Chapter 19: Distributed Databases

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Chapter 19: Distributed Databases

Heterogeneous and Homogeneous Databases

Distributed Data Storage
Distributed Transactions
Commit Protocols

Concurrency Control in Distributed Databases
Availability

Distributed Query Processing

Heterogeneous Distributed Databases
Directory Systems

Database System Concepts - 61" Edition 19.2 ©Silberschatz, Korth and Sudarshan

% Distributed Database System

A distributed database system consists of loosely coupled sites that share
no physical component

Database systems that run on each site are independent of each other
® Transactions may access data at one or more sites

Database System Concepts - 61" Edition 19.3 ©Silberschatz, Korth and Sudarshan

==y Homogeneous Distributed Databases
® |n a homogeneous distributed database
All sites have identical software

Are aware of each other and agree to cooperate in processing user
requests.

Each site surrenders part of its autonomy in terms of right to change
schemas or software

Appears to user as a single system
B In a heterogeneous distributed database
Different sites may use different schemas and software
» Difference in schema is a major problem for query processing

» Difference in software is a major problem for transaction
processing

Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

Database System Concepts - 6" Edition 194 ©Silberschatz, Korth and Sudarshan

— 1'

-

Distributed Data Storage

Assume relational data model
Replication

System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

® Fragmentation

Relation is partitioned into several fragments stored in distinct sites
® Replication and fragmentation can be combined

Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

Database System Concepts - 6" Edition 195 ©Silberschatz, Korth and Sudarshan

Data Replication

®m A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

m Full replication of a relation is the case where the relation is stored at all
sites.

m Fully redundant databases are those in which every site contains a
copy of the entire database.

Database System Concepts - 61" Edition 19.6 ©Silberschatz, Korth and Sudarshan

g Data Replication (Cont.)

m Advantages of Replication

Availability: failure of site containing relation r does not result in
unavailability of r is replicas exist.

Parallelism: queries on r may be processed by several nodes in parallel.

Reduced data transfer: relation r is available locally at each site
containing a replica of r.

®m Disadvantages of Replication

Increased cost of updates: each replica of relation r must be updated.
Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy

Database System Concepts - 6" Edition 19.7 ©Silberschatz, Korth and Sudarshan

Data Fragmentation

m Division of relation r into fragments ry, r, ..., r, which contain
sufficient information to reconstruct relation r.

® Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

m Vertical fragmentation: the schema for relation r is split into
several smaller schemas

All schemas must contain a common candidate key (or
superkey) to ensure lossless join property.

A special attribute, the tuple-id attribute may be added to
each schema to serve as a candidate key.

Database System Concepts - 6" Edition 19.8 ©Silberschatz, Korth and Sudarshan

-! Horizontal Fragmentation of account Relation

branch_name | account_number balance
Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

aCCOuntl = O_branch_name:“HiIIside” (account)

branch_name |account_number balance
Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
Valleyview A-639 750

account2 - Obranch_name=*Valleyview” (account)

Database System Concepts - 6" Edition

19.9

©Silberschatz, Korth and Sudarshan

Vertical Fragmentation of employee info Relation

branch_name | customer_name tuple id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7

depOSitl = IYbranch_name, customer_name, tuple_id (employee_info)
account_number balance tuple id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 6
A-639 750 7

dep05|t2 = IYaccount_number, balance, tuple_id (employee_lnfo)

Database System Concepts - 6" Edition

19.10

©Silberschatz, Korth and Sudarshan

..!. Advantages of Fragmentation

® Horizontal:
allows parallel processing on fragments of a relation

allows a relation to be split so that tuples are located where
they are most frequently accessed

®m Vertical:

allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

tuple-id attribute allows efficient joining of vertical fragments
allows parallel processing on a relation
m Vertical and horizontal fragmentation can be mixed.

Fragments may be successively fragmented to an arbitrary
depth.

Database System Concepts - 6" Edition 19.11 ©Silberschatz, Korth and Sudarshan

Data Transparency

m Datatransparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed

system
m Consider transparency issues in relation to:

Fragmentation transparency
Replication transparency
Location transparency

Database System Concepts - 61" Edition 19.12 ©Silberschatz, Korth and Sudarshan

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items autonomously.

Database System Concepts - 61" Edition 19.13 ©Silberschatz, Korth and Sudarshan

Centralized Scheme - Name Server

m Structure:
name server assigns all names
each site maintains a record of local data items
sites ask name server to locate non-local data items
® Advantages:
satisfies naming criteria 1-3
® Disadvantages:
does not satisfy naming criterion 4
name server is a potential performance bottleneck
name server is a single point of failure

Database System Concepts - 61" Edition 19.14 ©Silberschatz, Korth and Sudarshan

...,!_ Use of Aliases

m Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.

Fulfills having a unique identifier, and avoids problems associated
with central control.

However, fails to achieve network transparency.

m Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.

B The user can be unaware of the physical location of a data item, and
Is unaffected if the data item is moved from one site to another.

Database System Concepts - 6" Edition 19.15 ©Silberschatz, Korth and Sudarshan

Distributed Transactions
and 2 Phase Commit

Database System Concepts - 6th Edition 19.16 ©Silberschatz, Korth and Sudarshan

it Distributed Transactions

® Transaction may access data at several sites.
®m Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes

Participating in coordinating the concurrent execution of the
transactions executing at that site.

®m Each site has a transaction coordinator, which is responsible for:
Starting the execution of transactions that originate at the site.
Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at
the site, which may result in the transaction being committed at all
sites or aborted at all sites.

Database System Concepts - 6" Edition 19.17 ©Silberschatz, Korth and Sudarshan

Transaction System Architecture

transaction
coordinator

i
N
@

\
/

@ o o o @ transaction
manager

computer 1 computer n

Database System Concepts - 6! Edition 19.18 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6" Edition 19.19 ©Silberschatz, Korth and Sudarshan

System Failure Modes

®m Failures unique to distributed systems:
Failure of a site.
Loss of massages

» Handled by network transmission control protocols such as
TCP-IP

Failure of a communication link

» Handled by network protocols, by routing messages via
alternative links

Network partition

» A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

Note: a subsystem may consist of a single node
® Network partitioning and site failures are generally indistinguishable.

...,!_ Commit Protocols

®m Commit protocols are used to ensure atomicity across sites

a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and
aborted at another

® The two-phase commit (2PC) protocol is widely used

B The three-phase commit (3PC) protocol is more complicated and
more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

Database System Concepts - 6" Edition 19.20 ©Silberschatz, Korth and Sudarshan

..!_!I Two Phase Commit Protocol (2PC)

B Assumes fail-stop model — failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

®m Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

®m The protocol involves all the local sites at which the transaction
executed

®m Let T be a transaction initiated at site S;, and let the transaction
coordinator at S; be C,

Database System Concepts - 61" Edition 19.21 ©Silberschatz, Korth and Sudarshan

g Phase 1: Obtaining a Decision

m Coordinator asks all participants to prepare to commit transaction T,.

C, adds the records <prepare T> to the log and forces log to
stable storage

sends prepare T messages to all sites at which T executed

® Upon receiving message, transaction manager at site determines if it
can commit the transaction

if not, add a record <no T> to the log and send abort T message
to C,

if the transaction can be committed, then:
add the record <ready T> to the log
force all records for T to stable storage
send ready T message to C,

Database System Concepts - 6" Edition 19.22 ©Silberschatz, Korth and Sudarshan

Phase 2: Recording the Decision

m T can be committed of C, received a ready T message from all the
participating sites: otherwise T must be aborted.

m Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

m Coordinator sends a message to each participant informing it of the
decision (commit or abort)

m Participants take appropriate action locally.

Database System Concepts - 61" Edition 19.23 ©Silberschatz, Korth and Sudarshan

Handling of Failures - Site Failure

When site S, recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

Log contain <commit T> record: txn had completed, nothing to be done
Log contains <abort T> record: txn had completed, nothing to be done

Log contains <ready T> record: site must consult C, to determine the
fate of T.

If T committed, redo (T); write <commit T> record
If T aborted, undo (T)
The log contains no log records concerning T:

Implies that S, failed before responding to the prepare T message
from C,

since the failure of S, precludes the sending of such a response,
coordinator C; must abort T

S, must execute undo (T)

Database System Concepts - 6" Edition 19.24 ©Silberschatz, Korth and Sudarshan

...!: Handling of Failures- Coordinator Failure

m If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T's fate:

If an active site contains a <commit T> record in its log, then T must be
committed.

If an active site contains an <abort T> record in its log, then T must be
aborted.

If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator C; cannot have decided to commit T.

e Can therefore abort T; however, such a site must reject any
subsequent <prepare T> message from C,

If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).

e In this case active sites must wait for C, to recover, to find decision.

m Blocking problem: active sites may have to wait for failed coordinator to
recover.

Database System Concepts - 6" Edition 19.25 ©Silberschatz, Korth and Sudarshan

=& Handling of Failures - Network Partition

®m [f the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

m If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.

» No harm results, but sites may still have to wait for decision
from coordinator.

B The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

» Again, no harm results

Database System Concepts - 6" Edition 19.26 ©Silberschatz, Korth and Sudarshan

wms Recovery and Concurrency Control

B In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

® The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.

B Recovery algorithms can note lock information in the log.

Instead of <ready T>, write out <ready T, L> L = list of locks held
by T when the log is written (read locks can be omitted).

For every in-doubt transaction T, all the locks noted in the
<ready T, L> log record are reacquired.

m After lock reacquisition, transaction processing can resume; the
commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.

Database System Concepts - 6" Edition 19.27 ©Silberschatz, Korth and Sudarshan

g Three Phase Commit (3PC)

® Assumptions:
No network partitioning
At any point, at least one site must be up.
At most K sites (participants as well as coordinator) can fail
® Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
Every site is ready to commit if instructed to do so
m Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

In phase 2 coordinator makes a decision as in 2PC (called the pre-commit
decision) and records it in multiple (at least K) sites

In phase 3, coordinator sends commit/abort message to all participating
sites,

® Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

Avoids blocking problem as long as < K sites fail
m Drawbacks:

higher overheads

assumptions may not be satisfied in practice

Database System Concepts - 6" Edition 19.28 ©Silberschatz, Korth and Sudarshan

-! Alternative Models of Transaction

T Processing

® Notion of a single transaction spanning multiple sites is inappropriate
for many applications

E.g. transaction crossing an organizational boundary

No organization would like to permit an externally initiated
transaction to block local transactions for an indeterminate period

m Alternative models carry out transactions by sending messages

Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates

» Isolation cannot be guaranteed, in that intermediate stages are
visible, but code must ensure no inconsistent states result due
to concurrency

Persistent messaging systems are systems that provide
transactional properties to messages

» Messages are guaranteed to be delivered exactly once
» Will discuss implementation techniques later

Database System Concepts - 6" Edition 19.29 ©Silberschatz, Korth and Sudarshan

— Alternative Models (Cont.)

® Motivating example: funds transfer between two banks

Two phase commit would have the potential to block updates on the
accounts involved in funds transfer

Alternative solution:

Debit money from source account and send a message to other
site

Site receives message and credits destination account

Messaging has long been used for distributed transactions (even
before computers were invented!)

m Atomicity issue

once transaction sending a message is committed, message must
guaranteed to be delivered

Guarantee as long as destination site is up and reachable, code to
handle undeliverable messages must also be available

e.g. credit money back to source account.
If sending transaction aborts, message must not be sent

Database System Concepts - 6" Edition 19.30 ©Silberschatz, Korth and Sudarshan

o & Error Conditions with Persistent

— Messaging

m Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)

E.g. if destination account does not exist, failure message must be
sent back to source site

When failure message is received from destination site, or
destination site itself does not exist, money must be deposited back
In source account

» Problem if source account has been closed
get humans to take care of problem

B User code executing transaction processing using 2PC does not have to
deal with such failures

® There are many situations where extra effort of error handling is worth
the benefit of absence of blocking

E.g. pretty much all transactions across organizations

Database System Concepts - 6" Edition 19.31 ©Silberschatz, Korth and Sudarshan

e
-

|
-1 E
i

Persistent Messaging and Workflows

m Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps

E.g. when a bank receives a loan application, it may need to
» Contact external credit-checking agencies
» Get approvals of one or more managers
and then respond to the loan application

We study workflows in Chapter 25

Persistent messaging forms the underlying infrastructure for
workflows in a distributed environment

Database System Concepts - 61" Edition 19.32 ©Silberschatz, Korth and Sudarshan

E Implementation of Persistent Messaging

e

m Sending site protocol.

When a transaction wishes to send a persistent message, it writes a
record containing the message in a special relation
messages_to_send; the message is given a unique message
identifier.

A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination.

The message delivery process deletes a message from the relation
only after it receives an acknowledgment from the destination site.

If it receives no acknowledgement from the destination site, after
some time it sends the message again. It repeats this until an
acknowledgment is received.

If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked
to deal with the failure.

® Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and
only if the transaction commits.

Database System Concepts - 6" Edition 19.33 ©Silberschatz, Korth and Sudarshan

-! Implementation of Persistent Messaging
— (Cont.)

e

® Receiving site protocol.
When a site receives a persistent message, it runs a transaction that
adds the message to a received_messages relation
provided message identifier is not already present in the relation
After the transaction commits, or if the message was already present
in the relation, the receiving site sends an acknowledgment back to
the sending site.

Note that sending the acknowledgment before the transaction
commits is not safe, since a system failure may then result in loss

of the message.
In many messaging systems, it is possible for messages to get
delayed arbitrarily, although such delays are very unlikely.
Each message is given a timestamp, and if the timestamp of a
received message is older than some cutoff, the message is
discarded.
All messages recorded in the received messages relation that are
older than the cutoff can be deleted.

Database System Concepts - 6" Edition 19.34 ©Silberschatz, Korth and Sudarshan

Concurrency Control

Database System Concepts - 6th Edition 19.35 ©Silberschatz, Korth and Sudarshan

s Concurrency Control

Modify concurrency control schemes for use in distributed environment.

We assume that each site participates in the execution of a commit
protocol to ensure global transaction automicity.

m We assume all replicas of any item are updated
Will see how to relax this in case of site failures later

Database System Concepts - 61" Edition 19.36 ©Silberschatz, Korth and Sudarshan

-! Single-Lock-Manager Approach

m System maintains a single lock manager that resides in a single
chosen site, say S,

B When a transaction needs to lock a data item, it sends a lock request
to S, and lock manager determines whether the lock can be granted

immediately

If yes, lock manager sends a message to the site which initiated
the request

If no, request is delayed until it can be granted, at which time a
message is sent to the initiating site

Database System Concepts - 61" Edition 19.37 ©Silberschatz, Korth and Sudarshan

g Single-Lock-Manager Approach (Cont.)

ey

B The transaction can read the data item from any one of the sites at
which a replica of the data item resides.

® Writes must be performed on all replicas of a data item
m Advantages of scheme:
Simple implementation
Simple deadlock handling
m Disadvantages of scheme are:
Bottleneck: lock manager site becomes a bottleneck
Vulnerability: system is vulnerable to lock manager site failure.

Database System Concepts - 61" Edition 19.38 ©Silberschatz, Korth and Sudarshan

g Distributed Lock Manager

e

®m [n this approach, functionality of locking is implemented by lock
managers at each site

Lock managers control access to local data items
» But special protocols may be used for replicas
m Advantage: work is distributed and can be made robust to failures
m Disadvantage: deadlock detection is more complicated
Lock managers cooperate for deadlock detection
» More on this later
m Several variants of this approach
Primary copy
Majority protocol
Biased protocol
Quorum consensus

Database System Concepts - 6" Edition 19.39 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6" Edition 19.40 ©Silberschatz, Korth and Sudarshan

Primary Copy

Choose one replica of data item to be the primary copy.

Site containing the replica is called the primary site for that data
item

Different data items can have different primary sites

When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.

Implicitly gets lock on all replicas of the data item
Benefit

Concurrency control for replicated data handled similarly to
unreplicated data - simple implementation.

Drawback

If the primary site of Q fails, Q is inaccessible even though other
sites containing a replica may be accessible.

-‘ Majority Protocol

®m Local lock manager at each site administers lock and unlock requests
for data items stored at that site.

® When a transaction wishes to lock an unreplicated data item Q
residing at site S;, a message is sentto S, ‘s lock manager.
If Q is locked in an incompatible mode, then the request is delayed
until it can be granted.

When the lock request can be granted, the lock manager sends a
message back to the initiator indicating that the lock request has

been granted.

Database System Concepts - 6" Edition 19.41 ©Silberschatz, Korth and Sudarshan

E Majority Protocol (Cont.)

® In case of replicated data

If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.

The transaction does not operate on Q until it has obtained a lock
on a majority of the replicas of Q.

When writing the data item, transaction performs writes on all
replicas.

B Benefit
Can be used even when some sites are unavailable
» details on how handle writes in the presence of site failure later
m Drawback

Requires 2(n/2 + 1) messages for handling lock requests, and (n/2
+ 1) messages for handling unlock requests.

Potential for deadlock even with single item - e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data.

Database System Concepts - 6" Edition 19.42 ©Silberschatz, Korth and Sudarshan

Biased Protocol

Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.

Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.

Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

Advantage - imposes less overhead on read operations.
Disadvantage - additional overhead on writes

Database System Concepts - 6" Edition 19.43 ©Silberschatz, Korth and Sudarshan

.;.;j!.i Quorum Consensus Protocol

e

B A generalization of both majority and biased protocols

m Each site is assigned a weight.
Let S be the total of all site weights

m Choose two values read quorum Q, and write quorum Q,,
Suchthat Q. +Q,>S and 2* Q,> S

Quorums can be chosen (and S computed) separately for each
item
B Each read must lock enough replicas that the sum of the site weights
s >=Q,
m Each write must lock enough replicas that the sum of the site weights
IS >=Q,,
® For now we assume all replicas are written
Extensions to allow some sites to be unavailable described later

Database System Concepts - 6" Edition 19.44 ©Silberschatz, Korth and Sudarshan

Timestamping

® Timestamp based concurrency-control protocols can be used in
distributed systems

m Each transaction must be given a unique timestamp

® Main problem: how to generate a timestamp in a distributed fashion
Each site generates a unique local timestamp using either a logical
counter or the local clock.
Global unique timestamp is obtained by concatenating the unique
local timestamp with the unique identifier.

local unique site
timestamp identifier

~

global unique
identifier

Database System Concepts - 6" Edition 19.45 ©Silberschatz, Korth and Sudarshan

—- Timestamping (Cont.)

m A site with a slow clock will assign smaller timestamps
Still logically correct: serializability not affected
But: “disadvantages” transactions

®m To fix this problem

Define within each site S; a logical clock (LC,), which generates
the unique local timestamp

Require that S;advance its logical clock whenever a request is
received from a transaction Ti with timestamp < x,y> and X is
greater that the current value of LC,.

In this case, site S; advances its logical clock to the value x + 1.

Database System Concepts - 6" Edition 19.46 ©Silberschatz, Korth and Sudarshan

== Replication with Weak Consistency

B Many commercial databases support replication of data with weak
degrees of consistency (l.e., without a guarantee of serializabiliy)

m E.g.: master-slave replication: updates are performed at a single
“master” site, and propagated to “slave” sites.

Propagation is not part of the update transaction: its is decoupled
» May be immediately after transaction commits
» May be periodic
Data may only be read at slave sites, not updated
» No need to obtain locks at any remote site
Particularly useful for distributing information
» E.g. from central office to branch-office

Also useful for running read-only queries offline from the main
database

Database System Concepts - 6" Edition 19.47 ©Silberschatz, Korth and Sudarshan

g Replication with Weak Consistency (Cont.)

e ==

®m Replicas should see a transaction-consistent snapshot of the
database

That is, a state of the database reflecting all effects of all
transactions up to some point in the serialization order, and no

effects of any later transactions.

m E.g. Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site

snapshot refresh either by recomputation or by incremental update
Automatic refresh (continuous or periodic) or manual refresh

Database System Concepts - 6" Edition 19.48 ©Silberschatz, Korth and Sudarshan

- Multimaster and Lazy Replication

® With multimaster replication (also called update-anywhere replication)
updates are permitted at any replica, and are automatically
propagated to all replicas

Basic model in distributed databases, where transactions are
unaware of the details of replication, and database system
propagates updates as part of the same transaction

» Coupled with 2 phase commit

® Many systems support lazy propagation where updates are
transmitted after transaction commits

Allows updates to occur even if some sites are disconnected from
the network, but at the cost of consistency

Database System Concepts - 6" Edition 19.49 ©Silberschatz, Korth and Sudarshan

it Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T, at site 1, and item Y and transaction T, at site 2:

T, write (X) T,: write (Y)
write (Y) write (X)
X-lock on X
write (X) X-lock on'Y
write (Y)

wait for X-lock on X

Wait for X-lock on Y

Result: deadlock which cannot be detected locally at either site

Database System Concepts - 6" Edition 19.50 ©Silberschatz, Korth and Sudarshan

== Centralized Approach

m A global wait-for graph is constructed and maintained in a single site;
the deadlock-detection coordinator

Real graph: Real, but unknown, state of the system.

Constructed graph:Approximation generated by the controller
during the execution of its algorithm .

®m the global wait-for graph can be constructed when:

a new edge is inserted in or removed from one of the local wait-
for graphs.

a number of changes have occurred in a local wait-for graph.
the coordinator needs to invoke cycle-detection.

m If the coordinator finds a cycle, it selects a victim and notifies all sites.
The sites roll back the victim transaction.

Database System Concepts - 6" Edition 19.51 ©Silberschatz, Korth and Sudarshan

Local and Global Wait-For Graphs

@*

site Sl

D] [&—@

Local

Database System Concepts - 6! Edition

19.52

site S 2

Global

©Silberschatz, Korth and Sudarshan

Initial state:

Example Wait-For Graph for False Cycles

Database System Concepts - 6! Edition

RO

coordinator

19.53

©Silberschatz, Korth and Sudarshan

- False Cycles (Cont.)

m Suppose that starting from the state shown in figure,
1. T, releases resources at S,

» resulting in a message remove T, —» T, message from the
Transaction Manager at site S, to the coordinator)

2. And then T, requests a resource held by T at site S,
» resulting in a message insert T, » T, from S, to the coordinator

B Suppose further that the insert message reaches before the delete
message

this can happen due to network delays
® The coordinator would then find a false cycle
T,=>T,>T;5T;
®m The false cycle above never existed in reality.
m False cycles cannot occur if two-phase locking is used.

Database System Concepts - 6" Edition 19.54 ©Silberschatz, Korth and Sudarshan

..-,! Unnecessary Rollbacks

® Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of the
transactions was aborted for reasons unrelated to the deadlock.

® Unnecessary rollbacks can result from false cycles in the global wait-
for graph; however, likelihood of false cycles is low.

Database System Concepts - 61" Edition 19.55 ©Silberschatz, Korth and Sudarshan

	Chapter 19: Distributed Databases
	Chapter 19: Distributed Databases
	Distributed Database System
	Homogeneous Distributed Databases
	Distributed Data Storage
	Data Replication
	Data Replication (Cont.)
	Data Fragmentation
	Horizontal Fragmentation of account Relation
	Vertical Fragmentation of employee_info Relation
	Advantages of Fragmentation
	Data Transparency
	Naming of Data Items - Criteria
	Centralized Scheme - Name Server
	Use of Aliases
	Distributed Transactions �and 2 Phase Commit
	Distributed Transactions
	Transaction System Architecture
	System Failure Modes
	Commit Protocols
	Two Phase Commit Protocol (2PC)
	Phase 1: Obtaining a Decision
	Phase 2: Recording the Decision
	Handling of Failures - Site Failure
	Handling of Failures- Coordinator Failure
	Handling of Failures - Network Partition
	Recovery and Concurrency Control
	Three Phase Commit (3PC)
	Alternative Models of Transaction Processing
	Alternative Models (Cont.)
	Error Conditions with Persistent Messaging
	Persistent Messaging and Workflows
	Implementation of Persistent Messaging
	Implementation of Persistent Messaging (Cont.)
	Concurrency Control
	Concurrency Control
	Single-Lock-Manager Approach
	Single-Lock-Manager Approach (Cont.)
	Distributed Lock Manager
	Primary Copy
	Majority Protocol
	Majority Protocol (Cont.)
	Biased Protocol
	Quorum Consensus Protocol
	Timestamping
	Timestamping (Cont.)
	Replication with Weak Consistency
	Replication with Weak Consistency (Cont.)
	Multimaster and Lazy Replication
	Deadlock Handling
	Centralized Approach
	Local and Global Wait-For Graphs
	Example Wait-For Graph for False Cycles
	False Cycles (Cont.)
	Unnecessary Rollbacks

