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Chapter 14:  Indexing

 Basic Concepts

 Ordered Indices 

 B+-Tree Index Files

 B-Tree Index Files

 Hashing

 Write-optimized indices 

 Spatio-Temporal Indexing
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Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

• E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up 
records in a file.

 An index file consists of records (called index entries) of the 
form

 Index files are typically much smaller than the original file 

 Two basic kinds of indices:

• Ordered indices:  search keys are stored in sorted order

• Hash indices: search keys are distributed uniformly across 
“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation Metrics

 Access types supported efficiently.  E.g., 

• records with a specified value in the attribute

• or records with an attribute value falling in a specified range 
of values.

 Access time

 Insertion time

 Deletion time

 Space overhead
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Ordered Indices

 In an ordered index, index entries are stored sorted on the 
search key value.  

 Clustering index: in a sequentially ordered file, the index whose 
search key specifies the sequential order of the file.

• Also called primary index

• The search key of a primary index is usually but not 
necessarily the primary key.

 Secondary index: an index whose search key specifies an order 
different from the sequential order of the file.  Also called 
nonclustering index.

 Index-sequential file: sequential file ordered on a search key, 
with a clustering index on the search key.
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Dense Index Files

 Dense index — Index record appears for every search-key 
value in the file. 

 E.g. index on ID attribute of instructor relation 
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Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on 
dept_name
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Sparse Index Files

 Sparse Index:  contains index records for only some search-key 
values.

• Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

• Find index record with largest search-key value < K

• Search file sequentially starting at the record to which the index 
record points



©Silberschatz, Korth and Sudarshan14.9Database System Concepts - 7th Edition

Sparse Index Files (Cont.)

 Compared to dense indices:

• Less space and less maintenance overhead for insertions and deletions.

• Generally slower than dense index for locating records.

 Good tradeoff: 

• for clustered index: sparse index with an index entry for every block in 
file, corresponding to least search-key value in the block.

• For unclustered index: sparse index on top of dense index (multilevel 
index)
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Secondary Indices Example

 Index record points to a bucket that contains pointers to all the 
actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor
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Multilevel Index
 If index does not fit in memory, access becomes expensive.

 Solution: treat index kept on disk as a sequential file and 
construct a sparse index on it.

• outer index – a sparse index of the basic index

• inner index – the basic index file

 If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion 
from the file.
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Multilevel Index (Cont.)
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Indices on Multiple Keys

 Composite search key

• e.g. index on instructor relation on attributes (name, ID)

• Values are sorted lexicographically

 E.g.  (John, 12121) < (John, 13514)  and 
(John, 13514) < (Peter, 11223)

• Can query on just name, or on (name, ID)
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Example of B+-Tree
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B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and 
n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases: 

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in 
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:
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B+-Tree Node Structure

 Typical node

• Ki are the search-key values 

• Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)
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Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with 
search-key value Ki, 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less 
than or equal to Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:
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Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes.  
For a non-leaf node with m pointers:

• All the search-keys in the subtree to which P1 points are less 
than K1 

• For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than 
Ki 

• All the search-keys in the subtree to which Pn points have 
values greater than or equal to Kn–1
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Example of B+-tree

 Leaf nodes must have between 3 and 5 values 
((n–1)/2 and n –1, with n = 6).

 Non-leaf nodes other than root must have between 3 
and 6 children ((n/2 and n with n =6).

 Root must have at least 2 children.

B+-tree for instructor file (n = 6)
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Observations about B+-trees

 Since the inter-node connections are done by pointers, 
“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

• If there are K search-key values in the file, the tree height is 
no more than  logn/2(K)

• thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled 
efficiently, as the index can be restructured in logarithmic time (as 
we shall see).
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Queries on B+-Trees
function find(v)

1. C=root
2. while (C is not a leaf node)

1. Let i be least number s.t. V ≤ Ki.
2. if there is no such number i then 
3. Set C = last non-null pointer in C
4. else if (v = C.Ki ) Set C = Pi +1  

5. else set C = C.Pi

3. if for some i, Ki = V  then return C.Pi

4. else return null /* no record with search-key value v exists. */
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Queries on B+-Trees (Cont.)

 Range queries find all records with search key values in a given range

• See book for details of function findRange(lb, ub) which returns set 
of all such records

• Real implementations usually provide an iterator interface to fetch 
matching records one at a time, using a next() function
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Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree 
is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4 
kilobytes

• and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

• at most log50(1,000,000) = 4 nodes are accessed in a lookup 
traversal from root to leaf.

 Contrast this with a balanced binary tree with 1 million search key 
values — around 20 nodes are accessed in a lookup

• above difference is significant since every node access may 
need a disk I/O, costing around 20 milliseconds
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Non-Unique Keys

 If a search key ai is not unique, create instead an index on a composite 
key (ai , Ap), which is unique

• Ap could be a primary key, record ID, or any other attribute that 
guarantees uniqueness

 Search for ai = v can be implemented by a range search on composite 
key, with range (v, - ∞) to (v, + ∞)

 But more I/O operations are needed to fetch the actual records

• If the index is clustering, all accesses are sequential

• If the index is non-clustering, each record access may need an I/O 
operation
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Updates on B+-Trees:  Insertion

Assume record already added to the file.  Let 

l pr be pointer to the record, and let 

l v be the search key value of the record

1. Find the leaf node in which the search-key value would appear

1. If there is room in the leaf node, insert (v, pr) pair in the leaf 
node

2. Otherwise, split the node (along with the new (v, pr)  entry) 
as discussed in the next slide, and propagate updates to 
parent nodes.
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Updates on B+-Trees:  Insertion (Cont.)

 Splitting a leaf node:

• take the n (search-key value, pointer) pairs (including the one being 
inserted) in sorted order.  Place the first n/2 in the original node, 
and the rest in a new node.

• let the new node be p, and let k be the least key value in p.  Insert 
(k,p) in the parent of the node being split. 

• If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found. 

• In the worst case the root node may be split increasing the height of 
the tree by 1. 

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent
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B+-Tree  Insertion

B+-Tree before and after insertion of “Adams”

Affected nodes
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B+-Tree  Insertion

B+-Tree before and after insertion of “Lamport”
Affected nodes

Affected nodes
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 Splitting a non-leaf node: when inserting (k,p) into an already full internal 
node N

• Copy N to an in-memory area M with space for n+1 pointers and n 
keys

• Insert (k,p) into M

• Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

• Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N'

• Insert (K n/2,N') into parent N

 Example

 Read pseudocode in book!

Insertion in B+-Trees (Cont.)
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Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes
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Examples of B+-Tree Deletion (Cont.)

 Leaf containing Singh and Wu became underfull, and borrowed a value 
Kim from its left sibling

 Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes
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Example of B+-tree Deletion (Cont.)

 Node with Gold and Katz became underfull, and was merged with its sibling 

 Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging

 Root node then has only one child, and is deleted

Before and after deletion of “Gold”



©Silberschatz, Korth and Sudarshan14.37Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

Assume record already deleted from file.  Let V be the search key 
value of the record, and Pr be the pointer to the record.

 Remove (Pr, V) from the leaf node 

 If the node has too few entries due to the removal, and the 
entries in the node and a sibling fit into a single node, then 
merge siblings:

• Insert all the search-key values in the two nodes into a 
single node (the one on the left), and delete the other node.

• Delete the pair (Ki–1, Pi), where Pi is the pointer to the 
deleted node, from its parent, recursively using the above 
procedure.
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Updates on B+-Trees:  Deletion

 Otherwise, if the node has too few entries due to the removal, but 
the entries in the node and a sibling do not fit into a single node, 
then redistribute pointers:

• Redistribute the pointers between the node and a sibling such 
that both have more than the minimum number of entries.

• Update the corresponding search-key value in the parent of 
the node.

 The node deletions may cascade upwards till a node which has  
n/2 or more pointers is found.  

 If the root node has only one pointer after deletion, it is deleted 
and the sole child becomes the root. 
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Complexity of Updates

 Cost (in terms of number of I/O operations) of insertion and deletion of a 
single entry proportional to height of the tree

• With K entries and maximum fanout of n, worst case complexity of 
insert/delete of an entry is O(logn/2(K))

 In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer

• Splits/merges are rare, most insert/delete operations only affect a 
leaf node

 Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order



©Silberschatz, Korth and Sudarshan14.40Database System Concepts - 7th Edition

Non-Unique Search Keys

 Alternatives to scheme described earlier

• Buckets on separate block (bad idea)

• List of tuple pointers with each key

 Extra code to handle long lists

 Deletion of a tuple can be expensive if there are many 
duplicates on search key (why?)

• Worst case complexity may be linear!

 Low space overhead, no extra cost for queries

• Make search key unique by adding a record-identifier

 Extra storage overhead for keys

 Simpler code for insertion/deletion

 Widely used
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B+-Tree File Organization

 B+-Tree File Organization:

• leaf nodes in a B+-tree file organization store records, instead 
of pointers

• Helps keep data records clustered even when there are 
insertions/deletions/updates

 Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number 
of records that can be stored in a leaf node is less than the 
number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion 
and deletion of entries in a B+-tree index.
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B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than 
pointers.  

 To improve space utilization, involve more sibling nodes in redistribution 
during splits and merges

• Involving 2 siblings in redistribution (to avoid split / merge where 
possible) results in each node having at least     entries

Example of B+-tree File Organization

 3/2n
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Other Issues in Indexing

 Record relocation and secondary indices
• If a record moves, all secondary indices that store record 

pointers have to be updated 

• Node splits in B+-tree file organizations become very 
expensive

• Solution: use search key of B+-tree file organization instead of 
record pointer in secondary index

 Add record-id if B+-tree file organization search key is non-
unique

 Extra traversal of file organization to locate record

• Higher cost for queries, but node splits are cheap
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Indexing Strings

 Variable length strings as keys

• Variable fanout

• Use space utilization as criterion for splitting, not number of 
pointers

 Prefix compression

• Key values at internal nodes can be prefixes of full key

 Keep enough characters to distinguish entries in the 
subtrees separated by the key value

• E.g. “Silas” and “Silberschatz” can be separated by 
“Silb”

• Keys in leaf node can be compressed by sharing common 
prefixes
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Bulk Loading and Bottom-Up Build

 Inserting entries one-at-a-time into a B+-tree requires ≥ 1 IO per entry 

• assuming leaf level does not fit in memory

• can be very inefficient for loading a large number of entries at a time 
(bulk loading)

 Efficient alternative 1:

• sort entries first (using efficient external-memory sort algorithms 
discussed later in Section 12.4)

• insert in sorted order

 insertion will go to existing page (or cause a split)

 much improved IO performance, but most leaf nodes half full

 Efficient alternative 2: Bottom-up B+-tree construction

• As before sort entries

• And then create tree layer-by-layer, starting with leaf level

 details as an exercise

• Implemented as part of bulk-load utility by most database systems
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B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data
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Indexing on Flash

 Random I/O cost much lower on flash

• 20 to 100 microseconds for read/write

 Writes are not in-place, and (eventually) require a more expensive erase

 Optimum page size therefore much smaller

 Bulk-loading still useful since it minimizes page erases

 Write-optimized tree structures (discussed later) have been adapted to 
minimize page writes for flash-optimized search trees
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Indexing in Main Memory

 Random access in memory 

• Much cheaper than on disk/flash

• But still expensive compared to cache read

• Data structures that make best use of cache preferable

• Binary search for a key value within a large B+-tree node results in 
many cache misses

 B+- trees with small nodes that fit in cache line are preferable to reduce 
cache misses

 Key idea:  use large node size to optimize disk access, but structure 
data within a node using a tree with small node size, instead of using an 
array.
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Static Hashing

 A bucket is a unit of storage containing one or more entries 
(a bucket is typically a disk block). 

• we obtain the bucket of an entry from its search-key value 
using a hash function

 Hash function h is a function from the set of all search-key 
values K to the set of all bucket addresses B.

 Hash function is used to locate entries for access, insertion 
as well as deletion.

 Entries with different search-key values may be mapped to 
the same bucket; thus entire bucket has to be searched 
sequentially to locate an entry. 

 In a hash index, buckets store entries with pointers to 
records

 In a hash file-organization buckets store records
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Handling of Bucket Overflows

 Bucket overflow can occur because of 

• Insufficient buckets 

• Skew in distribution of records.  This can occur due to two 
reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution 
of key values

 Although the probability of bucket overflow can be reduced, it 
cannot be eliminated; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained 
together in a linked list.

 Above scheme is called closed addressing (also called closed hashing or 
open hashing depending on the book you use)

• An alternative, called 
open addressing 
(also called 
open hashing or
closed hashing 
depending on the book 
you use) which does not
use overflow buckets,  
is not suitable for 
database applications.
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Example of Hash File Organization 

Hash file organization of instructor file, using dept_name as key.
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Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed 
set of B of bucket addresses. Databases grow or shrink with 
time. 

• If initial number of buckets is too small, and file grows, 
performance will degrade due to too much overflows.

• If space is allocated for anticipated growth, a significant 
amount of space will be wasted initially (and buckets will be 
underfull).

• If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash 
function

• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified 
dynamically. 
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