

 Two phase commit would have the potential to block updates on the
accounts involved in funds transfer

 Alternative solution:

 Debit money from source account and send a message to other
site

 Site receives message and credits destination account

 Messaging has long been used for distributed transactions (even
before computers were invented!)

 Atomicity issue

 once transaction sending a message is committed, message must
guaranteed to be delivered

 Guarantee as long as destination site is up and reachable, code to
handle undeliverable messages must also be available

– e.g. credit money back to source account.

 If sending transaction aborts, message must not be sent

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 6th Edition

Error Conditions with Persistent
Messaging

 Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)

 E.g. if destination account does not exist, failure message must be
sent back to source site

 When failure message is received from destination site, or
destination site itself does not exist, money must be deposited back
in source account

 Problem if source account has been closed

– get humans to take care of problem

 User code executing transaction processing using 2PC does not have to
deal with such failures

 There are many situations where extra effort of error handling is worth
the benefit of absence of blocking

 E.g. pretty much all transactions across organizations

©Silberschatz, Korth and Sudarshan19.32Database System Concepts - 6th Edition

Persistent Messaging and Workflows
 Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps

 E.g. when a bank receives a loan application, it may need to

 Contact external credit-checking agencies

 Get approvals of one or more managers

and then respond to the loan application

 We study workflows in Chapter 25

 Persistent messaging forms the underlying infrastructure for
workflows in a distributed environment

©Silberschatz, Korth and Sudarshan19.33Database System Concepts - 6th Edition

Implementation of Persistent Messaging

 Sending site protocol.

 When a transaction wishes to send a persistent message, it writes a
record containing the message in a special relation
messages_to_send; the message is given a unique message
identifier.

 A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination.

 The message delivery process deletes a message from the relation
only after it receives an acknowledgment from the destination site.

 If it receives no acknowledgement from the destination site, after
some time it sends the message again. It repeats this until an
acknowledgment is received.

 If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked
to deal with the failure.

 Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and
only if the transaction commits.

©Silberschatz, Korth and Sudarshan19.34Database System Concepts - 6th Edition

Implementation of Persistent Messaging
(Cont.)

 Receiving site protocol.

 When a site receives a persistent message, it runs a transaction that
adds the message to a received_messages relation

 provided message identifier is not already present in the relation

 After the transaction commits, or if the message was already present
in the relation, the receiving site sends an acknowledgment back to
the sending site.

 Note that sending the acknowledgment before the transaction
commits is not safe, since a system failure may then result in loss
of the message.

 In many messaging systems, it is possible for messages to get
delayed arbitrarily, although such delays are very unlikely.

 Each message is given a timestamp, and if the timestamp of a
received message is older than some cutoff, the message is
discarded.

 All messages recorded in the received messages relation that are
older than the cutoff can be deleted.

©Silberschatz, Korth and Sudarshan19.35Database System Concepts - 6th Edition

Concurrency Control

©Silberschatz, Korth and Sudarshan19.36Database System Concepts - 6th Edition

Concurrency Control

 Modify concurrency control schemes for use in distributed environment.

 We assume that each site participates in the execution of a commit
protocol to ensure global transaction automicity.

 We assume all replicas of any item are updated

 Will see how to relax this in case of site failures later

©Silberschatz, Korth and Sudarshan19.37Database System Concepts - 6th Edition

Single-Lock-Manager Approach

 System maintains a single lock manager that resides in a single
chosen site, say Si

 When a transaction needs to lock a data item, it sends a lock request
to Si and lock manager determines whether the lock can be granted
immediately

 If yes, lock manager sends a message to the site which initiated
the request

 If no, request is delayed until it can be granted, at which time a
message is sent to the initiating site

©Silberschatz, Korth and Sudarshan19.38Database System Concepts - 6th Edition

Single-Lock-Manager Approach (Cont.)

 The transaction can read the data item from any one of the sites at
which a replica of the data item resides.

 Writes must be performed on all replicas of a data item

 Advantages of scheme:

 Simple implementation

 Simple deadlock handling

 Disadvantages of scheme are:

 Bottleneck: lock manager site becomes a bottleneck

 Vulnerability: system is vulnerable to lock manager site failure.

©Silberschatz, Korth and Sudarshan19.39Database System Concepts - 6th Edition

Distributed Lock Manager

 In this approach, functionality of locking is implemented by lock
managers at each site

 Lock managers control access to local data items

 But special protocols may be used for replicas

 Advantage: work is distributed and can be made robust to failures

 Disadvantage: deadlock detection is more complicated

 Lock managers cooperate for deadlock detection

 More on this later

 Several variants of this approach

 Primary copy

 Majority protocol

 Biased protocol

 Quorum consensus

©Silberschatz, Korth and Sudarshan19.40Database System Concepts - 6th Edition

Primary Copy

 Choose one replica of data item to be the primary copy.

 Site containing the replica is called the primary site for that data
item

 Different data items can have different primary sites

 When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.

 Implicitly gets lock on all replicas of the data item

 Benefit

 Concurrency control for replicated data handled similarly to
unreplicated data - simple implementation.

 Drawback

 If the primary site of Q fails, Q is inaccessible even though other
sites containing a replica may be accessible.

©Silberschatz, Korth and Sudarshan19.41Database System Concepts - 6th Edition

Majority Protocol

 Local lock manager at each site administers lock and unlock requests
for data items stored at that site.

 When a transaction wishes to lock an unreplicated data item Q
residing at site Si, a message is sent to Si ‘s lock manager.

 If Q is locked in an incompatible mode, then the request is delayed
until it can be granted.

 When the lock request can be granted, the lock manager sends a
message back to the initiator indicating that the lock request has
been granted.

©Silberschatz, Korth and Sudarshan19.42Database System Concepts - 6th Edition

Majority Protocol (Cont.)

 In case of replicated data

 If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.

 The transaction does not operate on Q until it has obtained a lock
on a majority of the replicas of Q.

 When writing the data item, transaction performs writes on all
replicas.

 Benefit

 Can be used even when some sites are unavailable

 details on how handle writes in the presence of site failure later

 Drawback

 Requires 2(n/2 + 1) messages for handling lock requests, and (n/2
+ 1) messages for handling unlock requests.

 Potential for deadlock even with single item - e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.

©Silberschatz, Korth and Sudarshan19.43Database System Concepts - 6th Edition

Biased Protocol

 Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.

 Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.

 Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

 Advantage - imposes less overhead on read operations.

 Disadvantage - additional overhead on writes

©Silberschatz, Korth and Sudarshan19.44Database System Concepts - 6th Edition

Quorum Consensus Protocol

 A generalization of both majority and biased protocols

 Each site is assigned a weight.

 Let S be the total of all site weights

 Choose two values read quorum Qr and write quorum Qw

 Such that Qr + Qw > S and 2 * Qw > S

 Quorums can be chosen (and S computed) separately for each
item

 Each read must lock enough replicas that the sum of the site weights
is >= Qr

 Each write must lock enough replicas that the sum of the site weights
is >= Qw

 For now we assume all replicas are written

 Extensions to allow some sites to be unavailable described later

©Silberschatz, Korth and Sudarshan19.45Database System Concepts - 6th Edition

Timestamping

 Timestamp based concurrency-control protocols can be used in
distributed systems

 Each transaction must be given a unique timestamp

 Main problem: how to generate a timestamp in a distributed fashion

 Each site generates a unique local timestamp using either a logical
counter or the local clock.

 Global unique timestamp is obtained by concatenating the unique
local timestamp with the unique identifier.

©Silberschatz, Korth and Sudarshan19.46Database System Concepts - 6th Edition

Timestamping (Cont.)

 A site with a slow clock will assign smaller timestamps

 Still logically correct: serializability not affected

 But: “disadvantages” transactions

 To fix this problem

 Define within each site Si a logical clock (LCi), which generates
the unique local timestamp

 Require that Si advance its logical clock whenever a request is
received from a transaction Ti with timestamp < x,y> and x is
greater that the current value of LCi.

 In this case, site Si advances its logical clock to the value x + 1.

©Silberschatz, Korth and Sudarshan19.47Database System Concepts - 6th Edition

Replication with Weak Consistency

 Many commercial databases support replication of data with weak
degrees of consistency (I.e., without a guarantee of serializabiliy)

 E.g.: master-slave replication: updates are performed at a single
“master” site, and propagated to “slave” sites.

 Propagation is not part of the update transaction: its is decoupled

 May be immediately after transaction commits

 May be periodic

 Data may only be read at slave sites, not updated

 No need to obtain locks at any remote site

 Particularly useful for distributing information

 E.g. from central office to branch-office

 Also useful for running read-only queries offline from the main
database

©Silberschatz, Korth and Sudarshan19.48Database System Concepts - 6th Edition

Replication with Weak Consistency (Cont.)

 Replicas should see a transaction-consistent snapshot of the
database

 That is, a state of the database reflecting all effects of all
transactions up to some point in the serialization order, and no
effects of any later transactions.

 E.g. Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site

 snapshot refresh either by recomputation or by incremental update

 Automatic refresh (continuous or periodic) or manual refresh

©Silberschatz, Korth and Sudarshan19.49Database System Concepts - 6th Edition

Multimaster and Lazy Replication

 With multimaster replication (also called update-anywhere replication)
updates are permitted at any replica, and are automatically
propagated to all replicas

 Basic model in distributed databases, where transactions are
unaware of the details of replication, and database system
propagates updates as part of the same transaction

 Coupled with 2 phase commit

 Many systems support lazy propagation where updates are
transmitted after transaction commits

 Allows updates to occur even if some sites are disconnected from
the network, but at the cost of consistency

©Silberschatz, Korth and Sudarshan19.50Database System Concepts - 6th Edition

Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T1 at site 1, and item Y and transaction T2 at site 2:

T1: write (X)
write (Y)

T2: write (Y)
write (X)

X-lock on X
write (X) X-lock on Y

write (Y)
wait for X-lock on X

Wait for X-lock on Y

Result: deadlock which cannot be detected locally at either site

©Silberschatz, Korth and Sudarshan19.51Database System Concepts - 6th Edition

Centralized Approach

 A global wait-for graph is constructed and maintained in a single site;
the deadlock-detection coordinator

 Real graph: Real, but unknown, state of the system.

 Constructed graph:Approximation generated by the controller
during the execution of its algorithm .

 the global wait-for graph can be constructed when:

 a new edge is inserted in or removed from one of the local wait-
for graphs.

 a number of changes have occurred in a local wait-for graph.

 the coordinator needs to invoke cycle-detection.

 If the coordinator finds a cycle, it selects a victim and notifies all sites.
The sites roll back the victim transaction.

©Silberschatz, Korth and Sudarshan19.52Database System Concepts - 6th Edition

Local and Global Wait-For Graphs

Local

Global

©Silberschatz, Korth and Sudarshan19.53Database System Concepts - 6th Edition

Example Wait-For Graph for False Cycles

Initial state:

©Silberschatz, Korth and Sudarshan19.54Database System Concepts - 6th Edition

False Cycles (Cont.)

 Suppose that starting from the state shown in figure,

1. T2 releases resources at S1

 resulting in a message remove T1  T2 message from the
Transaction Manager at site S1 to the coordinator)

2. And then T2 requests a resource held by T3 at site S2

 resulting in a message insert T2  T3 from S2 to the coordinator

 Suppose further that the insert message reaches before the delete
message

 this can happen due to network delays

 The coordinator would then find a false cycle

T1  T2  T3  T1

 The false cycle above never existed in reality.

 False cycles cannot occur if two-phase locking is used.

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 6th Edition

Unnecessary Rollbacks

 Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of the
transactions was aborted for reasons unrelated to the deadlock.

 Unnecessary rollbacks can result from false cycles in the global wait-
for graph; however, likelihood of false cycles is low.

©Silberschatz, Korth and Sudarshan19.56Database System Concepts - 6th Edition

Availability

©Silberschatz, Korth and Sudarshan19.57Database System Concepts - 6th Edition

Availability

 High availability: time for which system is not fully usable should be
extremely low (e.g. 99.99% availability)

 Robustness: ability of system to function spite of failures of
components

 Failures are more likely in large distributed systems

 To be robust, a distributed system must

 Detect failures

 Reconfigure the system so computation may continue

 Recovery/reintegration when a site or link is repaired

 Failure detection: distinguishing link failure from site failure is hard

 (partial) solution: have multiple links, multiple link failure is likely a
site failure

©Silberschatz, Korth and Sudarshan19.58Database System Concepts - 6th Edition

Reconfiguration

 Reconfiguration:

 Abort all transactions that were active at a failed site

 Making them wait could interfere with other transactions since
they may hold locks on other sites

 However, in case only some replicas of a data item failed, it
may be possible to continue transactions that had accessed
data at a failed site (more on this later)

 If replicated data items were at failed site, update system catalog
to remove them from the list of replicas.

 This should be reversed when failed site recovers, but
additional care needs to be taken to bring values up to date

 If a failed site was a central server for some subsystem, an
election must be held to determine the new server

 E.g. name server, concurrency coordinator, global deadlock
detector

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 6th Edition

Reconfiguration (Cont.)

 Since network partition may not be distinguishable from site failure,
the following situations must be avoided

 Two ore more central servers elected in distinct partitions

 More than one partition updates a replicated data item

 Updates must be able to continue even if some sites are down

 Solution: majority based approach

 Alternative of “read one write all available” is tantalizing but

causes problems

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 6th Edition

Majority-Based Approach

 The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable

 Each replica of each item has a version number which is updated
when the replica is updated, as outlined below

 A lock request is sent to at least ½ the sites at which item replicas
are stored and operation continues only when a lock is obtained
on a majority of the sites

 Read operations look at all replicas locked, and read the value
from the replica with largest version number

 May write this value and version number back to replicas with
lower version numbers (no need to obtain locks on all replicas
for this task)

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 6th Edition

Majority-Based Approach

 Majority protocol (Cont.)

 Write operations

 find highest version number like reads, and set new version
number to old highest version + 1

 Writes are then performed on all locked replicas and version
number on these replicas is set to new version number

 Failures (network and site) cause no problems as long as

 Sites at commit contain a majority of replicas of any updated data
items

 During reads a majority of replicas are available to find version
numbers

 Subject to above, 2 phase commit can be used to update replicas

 Note: reads are guaranteed to see latest version of data item

 Reintegration is trivial: nothing needs to be done

 Quorum consensus algorithm can be similarly extended

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 6th Edition

Read One Write All (Available)

 Biased protocol is a special case of quorum consensus

 Allows reads to read any one replica but updates require all
replicas to be available at commit time (called read one write all)

 Read one write all available (ignoring failed sites) is attractive, but
incorrect

 If failed link may come back up, without a disconnected site ever
being aware that it was disconnected

 The site then has old values, and a read from that site would
return an incorrect value

 If site was aware of failure reintegration could have been
performed, but no way to guarantee this

 With network partitioning, sites in each partition may update same
item concurrently

 believing sites in other partitions have all failed

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 6th Edition

Site Reintegration

 When failed site recovers, it must catch up with all updates that it
missed while it was down

 Problem: updates may be happening to items whose replica is
stored at the site while the site is recovering

 Solution 1: halt all updates on system while reintegrating a site

 Unacceptable disruption

 Solution 2: lock all replicas of all data items at the site, update to
latest version, then release locks

 Other solutions with better concurrency also available

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 6th Edition

Comparison with Remote Backup

 Remote backup (hot spare) systems (Section 17.10) are also
designed to provide high availability

 Remote backup systems are simpler and have lower overhead

 All actions performed at a single site, and only log records shipped

 No need for distributed concurrency control, or 2 phase commit

 Using distributed databases with replicas of data items can provide
higher availability by having multiple (> 2) replicas and using the
majority protocol

 Also avoid failure detection and switchover time associated with
remote backup systems

©Silberschatz, Korth and Sudarshan19.65Database System Concepts - 6th Edition

Coordinator Selection

 Backup coordinators

 site which maintains enough information locally to assume the role
of coordinator if the actual coordinator fails

 executes the same algorithms and maintains the same internal
state information as the actual coordinator fails executes state
information as the actual coordinator

 allows fast recovery from coordinator failure but involves overhead
during normal processing.

 Election algorithms

 used to elect a new coordinator in case of failures

 Example: Bully Algorithm - applicable to systems where every site
can send a message to every other site.

©Silberschatz, Korth and Sudarshan19.66Database System Concepts - 6th Edition

Bully Algorithm

 If site Si sends a request that is not answered by the coordinator within
a time interval T, assume that the coordinator has failed Si tries to
elect itself as the new coordinator.

 Si sends an election message to every site with a higher identification
number, Si then waits for any of these processes to answer within T.

 If no response within T, assume that all sites with number greater than
i have failed, Si elects itself the new coordinator.

 If answer is received Si begins time interval T’, waiting to receive a

message that a site with a higher identification number has been
elected.

©Silberschatz, Korth and Sudarshan19.67Database System Concepts - 6th Edition

Bully Algorithm (Cont.)

 If no message is sent within T’, assume the site with a higher number

has failed; Si restarts the algorithm.

 After a failed site recovers, it immediately begins execution of the
same algorithm.

 If there are no active sites with higher numbers, the recovered site
forces all processes with lower numbers to let it become the
coordinator site, even if there is a currently active coordinator with a
lower number.

©Silberschatz, Korth and Sudarshan19.68Database System Concepts - 6th Edition

Trading Consistency for Availability

©Silberschatz, Korth and Sudarshan19.69Database System Concepts - 6th Edition

What is Consistency?

 Consistency in Databases (ACID):

 Database has a set of integrity constraints

 A consistent database state is one where all integrity constraints
are satisfied

 Each transaction run individually on a consistent database state
must leave the database in a consistent state

 Consistency in distributed systems with replication

 Strong consistency: a schedule with read and write operations on
a replicated object should give results and final state equivalent to
some schedule on a single copy of the object, with order of
operations from a single site preserved

 Weak consistency (several forms)

©Silberschatz, Korth and Sudarshan19.70Database System Concepts - 6th Edition

Availability

 Traditionally, availability of centralized server

 For distributed systems, availability of system to process requests

 For large system, at almost any point in time there’s a good
chance that

 a node is down or even

 Network partitioning

 Distributed consensus algorithms will block during partitions to ensure
consistency

 Many applications require continued operation even during a
network partition

 Even at cost of consistency

©Silberschatz, Korth and Sudarshan19.71Database System Concepts - 6th Edition

Brewer’s CAP Theorem

 Three properties of a system
 Consistency (all copies have same value)
 Availability (system can run even if parts have failed)

 Via replication

 Partitions (network can break into two or more parts, each
with active systems that can’t talk to other parts)

 Brewer’s CAP “Theorem”: You can have at most two of these
three properties for any system

 Very large systems will partition at some point
Choose one of consistency or availablity
 Traditional database choose consistency
 Most Web applications choose availability

 Except for specific parts such as order processing

©Silberschatz, Korth and Sudarshan19.72Database System Concepts - 6th Edition

Replication with Weak Consistency

Many systems support replication of data with weak degrees of
consistency (I.e., without a guarantee of serializabiliy)

 i.e. QR + QW <= S or 2*QW < S

 Usually only when not enough sites are available to
ensure quorum
But sometimes to allow fast local reads

 Tradeoff of consistency versus availability or latency
 Key issues:

 Reads may get old versions

Writes may occur in parallel, leading to inconsistent
versions
Question: how to detect, and how to resolve

– Version vector scheme, Section 25.5.4

©Silberschatz, Korth and Sudarshan19.73Database System Concepts - 6th Edition

Eventual Consistency

 When no updates occur for a long period of time, eventually
all updates will propagate through the system and all the
nodes will be consistent

 For a given accepted update and a given node, eventually
either the update reaches the node or the node is removed
from service

 Known as BASE (Basically Available, Soft state, Eventual
consistency), as opposed to ACID

 Soft state: copies of a data item may be inconsistent

 Eventually Consistent – copies becomes consistent
at some later time if there are no more updates to that
data item

©Silberschatz, Korth and Sudarshan19.74Database System Concepts - 6th Edition

Availability vs Latency

CAP theorem only matters when there is a partition

 Even if partitions are rare, applications may trade off
consistency for latency
E.g. PNUTS allows inconsistent reads to reduce latency
– Critical for many applications

But update protocol (via master) ensures consistency over
availability

 Thus there are two questions :
 If there is partitioning, how does system tradeoff availability for

consistency

else how does system trade off latency for consistency

©Silberschatz, Korth and Sudarshan19.75Database System Concepts - 6th Edition

Distributed Query Processing

©Silberschatz, Korth and Sudarshan19.76Database System Concepts - 6th Edition

Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:

 The cost of a data transmission over the network.

 The potential gain in performance from having several sites
process parts of the query in parallel.

©Silberschatz, Korth and Sudarshan19.77Database System Concepts - 6th Edition

Query Transformation

 Translating algebraic queries on fragments.

 It must be possible to construct relation r from its fragments

 Replace relation r by the expression to construct relation r from its
fragments

 Consider the horizontal fragmentation of the account relation into

account1 =  branch_name = “Hillside” (account)

account2 =  branch_name = “Valleyview” (account)

 The query  branch_name = “Hillside” (account) becomes

 branch_name = “Hillside” (account1  account2)

which is optimized into

 branch_name = “Hillside” (account1)   branch_name = “Hillside” (account2)

©Silberschatz, Korth and Sudarshan19.78Database System Concepts - 6th Edition

Example Query (Cont.)

 Since account1 has only tuples pertaining to the Hillside branch,
we can eliminate the selection operation.

 Apply the definition of account2 to obtain
 branch_name = “Hillside” ( branch_name = “Valleyview” (account)

 This expression is the empty set regardless of the contents of the
account relation.

 Final strategy is for the Hillside site to return account1 as the result
of the query.

©Silberschatz, Korth and Sudarshan19.79Database System Concepts - 6th Edition

Simple Join Processing

 Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented

account depositor branch

 account is stored at site S1

 depositor at S2

 branch at S3

 For a query issued at site SI, the system needs to produce the result at
site SI

©Silberschatz, Korth and Sudarshan19.80Database System Concepts - 6th Edition

Possible Query Processing Strategies

 Ship copies of all three relations to site SI and choose a strategy for
processing the entire locally at site SI.

 Ship a copy of the account relation to site S2 and compute temp1 =
account depositor at S2. Ship temp1 from S2 to S3, and compute
temp2 = temp1 branch at S3. Ship the result temp2 to SI.

 Devise similar strategies, exchanging the roles S1, S2, S3

 Must consider following factors:

 amount of data being shipped

 cost of transmitting a data block between sites

 relative processing speed at each site

©Silberschatz, Korth and Sudarshan19.81Database System Concepts - 6th Edition

Semijoin Strategy

 Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

 Evaluate the expression r1 r2 and obtain the result at S1.

1. Compute temp1 R1  R2 (r1) at S1.
 2. Ship temp1 from S1 to S2.

 3. Compute temp2  r2 temp1 at S2

 4. Ship temp2 from S2 to S1.

 5. Compute r1 temp2 at S1. This is the same as r1 r2.

©Silberschatz, Korth and Sudarshan19.82Database System Concepts - 6th Edition

Formal Definition
 The semijoin of r1 with r2, is denoted by:

r1 r2

 it is defined by:

R1 (r1 r2)

 Thus, r1 r2 selects those tuples of r1 that contributed to r1 r2.

 In step 3 above, temp2=r2 r1.

 For joins of several relations, the above strategy can be extended to a
series of semijoin steps.

©Silberschatz, Korth and Sudarshan19.83Database System Concepts - 6th Edition

Join Strategies that Exploit Parallelism

 Consider r1 r2 r3 r4 where relation ri is stored at site Si. The result

must be presented at site S1.

 r1 is shipped to S2 and r1 r2 is computed at S2: simultaneously r3 is
shipped to S4 and r3 r4 is computed at S4

 S2 ships tuples of (r1 r2) to S1 as they produced;
S4 ships tuples of (r3 r4) to S1

 Once tuples of (r1 r2) and (r3 r4) arrive at S1 (r1 r2) (r3 r4) is
computed in parallel with the computation of (r1 r2) at S2 and the
computation of (r3 r4) at S4.

©Silberschatz, Korth and Sudarshan19.84Database System Concepts - 6th Edition

Heterogeneous Distributed Databases

 Many database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and
software platforms

 Data models may differ (hierarchical, relational , etc.)

 Transaction commit protocols may be incompatible

 Concurrency control may be based on different techniques (locking,
timestamping, etc.)

 System-level details almost certainly are totally incompatible.

 A multidatabase system is a software layer on top of existing
database systems, which is designed to manipulate information in
heterogeneous databases

 Creates an illusion of logical database integration without any
physical database integration

©Silberschatz, Korth and Sudarshan19.85Database System Concepts - 6th Edition

Advantages

 Preservation of investment in existing

 hardware

 system software

 Applications

 Local autonomy and administrative control

 Allows use of special-purpose DBMSs

 Step towards a unified homogeneous DBMS

 Full integration into a homogeneous DBMS faces

 Technical difficulties and cost of conversion

 Organizational/political difficulties

– Organizations do not want to give up control on their data

– Local databases wish to retain a great deal of autonomy

©Silberschatz, Korth and Sudarshan19.86Database System Concepts - 6th Edition

Unified View of Data

 Agreement on a common data model

 Typically the relational model

 Agreement on a common conceptual schema

 Different names for same relation/attribute

 Same relation/attribute name means different things

 Agreement on a single representation of shared data

 E.g. data types, precision,

 Character sets

 ASCII vs EBCDIC

 Sort order variations

 Agreement on units of measure

 Variations in names

 E.g. Köln vs Cologne, Mumbai vs Bombay

©Silberschatz, Korth and Sudarshan19.87Database System Concepts - 6th Edition

Query Processing

 Several issues in query processing in a heterogeneous database

 Schema translation

 Write a wrapper for each data source to translate data to a global
schema

 Wrappers must also translate updates on global schema to updates on
local schema

 Limited query capabilities

 Some data sources allow only restricted forms of selections

 E.g. web forms, flat file data sources

 Queries have to be broken up and processed partly at the source and
partly at a different site

 Removal of duplicate information when sites have overlapping information

 Decide which sites to execute query

 Global query optimization

©Silberschatz, Korth and Sudarshan19.88Database System Concepts - 6th Edition

Mediator Systems

 Mediator systems are systems that integrate multiple heterogeneous
data sources by providing an integrated global view, and providing
query facilities on global view

 Unlike full fledged multidatabase systems, mediators generally do
not bother about transaction processing

 But the terms mediator and multidatabase are sometimes used
interchangeably

 The term virtual database is also used to refer to
mediator/multidatabase systems

©Silberschatz, Korth and Sudarshan19.89Database System Concepts - 6th Edition

Transaction Management in Multidatabases

 Local transactions are executed by each local DBMS, outside of the
MDBS system control.

 Global transactions are executed under multidatabase control.

 Local autonomy - local DBMSs cannot communicate directly to
synchronize global transaction execution and the multidatabase has
no control over local transaction execution.

 local concurrency control scheme needed to ensure that DBMS’s

schedule is serializable

 in case of locking, DBMS must be able to guard against local
deadlocks.

 need additional mechanisms to ensure global serializability

©Silberschatz, Korth and Sudarshan19.90Database System Concepts - 6th Edition

Local vs. Global Serializability

 The guarantee of local serializability is not sufficient to ensure global
serializability.

 As an illustration, consider two global transactions T1 and T2 ,
each of which accesses and updates two data items, A and B,
located at sites S1 and S2 respectively.

 It is possible to have a situation where, at site S1 , T2 follows T1 ,
whereas, at S2 , T1 follows T2, resulting in a nonserializable
global schedule.

 If the local systems permit control of locking behavior and all systems
follow two-phase locking

 the multidatabase system can ensure that global transactions lock
in a two-phase manner

 the lock points of conflicting transactions would then define their
global serialization order.

©Silberschatz, Korth and Sudarshan19.91Database System Concepts - 6th Edition

Cloud Databases

©Silberschatz, Korth and Sudarshan19.92Database System Concepts - 6th Edition

Data Storage on the Cloud

 Need to store and retrieve massive amounts of data

 Traditional parallel databases not designed to scale to 1000’s of
nodes (and expensive)

 Initial needs did not include full database functionality

 Store and retrieve data items by key value is minimum
functionality

 Key-value stores

 Several implementations

 Bigtable from Google,

 HBase, an open source clone of Bigtable

 Dynamo, which is a key-value storage system from Amazon

 Cassandra, from FaceBook

 Sherpa/PNUTS from Yahoo!

©Silberschatz, Korth and Sudarshan19.93Database System Concepts - 6th Edition

Key Value Stores

 Key-value stores support

 put(key, value): used to store values with an associated key,

 get(key): which retrieves the stored value associated with the
specified key.

 Some systems such as Bigtable additionally provide range queries on
key values

 Multiple versions of data may be stored, by adding a timestamp to the
key

©Silberschatz, Korth and Sudarshan19.94Database System Concepts - 6th Edition

Data Representation

 Records in many big data applications need to have a flexible schema
 Not all records have same structure
 Some attributes may have complex substructure

 XML and JSON data representation formats widely used
 An example of a JSON object is:

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}

©Silberschatz, Korth and Sudarshan19.95Database System Concepts - 6th Edition

Partitioning and Retrieving Data

 Key-value stores partition data into relatively small units (hundreds of
megabytes).

 These partitions are often called tablets (a tablet is a fragment of a table)

 Partitioning of data into tablets is dynamic:

 as data are inserted, if a tablet grows too big, it is broken into smaller
parts

 if the load (get/put operations) on a tablet is excessive, the tablet may be
broken into smaller tablets, which can be distributed across two or more
sites to share the load.

 the number of tablets is much larger than the number of sites

 similar to virtual partitioning in parallel databases

 Each get/put request must be routed to the correct site

 Tablet controller tracks the partitioning function and tablet-to-site mapping

 map a get() request to one or more tablets,

 Tablet mapping function to track which site responsible for which tablet

©Silberschatz, Korth and Sudarshan19.96Database System Concepts - 6th Edition

PNUTS Parallel Storage System Architecture

©Silberschatz, Korth and Sudarshan19.97Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.98Database System Concepts - 6th Edition

Distributed Directory Systems

©Silberschatz, Korth and Sudarshan19.99Database System Concepts - 6th Edition

Directory Systems

 Typical kinds of directory information

 Employee information such as name, id, email, phone, office addr, ..

 Even personal information to be accessed from multiple places

 e.g. Web browser bookmarks

 White pages

 Entries organized by name or identifier

 Meant for forward lookup to find more about an entry

 Yellow pages

 Entries organized by properties

 For reverse lookup to find entries matching specific requirements

 When directories are to be accessed across an organization

 Alternative 1: Web interface. Not great for programs

 Alternative 2: Specialized directory access protocols

 Coupled with specialized user interfaces

©Silberschatz, Korth and Sudarshan19.100Database System Concepts - 6th Edition

Directory Access Protocols

 Most commonly used directory access protocol:

 LDAP (Lightweight Directory Access Protocol)

 Simplified from earlier X.500 protocol

 Question: Why not use database protocols like ODBC/JDBC?

 Answer:

 Simplified protocols for a limited type of data access, evolved
parallel to ODBC/JDBC

 Provide a nice hierarchical naming mechanism similar to file
system directories

 Data can be partitioned amongst multiple servers for different
parts of the hierarchy, yet give a single view to user

– E.g. different servers for Bell Labs Murray Hill and Bell Labs
Bangalore

 Directories may use databases as storage mechanism

©Silberschatz, Korth and Sudarshan19.101Database System Concepts - 6th Edition

LDAP: Lightweight Directory Access
Protocol

 LDAP Data Model

 Data Manipulation

 Distributed Directory Trees

©Silberschatz, Korth and Sudarshan19.102Database System Concepts - 6th Edition

LDAP Data Model

 LDAP directories store entries

 Entries are similar to objects

 Each entry must have unique distinguished name (DN)

 DN made up of a sequence of relative distinguished names (RDNs)

 E.g. of a DN

 cn=Silberschatz, ou-Bell Labs, o=Lucent, c=USA

 Standard RDNs (can be specified as part of schema)

 cn: common name ou: organizational unit

 o: organization c: country

 Similar to paths in a file system but written in reverse direction

©Silberschatz, Korth and Sudarshan19.103Database System Concepts - 6th Edition

LDAP Data Model (Cont.)

 Entries can have attributes

 Attributes are multi-valued by default

 LDAP has several built-in types

 Binary, string, time types

 Tel: telephone number PostalAddress: postal address

 LDAP allows definition of object classes

 Object classes specify attribute names and types

 Can use inheritance to define object classes

 Entry can be specified to be of one or more object classes

 No need to have single most-specific type

©Silberschatz, Korth and Sudarshan19.104Database System Concepts - 6th Edition

LDAP Data Model (cont.)

 Entries organized into a directory information tree according to their
DNs

 Leaf level usually represent specific objects

 Internal node entries represent objects such as organizational
units, organizations or countries

 Children of a node inherit the DN of the parent, and add on RDNs

 E.g. internal node with DN c=USA

– Children nodes have DN starting with c=USA and further
RDNs such as o or ou

 DN of an entry can be generated by traversing path from root

 Leaf level can be an alias pointing to another entry

 Entries can thus have more than one DN

– E.g. person in more than one organizational unit

©Silberschatz, Korth and Sudarshan19.105Database System Concepts - 6th Edition

LDAP Data Manipulation

 Unlike SQL, LDAP does not define DDL or DML

 Instead, it defines a network protocol for DDL and DML

 Users use an API or vendor specific front ends

 LDAP also defines a file format

 LDAP Data Interchange Format (LDIF)

 Querying mechanism is very simple: only selection & projection

©Silberschatz, Korth and Sudarshan19.106Database System Concepts - 6th Edition

LDAP Queries

 LDAP query must specify

 Base: a node in the DIT from where search is to start

 A search condition

 Boolean combination of conditions on attributes of entries

– Equality, wild-cards and approximate equality supported

 A scope

 Just the base, the base and its children, or the entire subtree
from the base

 Attributes to be returned

 Limits on number of results and on resource consumption

 May also specify whether to automatically dereference aliases

 LDAP URLs are one way of specifying query

 LDAP API is another alternative

©Silberschatz, Korth and Sudarshan19.107Database System Concepts - 6th Edition

LDAP URLs

 First part of URL specifis server and DN of base

 ldap:://aura.research.bell-labs.com/o=Lucent,c=USA

 Optional further parts separated by ? symbol

 ldap:://aura.research.bell-labs.com/o=Lucent,c=USA??sub?cn=Korth

 Optional parts specify

1. attributes to return (empty means all)

2. Scope (sub indicates entire subtree)

3. Search condition (cn=Korth)

©Silberschatz, Korth and Sudarshan19.108Database System Concepts - 6th Edition

C Code using LDAP API

#include <stdio.h>

#include <ldap.h>

main() {

LDAP *ld;

LDAPMessage *res, *entry;

char *dn, *attr, *attrList [] = {“telephoneNumber”, NULL};

BerElement *ptr;

int vals, i;

// Open a connection to server
ld = ldap_open(“aura.research.bell-labs.com”, LDAP_PORT);

ldap_simple_bind(ld, “avi”, “avi-passwd”);

… actual query (next slide) …

ldap_unbind(ld);

}

©Silberschatz, Korth and Sudarshan19.109Database System Concepts - 6th Edition

C Code using LDAP API (Cont.)
ldap_search_s(ld, “o=Lucent, c=USA”, LDAP_SCOPE_SUBTREE,

“cn=Korth”, attrList, /* attrsonly*/ 0, &res);
/*attrsonly = 1 => return only schema not actual results*/

printf(“found%d entries”, ldap_count_entries(ld, res));
for (entry=ldap_first_entry(ld, res); entry != NULL;

entry=ldap_next_entry(id, entry)) {
dn = ldap_get_dn(ld, entry);
printf(“dn: %s”, dn); /* dn: DN of matching entry */
ldap_memfree(dn);
for(attr = ldap_first_attribute(ld, entry, &ptr); attr != NULL;

attr = ldap_next_attribute(ld, entry, ptr))
{ // for each attribute

printf(“%s:”, attr); // print name of attribute
vals = ldap_get_values(ld, entry, attr);
for (i = 0; vals[i] != NULL; i ++)

printf(“%s”, vals[i]); // since attrs can be multivalued
ldap_value_free(vals);

}
}
ldap_msgfree(res);

©Silberschatz, Korth and Sudarshan19.110Database System Concepts - 6th Edition

LDAP API (Cont.)

 LDAP API also has functions to create, update and delete entries

 Each function call behaves as a separate transaction

 LDAP does not support atomicity of updates

©Silberschatz, Korth and Sudarshan19.111Database System Concepts - 6th Edition

Distributed Directory Trees

 Organizational information may be split into multiple directory information trees

 Suffix of a DIT gives RDN to be tagged onto to all entries to get an overall
DN

 E.g. two DITs, one with suffix o=Lucent, c=USA
and another with suffix o=Lucent, c=India

 Organizations often split up DITs based on geographical location or by
organizational structure

 Many LDAP implementations support replication (master-slave or multi-
master replication) of DITs (not part of LDAP 3 standard)

 A node in a DIT may be a referral to a node in another DIT

 E.g. Ou= Bell Labs may have a separate DIT, and DIT for o=Lucent may
have a leaf with ou=Bell Labs containing a referral to the Bell Labs DIT

 Referalls are the key to integrating a distributed collection of directories

 When a server gets a query reaching a referral node, it may either

 Forward query to referred DIT and return answer to client, or

 Give referral back to client, which transparently sends query to referred
DIT (without user intervention)

©Silberschatz, Korth and Sudarshan19.112Database System Concepts - 6th Edition

End of Chapter

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extra Slides on 3PC

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan19.114Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:

 No network partitioning

 At any point, at least one site must be up.

 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.

 Every site is ready to commit if instructed to do so

 Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

 In phase 2 coordinator makes a decision as in 2PC (called the pre-commit
decision) and records it in multiple (at least K) sites

 In phase 3, coordinator sends commit/abort message to all participating
sites,

 Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

 Avoids blocking problem as long as < K sites fail

 Drawbacks:

 higher overheads

 assumptions may not be satisfied in practice

©Silberschatz, Korth and Sudarshan19.115Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:

 No network partitioning

 At any point, at least one site must be up.

 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.

 Every site is ready to commit if instructed to do so

 Under 2 PC each site is obligated to wait for decision from
coordinator

 Under 3PC, knowledge of pre-commit decision can be used to
commit despite coordinator failure.

©Silberschatz, Korth and Sudarshan19.116Database System Concepts - 6th Edition

3PC: Phase 2. Recording the Preliminary
Decision

 Coordinator adds a decision record (<abort T> or
< precommit T>) in its log and forces record to stable storage.

 Coordinator sends a message to each participant informing it of the
decision

 Participant records decision in its log

 If abort decision reached then participant aborts locally

 If pre-commit decision reached then participant replies with
<acknowledge T>

©Silberschatz, Korth and Sudarshan19.117Database System Concepts - 6th Edition

3PC: Phase 3. Recording Decision in the
Database

 Executed only if decision in phase 2 was to precommit

 Coordinator collects acknowledgements. It sends <commit T>
message to the participants as soon as it receives K
acknowledgements.

 Coordinator adds the record <commit T> in its log and forces record
to stable storage.

 Coordinator sends a message to each participant to <commit T>

 Participants take appropriate action locally

©Silberschatz, Korth and Sudarshan19.118Database System Concepts - 6th Edition

3PC: Handling Site Failure

 Site Failure. Upon recovery, a participating site examines its log and
does the following:

 Log contains <commit T> record: no action

 Log contains <abort T> record: no action

 Log contains <ready T> record, but no <abort T> or <precommit
T> record: site consults Ci to determine the fate of T.

 if Ci says T aborted, site executes undo (T) (and writes
<abort T> record)

 if Ci says T committed, site executes redo (T) (and writes
< commit T> record)

 if c says T committed, site resumes the protocol from receipt of
precommit T message (thus recording <precommit T> in the
log, and sending acknowledge T message sent to
coordinator).

©Silberschatz, Korth and Sudarshan19.119Database System Concepts - 6th Edition

3PC: Handling Site Failure (Cont.)

 Log contains <precommit T> record, but no <abort T> or <commit
T>: site consults Ci to determine the fate of T.

 if Ci says T aborted, site executes undo (T)

 if Ci says T committed, site executes redo (T)

 if Ci says T still in precommit state, site resumes protocol at this
point

 Log contains no <ready T> record for a transaction T: site executes
undo (T) writes <abort T> record

©Silberschatz, Korth and Sudarshan19.120Database System Concepts - 6th Edition

Figure 19.02

©Silberschatz, Korth and Sudarshan19.121Database System Concepts - 6th Edition

Figure 19.03

©Silberschatz, Korth and Sudarshan19.122Database System Concepts - 6th Edition

Figure 19.04

©Silberschatz, Korth and Sudarshan19.123Database System Concepts - 6th Edition

Figure 19.05

©Silberschatz, Korth and Sudarshan19.124Database System Concepts - 6th Edition

Figure 19.06

©Silberschatz, Korth and Sudarshan19.125Database System Concepts - 6th Edition

Figure 19.07

