
©Silberschatz, Korth and Sudarshan 19.75 Database System Concepts - 6th Edition 

Distributed Query Processing 



©Silberschatz, Korth and Sudarshan 19.76 Database System Concepts - 6th Edition 

Distributed Query Processing 

 For centralized systems, the primary criterion for measuring the cost 
of a particular strategy is the number of disk accesses. 

 In a distributed system, other issues must be taken into account: 
 The cost of a data transmission over the network. 
 The potential gain in performance from having several sites 

process parts of the query in parallel. 



©Silberschatz, Korth and Sudarshan 19.77 Database System Concepts - 6th Edition 

Query Transformation 

 Translating algebraic queries on fragments. 

 It must be possible to construct relation r from its fragments 

 Replace relation r by the expression to construct relation r from its 
fragments 

 Consider the horizontal fragmentation of the account relation into 

account1 = σ branch_name = “Hillside” (account ) 

account2 = σ branch_name = “Valleyview” (account ) 

 The query σ branch_name = “Hillside” (account ) becomes 

σ branch_name = “Hillside” (account1 ∪ account2) 

 which is optimized into 

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2) 

 



©Silberschatz, Korth and Sudarshan 19.78 Database System Concepts - 6th Edition 

Example Query (Cont.) 

 Since account1 has only tuples pertaining to the Hillside branch, 
we can eliminate the selection operation. 

 Apply the definition of account2 to obtain 
 σ branch_name = “Hillside” (σ branch_name = “Valleyview” (account ) 
 
 This expression is the empty set regardless of the contents of the 

account relation. 
 Final strategy is for the Hillside site to return account1 as the result 

of the query. 



©Silberschatz, Korth and Sudarshan 19.79 Database System Concepts - 6th Edition 

Simple Join Processing 

 Consider the following relational algebra expression in which the three 
relations are neither replicated nor fragmented 

 account     depositor   branch  
 account  is stored at site S1 
 depositor at S2 
 branch at S3 
 For a query issued at site SI, the system needs to produce the result at 

site SI  



©Silberschatz, Korth and Sudarshan 19.80 Database System Concepts - 6th Edition 

Possible Query Processing Strategies 

 Ship copies of all three relations to site SI  and choose a strategy for 
processing the entire locally at site SI. 

 Ship a copy of the account relation to site S2 and compute temp1 = 
account  depositor at S2. Ship temp1 from S2 to S3, and compute 
temp2 = temp1  branch at S3. Ship the result temp2 to SI. 

 Devise similar strategies, exchanging the roles S1, S2, S3 
 Must consider following factors: 

 amount of data being shipped  
 cost of transmitting a data block between sites 
 relative processing speed at each site  



©Silberschatz, Korth and Sudarshan 19.81 Database System Concepts - 6th Edition 

Semijoin Strategy 

 Let r1 be a relation with schema R1 stores at site S1 

 Let r2 be a relation with schema R2 stores at site S2 

 Evaluate the expression r1       r2 and obtain the result at S1. 
1. Compute temp1 ← ∏R1 ∩ R2 (r1)  at S1. 
 2. Ship  temp1 from S1 to S2. 
 3. Compute temp2 ←  r2      temp1 at S2 

 4. Ship temp2 from S2 to S1. 
 5. Compute r1    temp2 at S1. This is the same as r1    r2.  



©Silberschatz, Korth and Sudarshan 19.82 Database System Concepts - 6th Edition 

Formal Definition 
 The semijoin of r1 with r2, is denoted by: 
    r1     r2  
 it is defined by: 
               ∏R1 (r1      r2)  
 Thus, r1     r2 selects those tuples of r1 that contributed to r1    r2. 
 In step 3 above, temp2=r2     r1. 
 For joins of several relations, the above strategy can be extended to a 

series of semijoin steps. 



©Silberschatz, Korth and Sudarshan 19.83 Database System Concepts - 6th Edition 

Join Strategies that Exploit Parallelism 

 Consider r1      r2      r3       r4 where relation ri is stored at site Si. The result 

must be presented at site S1. 

 r1 is shipped to S2 and r1      r2 is computed at S2: simultaneously r3 is 
shipped to S4 and r3      r4  is computed at S4 

 S2 ships tuples of (r1      r2) to S1 as they produced;  
S4 ships tuples of (r3      r4) to S1  

 Once tuples of (r1    r2) and (r3      r4) arrive at S1 (r1      r2)      (r3      r4) is 
computed in parallel with the computation of (r1      r2) at S2 and the 
computation of (r3      r4) at S4.   



©Silberschatz, Korth and Sudarshan 19.84 Database System Concepts - 6th Edition 

Heterogeneous Distributed Databases 

 Many database applications require data from a variety of preexisting 
databases located in a heterogeneous collection of hardware and 
software platforms 

 Data models may differ (hierarchical, relational , etc.) 
 Transaction commit protocols may be incompatible 
 Concurrency control may be based on different techniques (locking, 

timestamping, etc.) 
 System-level details almost certainly are totally incompatible. 
 A multidatabase system is a software layer on top of existing 

database systems, which is designed to manipulate information in 
heterogeneous databases 
 Creates an illusion of logical database integration without any 

physical database integration 
 



©Silberschatz, Korth and Sudarshan 19.85 Database System Concepts - 6th Edition 

Advantages 

 Preservation of investment in existing 
 hardware 
 system software 
 Applications  

 Local autonomy and administrative control  
 Allows use of special-purpose DBMSs 
 Step towards a unified homogeneous DBMS 

 Full integration into a homogeneous DBMS faces 
 Technical difficulties and cost of conversion 
 Organizational/political difficulties 

– Organizations do not want to give up control on their data 
– Local databases wish to retain a great deal of autonomy 



©Silberschatz, Korth and Sudarshan 19.86 Database System Concepts - 6th Edition 

Unified View of Data 

 Agreement on a common data model 
 Typically the relational model 

 Agreement on a common conceptual schema 
 Different names for same relation/attribute 
 Same relation/attribute name means different things 

 Agreement on a single representation of shared data  
 E.g. data types, precision,  
 Character sets 

 ASCII vs EBCDIC 
 Sort order variations 

 Agreement on units of measure  
 Variations in names 

 E.g. Köln vs Cologne,  Mumbai vs Bombay 



©Silberschatz, Korth and Sudarshan 19.87 Database System Concepts - 6th Edition 

Query Processing 

 Several issues in query processing in a heterogeneous database 
 Schema translation 

 Write a wrapper for each data source to translate data to a global 
schema 

 Wrappers must also translate updates on global schema to updates on 
local schema 

 Limited query capabilities 
 Some data sources allow only restricted forms of selections 

 E.g. web forms, flat file data sources 
 Queries have to be broken up and processed partly at the source and 

partly at a different site 
 Removal of duplicate information when sites have overlapping information 

 Decide which sites to execute query 
 Global query optimization 



©Silberschatz, Korth and Sudarshan 19.88 Database System Concepts - 6th Edition 

Mediator Systems 

 Mediator systems are systems that integrate multiple heterogeneous 
data sources by providing an integrated global view, and providing 
query facilities on global view 
 Unlike full fledged multidatabase systems, mediators generally do 

not bother about transaction processing 
 But the terms mediator and multidatabase are sometimes used 

interchangeably 
 The term virtual database is also used to refer to 

mediator/multidatabase systems 



©Silberschatz, Korth and Sudarshan 19.89 Database System Concepts - 6th Edition 

Transaction Management in Multidatabases 

 Local transactions are executed by each local DBMS, outside of the 
MDBS system control. 

 Global transactions are executed under multidatabase control. 
 Local autonomy - local DBMSs cannot communicate directly to 

synchronize global transaction execution and the multidatabase has 
no control over local transaction execution. 
 local concurrency control scheme needed to ensure that DBMS’s 

schedule is serializable 
 in case of locking, DBMS must be able to guard against local 

deadlocks. 
 need additional mechanisms to ensure global serializability 



©Silberschatz, Korth and Sudarshan 19.90 Database System Concepts - 6th Edition 

Local vs. Global Serializability 

 The guarantee of local serializability is not sufficient to ensure global 
serializability.  
 As an illustration, consider two global transactions T1 and T2 , 

each of which accesses and updates two data items, A and B, 
located at sites S1 and S2 respectively. 

 It is possible to have a situation where, at site S1 , T2 follows T1 , 
whereas, at S2 , T1 follows T2, resulting in a nonserializable 
global schedule.  

 If the local systems permit control of locking behavior and all systems 
follow two-phase locking 
 the multidatabase system can ensure that global transactions lock 

in a two-phase manner 
 the lock points of conflicting transactions would then define their 

global serialization order.  


	Distributed Query Processing
	Distributed Query Processing
	Query Transformation
	Example Query (Cont.)
	Simple Join Processing
	Possible Query Processing Strategies
	Semijoin Strategy
	Formal Definition
	Join Strategies that Exploit Parallelism
	Heterogeneous Distributed Databases
	Advantages
	Unified View of Data
	Query Processing
	Mediator Systems
	Transaction Management in Multidatabases
	Local vs. Global Serializability

