Hashing

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

http://www.db-book.com/

Static Hashing

= A bucket is a unit of storage containing one or more entries
(a bucket is typically a disk block).

we obtain the bucket of an entry from its search-key value
using a hash function

= Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

= Hash function is used to locate entries for access, insertion
as well as deletion.

= Entries with different search-key values may be mapped to
the same bucket; thus entire bucket has to be searched
sequentially to locate an entry.

= |n a hash index, buckets store entries with pointers to
records

= |n a hash file-organization buckets store records

Database System Concepts - 7t Edition 14.52 ©Silberschatz, Korth and Sudarshan

Handling of Bucket Overflows

= Bucket overflow can occur because of
Insufficient buckets

Skew in distribution of records. This can occur due to two
reasons:

multiple records have same search-key value

chosen hash function produces non-uniform distribution
of key values

= Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

Database System Concepts - 7t Edition 14.53 ©Silberschatz, Korth and Sudarshan

Handling of Bucket Overflows (Cont.)

= Overflow chaining — the overflow buckets of a given bucket are chained
together in a linked list.

= Above scheme is called closed addressing (also called closed hashing or
open hashing depending on the book you use)

An alternative, called
open addressing
(also called

open hashing or
closed hashing
depending on the book bucket1
you use) which does not

use overflow buckets, overflow buckets for bucket 1
is not suitable for
database applications.

bucket 0

Y
Y

bucket 2

bucket 3

Database System Concepts - 7t Edition 14.54 ©Silberschatz, Korth and Sudarshan

Example of Hash File Organization

bucket 0 bucket 4
12121 | Wu Finance [90000

76543 | Singh Finance (80000

bucket 1 bucket 5
15151 Mozart Music 40000 76766| Crick Biology [72000
bucket 2 bucket 6
32343|El Said | History 80000 10101 |Srinivasan |Comp. Sci.[65000
58583 | Califieri | History [60000 45565 |Katz Comp. Sci.|75000

83821|Brandt |Comp. Sci.[92000

bucket 3 bucket 7
22222|Einstein | Physics |95000
33456| Gold Physics {87000
98345| Kim Elec. Eng.|80000

Hash file organization of instructor file, using dept_name as key.

Database System Concepts - 7t Edition 14.56 ©Silberschatz, Korth and Sudarshan

Deficiencies of Static Hashing

= |n static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.

If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

If space is allocated for anticipated growth, a significant
amount of space will be wasted initially (and buckets will be
underfull).

If database shrinks, again space will be wasted.

= One solution: periodic re-organization of the file with a new hash
function

Expensive, disrupts normal operations

= Better solution: allow the number of buckets to be modified
dynamically.

Database System Concepts - 7t Edition 14.57 ©Silberschatz, Korth and Sudarshan

Dynamic Hashing

= Periodic rehashing

If number of entries in a hash table becomes (say) 1.5 times
size of hash table,

create new hash table of size (say) 2 times the size of the
previous hash table

Rehash all entries to new table
= Linear Hashing
Do rehashing in an incremental manner
= Extendable Hashing

Tailored to disk based hashing, with buckets shared by
multiple hash values

Doubling of # of entries in hash table, without doubling # of
buckets

Database System Concepts - 7t Edition 14.58 ©Silberschatz, Korth and Sudarshan

Comparison of Ordered Indexing and Hashing

= Cost of periodic re-organization
= Relative frequency of insertions and deletions

= |s it desirable to optimize average access time at the expense of
worst-case access time?

= Expected type of queries:

Hashing is generally better at retrieving records having a
specified value of the key.

If range queries are common, ordered indices are to be
preferred

= |n practice:

PostgreSQL supports hash indices, but discourages use due to
poor performance

Oracle supports static hash organization, but not hash indices
SQLServer supports only B*-trees

Database System Concepts - 7t Edition 14.59 ©Silberschatz, Korth and Sudarshan

Multiple-Key Access

= Use multiple indices for certain types of queries.
= Example:
select /D
from instructor
where dept name = “Finance” and salary = 80000

= Possible strategies for processing query using indices on
single attributes:

1. Use index on dept_name to find instructors with
department name Finance; test salary = 80000

2. Use index on salary to find instructors with a salary of
$80000; test dept name = “Finance”.

3. Use dept_name index to find pointers to all records
pertaining to the “Finance” department. Similarly use
index on salary. Take intersection of both sets of pointers
obtained.

Database System Concepts - 7t Edition 14.60 ©Silberschatz, Korth and Sudarshan

Indices on Multiple Keys

= Composite search keys are search keys containing more than
one attribute

E.g. (dept_name, salary)
= | exicographic ordering: (a4, a,) < (b4, b,) if either
a,<byor

a,=b,and a, <b,

Database System Concepts - 7t Edition 14.61 ©Silberschatz, Korth and Sudarshan

Indices on Multiple Attributes

Suppose we have an index on combined search-key
(dept_name, salary).

= \With the where clause

where dept name = “Finance” and salary = 80000
the index on (dept_name, salary) can be used to fetch only
records that satisfy both conditions.

Using separate indices in less efficient — we may fetch

many records (or pointers) that satisfy only one of the
conditions.

= (Can also efficiently handle
where dept name = “Finance” and salary < 80000

= But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

May fetch many records that satisfy the first but not the
second condition

Database System Concepts - 7t Edition 14.62 ©Silberschatz, Korth and Sudarshan

Other Features

= Covering indices

Add extra attributes to index so (some) queries can avoid
fetching the actual records

Store extra attributes only at leaf
= Why?
= Particularly useful for secondary indices
Why?

Database System Concepts - 7t Edition 14.63 ©Silberschatz, Korth and Sudarshan

Creation of Indices

= E.g.
create index takes pk on takes (ID,course ID, year, semester, section)
drop index fakes pk

= Most database systems allow specification of type of index, and clustering.
= Indices on primary key created automatically by all databases
Why?
= Some database also create indices on foreign key attributes
Why might such an index be useful for this query:
takes > O,,,me="shankar (Student)
= |ndices can greatly speed up lookups, but impose cost on updates

Index tuning assistants/wizards supported on several databases to
help choose indices, based on query and update workload

Database System Concepts - 7t Edition 14.64 ©Silberschatz, Korth and Sudarshan

	Hashing
	Static Hashing
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Example of Hash File Organization
	Deficiencies of Static Hashing
	Dynamic Hashing
	Comparison of Ordered Indexing and Hashing
	Multiple-Key Access
	Indices on Multiple Keys
	Indices on Multiple Attributes
	Other Features
	Creation of Indices

