
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 14: Indexing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan14.2Database System Concepts - 7th Edition

Chapter 14: Indexing

 Basic Concepts

 Ordered Indices

 B+-Tree Index Files

 B-Tree Index Files

 Hashing

 Write-optimized indices

 Spatio-Temporal Indexing

©Silberschatz, Korth and Sudarshan14.3Database System Concepts - 7th Edition

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

• E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up
records in a file.

 An index file consists of records (called index entries) of the
form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

• Ordered indices: search keys are stored in sorted order

• Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

search-key pointer

©Silberschatz, Korth and Sudarshan14.4Database System Concepts - 7th Edition

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

• records with a specified value in the attribute

• or records with an attribute value falling in a specified range
of values.

 Access time

 Insertion time

 Deletion time

 Space overhead

©Silberschatz, Korth and Sudarshan14.5Database System Concepts - 7th Edition

Ordered Indices

 In an ordered index, index entries are stored sorted on the
search key value.

 Clustering index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

• Also called primary index

• The search key of a primary index is usually but not
necessarily the primary key.

 Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
nonclustering index.

 Index-sequential file: sequential file ordered on a search key,
with a clustering index on the search key.

©Silberschatz, Korth and Sudarshan14.6Database System Concepts - 7th Edition

Dense Index Files

 Dense index — Index record appears for every search-key
value in the file.

 E.g. index on ID attribute of instructor relation

©Silberschatz, Korth and Sudarshan14.7Database System Concepts - 7th Edition

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on
dept_name

©Silberschatz, Korth and Sudarshan14.8Database System Concepts - 7th Edition

Sparse Index Files

 Sparse Index: contains index records for only some search-key
values.

• Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

• Find index record with largest search-key value < K

• Search file sequentially starting at the record to which the index
record points

©Silberschatz, Korth and Sudarshan14.9Database System Concepts - 7th Edition

Sparse Index Files (Cont.)

 Compared to dense indices:

• Less space and less maintenance overhead for insertions and deletions.

• Generally slower than dense index for locating records.

 Good tradeoff:

• for clustered index: sparse index with an index entry for every block in
file, corresponding to least search-key value in the block.

• For unclustered index: sparse index on top of dense index (multilevel
index)

©Silberschatz, Korth and Sudarshan14.10Database System Concepts - 7th Edition

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor

©Silberschatz, Korth and Sudarshan14.12Database System Concepts - 7th Edition

Multilevel Index
 If index does not fit in memory, access becomes expensive.

 Solution: treat index kept on disk as a sequential file and
construct a sparse index on it.

• outer index – a sparse index of the basic index

• inner index – the basic index file

 If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion
from the file.

©Silberschatz, Korth and Sudarshan14.13Database System Concepts - 7th Edition

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan14.16Database System Concepts - 7th Edition

Indices on Multiple Keys

 Composite search key

• e.g. index on instructor relation on attributes (name, ID)

• Values are sorted lexicographically

 E.g. (John, 12121) < (John, 13514) and
(John, 13514) < (Peter, 11223)

• Can query on just name, or on (name, ID)

©Silberschatz, Korth and Sudarshan14.18Database System Concepts - 7th Edition

Example of B+-Tree

©Silberschatz, Korth and Sudarshan14.19Database System Concepts - 7th Edition

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and
n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

©Silberschatz, Korth and Sudarshan14.20Database System Concepts - 7th Edition

B+-Tree Node Structure

 Typical node

• Ki are the search-key values

• Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

©Silberschatz, Korth and Sudarshan14.21Database System Concepts - 7th Edition

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with
search-key value Ki,

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than or equal to Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

©Silberschatz, Korth and Sudarshan14.22Database System Concepts - 7th Edition

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non-leaf node with m pointers:

• All the search-keys in the subtree to which P1 points are less
than K1

• For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than
Ki

• All the search-keys in the subtree to which Pn points have
values greater than or equal to Kn–1

©Silberschatz, Korth and Sudarshan14.23Database System Concepts - 7th Edition

Example of B+-tree

 Leaf nodes must have between 3 and 5 values
((n–1)/2 and n –1, with n = 6).

 Non-leaf nodes other than root must have between 3
and 6 children ((n/2 and n with n =6).

 Root must have at least 2 children.

B+-tree for instructor file (n = 6)

©Silberschatz, Korth and Sudarshan14.24Database System Concepts - 7th Edition

Observations about B+-trees

 Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

• If there are K search-key values in the file, the tree height is
no more than  logn/2(K)

• thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time (as
we shall see).

©Silberschatz, Korth and Sudarshan14.25Database System Concepts - 7th Edition

Queries on B+-Trees
function find(v)

1. C=root
2. while (C is not a leaf node)

1. Let i be least number s.t. V ≤ Ki.
2. if there is no such number i then
3. Set C = last non-null pointer in C
4. else if (v = C.Ki) Set C = Pi +1

5. else set C = C.Pi

3. if for some i, Ki = V then return C.Pi

4. else return null /* no record with search-key value v exists. */

©Silberschatz, Korth and Sudarshan14.26Database System Concepts - 7th Edition

Queries on B+-Trees (Cont.)

 Range queries find all records with search key values in a given range

• See book for details of function findRange(lb, ub) which returns set
of all such records

• Real implementations usually provide an iterator interface to fetch
matching records one at a time, using a next() function

©Silberschatz, Korth and Sudarshan14.27Database System Concepts - 7th Edition

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree
is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4
kilobytes

• and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

• at most log50(1,000,000) = 4 nodes are accessed in a lookup
traversal from root to leaf.

 Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup

• above difference is significant since every node access may
need a disk I/O, costing around 20 milliseconds

©Silberschatz, Korth and Sudarshan14.28Database System Concepts - 7th Edition

Non-Unique Keys

 If a search key ai is not unique, create instead an index on a composite
key (ai , Ap), which is unique

• Ap could be a primary key, record ID, or any other attribute that
guarantees uniqueness

 Search for ai = v can be implemented by a range search on composite
key, with range (v, - ∞) to (v, + ∞)

 But more I/O operations are needed to fetch the actual records

• If the index is clustering, all accesses are sequential

• If the index is non-clustering, each record access may need an I/O
operation

©Silberschatz, Korth and Sudarshan14.29Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion

Assume record already added to the file. Let

l pr be pointer to the record, and let

l v be the search key value of the record

1. Find the leaf node in which the search-key value would appear

1. If there is room in the leaf node, insert (v, pr) pair in the leaf
node

2. Otherwise, split the node (along with the new (v, pr) entry)
as discussed in the next slide, and propagate updates to
parent nodes.

©Silberschatz, Korth and Sudarshan14.30Database System Concepts - 7th Edition

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

• take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first n/2 in the original node,
and the rest in a new node.

• let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

• If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

• In the worst case the root node may be split increasing the height of
the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent

©Silberschatz, Korth and Sudarshan14.31Database System Concepts - 7th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

Affected nodes

©Silberschatz, Korth and Sudarshan14.32Database System Concepts - 7th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Lamport”
Affected nodes

Affected nodes

©Silberschatz, Korth and Sudarshan14.33Database System Concepts - 7th Edition

 Splitting a non-leaf node: when inserting (k,p) into an already full internal
node N

• Copy N to an in-memory area M with space for n+1 pointers and n
keys

• Insert (k,p) into M

• Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

• Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N'

• Insert (K n/2,N') into parent N

 Example

 Read pseudocode in book!

Insertion in B+-Trees (Cont.)

©Silberschatz, Korth and Sudarshan14.34Database System Concepts - 7th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes

©Silberschatz, Korth and Sudarshan14.35Database System Concepts - 7th Edition

Examples of B+-Tree Deletion (Cont.)

 Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

 Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes

©Silberschatz, Korth and Sudarshan14.36Database System Concepts - 7th Edition

Example of B+-tree Deletion (Cont.)

 Node with Gold and Katz became underfull, and was merged with its sibling

 Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging

 Root node then has only one child, and is deleted

Before and after deletion of “Gold”

©Silberschatz, Korth and Sudarshan14.37Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

Assume record already deleted from file. Let V be the search key
value of the record, and Pr be the pointer to the record.

 Remove (Pr, V) from the leaf node

 If the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings:

• Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other node.

• Delete the pair (Ki–1, Pi), where Pi is the pointer to the
deleted node, from its parent, recursively using the above
procedure.

©Silberschatz, Korth and Sudarshan14.38Database System Concepts - 7th Edition

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but
the entries in the node and a sibling do not fit into a single node,
then redistribute pointers:

• Redistribute the pointers between the node and a sibling such
that both have more than the minimum number of entries.

• Update the corresponding search-key value in the parent of
the node.

 The node deletions may cascade upwards till a node which has
n/2 or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

©Silberschatz, Korth and Sudarshan14.39Database System Concepts - 7th Edition

Complexity of Updates

 Cost (in terms of number of I/O operations) of insertion and deletion of a
single entry proportional to height of the tree

• With K entries and maximum fanout of n, worst case complexity of
insert/delete of an entry is O(logn/2(K))

 In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer

• Splits/merges are rare, most insert/delete operations only affect a
leaf node

 Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order

©Silberschatz, Korth and Sudarshan14.40Database System Concepts - 7th Edition

Non-Unique Search Keys

 Alternatives to scheme described earlier

• Buckets on separate block (bad idea)

• List of tuple pointers with each key

 Extra code to handle long lists

 Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)

• Worst case complexity may be linear!

 Low space overhead, no extra cost for queries

• Make search key unique by adding a record-identifier

 Extra storage overhead for keys

 Simpler code for insertion/deletion

 Widely used

©Silberschatz, Korth and Sudarshan14.41Database System Concepts - 7th Edition

B+-Tree File Organization

 B+-Tree File Organization:

• leaf nodes in a B+-tree file organization store records, instead
of pointers

• Helps keep data records clustered even when there are
insertions/deletions/updates

 Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number
of records that can be stored in a leaf node is less than the
number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B+-tree index.

©Silberschatz, Korth and Sudarshan14.42Database System Concepts - 7th Edition

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than
pointers.

 To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

• Involving 2 siblings in redistribution (to avoid split / merge where
possible) results in each node having at least entries

Example of B+-tree File Organization

 3/2n

©Silberschatz, Korth and Sudarshan14.43Database System Concepts - 7th Edition

Other Issues in Indexing

 Record relocation and secondary indices
• If a record moves, all secondary indices that store record

pointers have to be updated

• Node splits in B+-tree file organizations become very
expensive

• Solution: use search key of B+-tree file organization instead of
record pointer in secondary index

 Add record-id if B+-tree file organization search key is non-
unique

 Extra traversal of file organization to locate record

• Higher cost for queries, but node splits are cheap

©Silberschatz, Korth and Sudarshan14.44Database System Concepts - 7th Edition

Indexing Strings

 Variable length strings as keys

• Variable fanout

• Use space utilization as criterion for splitting, not number of
pointers

 Prefix compression

• Key values at internal nodes can be prefixes of full key

 Keep enough characters to distinguish entries in the
subtrees separated by the key value

• E.g. “Silas” and “Silberschatz” can be separated by
“Silb”

• Keys in leaf node can be compressed by sharing common
prefixes

©Silberschatz, Korth and Sudarshan14.45Database System Concepts - 7th Edition

Bulk Loading and Bottom-Up Build

 Inserting entries one-at-a-time into a B+-tree requires ≥ 1 IO per entry

• assuming leaf level does not fit in memory

• can be very inefficient for loading a large number of entries at a time
(bulk loading)

 Efficient alternative 1:

• sort entries first (using efficient external-memory sort algorithms
discussed later in Section 12.4)

• insert in sorted order

 insertion will go to existing page (or cause a split)

 much improved IO performance, but most leaf nodes half full

 Efficient alternative 2: Bottom-up B+-tree construction

• As before sort entries

• And then create tree layer-by-layer, starting with leaf level

 details as an exercise

• Implemented as part of bulk-load utility by most database systems

©Silberschatz, Korth and Sudarshan14.48Database System Concepts - 7th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan14.49Database System Concepts - 7th Edition

Indexing on Flash

 Random I/O cost much lower on flash

• 20 to 100 microseconds for read/write

 Writes are not in-place, and (eventually) require a more expensive erase

 Optimum page size therefore much smaller

 Bulk-loading still useful since it minimizes page erases

 Write-optimized tree structures (discussed later) have been adapted to
minimize page writes for flash-optimized search trees

©Silberschatz, Korth and Sudarshan14.50Database System Concepts - 7th Edition

Indexing in Main Memory

 Random access in memory

• Much cheaper than on disk/flash

• But still expensive compared to cache read

• Data structures that make best use of cache preferable

• Binary search for a key value within a large B+-tree node results in
many cache misses

 B+- trees with small nodes that fit in cache line are preferable to reduce
cache misses

 Key idea: use large node size to optimize disk access, but structure
data within a node using a tree with small node size, instead of using an
array.

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan14.52Database System Concepts - 7th Edition

Static Hashing

 A bucket is a unit of storage containing one or more entries
(a bucket is typically a disk block).

• we obtain the bucket of an entry from its search-key value
using a hash function

 Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

 Hash function is used to locate entries for access, insertion
as well as deletion.

 Entries with different search-key values may be mapped to
the same bucket; thus entire bucket has to be searched
sequentially to locate an entry.

 In a hash index, buckets store entries with pointers to
records

 In a hash file-organization buckets store records

©Silberschatz, Korth and Sudarshan14.53Database System Concepts - 7th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of

• Insufficient buckets

• Skew in distribution of records. This can occur due to two
reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution
of key values

 Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan14.54Database System Concepts - 7th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

 Above scheme is called closed addressing (also called closed hashing or
open hashing depending on the book you use)

• An alternative, called
open addressing
(also called
open hashing or
closed hashing
depending on the book
you use) which does not
use overflow buckets,
is not suitable for
database applications.

©Silberschatz, Korth and Sudarshan14.56Database System Concepts - 7th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key.

©Silberschatz, Korth and Sudarshan14.57Database System Concepts - 7th Edition

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.

• If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

• If space is allocated for anticipated growth, a significant
amount of space will be wasted initially (and buckets will be
underfull).

• If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash
function

• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified
dynamically.

	Chapter 14: Indexing
	Chapter 14: Indexing
	Basic Concepts
	Index Evaluation Metrics
	Ordered Indices
	Dense Index Files
	Dense Index Files (Cont.)
	Sparse Index Files
	Sparse Index Files (Cont.)
	Secondary Indices Example
	Multilevel Index
	Multilevel Index (Cont.)
	Indices on Multiple Keys
	Example of B+-Tree
	B+-Tree Index Files (Cont.)
	B+-Tree Node Structure
	Leaf Nodes in B+-Trees
	Non-Leaf Nodes in B+-Trees
	Example of B+-tree
	Observations about B+-trees
	Queries on B+-Trees
	Queries on B+-Trees (Cont.)
	Queries on B+-Trees (Cont.)
	Non-Unique Keys
	Updates on B+-Trees: Insertion
	Updates on B+-Trees: Insertion (Cont.)
	B+-Tree Insertion
	B+-Tree Insertion
	Insertion in B+-Trees (Cont.)
	Examples of B+-Tree Deletion
	Examples of B+-Tree Deletion (Cont.)
	Example of B+-tree Deletion (Cont.)
	Updates on B+-Trees: Deletion
	Updates on B+-Trees: Deletion
	Complexity of Updates
	Non-Unique Search Keys
	B+-Tree File Organization
	B+-Tree File Organization (Cont.)
	Other Issues in Indexing
	Indexing Strings
	Bulk Loading and Bottom-Up Build
	B-Tree Index File Example
	Indexing on Flash
	Indexing in Main Memory
	Hashing
	Static Hashing
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Example of Hash File Organization
	Deficiencies of Static Hashing

