C

hapter 19: Distributed Database

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

S

http://www.db-book.com/

-
— -
: Dg e

Chapter 19: Distributed Databases

Heterogeneous and Homogeneous Databases

Distributed Data Storage
Distributed Transactions
Commit Protocols

Concurrency Control in Distributed Databases
Availability

Distributed Query Processing

Heterogeneous Distributed Databases

Directory Systems

Database System Concepts - 61" Edition 19.2 ©Silberschatz, Korth and Sudarshan

- Distributed Database System

A distributed database system consists of loosely coupled sites that share
no physical component

Database systems that run on each site are independent of each other
Transactions may access data at one or more sites

Database System Concepts - 61" Edition 19.3 ©Silberschatz, Korth and Sudarshan

=as Homogeneous Distributed Databases

B In a homogeneous distributed database
All sites have identical software

Are aware of each other and agree to cooperate in processing user
requests.

Each site surrenders part of its autonomy in terms of right to change
schemas or software

Appears to user as a single system
® In a heterogeneous distributed database
Different sites may use different schemas and software
» Difference in schema is a major problem for query processing

» Difference in software is a major problem for transaction
processing

Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

Database System Concepts - 61" Edition 194 ©Silberschatz, Korth and Sudarshan

Distributed Data Storage

Assume relational data model
Replication

System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

B Fragmentation

Relation is partitioned into several fragments stored in distinct sites
®m Replication and fragmentation can be combined

Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

Database System Concepts - 61" Edition 19.5 ©Silberschatz, Korth and Sudarshan

Data Replication

m A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

m Full replication of a relation is the case where the relation is stored at all
sites.

m Fully redundant databases are those in which every site contains a
copy of the entire database.

Database System Concepts - 61" Edition 19.6 ©Silberschatz, Korth and Sudarshan

— - Data Replication (Cont.)

m Advantages of Replication

Availability: failure of site containing relation r does not result in
unavailability of r is replicas exist.
Parallelism: queries on r may be processed by several nodes in parallel.

Reduced data transfer: relation r is available locally at each site
containing a replica of r.

® Disadvantages of Replication
Increased cost of updates: each replica of relation r must be updated.

Increased complexity of concurrency control: concurrent updates to
distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy

Database System Concepts - 61" Edition 19.7 ©Silberschatz, Korth and Sudarshan

- i Data Fragmentation

m Division of relation r into fragments ry, r,, ..., r, which contain
sufficient information to reconstruct relation r.

m Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

m Vertical fragmentation: the schema for relation r is split into
several smaller schemas

All schemas must contain a common candidate key (or
superkey) to ensure lossless join property.

A special attribute, the tuple-id attribute may be added to
each schemato serve as a candidate key.

Database System Concepts - 61" Edition 19.8 ©Silberschatz, Korth and Sudarshan

“ Horizontal Fragmentation of account Relation

branch_name account_number balance
Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

accou ntl = Gbranch_name=“Hillside 7 (aCCO unt)

branch_name |account_number balance
Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
Valleyview A-639 750

accou r“:2 = Obranch_name="Valleyview” (aCCO unt)

Database System Concepts - 61" Edition

19.9

©Silberschatz, Korth and Sudarshan

7 Vertical Fragmentation of employee _info Relation

=
branch_name customer_name tuple id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7
depOSitl = IYbranch_name, customer_name, tuple_id (employee_info)
account_number balance tuple id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 A4
A-155 62 5
A-408 1123 6
A-639 750 7

dep05|t2 = Haccount_number, balance, tuple_id (employee_lnfo)

Database System Concepts - 61" Edition

19.10

©Silberschatz, Korth and Sudarshan

Database System Concepts - 61" Edition 19.11 ©Silberschatz, Korth and Sudarshan

Advantages of Fragmentation

m Horizontal:
allows parallel processing on fragments of a relation

allows a relation to be split so that tuples are located where
they are most frequently accessed

®m Vertical:

allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

tuple-id attribute allows efficient joining of vertical fragments
allows parallel processing on a relation
m Vertical and horizontal fragmentation can be mixed.

Fragments may be successively fragmented to an arbitrary
depth.

Data Transparency

m Datatransparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed

system
m Consider transparency issues in relation to:

Fragmentation transparency
Replication transparency
Location transparency

Database System Concepts - 61" Edition 19.12 ©Silberschatz, Korth and Sudarshan

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items autonomously.

Database System Concepts - 61" Edition 19.13 ©Silberschatz, Korth and Sudarshan

g Centralized Scheme - Name Server

|
- |
- W

m Structure:
name server assigns all names
each site maintains a record of local data items
sites ask name server to locate non-local data items
m Advantages:
satisfies naming criteria 1-3
m Disadvantages:
does not satisfy naming criterion 4
name server is a potential performance bottleneck
name server is a single point of failure

Database System Concepts - 61" Edition 19.14 ©Silberschatz, Korth and Sudarshan

- Use of Aliases

m Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.

Fulfills having a unique identifier, and avoids problems associated
with central control.

However, fails to achieve network transparency.

m Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.

® The user can be unaware of the physical location of a data item, and
Is unaffected if the data item is moved from one site to another.

Database System Concepts - 61" Edition 19.15 ©Silberschatz, Korth and Sudarshan

Distributed Transactions
and 2 Phase Commit

Database System Concepts - 6" Edition 19.16 ©Silberschatz, Korth and Sudarshan

- Distributed Transactions

® Transaction may access data at several sites.
m Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes

Participating in coordinating the concurrent execution of the
transactions executing at that site.

®m Each site has a transaction coordinator, which is responsible for:
Starting the execution of transactions that originate at the site.
Distributing subtransactions at appropriate sites for execution,

Coordinating the termination of each transaction that originates at
the site, which may result in the transaction being committed at all
sites or aborted at all sites.

Database System Concepts - 61" Edition 19.17 ©Silberschatz, Korth and Sudarshan

%

7

\

(%)

computer 1

Database System Concepts - 6" Edition

Transaction System Architecture

] transaction
- .
7 coordinator
. . \@ transaction
manager
computer n
19.18 ©Silberschatz, Korth and Sudarshan

2 System Failure Modes

e —

®m Failures unique to distributed systems:
Failure of a site.
Loss of massages

» Handled by network transmission control protocols such as
TCP-IP

Failure of a communication link

» Handled by network protocols, by routing messages via
alternative links

Network partition

» A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

Note: a subsystem may consist of a single node
® Network partitioning and site failures are generally indistinguishable.

Database System Concepts - 61" Edition 19.19 ©Silberschatz, Korth and Sudarshan

— Commit Protocols

m Commit protocols are used to ensure atomicity across sites

a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and
aborted at another

® The two-phase commit (2PC) protocol is widely used

® The three-phase commit (3PC) protocol is more complicated and
more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

Database System Concepts - 61" Edition 19.20 ©Silberschatz, Korth and Sudarshan

g Two Phase Commit Protocol (2PC)

-
e
e

m Assumes fail-stop model — failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

m Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

® The protocol involves all the local sites at which the transaction
executed

®m Let T be atransaction initiated at site S;, and let the transaction
coordinator at S; be C,

Database System Concepts - 61" Edition 19.21 ©Silberschatz, Korth and Sudarshan

e Phase 1: Obtaining a Decision

m Coordinator asks all participants to prepare to commit transaction T;.

C, adds the records <prepare T> to the log and forces log to
stable storage

sends prepare T messages to all sites at which T executed

m Upon receiving message, transaction manager at site determines if it
can commit the transaction

if not, add a record <no T> to the log and send abort T message
to C,

if the transaction can be committed, then:
add the record <ready T> to the log
force all records for T to stable storage
send ready T message to C;

Database System Concepts - 61" Edition 19.22 ©Silberschatz, Korth and Sudarshan

- .u'

—- Phase 2: Recording the Decision

—n

® T can be committed of C, received a ready T message from all the
participating sites: otherwise T must be aborted.

m Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

m Coordinator sends a message to each participant informing it of the
decision (commit or abort)

m Participants take appropriate action locally.

Database System Concepts - 61" Edition 19.23 ©Silberschatz, Korth and Sudarshan

- Handling of Failures - Site Failure

When site S; recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

B Log contain <commit T> record: txn had completed, nothing to be done
B Log contains <abort T> record: txn had completed, nothing to be done

®m Log contains <ready T> record: site must consult C; to determine the
fate of T.

If T committed, redo (T); write <commit T> record
If T aborted, undo (T)
® The log contains no log records concerning T:

Implies that S, failed before responding to the prepare T message
from C,

since the failure of S, precludes the sending of such a response,
coordinator C; must abort T

S, must execute undo (T)

Database System Concepts - 61" Edition 19.24 ©Silberschatz, Korth and Sudarshan

=44 Handling of Failures- Coordinator Failure

®m If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:

If an active site contains a <commit T> record in its log, then T must be
committed.

If an active site contains an <abort T> record in its log, then T must be
aborted.

If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator C; cannot have decided to commit T.

e Can therefore abort T; however, such a site must reject any
subsequent <prepare T> message from C,

If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).

e In this case active sites must wait for C;to recover, to find decision.

®m Blocking problem: active sites may have to wait for failed coordinator to
recover.

Database System Concepts - 61" Edition 19.25 ©Silberschatz, Korth and Sudarshan

=&+ Handling of Failures - Network Partition

m If the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

m If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.

» No harm results, but sites may still have to wait for decision
from coordinator.

® The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

» Again, no harm results

Database System Concepts - 61" Edition 19.26 ©Silberschatz, Korth and Sudarshan

— - Recovery and Concurrency Control

=

® In-doubt transactions have a <ready T>, but neither a

<commit T>, nor an <abort T> log record.

® The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.

® Recovery algorithms can note lock information in the log.

Instead of <ready T>, write out <ready T, L> L = list of locks held
by T when the log is written (read locks can be omitted).

For every in-doubt transaction T, all the locks noted in the
<ready T, L> log record are reacquired.

m After lock reacquisition, transaction processing can resume; the
commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.

Database System Concepts - 61" Edition 19.27 ©Silberschatz, Korth and Sudarshan

g Three Phase Commit (3PC)

m Assumptions:
No network partitioning
At any point, at least one site must be up.
At most K sites (participants as well as coordinator) can falil
® Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
Every site is ready to commit if instructed to do so
m Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

In phase 2 coordinator makes a decision as in 2PC (called the pre-commit
decision) and records it in multiple (at least K) sites

In phase 3, coordinator sends commit/abort message to all participating
sites,

® Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

Avoids blocking problem as long as < K sites fail
m Drawbacks:

higher overheads

assumptions may not be satisfied in practice

Database System Concepts - 61" Edition 19.28 ©Silberschatz, Korth and Sudarshan

.-;. Alternative Models of Transaction
o Processing

® Notion of a single transaction spanning multiple sites is inappropriate
for many applications

E.g. transaction crossing an organizational boundary

No organization would like to permit an externally initiated
transaction to block local transactions for an indeterminate period

m Alternative models carry out transactions by sending messages

Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates

» Isolation cannot be guaranteed, in that intermediate stages are
visible, but code must ensure no inconsistent states result due
to concurrency

Persistent messaging systems are systems that provide
transactional properties to messages

» Messages are guaranteed to be delivered exactly once
» Will discuss implementation techniques later

Database System Concepts - 61" Edition 19.29 ©Silberschatz, Korth and Sudarshan

— - Alternative Models (Cont.)

® Motivating example: funds transfer between two banks

Two phase commit would have the potential to block updates on the
accounts involved in funds transfer

Alternative solution:

» Debit money from source account and send a message to other
site

» Site receives message and credits destination account

Messaging has long been used for distributed transactions (even
before computers were invented!)

m Atomicity issue

once transaction sending a message is committed, message must
guaranteed to be delivered

» Guarantee as long as destination site is up and reachable, code to
handle undeliverable messages must also be available

e.g. credit money back to source account.
If sending transaction aborts, message must not be sent

Database System Concepts - 61" Edition 19.30 ©Silberschatz, Korth and Sudarshan

2 Error Conditions with Persistent
— Messaging

m Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)

E.g. if destination account does not exist, failure message must be
sent back to source site

When failure message is received from destination site, or
destination site itself does not exist, money must be deposited back

INn source account
» Problem if source account has been closed
get humans to take care of problem

m User code executing transaction processing using 2PC does not have to
deal with such failures

® There are many situations where extra effort of error handling is worth
the benefit of absence of blocking

E.g. pretty much all transactions across organizations

Database System Concepts - 61" Edition 19.31 ©Silberschatz, Korth and Sudarshan

== Persistent Messaging and Workflows

m Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps

E.g. when a bank receives a loan application, it may need to
» Contact external credit-checking agencies
» Get approvals of one or more managers
and then respond to the loan application

We study workflows in Chapter 25

Persistent messaging forms the underlying infrastructure for
workflows in a distributed environment

Database System Concepts - 61" Edition 19.32 ©Silberschatz, Korth and Sudarshan

‘,L Implementation of Persistent Messaging

m Sending site protocol.

When a transaction wishes to send a persistent message, it writes a
record containing the message in a special relation

messages _to_send; the message is given a unique message
identifier.

A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination.

The message delivery process deletes a message from the relation
only after it receives an acknowledgment from the destination site.

If it receives no acknowledgement from the destination site, after
some time it sends the message again. It repeats this until an
acknowledgment is received.

If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked
to deal with the failure.

m Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and

only if the transaction commits.

Database System Concepts - 61" Edition 19.33 ©Silberschatz, Korth and Sudarshan

-! Implementation of Persistent Messaging
= (Cont.)

m Receiving site protocol.

When a site receives a persistent message, it runs a transaction that
adds the message to a received_messages relation

provided message identifier is not already present in the relation

After the transaction commits, or if the message was already present
in the relation, the receiving site sends an acknowledgment back to

the sending site.

Note that sending the acknowledgment before the transaction
commits is not safe, since a system failure may then result in loss
of the message.

In many messaging systems, it is possible for messages to get
delayed arbitrarily, although such delays are very unlikely.

Each message is given a timestamp, and if the timestamp of a
received message is older than some cutoff, the message is
discarded.

All messages recorded in the received messages relation that are
older than the cutoff can be deleted.

Database System Concepts - 61" Edition 19.34 ©Silberschatz, Korth and Sudarshan

Concurrency Control

Database System Concepts - 6" Edition 19.35 ©Silberschatz, Korth and Sudarshan

Concurrency Control

Modify concurrency control schemes for use in distributed environment.

We assume that each site participates in the execution of a commit
protocol to ensure global transaction automicity.

m We assume all replicas of any item are updated
Will see how to relax this in case of site failures later

Database System Concepts - 61" Edition 19.36 ©Silberschatz, Korth and Sudarshan

Single-Lock-Manager Approach

B System maintains a single lock manager that resides in a single
chosen site, say S,

® When a transaction needs to lock a data item, it sends a lock request
to S; and lock manager determines whether the lock can be granted
immediately

If yes, lock manager sends a message to the site which initiated
the request

If no, request is delayed until it can be granted, at which time a
message is sent to the initiating site

Database System Concepts - 61" Edition 19.37 ©Silberschatz, Korth and Sudarshan

-}'
|
J

Single-Lock-Manager Approach (Cont.)

® The transaction can read the data item from any one of the sites at
which a replica of the data item resides.

m Writes must be performed on all replicas of a data item
m Advantages of scheme:
Simple implementation
Simple deadlock handling
m Disadvantages of scheme are:
Bottleneck: lock manager site becomes a bottleneck
Vulnerability: system is vulnerable to lock manager site failure.

Database System Concepts - 61" Edition 19.38 ©Silberschatz, Korth and Sudarshan

- Distributed Lock Manager

®m In this approach, functionality of locking is implemented by lock
managers at each site

Lock managers control access to local data items
» But special protocols may be used for replicas
m Advantage: work is distributed and can be made robust to failures
m Disadvantage: deadlock detection is more complicated
Lock managers cooperate for deadlock detection
» More on this later
m Several variants of this approach
Primary copy
Majority protocol
Biased protocol
Quorum consensus

Database System Concepts - 61" Edition 19.39 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 61" Edition 19.40 ©Silberschatz, Korth and Sudarshan

Primary Copy

Choose one replica of data item to be the primary copy.

Site containing the replica is called the primary site for that data
item

Different data items can have different primary sites

When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.

Implicitly gets lock on all replicas of the data item
Benefit

Concurrency control for replicated data handled similarly to
unreplicated data - simple implementation.

Drawback

If the primary site of Q fails, Q is inaccessible even though other
sites containing a replica may be accessible.

s Majority Protocol

®m Local lock manager at each site administers lock and unlock requests
for data items stored at that site.

® \When a transaction wishes to lock an unreplicated data item Q
residing at site S;, a message is sent to S, ‘s lock manager.
If Q is locked in an incompatible mode, then the request is delayed
until it can be granted.
When the lock request can be granted, the lock manager sends a
message back to the initiator indicating that the lock request has
been granted.

Database System Concepts - 61" Edition 19.41 ©Silberschatz, Korth and Sudarshan

-! Majority Protocol (Cont.)

®m In case of replicated data

If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.

The transaction does not operate on Q until it has obtained a lock
on a majority of the replicas of Q.

When writing the data item, transaction performs writes on all
replicas.

B Benefit
Can be used even when some sites are unavailable
» details on how handle writes in the presence of site failure later

®m Drawback

Requires 2(n/2 + 1) messages for handling lock requests, and (n/2
+ 1) messages for handling unlock requests.

Potential for deadlock even with single item - e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.

Database System Concepts - 61" Edition 19.42 ©Silberschatz, Korth and Sudarshan

Biased Protocol

Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.

Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.

Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

Advantage - imposes less overhead on read operations.
Disadvantage - additional overhead on writes

Database System Concepts - 61" Edition 19.43 ©Silberschatz, Korth and Sudarshan

Quorum Consensus Protocol

A generalization of both majority and biased protocols
Each site is assigned a weight.
Let S be the total of all site weights
Choose two values read quorum Q, and write quorum Q,,,
Suchthat Q,+Q,>S and 2* Q,> S

Quorums can be chosen (and S computed) separately for each
item
Each read must lock enough replicas that the sum of the site weights
s >=Q,
Each write must lock enough replicas that the sum of the site weights
IS >=Q,,
For now we assume all replicas are written
Extensions to allow some sites to be unavailable described later

Database System Concepts - 61" Edition 19.44 ©Silberschatz, Korth and Sudarshan

Timestamping

® Timestamp based concurrency-control protocols can be used in
distributed systems

m Each transaction must be given a unique timestamp
® Main problem: how to generate a timestamp in a distributed fashion

Each site generates a unigue local timestamp using either a logical
counter or the local clock.

Global unigue timestamp is obtained by concatenating the unique
local timestamp with the unique identifier.

local unique site
timestamp identifier

~

global unique
identifier

Database System Concepts - 61" Edition 19.45 ©Silberschatz, Korth and Sudarshan

- Timestamping (Cont.)

m A site with a slow clock will assign smaller timestamps
Still logically correct: serializability not affected
But: “disadvantages” transactions

®m To fix this problem

Define within each site S; a logical clock (LC;), which generates
the unigue local timestamp

Require that S;advance its logical clock whenever a request is
received from a transaction Ti with timestamp < x,y> and X is
greater that the current value of LC..

In this case, site S, advances its logical clock to the value x + 1.

Database System Concepts - 61" Edition 19.46 ©Silberschatz, Korth and Sudarshan

.;qé Replication with Weak Consistency

®m Many commercial databases support replication of data with weak
degrees of consistency (l.e., without a guarantee of serializabiliy)

m E.g.: master-slave replication: updates are performed at a single
“master” site, and propagated to “slave” sites.

Propagation is not part of the update transaction: its is decoupled
» May be immediately after transaction commits
» May be periodic
Data may only be read at slave sites, not updated
» No need to obtain locks at any remote site
Particularly useful for distributing information
» E.g. from central office to branch-office

Also useful for running read-only queries offline from the main
database

Database System Concepts - 61" Edition 19.47 ©Silberschatz, Korth and Sudarshan

g Replication with Weak Consistency (Cont.)

m Replicas should see a transaction-consistent snapshot of the
database

That is, a state of the database reflecting all effects of all
transactions up to some point in the serialization order, and no

effects of any later transactions.

m E.g. Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site

snapshot refresh either by recomputation or by incremental update
Automatic refresh (continuous or periodic) or manual refresh

Database System Concepts - 61" Edition 19.48 ©Silberschatz, Korth and Sudarshan

— - Multimaster and Lazy Replication

® With multimaster replication (also called update-anywhere replication)
updates are permitted at any replica, and are automatically
propagated to all replicas

Basic model in distributed databases, where transactions are
unaware of the details of replication, and database system
propagates updates as part of the same transaction

» Coupled with 2 phase commit

® Many systems support lazy propagation where updates are
transmitted after transaction commits

Allows updates to occur even if some sites are disconnected from
the network, but at the cost of consistency

Database System Concepts - 61" Edition 19.49 ©Silberschatz, Korth and Sudarshan

e Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T, at site 1, and item Y and transaction T at site 2:

Ty write (X) T,: write (YY)
write (YY) write (X)
X-lock on X
write (X) X-lock on'Y
write (YY)

wait for X-lock on X

Wait for X-lock on Y

Result: deadlock which cannot be detected locally at either site

Database System Concepts - 61" Edition 19.50 ©Silberschatz, Korth and Sudarshan

Centralized Approach

A global wait-for graph is constructed and maintained in a single site;
the deadlock-detection coordinator

Real graph: Real, but unknown, state of the system.

Constructed graph:Approximation generated by the controller
during the execution of its algorithm .

the global wait-for graph can be constructed when:

a new edge is inserted in or removed from one of the local wait-
for graphs.

a number of changes have occurred in a local wait-for graph.
the coordinator needs to invoke cycle-detection.

If the coordinator finds a cycle, it selects a victim and notifies all sites.
The sites roll back the victim transaction.

Database System Concepts - 61" Edition 19.51 ©Silberschatz, Korth and Sudarshan

Local and Global Wait-For Graphs

&
O

site S¢ site S,

@'@ Global

Database System Concepts - 61" Edition 19.52 ©Silberschatz, Korth and Sudarshan

Initial state:

Example Wait-For Graph for False Cycles

Database System Concepts - 61" Edition

& @

coordinator

19.53

©Silberschatz, Korth and Sudarshan

- False Cycles (Cont.)

B Suppose that starting from the state shown in figure,
1. T, releasesresources at S;

» resulting in a message remove T, — T, message from the
Transaction Manager at site S; to the coordinator)

2. And then T, requests a resource held by T; at site S,
» resulting in a message insert T, » T, from S, to the coordinator

m Suppose further that the insert message reaches before the delete
message

this can happen due to network delays
®m The coordinator would then find a false cycle
T,->T,>T;>T;
m The false cycle above never existed in reality.
m False cycles cannot occur if two-phase locking is used.

Database System Concepts - 61" Edition 19.54 ©Silberschatz, Korth and Sudarshan

Unnecessary Rollbacks

® Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of the
transactions was aborted for reasons unrelated to the deadlock.

® Unnecessary rollbacks can result from false cycles in the global wait-
for graph; however, likelinood of false cycles is low.

Database System Concepts - 61" Edition 19.55 ©Silberschatz, Korth and Sudarshan

Availability

Database System Concepts - 6" Edition 19.56 ©Silberschatz, Korth and Sudarshan

- Availability

m High availability: time for which system is not fully usable should be
extremely low (e.g. 99.99% availability)

® Robustness: ability of system to function spite of failures of
components

Failures are more likely in large distributed systems
To be robust, a distributed system must
Detect failures
Reconfigure the system so computation may continue
Recovery/reintegration when a site or link is repaired
m Failure detection: distinguishing link failure from site failure is hard

(partial) solution: have multiple links, multiple link failure is likely a
site failure

Database System Concepts - 61" Edition 19.57 ©Silberschatz, Korth and Sudarshan

g Reconfiguration

® Reconfiguration:
Abort all transactions that were active at a failed site

Making them wait could interfere with other transactions since
they may hold locks on other sites

However, in case only some replicas of a data item failed, it
may be possible to continue transactions that had accessed
data at a failed site (more on this later)

If replicated data items were at failed site, update system catalog
to remove them from the list of replicas.

This should be reversed when failed site recovers, but
additional care needs to be taken to bring values up to date

If a failed site was a central server for some subsystem, an
election must be held to determine the new server

E.g. name server, concurrency coordinator, global deadlock
detector

Database System Concepts - 61" Edition 19.58 ©Silberschatz, Korth and Sudarshan

- Reconfiguration (Cont.)

®m Since network partition may not be distinguishable from site failure,
the following situations must be avoided

Two ore more central servers elected in distinct partitions
More than one partition updates a replicated data item
m Updates must be able to continue even if some sites are down
m Solution: majority based approach

Alternative of “read one write all available” is tantalizing but
causes problems

Database System Concepts - 61" Edition 19.59 ©Silberschatz, Korth and Sudarshan

g Majority-Based Approach

® The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable

Each replica of each item has a version number which is updated
when the replica is updated, as outlined below

A lock request is sent to at least Y2 the sites at which item replicas
are stored and operation continues only when a lock is obtained
on a majority of the sites

Read operations look at all replicas locked, and read the value
from the replica with largest version number

» May write this value and version number back to replicas with
lower version numbers (no need to obtain locks on all replicas
for this task)

Database System Concepts - 61" Edition 19.60 ©Silberschatz, Korth and Sudarshan

- Majority-Based Approach

® Majority protocol (Cont.)
Write operations

» find highest version number like reads, and set new version
number to old highest version + 1

» Writes are then performed on all locked replicas and version
number on these replicas is set to new version number

Failures (network and site) cause no problems as long as

» Sites at commit contain a majority of replicas of any updated data
items

» During reads a majority of replicas are available to find version
numbers

» Subject to above, 2 phase commit can be used to update replicas
Note: reads are guaranteed to see latest version of data item
Reintegration is trivial: nothing needs to be done
® Quorum consensus algorithm can be similarly extended

Database System Concepts - 61" Edition 19.61 ©Silberschatz, Korth and Sudarshan

g Read One Write All (Available)

®m Biased protocol is a special case of quorum consensus

Allows reads to read any one replica but updates require all
replicas to be available at commit time (called read one write all)

® Read one write all available (ignoring failed sites) is attractive, but
incorrect

If failed link may come back up, without a disconnected site ever
being aware that it was disconnected

The site then has old values, and a read from that site would
return an incorrect value

If site was aware of failure reintegration could have been
performed, but no way to guarantee this

With network partitioning, sites in each partition may update same
item concurrently

» believing sites in other partitions have all failed

Database System Concepts - 61" Edition 19.62 ©Silberschatz, Korth and Sudarshan

2 Site Reintegration

n—

® When failed site recovers, it must catch up with all updates that it
missed while it was down

Problem: updates may be happening to items whose replica is
stored at the site while the site is recovering

Solution 1: halt all updates on system while reintegrating a site
» Unacceptable disruption

Solution 2: lock all replicas of all data items at the site, update to
latest version, then release locks

» Other solutions with better concurrency also available

Database System Concepts - 61" Edition 19.63 ©Silberschatz, Korth and Sudarshan

e Comparison with Remote Backup

® Remote backup (hot spare) systems (Section 17.10) are also
designed to provide high availability

® Remote backup systems are simpler and have lower overhead
All actions performed at a single site, and only log records shipped
No need for distributed concurrency control, or 2 phase commit

®m Using distributed databases with replicas of data items can provide
higher availability by having multiple (> 2) replicas and using the
majority protocol

Also avoid failure detection and switchover time associated with
remote backup systems

Database System Concepts - 61" Edition 19.64 ©Silberschatz, Korth and Sudarshan

— - Coordinator Selection

m Backup coordinators

site which maintains enough information locally to assume the role
of coordinator if the actual coordinator fails

executes the same algorithms and maintains the same internal
state information as the actual coordinator fails executes state
information as the actual coordinator

allows fast recovery from coordinator failure but involves overhead
during normal processing.

m Election algorithms
used to elect a new coordinator in case of failures

Example: Bully Algorithm - applicable to systems where every site
can send a message to every other site.

Database System Concepts - 61" Edition 19.65 ©Silberschatz, Korth and Sudarshan

g Bully Algorithm

m |f site S; sends a request that is not answered by the coordinator within
a time interval T, assume that the coordinator has failed S; tries to
elect itself as the new coordinator.

®m S, sends an election message to every site with a higher identification
number, S, then waits for any of these processes to answer within T.

®m If no response within T, assume that all sites with number greater than
| have failed, S, elects itself the new coordinator.

m |f answer is received S, begins time interval T’, waiting to receive a
message that a site with a higher identification number has been
elected.

Database System Concepts - 61" Edition 19.66 ©Silberschatz, Korth and Sudarshan

g Bully Algorithm (Cont.)

®m |f no message is sent within T°, assume the site with a higher number
has failed; S, restarts the algorithm.

m After a failed site recovers, it immediately begins execution of the
same algorithm.

m If there are no active sites with higher numbers, the recovered site
forces all processes with lower numbers to let it become the
coordinator site, even if there is a currently active coordinator with a
lower number.

Database System Concepts - 61" Edition 19.67 ©Silberschatz, Korth and Sudarshan

Trading Consistency for Availability

Database System Concepts - 6" Edition 19.68 ©Silberschatz, Korth and Sudarshan

- What is Consistency?

m Consistency in Databases (ACID):.
Database has a set of integrity constraints

A consistent database state is one where all integrity constraints
are satisfied

Each transaction run individually on a consistent database state
must leave the database in a consistent state

m Consistency in distributed systems with replication

Strong consistency: a schedule with read and write operations on
a replicated object should give results and final state equivalent to
some schedule on a single copy of the object, with order of
operations from a single site preserved

Weak consistency (several forms)

Database System Concepts - 61" Edition 19.69 ©Silberschatz, Korth and Sudarshan

- Avallability

Traditionally, availability of centralized server
For distributed systems, availability of system to process requests

For large system, at almost any point in time there’s a good
chance that

» a node is down or even
» Network partitioning

m Distributed consensus algorithms will block during partitions to ensure
consistency

Many applications require continued operation even during a
network partition

» Even at cost of consistency

Database System Concepts - 61" Edition 19.70 ©Silberschatz, Korth and Sudarshan

..g_ Brewer’s CAP Theorem

Three properties of a system
o Consistency (all copies have same value)

o Avalilability (system can run even if parts have failed)
o Via replication

o Partitions (network can break into two or more parts, each
with active systems that can’t talk to other parts)

Brewer’'s CAP “Theorem”: You can have at most two of these
three properties for any system

Very large systems will partition at some point
=>» Choose one of consistency or availablity
o Traditional database choose consistency

o Most Web applications choose availability
Except for specific parts such as order processing

Database System Concepts - 61" Edition 19.71 ©Silberschatz, Korth and Sudarshan

g Replication with Weak Consistency

® Many systems support replication of data with weak degrees of
consistency (l.e., without a guarantee of serializabiliy)

l.e. Qr+Qyw<=S or2*Q, < S

Usually only when not enough sites are available to

ensure quorum

» But sometimes to allow fast local reads

Tradeoff of consistency versus availability or latency
m Key issues:

Reads may get old versions

Writes may occur in parallel, leading to inconsistent
versions

» Question: how to detect, and how to resolve
Version vector scheme, Section 25.5.4

Database System Concepts - 61" Edition 19.72 ©Silberschatz, Korth and Sudarshan

i Eventual Consistency

When no updates occur for a long period of time, eventually
all updates will propagate through the system and all the
nodes will be consistent

For a given accepted update and a given node, eventually
either the update reaches the node or the node is removed
from service

Known as BASE (Basically Available, Soft state, Eventual
consistency), as opposed to ACID

o Soft state: copies of a data item may be inconsistent

o Eventually Consistent — copies becomes consistent
at some later time if there are no more updates to that
data item

Database System Concepts - 61" Edition 19.73 ©Silberschatz, Korth and Sudarshan

i Availability vs Latency

®m CAP theorem only matters when there is a partition

Even if partitions are rare, applications may trade off
consistency for latency

» E.g. PNUTS allows inconsistent reads to reduce latency
Critical for many applications

» But update protocol (via master) ensures consistency over
availability

Thus there are two questions :

» If there is partitioning, how does system tradeoff availability for
consistency

» else how does system trade off latency for consistency

Database System Concepts - 61" Edition 19.74 ©Silberschatz, Korth and Sudarshan

Distributed Query Processing

Database System Concepts - 6" Edition 19.75 ©Silberschatz, Korth and Sudarshan

Distributed Query Processing

®m For centralized systems, the primary criterion for measuring the cost
of a particular strategy is the number of disk accesses.

®m In a distributed system, other issues must be taken into account:
The cost of a data transmission over the network.

The potential gain in performance from having several sites
process parts of the query in parallel.

Database System Concepts - 61" Edition 19.76 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 61" Edition 19.77 ©Silberschatz, Korth and Sudarshan

Query Transformation

Translating algebraic queries on fragments.
It must be possible to construct relation r from its fragments

Replace relation r by the expression to construct relation r from its
fragments

Consider the horizontal fragmentation of the account relation into
account; = 6 pranch name = “Hillside” (&ccount)

account, = 6 pranch _name = “valleyview’ (@ccount)
The query 6 pranch name = “Hillside” (&ccount) becomes

S pranch_name = “Hillside” (&¢count; U account,)

which is optimized into

S pranch_name = “Hillside” (ACCOUNt;) U G pranch name = “Hillside” (Bccounty)

Example Query (Cont.)

B Since account, has only tuples pertaining to the Hillside branch,
we can eliminate the selection operation.

m Apply the definition of account, to obtain

S branch_name = “Hillside” (5 branch_name = “Valleyview” (&CCOUNt)

®m This expression is the empty set regardless of the contents of the
account relation.

®m Final strategy is for the Hillside site to return account, as the result
of the query.

Database System Concepts - 61" Edition 19.78 ©Silberschatz, Korth and Sudarshan

Simple Join Processing

m Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented

account X depositor X' branch
account is stored at site S,
depositor at S,

branch at S,

For a query issued at site S,, the system needs to produce the result at
site S,

Database System Concepts - 61" Edition 19.79 ©Silberschatz, Korth and Sudarshan

— ‘!I

Possible Query Processing Strategies

m Ship copies of all three relations to site S, and choose a strategy for
processing the entire locally at site S,

m Ship a copy of the account relation to site S, and compute temp, =
account X depositor at S,. Ship temp, from S, to S;, and compute
temp, = temp,; branch at S;. Ship the result temp, to S,.

Devise similar strategies, exchanging the roles S,, S,, S,
Must consider following factors:
amount of data being shipped
cost of transmitting a data block between sites
relative processing speed at each site

Database System Concepts - 61" Edition 19.80 ©Silberschatz, Korth and Sudarshan

Semijoin Strategy

m Letr, be arelation with schema R, stores at site S;

Let r, be a relation with schema R, stores at site S,
m Evaluate the expression rypq I, and obtain the result at S;.

1. Compute temp, < [I; ~ro (r1) at S1.
® 2. Ship temp, from S, to S..

m 3. Compute temp, < Iy templatS,
® 4. Ship temp, from S, to S;.
m 5. Compute r,Xltemp, at S;. This is the same as ryx r.

Database System Concepts - 61" Edition 19.81 ©Silberschatz, Korth and Sudarshan

Formal Definition

® The semijoin of r; with r,, is denoted by:
< Iy
m itis defined by:
gy (ry M 1)
Thus, r;>< 1, selects those tuples of r; that contributed to ry r».
In step 3 above, temp,=r,><T;.

®m For joins of several relations, the above strategy can be extended to a
series of semijoin steps.

Database System Concepts - 61" Edition 19.82 ©Silberschatz, Korth and Sudarshan

Join Strategies that Exploit Parallelism

m Considerr,X r, X r; X r, where relation ri is stored at site S;. The result

must be presented at site S;.

® r,isshippedto S, andr; |x r, is computed at S,: simultaneously r; is
shippedto S, and r; pq r, is computed at S,

m S, ships tuples of (r; ¢ r,) to S; as they produced,;
S, ships tuples of (r3 q ,) to S;

m Once tuples of (ry< r,) and (r;pq ry) arrive at Sy (rpq o) (g X) IS
computed in parallel with the computation of (r, pq r,) at S, and the
computation of (r; pq ry) at S,.

Database System Concepts - 61" Edition 19.83 ©Silberschatz, Korth and Sudarshan

.;qé Heterogeneous Distributed Databases

® Many database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and
software platforms

m Data models may differ (hierarchical, relational , etc.)
Transaction commit protocols may be incompatible

Concurrency control may be based on different techniques (locking,
timestamping, etc.)

System-level details almost certainly are totally incompatible.

A multidatabase system is a software layer on top of existing
database systems, which is designed to manipulate information in
heterogeneous databases

Creates an illusion of logical database integration without any
physical database integration

Database System Concepts - 61" Edition 19.84 ©Silberschatz, Korth and Sudarshan

- Advantages

®m Preservation of investment in existing
hardware
system software
Applications
Local autonomy and administrative control
Allows use of special-purpose DBMSs
m Step towards a unified homogeneous DBMS
Full integration into a homogeneous DBMS faces
» Technical difficulties and cost of conversion
» Organizational/political difficulties
Organizations do not want to give up control on their data
Local databases wish to retain a great deal of autonomy

Database System Concepts - 61" Edition 19.85 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 61" Edition 19.86 ©Silberschatz, Korth and Sudarshan

Unified View of Data

Agreement on a common data model
Typically the relational model
Agreement on a common conceptual schema
Different names for same relation/attribute
Same relation/attribute name means different things
Agreement on a single representation of shared data
E.g. data types, precision,
Character sets
» ASCIl vs EBCDIC
» Sort order variations
Agreement on units of measure
Variations in names
E.g. KbIn vs Cologne, Mumbai vs Bombay

- Query Processing

Several issues in query processing in a heterogeneous database
Schema translation

Write a wrapper for each data source to translate data to a global
schema

Wrappers must also translate updates on global schema to updates on
local schema

® Limited query capabilities
Some data sources allow only restricted forms of selections
» E.g. web forms, flat file data sources

Queries have to be broken up and processed partly at the source and
partly at a different site

® Removal of duplicate information when sites have overlapping information
Decide which sites to execute query
® Global query optimization

Database System Concepts - 61" Edition 19.87 ©Silberschatz, Korth and Sudarshan

2 Mediator Systems

e —

® Mediator systems are systems that integrate multiple heterogeneous
data sources by providing an integrated global view, and providing
guery facilities on global view

Unlike full fledged multidatabase systems, mediators generally do
not bother about transaction processing

But the terms mediator and multidatabase are sometimes used
interchangeably

The term virtual database is also used to refer to
mediator/multidatabase systems

Database System Concepts - 61" Edition 19.88 ©Silberschatz, Korth and Sudarshan

- A!

..!. Transaction Management in Multidatabases

®m Local transactions are executed by each local DBMS, outside of the
MDBS system control.

B Global transactions are executed under multidatabase control.

®m Local autonomy - local DBMSs cannot communicate directly to
synchronize global transaction execution and the multidatabase has
no control over local transaction execution.

local concurrency control scheme needed to ensure that DBMS’s
schedule is serializable

in case of locking, DBMS must be able to guard against local
deadlocks.

need additional mechanisms to ensure global serializability

Database System Concepts - 61" Edition 19.89 ©Silberschatz, Korth and Sudarshan

- Local vs. Global Serializability

m The guarantee of local serializability is not sufficient to ensure global
serializability.

As an illustration, consider two global transactions T1 and T2 ,
each of which accesses and updates two data items, A and B,
located at sites S1 and S2 respectively.

It is possible to have a situation where, at site S1, T2 follows T1 ,
whereas, at S2 , T1 follows T2, resulting in a nonserializable
global schedule.

m If the local systems permit control of locking behavior and all systems
follow two-phase locking

the multidatabase system can ensure that global transactions lock
In a two-phase manner

the lock points of conflicting transactions would then define their
global serialization order.

Database System Concepts - 61" Edition 19.90 ©Silberschatz, Korth and Sudarshan

Cloud Databases

Database System Concepts - 6" Edition 19.91 ©Silberschatz, Korth and Sudarshan

g Data Storage on the Cloud

Need to store and retrieve massive amounts of data

Traditional parallel databases not designed to scale to 1000’s of
nodes (and expensive)

®m Initial needs did not include full database functionality

Store and retrieve data items by key value is minimum
functionality

» Key-value stores
m Several implementations
Bigtable from Google,
HBase, an open source clone of Bigtable
Dynamo, which is a key-value storage system from Amazon
Cassandra, from FaceBook
Sherpa/PNUTS from Yahoo!

Database System Concepts - 61" Edition 19.92 ©Silberschatz, Korth and Sudarshan

Key Value Stores

m Key-value stores support
put(key, value): used to store values with an associated key,

get(key): which retrieves the stored value associated with the
specified key.

® Some systems such as Bigtable additionally provide range queries on
key values

m Multiple versions of data may be stored, by adding a timestamp to the
key

Database System Concepts - 61" Edition 19.93 ©Silberschatz, Korth and Sudarshan

Data Representation

® Records in many big data applications need to have a flexible schema
Not all records have same structure
Some attributes may have complex substructure

m XML and JSON data representation formats widely used

®m An example of a JSON object is:

{
"ID"; "22222",
"name": {
“firstname: "Albert",
"lasthame: "Einstein”
%
"deptname": "Physics",
“children": [
{ "firstname"; "Hans", "lastname"; "Einstein" },
{ "firstname"; "Eduard", "lastname": "Einstein" }
]
}

Database System Concepts - 61" Edition 19.94 ©Silberschatz, Korth and Sudarshan

;;g.’_ Partitioning and Retrieving Data

m Key-value stores partition data into relatively small units (hundreds of
megabytes).

B These partitions are often called tablets (a tablet is a fragment of a table)

®m Partitioning of data into tablets is dynamic:

as data are inserted, if a tablet grows too big, it is broken into smaller
parts

if the load (get/put operations) on a tablet is excessive, the tablet may be
broken into smaller tablets, which can be distributed across two or more

sites to share the load.
the number of tablets is much larger than the number of sites
» similar to virtual partitioning in parallel databases
® Each get/put request must be routed to the correct site
m Tablet controller tracks the partitioning function and tablet-to-site mapping

map a get() request to one or more tablets,
Tablet mapping function to track which site responsible for which tablet

Database System Concepts - 61" Edition 19.95 ©Silberschatz, Korth and Sudarshan

PNUTS Parallel Storage System Architecture

Requests Requests Requests Master copy of
partition table/
tablet mapping

Routers > Tablet
controller

[_Jml] [IR |]] L1]

[W] [1N | 1] C1]

Tablets

Tablet servers

Database System Concepts - 6" Edition 19.96 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6" Edition 19.97 ©Silberschatz, Korth and Sudarshan

Distributed Directory Systems

Database System Concepts - 6" Edition 19.98 ©Silberschatz, Korth and Sudarshan

- Directory Systems

m Typical kinds of directory information
Employee information such as name, id, email, phone, office addr, ..
Even personal information to be accessed from multiple places
» e.g. Web browser bookmarks
®m White pages
Entries organized by name or identifier
» Meant for forward lookup to find more about an entry
® Yellow pages
Entries organized by properties
For reverse lookup to find entries matching specific requirements
® When directories are to be accessed across an organization
Alternative 1: Web interface. Not great for programs
Alternative 2: Specialized directory access protocols
» Coupled with specialized user interfaces

Database System Concepts - 61" Edition 19.99 ©Silberschatz, Korth and Sudarshan

- Directory Access Protocols

® Most commonly used directory access protocol:

LDAP (Lightweight Directory Access Protocol)

Simplified from earlier X.500 protocol
® Question: Why not use database protocols like ODBC/JDBC?
m Answer:

Simplified protocols for a limited type of data access, evolved
parallel to ODBC/JDBC

Provide a nice hierarchical naming mechanism similar to file
system directories

» Data can be partitioned amongst multiple servers for different
parts of the hierarchy, yet give a single view to user

E.g. different servers for Bell Labs Murray Hill and Bell Labs
Bangalore

Directories may use databases as storage mechanism

Database System Concepts - 61" Edition 19.100 ©Silberschatz, Korth and Sudarshan

LDAP: Lightweight Directory Access

Protocol
m LDAP Data Model

® Data Manipulation
m Distributed Directory Trees

Database System Concepts - 61" Edition 19.101 ©Silberschatz, Korth and Sudarshan

g LDAP Data Model

m LDAP directories store entries
Entries are similar to objects
Each entry must have unique distinguished name (DN)
DN made up of a sequence of relative distinguished names (RDNS)
m E.g.ofaDN
cn=Silberschatz, ou-Bell Labs, o=Lucent, c=USA
Standard RDNs (can be specified as part of schema)
» CN: common name ou: organizational unit
» 0. organization C. country
Similar to paths in a file system but written in reverse direction

Database System Concepts - 61" Edition 19.102 ©Silberschatz, Korth and Sudarshan

g LDAP Data Model (Cont.)

®m Entries can have attributes
Attributes are multi-valued by default
LDAP has several built-in types
» Binary, string, time types
» Tel: telephone number PostalAddress: postal address
m LDAP allows definition of object classes
Object classes specify attribute names and types
Can use inheritance to define object classes
Entry can be specified to be of one or more object classes
» No need to have single most-specific type

Database System Concepts - 61" Edition 19.103 ©Silberschatz, Korth and Sudarshan

s LDAP Data Model (cont.)

® Entries organized into a directory information tree according to their
DNs

Leaf level usually represent specific objects

Internal node entries represent objects such as organizational
units, organizations or countries

Children of a node inherit the DN of the parent, and add on RDNs
» E.g. internal node with DN c=USA

Children nodes have DN starting with c=USA and further
RDNSs such as o or ou

» DN of an entry can be generated by traversing path from root
Leaf level can be an alias pointing to another entry
» Entries can thus have more than one DN
E.g. person in more than one organizational unit

Database System Concepts - 61" Edition 19.104 ©Silberschatz, Korth and Sudarshan

LDAP Data Manipulation

m Unlike SQL, LDAP does not define DDL or DML
®m Instead, it defines a network protocol for DDL and DML
Users use an API or vendor specific front ends
LDAP also defines a file format
» LDAP Data Interchange Format (LDIF)
® Querying mechanism is very simple: only selection & projection

Database System Concepts - 61" Edition 19.105 ©Silberschatz, Korth and Sudarshan

g LDAP Queries

m LDAP query must specify
Base: a node in the DIT from where search is to start
A search condition
» Boolean combination of conditions on attributes of entries
Equality, wild-cards and approximate equality supported
A scope

» Just the base, the base and its children, or the entire subtree
from the base

Attributes to be returned
Limits on number of results and on resource consumption
May also specify whether to automatically dereference aliases
m LDAP URLs are one way of specifying query
m LDAP APl is another alternative

Database System Concepts - 61" Edition 19.106 ©Silberschatz, Korth and Sudarshan

g LDAP URLS

m First part of URL specifis server and DN of base
|dap:://aura.research.bell-labs.com/o=Lucent,c=USA

m Optional further parts separated by ? symbol
|dap:://aura.research.bell-labs.com/o=Lucent,c=USA??sub?cn=Korth
Optional parts specify
1. attributes to return (empty means all)
2. Scope (sub indicates entire subtree)
3. Search condition (cn=Korth)

Database System Concepts - 61" Edition 19.107 ©Silberschatz, Korth and Sudarshan

C Code using LDAP API

#include <stdio.h>
#include <ldap.h>
main() {
LDAP *Id;
LDAPMessage *res, *entry;
char *dn, *attr, *attrList [] = {"telephoneNumber”, NULL};
BerElement *ptr;
int vals, i
Il Open a connection to server
|d = Idap_open(“aura.research.bell-labs.com”, LDAP_PORT);

|dap_simple_bind(ld, “avi”, “avi-passwd”);
.. actual query (next slide) ...
|dap_unbind(ld);

Database System Concepts - 61" Edition 19.108 ©Silberschatz, Korth and Sudarshan

-! C Code using LDAP API (Cont.)

|dap_search_s(ld, “o=Lucent, c=USA”, LDAP_SCOPE_SUBTREE,
“cn=Korth”, attrList, /* attrsonly*/ 0, &res);
[*attrsonly = 1 => return only schema not actual results*/
printf(“found%d entries”, [dap_count_entries(ld, res));
for (entry=Ildap_first_entry(ld, res); entry != NULL,;
entry=ldap_next_entry(id, entry)) {
dn = Idap_get_dn(ld, entry);
printf(“dn: %s”, dn); /*dn. DN of matching entry */
|dap_memfree(dn);
for(attr = Idap_first_attribute(ld, entry, &ptr); attr I= NULL;
attr = ldap_next_attribute(ld, entry, ptr))
{ Il for each attribute
printf(“%s:”, attr); Il print name of attribute
vals = |dap_get_values(ld, entry, attr);
for (i = 0; vals[i] = NULL; i ++)
printf(“%s”, vals[i]); /I since attrs can be multivalued
|ldap_value_free(vals);
}
}

ldap_msgfree(res);

Database System Concepts - 61" Edition 19.109 ©Silberschatz, Korth and Sudarshan

—
L)

g LDAP API (Cont.)

m LDAP API also has functions to create, update and delete entries
m Each function call behaves as a separate transaction
LDAP does not support atomicity of updates

Database System Concepts - 61" Edition 19.110 ©Silberschatz, Korth and Sudarshan

-! Distributed Directory Trees

m Organizational information may be split into multiple directory information trees

Suffix of a DIT gives RDN to be tagged onto to all entries to get an overall
DN

E.g. two DITs, one with suffix o=Lucent, c=USA
and another with suffix o=Lucent, c=India

Organizations often split up DITs based on geographical location or by
organizational structure

Many LDAP implementations support replication (master-slave or multi-
master replication) of DITs (not part of LDAP 3 standard)

® A node in aDIT may be a referral to a node in another DIT

E.g. Ou= Bell Labs may have a separate DIT, and DIT for o=Lucent may
have a leaf with ou=Bell Labs containing a referral to the Bell Labs DIT

Referalls are the key to integrating a distributed collection of directories
When a server gets a query reaching a referral node, it may either
Forward query to referred DIT and return answer to client, or

Give referral back to client, which transparently sends query to referred
DIT (without user intervention)

Database System Concepts - 61" Edition 19.111 ©Silberschatz, Korth and Sudarshan

End of Chapter

Database System Concepts - 6" Edition 19.112 ©Silberschatz, Korth and Sudarshan

Extra Slides on 3PC

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

g Three Phase Commit (3PC)

m Assumptions:
No network partitioning
At any point, at least one site must be up.
At most K sites (participants as well as coordinator) can falil
® Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
Every site is ready to commit if instructed to do so
m Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

In phase 2 coordinator makes a decision as in 2PC (called the pre-commit
decision) and records it in multiple (at least K) sites

In phase 3, coordinator sends commit/abort message to all participating
sites,

® Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

Avoids blocking problem as long as < K sites fail
m Drawbacks:

higher overheads

assumptions may not be satisfied in practice

Database System Concepts - 61" Edition 19.114 ©Silberschatz, Korth and Sudarshan

“ Three Phase Commit (3PC)

® Assumptions:
No network partitioning
At any point, at least one site must be up.
At most K sites (participants as well as coordinator) can falil
® Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
Every site is ready to commit if instructed to do so

Under 2 PC each site is obligated to wait for decision from
coordinator

Under 3PC, knowledge of pre-commit decision can be used to
commit despite coordinator failure.

Database System Concepts - 61" Edition 19.115 ©Silberschatz, Korth and Sudarshan

3PC: Phase 2. Recording the Preliminary
Decision

m Coordinator adds a decision record (<abort T> or
< precommit T>) in its log and forces record to stable storage.

m Coordinator sends a message to each participant informing it of the
decision

Participant records decision in its log
If abort decision reached then participant aborts locally

m If pre-commit decision reached then participant replies with
<acknowledge T>

Database System Concepts - 61" Edition 19.116 ©Silberschatz, Korth and Sudarshan

3PC: Phase 3. Recording Decision in the
Database

Executed only if decision in phase 2 was to precommit

Coordinator collects acknowledgements. It sends <commit T>
message to the participants as soon as it receives K
acknowledgements.

m Coordinator adds the record <commit T> in its log and forces record
to stable storage.

m Coordinator sends a message to each participant to <commit T>
m Participants take appropriate action locally

Database System Concepts - 61" Edition 19.117 ©Silberschatz, Korth and Sudarshan

g 3PC: Handling Site Failure

m Site Failure. Upon recovery, a participating site examines its log and
does the following:

Log contains <commit T> record: no action
Log contains <abort T> record: no action

Log contains <ready T> record, but no <abort T> or <precommit
T> record: site consults Ci to determine the fate of T.

» if Ci says T aborted, site executes undo (T) (and writes
<abort T> record)

» if Ci says T committed, site executes redo (T) (and writes
< commit T> record)

» if ¢ says T committed, site resumes the protocol from receipt of
precommit T message (thus recording <precommit T> in the
log, and sending acknowledge T message sent to
coordinator).

Database System Concepts - 61" Edition 19.118 ©Silberschatz, Korth and Sudarshan

3PC: Handling Site Failure (Cont.)

® Log contains <precommit T> record, but no <abort T> or <commit
T>: site consults Ci to determine the fate of T.

if Ci says T aborted, site executes undo (T)
if Ci says T committed, site executes redo (T)

if Ci says T still in precommit state, site resumes protocol at this
point

® Log contains no <ready T> record for a transaction T: site executes
undo (T) writes <abort T> record

Database System Concepts - 61" Edition 19.119 ©Silberschatz, Korth and Sudarshan

Figure 19.02

transaction
coordinator

7
A\
@

\
/

@ o o . @ transaction
manager

computer 1 computer n

Database System Concepts - 6" Edition 19.120 ©Silberschatz, Korth and Sudarshan

Figure 19.03

local unique site
timestamp identifier

global unique
identifier

Database System Concepts - 61" Edition 19.121 ©Silberschatz, Korth and Sudarshan

Figure 19.04

&—®| [

site S¢ site S,

Database System Concepts - 61" Edition 19.122 ©Silberschatz, Korth and Sudarshan

Figure 19.05

'Q

Database System Concepts - 61" Edition 19.123 ©Silberschatz, Korth and Sudarshan

Figure 19.06

Database System Concepts - 61" Edition

51

& @

coordinator

19.124

©Silberschatz, Korth and Sudarshan

Figure 19.07

Requests Requests Requests Master copy of
partition table/
tablet mapping

Routers > fablet
controller

L] [][] L1] L1 L]

[1M] [][] [1 L] [1]

Tablets

Tablet servers

Database System Concepts - 6" Edition 19.125 ©Silberschatz, Korth and Sudarshan

