
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan14.52Database System Concepts - 7th Edition

Static Hashing

 A bucket is a unit of storage containing one or more entries
(a bucket is typically a disk block).
• we obtain the bucket of an entry from its search-key value

using a hash function
 Hash function h is a function from the set of all search-key

values K to the set of all bucket addresses B.
 Hash function is used to locate entries for access, insertion

as well as deletion.
 Entries with different search-key values may be mapped to

the same bucket; thus entire bucket has to be searched
sequentially to locate an entry.

 In a hash index, buckets store entries with pointers to
records

 In a hash file-organization buckets store records

©Silberschatz, Korth and Sudarshan14.53Database System Concepts - 7th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of
• Insufficient buckets
• Skew in distribution of records. This can occur due to two

reasons:
 multiple records have same search-key value
 chosen hash function produces non-uniform distribution

of key values
 Although the probability of bucket overflow can be reduced, it

cannot be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan14.54Database System Concepts - 7th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

 Above scheme is called closed addressing (also called closed hashing or
open hashing depending on the book you use)
• An alternative, called

open addressing
(also called
open hashing or
closed hashing
depending on the book
you use) which does not
use overflow buckets,
is not suitable for
database applications.

©Silberschatz, Korth and Sudarshan14.56Database System Concepts - 7th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.

©Silberschatz, Korth and Sudarshan14.57Database System Concepts - 7th Edition

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.
• If initial number of buckets is too small, and file grows,

performance will degrade due to too much overflows.
• If space is allocated for anticipated growth, a significant

amount of space will be wasted initially (and buckets will be
underfull).

• If database shrinks, again space will be wasted.
 One solution: periodic re-organization of the file with a new hash

function
• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified
dynamically.

©Silberschatz, Korth and Sudarshan14.58Database System Concepts - 7th Edition

Dynamic Hashing

 Periodic rehashing
• If number of entries in a hash table becomes (say) 1.5 times

size of hash table,
 create new hash table of size (say) 2 times the size of the

previous hash table
 Rehash all entries to new table

 Linear Hashing
• Do rehashing in an incremental manner

 Extendable Hashing
• Tailored to disk based hashing, with buckets shared by

multiple hash values
• Doubling of # of entries in hash table, without doubling # of

buckets

©Silberschatz, Korth and Sudarshan14.59Database System Concepts - 7th Edition

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization
 Relative frequency of insertions and deletions
 Is it desirable to optimize average access time at the expense of

worst-case access time?
 Expected type of queries:

• Hashing is generally better at retrieving records having a
specified value of the key.

• If range queries are common, ordered indices are to be
preferred

 In practice:
• PostgreSQL supports hash indices, but discourages use due to

poor performance
• Oracle supports static hash organization, but not hash indices
• SQLServer supports only B+-trees

©Silberschatz, Korth and Sudarshan14.60Database System Concepts - 7th Edition

Multiple-Key Access

 Use multiple indices for certain types of queries.
 Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on
single attributes:
1. Use index on dept_name to find instructors with

department name Finance; test salary = 80000
2. Use index on salary to find instructors with a salary of

$80000; test dept_name = “Finance”.
3. Use dept_name index to find pointers to all records

pertaining to the “Finance” department. Similarly use
index on salary. Take intersection of both sets of pointers
obtained.

©Silberschatz, Korth and Sudarshan14.61Database System Concepts - 7th Edition

Indices on Multiple Keys

 Composite search keys are search keys containing more than
one attribute
• E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either
• a1 < b1, or
• a1=b1 and a2 < b2

©Silberschatz, Korth and Sudarshan14.62Database System Concepts - 7th Edition

Indices on Multiple Attributes

 With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only
records that satisfy both conditions.
• Using separate indices in less efficient — we may fetch

many records (or pointers) that satisfy only one of the
conditions.

 Can also efficiently handle
where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

• May fetch many records that satisfy the first but not the
second condition

Suppose we have an index on combined search-key
(dept_name, salary).

©Silberschatz, Korth and Sudarshan14.63Database System Concepts - 7th Edition

Other Features

 Covering indices
• Add extra attributes to index so (some) queries can avoid

fetching the actual records
• Store extra attributes only at leaf
 Why?

 Particularly useful for secondary indices
• Why?

©Silberschatz, Korth and Sudarshan14.64Database System Concepts - 7th Edition

Creation of Indices

 E.g.
create index takes_pk on takes (ID,course_ID, year, semester, section)
drop index takes_pk

 Most database systems allow specification of type of index, and clustering.
 Indices on primary key created automatically by all databases

• Why?
 Some database also create indices on foreign key attributes

• Why might such an index be useful for this query:
 takes ⨝ σname='Shankar' (student)

 Indices can greatly speed up lookups, but impose cost on updates
• Index tuning assistants/wizards supported on several databases to

help choose indices, based on query and update workload

	Hashing
	Static Hashing
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Example of Hash File Organization
	Deficiencies of Static Hashing
	Dynamic Hashing
	Comparison of Ordered Indexing and Hashing
	Multiple-Key Access
	Indices on Multiple Keys
	Indices on Multiple Attributes
	Other Features
	Creation of Indices

