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Static Hashing

 A bucket is a unit of storage containing one or more entries 
(a bucket is typically a disk block). 
• we obtain the bucket of an entry from its search-key value 

using a hash function
 Hash function h is a function from the set of all search-key 

values K to the set of all bucket addresses B.
 Hash function is used to locate entries for access, insertion 

as well as deletion.
 Entries with different search-key values may be mapped to 

the same bucket; thus entire bucket has to be searched 
sequentially to locate an entry. 

 In a hash index, buckets store entries with pointers to 
records

 In a hash file-organization buckets store records
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Handling of Bucket Overflows

 Bucket overflow can occur because of 
• Insufficient buckets 
• Skew in distribution of records.  This can occur due to two 

reasons:
 multiple records have same search-key value
 chosen hash function produces non-uniform distribution 

of key values
 Although the probability of bucket overflow can be reduced, it 

cannot be eliminated; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained 
together in a linked list.

 Above scheme is called closed addressing (also called closed hashing or 
open hashing depending on the book you use)
• An alternative, called 

open addressing 
(also called 
open hashing or
closed hashing 
depending on the book 
you use) which does not
use overflow buckets,  
is not suitable for 
database applications.
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Example of Hash File Organization 

Hash file organization of instructor file, using dept_name as key.
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Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed 
set of B of bucket addresses. Databases grow or shrink with 
time. 
• If initial number of buckets is too small, and file grows, 

performance will degrade due to too much overflows.
• If space is allocated for anticipated growth, a significant 

amount of space will be wasted initially (and buckets will be 
underfull).

• If database shrinks, again space will be wasted.
 One solution: periodic re-organization of the file with a new hash 

function
• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified 
dynamically. 
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Dynamic Hashing

 Periodic rehashing
• If number of entries in a hash table becomes (say) 1.5 times 

size of hash table, 
 create new hash table of size  (say) 2 times the size of the 

previous hash table
 Rehash all entries to new table

 Linear Hashing
• Do rehashing in an incremental manner

 Extendable Hashing
• Tailored to disk based hashing, with buckets shared by 

multiple hash values
• Doubling of # of entries in hash table, without doubling # of 

buckets
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Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization
 Relative frequency of insertions and deletions
 Is it desirable to optimize average access time at the expense of 

worst-case access time?
 Expected type of queries:

• Hashing is generally better at retrieving records having a 
specified value of the key.

• If range queries are common, ordered indices are to be 
preferred

 In practice:
• PostgreSQL supports hash indices, but discourages use due to 

poor performance
• Oracle supports static hash organization, but not hash indices
• SQLServer supports only B+-trees
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Multiple-Key Access

 Use multiple indices for certain types of queries.
 Example: 

select ID
from instructor
where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on 
single attributes:
1. Use index on dept_name to find instructors with 

department name Finance; test salary = 80000 
2. Use index on salary to find instructors with a salary of 

$80000; test dept_name = “Finance”.
3. Use dept_name index to find pointers to all records 

pertaining to the “Finance” department.  Similarly use 
index on salary.  Take intersection of both sets of pointers 
obtained.
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Indices on Multiple Keys

 Composite search keys are search keys containing more than 
one attribute
• E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either 
• a1 < b1, or 
• a1=b1 and  a2 < b2
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Indices on Multiple Attributes

 With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only 
records that satisfy both conditions.
• Using separate indices in less efficient — we may fetch 

many records (or pointers) that satisfy only one of the 
conditions.

 Can also efficiently handle 
where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

• May fetch many records that satisfy the first but not the 
second condition

Suppose we have an index on combined search-key
(dept_name, salary).
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Other Features

 Covering indices
• Add extra attributes to index so (some) queries can avoid 

fetching the actual records
• Store extra attributes only at leaf
 Why?

 Particularly useful for secondary indices 
• Why?
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Creation of Indices

 E.g.
create index takes_pk on takes (ID,course_ID, year, semester, section)
drop index takes_pk

 Most database systems allow specification of type of index, and clustering.
 Indices on primary key created automatically by all databases

• Why?
 Some database also create indices on foreign key attributes

• Why might such an index be useful for this query:
 takes ⨝ σname='Shankar' (student)

 Indices can greatly speed up lookups, but impose cost on updates
• Index tuning assistants/wizards supported on several databases to 

help choose indices, based on query and update workload
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