Chapter 14: Indexing

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Chapter 14: Indexing

= PBasic Concepts

= Qrdered Indices

= B*-Tree Index Files

= B-Tree Index Files

= Hashing

= \Write-optimized indices

= Spatio-Temporal Indexing

Database System Concepts - 7t Edition 14.2 ©Silberschatz, Korth and Sudarshan

Basic Concepts

= |ndexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

= Search Key - attribute to set of attributes used to look up
records in a file.

= Anindex file consists of records (called index entries) of the
form

search-key | pointer

= Index files are typically much smaller than the original file
= Two basic kinds of indices:
Ordered indices: search keys are stored in sorted order

Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

Database System Concepts - 7th Edition 14.3 ©Silberschatz, Korth and Sudarshan

Index Evaluation Metrics

= Access types supported efficiently. E.g.,
records with a specified value in the attribute

or records with an attribute value falling in a specified range
of values.

= Access time

= |nsertion time

= Deletion time

= Space overhead

Database System Concepts - 7t Edition 14.4 ©Silberschatz, Korth and Sudarshan

Ordered Indices

= |n an ordered index, index entries are stored sorted on the
search key value.

= Clustering index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

Also called primary index

The search key of a primary index is usually but not
necessarily the primary key.

= Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
nonclustering index.

= Index-sequential file: sequential file ordered on a search key,
with a clustering index on the search key.

Database System Concepts - 7th Edition 145 ©Silberschatz, Korth and Sudarshan

Dense Index Files

= Dense index — Index record appears for every search-key

value in the file.

= E.g.index on ID attribute of instructor relation

10101

12121

Y

15151

Y

22222

Y

32343

Y

33456

Y

Y

45565

Y

58583

76543

Y

76766

Y

83821

Y

98345

Y

Database System Concepts - 7th Edition

Y

10101 |Srinivasan | Comp. Sci. | 65000 —7
12121 |Wu Finance 90000 R

15151 |Mozart Music 40000 —7
22222 | Einstein Physics 95000 _7
32343 |El Said History 60000 _7
33456 |Gold Physics 87000 —‘7
45565 |Katz Comp. Sci. | 75000 —‘7
58583 | Califieri History 62000 _7
76543 | Singh Finance 80000 _‘7
76766 | Crick Biology 72000 —7
83821 |Brandt Comp. Sci. | 92000 —‘7
98345 | Kim Elec. Eng. 80000 7

14.6

|_

©Silberschatz, Korth and Sudarshan

Dense Index Files (Cont.)

= Dense index on dept_name, with instructor file sorted on

dept_name

Biology >~ 76766 | Crick Biology 72000 —7

Comp. Sci. ~ 10101 | Srinivasan| Comp. Sci. | 65000 -
Elec. Eng. N 45565 | Katz Comp. Sci. 75000 -7
Finance \\ 83821 | Brandt | Comp.5cl. | 92000 | 1«
History \\ 98345 | Kim Elec. Eng. | 80000 | <
Music \ 12121 | Wu Finance 90000 _7
Physics \ \ 76543 | Singh Finance 80000 1
32343 | EISaid | History 60000 1
58583 | Califieri | History 62000 1
15151 | Mozart Music 40000 _7
22222 | Einstein | Physics 95000 | 1«
33465 | Gold Physics 87000 | __ |«
L

Database System Concepts - 7th Edition

14.7

©Silberschatz, Korth and Sudarshan

Sparse Index Files

Sparse Index: contains index records for only some search-key

values.

Applicable when records are sequentially ordered on search-key

To locate a record with search-key value K we:

Find index record with largest search-key value < K

Search file sequentially starting at the record to which the index

record points

10101

Y

32343

76766

Database System Concepts - 7th Edition

10101

Srinivasan

Comp. Sci.

65000

12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 |Einstein | Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci.| 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci.| 92000
98345 |Kim Elec. Eng. | 80000 B

J AVAVAVAVAVAVAVAVAVAVAV

14.8

©Silberschatz, Korth and Sudarshan

Sparse Index Files (Cont.)

= Compared to dense indices:
Less space and less maintenance overhead for insertions and deletions.
Generally slower than dense index for locating records.

= (Good tradeoff:

for clustered index: sparse index with an index entry for every block in
file, corresponding to least search-key value in the block.

— data
\| block 0
Iy

".'_‘r?

\H.
data h*g,,l
%,pl{}t:i: |

*

For unclustered index: sparse index on top of dense index (multilevel
index)

Database System Concepts - 7t Edition 14.9 ©Silberschatz, Korth and Sudarshan

Secondary Indices Example

40000 /%’
60000 //
62000 | -

65000 1
72000 | 1—
75000 | ——>
80000 | —

87000 1
90000 \\
92000 \\
95000 \\

10101 | Srinivasan | Comp. Sci. | 65000 _P
12121 | Wu Finance 90000 —>
15151 | Mozart Music 40000 —
22222 | Einstein | Physics 95000 _>
32343 | El Said History 60000 _P
33456 | Gold Physics 87000 _>
45565 | Katz Comp. Sci. | 75000 _P
58583 | Califieri | History 62000 _P
76543 | Singh Finance 80000 _>
76766 | Crick Biology 72000 __)
83821 |Brandt Comp. Sci. | 92000 _7
98345 | Kim Elec. Eng. 80000 _ZJ_

Secondary index on salary field of instructor

B Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

B Secondary indices have to be dense

Database System Concepts - 7th Edition

14.10

©Silberschatz, Korth and Sudarshan

Multilevel Index

= |f index does not fit in memory, access becomes expensive.

= Solution: treat index kept on disk as a sequential file and
construct a sparse index on it.

outer index — a sparse index of the basic index
iInner index — the basic index file

= |f even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

= |ndices at all levels must be updated on insertion or deletion
from the file.

Database System Concepts - 7th Edition 14.12 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 7t Edition

Multilevel Index (Cont.)

outer index

block |

\

data
block 0

\anck |

inner index

14.13

i

©Silberschatz, Korth and Sudarshan

Indices on Multiple Keys

= Composite search key
e.g. index on instructor relation on attributes (name, 1D)
Values are sorted lexicographically

= E.g. (John, 12121) < (John, 13514) and
(John, 13514) < (Peter, 11223)

Can query on just name, or on (name, ID)

Database System Concepts - 7t Edition 14.16 ©Silberschatz, Korth and Sudarshan

Example of B*-Tree

—-———

|1| Mozart |l| I I I |< -- Root node
|||Einstein| I Gold ||| —I_l ITIS—rinivasanH I I I | ;‘—“' Internal nodes
Leaf nodes-q:
Brandtl |Ein!tein| IEl Saidl | H—>| | Gold | | Katz | | KimH—»lllMozartlll Singh | | H—»' ISrinivasanlll Wu | |

ICaliﬁeriI I Crickl l—|—>|

N

Database System Concepts - 7th Edition

Y YYYYY YYYYYY

14.18

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

©Silberschatz, Korth and Sudarshan

"'J‘_ B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

= All paths from root to leaf are of the same length

= Each node that is not a root or a leaf has between | n/2 | and
n children.

= A leaf node has between| (n—1)/2 | and n-1 values
= Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n—1) values.

Database System Concepts - 7th Edition 14.19 ©Silberschatz, Korth and Sudarshan

B*-Tree Node Structure

= Typical node

Pq K1 P, P, 1 K, -1 P,

K; are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

The search-keys in a node are ordered
Ki<K,<K;<...<K 4

(Initially assume no duplicate keys, address duplicates later)

Database System Concepts - 7th Edition 14.20 ©Silberschatz, Korth and Sudarshan

Properties of a leaf node:

Leaf Nodes in B*-Trees

= Fori=1,2,..., n-1, pointer P, points to a file record with

search-key value K,

= IfL; L;are leaf nodes and i <}, L.’ s search-key values are less
than or equal to Lj’ s search-key values

= P, points to next leaf node in search-key order

leaf node
|| Brandt ||| Califieri|,| Crick [

Y

» Pointer to next leaf node

Y'Y

Database System Concepts - 7th Edition

14.21

10101 | Srinivasan | Comp. Sci.| 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci.| 75000
58583 | Califieri | History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000

©Silberschatz, Korth and Sudarshan

'"J— Non-Leaf Nodes in B*-Trees

= Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non-leaf node with m pointers:

All the search-keys in the subtree to which P, points are less
than K;

For 2 <i<n-1, all the search-keys in the subtree to which P,
points have values greater than or equal to K, ; and less than
K.

All the search-keys in the subtree to which P, points have
values greater than or equal to K, ;

Database System Concepts - 7th Edition 14.22 ©Silberschatz, Korth and Sudarshan

Example of B*-tree

El Sald Mozart

[

El Said Gold Katz Mozart | | Singh | | Srinivasan| |Wu

Brandt| | Califieri| |Crick| [Einstein

Y

B*-tree for instructor file (n = 6)

= | eaf nodes must have between 3 and 5 values
((n-1)/21and n -1, with n = 6).

= Non-leaf nodes other than root must have between 3
and 6 children ([(n/2]and n with n =6).

= Root must have at least 2 children.

Database System Concepts - 7th Edition 14.23 ©Silberschatz, Korth and Sudarshan

Observations about B*-trees

= Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically” close.

= The non-leaf levels of the B*-tree form a hierarchy of sparse
indices.

= The B*-tree contains a relatively small number of levels
Level below root has at least 2* | n/2 | values
Next level has at least 2* [n/2 1 *[n/2 | values
.. etc.

If there are K search-key values in the file, the tree height is
no more than [logr,,1(K) |

thus searches can be conducted efficiently.

= |nsertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time (as
we shall see).

Database System Concepts - 7th Edition 14.24 ©Silberschatz, Korth and Sudarshan

"'J— Queries on B*-Trees

function find(v)
C=root
while (C is not a leaf node)
Let i be least number s.t. V <K..
If there is no such number i then
Set C = last non-null pointer in C
elseif (v=C.K,)SetC=P,,,
else set C = C.P,
If for some i, K, =V then return C.P,
else return null /* no record with search-key value v exists. */

[Mozar | ||]

:CaliﬁerilllEinsteinl l|Golc1| 1| HSrinivasanIll | | | |

Adamsl IBrandtl | H—>| |Caliﬁeri| |Crick| | H->| IEinsteinl IEl Saidl | H->| IGoldI IKatzI |K1mH->| IMozartI ISinghI | H->~|Srinivasan| IWuI | | |

Database System Concepts - 7th Edition 14.25 ©Silberschatz, Korth and Sudarshan

"'J— Queries on B*-Trees (Cont.)

= Range queries find all records with search key values in a given range

See book for details of function findRange(lb, ub) which returns set
of all such records

Real implementations usually provide an iterator interface to fetch
matching records one at a time, using a next() function

| [Mozart] I L1

Cahﬁerll IEmstemI IGoldI | | ISrmlvasanI I

AN

Adamsl IBrandtl | H—>| |Cahﬁer1| |Cr1ck| | H->| IEmsteml IEl Saldl | H->| IGoldI IKatzI |K1mH->| IMozartI ISinghI | H->~|Srinivasan| IWuI | | |

Database System Concepts - 7th Edition 14.26 ©Silberschatz, Korth and Sudarshan

"'J— Queries on B*+Trees (Cont.)

If there are K search-key values in the file, the height of the tree
is no more than [logr,,(K) |
= A node is generally the same size as a disk block, typically 4
kilobytes
and n is typically around 100 (40 bytes per index entry).

= With 1 million search key values and n = 100
at most log-,(1,000,000) = 4 nodes are accessed in a lookup
traversal from root to leaf.

= Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup

above difference is significant since every node access may
need a disk 1/O, costing around 20 milliseconds

Database System Concepts - 7th Edition 14.27 ©Silberschatz, Korth and Sudarshan

Non-Unique Keys

= [f a search key a; is not unique, create instead an index on a composite
key (&, Ap), which is unique

A, could be a primary key, record ID, or any other attribute that
guarantees unigueness

= Search for g, = v can be implemented by a range search on composite
key, with range (v, - «) to (v, + =)

= But more I/O operations are needed to fetch the actual records
If the index is clustering, all accesses are sequential

If the index is non-clustering, each record access may need an I/O
operation

Database System Concepts - 7th Edition 14.28 ©Silberschatz, Korth and Sudarshan

Updates on B*-Trees: Insertion

Assume record already added to the file. Let
pr be pointer to the record, and let
v be the search key value of the record
1. Find the leaf node in which the search-key value would appear

If there is room in the leaf node, insert (v, pr) pair in the leaf
node

Otherwise, split the node (along with the new (v, pr) entry)
as discussed in the next slide, and propagate updates to

parent nodes.

Database System Concepts - 7th Edition 14.29 ©Silberschatz, Korth and Sudarshan

'"J—_ Updates on B*-Trees: Insertion (Cont.)

= Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first| n/2 |in the original node,
and the rest in a new node.

let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

If the parent is full, split it and propagate the split further up.
= Splitting of nodes proceeds upwards till a node that is not full is found.

In the worst case the root node may be split increasing the height of
the tree by 1.

Y

Adamsi Brandt Califieri i Crick >

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent

-
-

Database System Concepts - 7th Edition 14.30 ©Silberschatz, Korth and Sudarshan

B*-Tree Insertion

|| Mozart | | [[Root node

[[Einstein] [Gold []] [[srinivasan[[[T] i‘»—- Internal nodes

Leaf nodes-,

-———

BrandtI%ICaliﬁeriI ICrickI{-I—»'{lEinsteinI}lEl Saidl | H—»'{I Gold I{I Katz I{I KimH—»'}IMozartl}I Singh | | |-|->|%|Srinivasan|%|Wu | | | | ;‘—'—:—-

[Mozar]]]

Affected nodes

\

ITI—CaliﬁeriI lIEinsteinI , IGoldIll |l ISrinivasanl 1| | | | |

Adamsl IBrandtI I H—>| ICaliﬁeriI ICrickI I H->| IEinsteinI IEI Saidl I H->| IGoldI IKatzI IKimH-»\IMozartI ISinghI I H->\|Srinivasan| IWuI I I |

B+-Tree before and after insertion of “Adams”

Database System Concepts - 7th Edition 14.31 ©Silberschatz, Korth and Sudarshan

Bt-Tree Insertion

| [Mozart] I L1
7 IElnStemls\IS&
Adamsl IBrandtl | H—>| |Ca11ﬁer1| |Cr1ck| | H—>| IEmsteml |E1 Saldl | H->| IGoldI IKatZI |K1mH->| IMozartI ISinghI | H->‘|Srinivasan| |Wu| | | |

B*-Tree before and after insertion of “Lamport” \

Affected nodes

| catifieri [[Einstein [| |] [xim] T] [] srinivasan []]

[Tadems | [pranat || 3| [catisen [[enad | { [Einstem] [Er5aa] | |3 [coa[[ae]| [3-{ T [[ramport || [3-{ [Mozart] [siman] | T3 [Srmivasan [[We] [11

\/r

Affected nodes
Database System Concepts - 7th Edition 14.32 ©Silberschatz, Korth and Sudarshan

Insertion in B*-Trees (Cont.)

= Splitting a non-leaf node: when inserting (k,p) into an already full internal
node N

Copy N to an in-memory area M with space for n+1 pointers and n
keys

Insert (k,p) into M

Copy P,.Ky, ..., Krpo11,P 21 from M back into node N

Copy PruotisKrnglias -« 1K Pryqr from M into newly allocated node N
Insert (K,,7.N') into parent N

= Example
1] [, caifieri]
b [\

Adams Brandl Cabfieri Crick Il.ﬂ-di:nrl'; Erﬂndtl | (Crick |
ke ks - - +

Ll
|

' VI D O O T

= Read pseudocode in book!

Database System Concepts - 7t Edition 14.33 ©Silberschatz, Korth and Sudarshan

Examples of B*-Tree Deletion

[[Mozart] | ||]
|—|_Ca11ﬁer1| |E1nste1n| |Gold| | | |Sr1n1vasan| |
Adams| |Brandt| | |-|->| |Ca11ﬁer1| |Cr1c1<| | |-|->| |E1nste1n| |E1 Sa1d| | |-|->| |Gold| |Katz| |K1m|-|-> |Mozart| |Singh| | |-|->\|Srinivasan| |Wu| | | |

Before and after deleting “Srinivasan”

Gold

Affected nodes

—

Califieri ' Einstein Mozart

Adams| |Brandt Califieri| | Crick . Einstein| |El Said . Gold | | Katz | |Kim |1 Mozart| [Singh| [Wu

= Deleting “Srinivasan” causes merging of under-full leaves

Database System Concepts - 7t Edition 14.34 ©Silberschatz, Korth and Sudarshan

"'J— Examples of B*-Tree Deletion (Cont.)

IIGoldII 1

2
\

| IMozare[[[]
Adams| |Brandt| | |-|—>| |Callﬁer1| |Cr1ck| | |-|—>| |E1nstein| |E1 Said| | |-|—>| |Gold| |Katz| |Kim|-|—>| |Mozart| |Singh| |Wu| |

HCahﬁen | | E1nste1n|

Before and after deleting “Singh” and “Wu”

|| cotd ||

/ \ Affected nodes
] 4

I—I—Cahﬁerl IEmstemI I Kim I I

.

Adams| [Brandt[[[>[[catifieri[[criek[] [} [Binstein] [Ersaid[[[[Gotd][[katz[T [+ [im [[Mozart[[T

= Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

= Search-key value in the parent changes as a result

Database System Concepts - 7th Edition 14.35 ©Silberschatz, Korth and Sudarshan

Example of B”+ tlrlee|| I%eletlon (Cont.)

Cahﬁerl Emstem Kim
Adamsl |Brandt|| | Califieri| | Crick Einstein| |El Said Gold | | Katz Kim | | Mozart

Before and after deletion of “Gold”

| Califieri | Einstein | Gold |

- A

Adams/| [Brandt >| |Califieri| |Crick +>| |Einstein| |El Said +— | Katz | |Kim| |Mozart

= Node with Gold and Katz became underfull, and was merged with its sibling
= Parent node becomes underfull, and is merged with its sibling

Value separating two nodes (at the parent) is pulled down when merging
= Root node then has only one child, and is deleted

Database System Concepts - 7th Edition 14.36 ©Silberschatz, Korth and Sudarshan

'"J—_ Updates on B*-Trees: Deletion

Assume record already deleted from file. Let V be the search key
value of the record, and Pr be the pointer to the record.

= Remove (Pr, V) from the leaf node

= |f the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node, then
merge siblings:

Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other node.

Delete the pair (K,_;, P;), where P; is the pointer to the
deleted node, from its parent, recursively using the above
procedure.

Database System Concepts - 7th Edition 14.37 ©Silberschatz, Korth and Sudarshan

'"J—_ Updates on B*-Trees: Deletion

= QOtherwise, if the node has too few entries due to the removal, but
the entries in the node and a sibling do not fit into a single node,
then redistribute pointers:

Redistribute the pointers between the node and a sibling such
that both have more than the minimum number of entries.

Update the corresponding search-key value in the parent of
the node.

= The node deletions may cascade upwards till a node which has
[n/21or more pointers is found.

= |f the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

Database System Concepts - 7th Edition 14.38 ©Silberschatz, Korth and Sudarshan

Complexity of Updates

= Cost (in terms of number of I/O operations) of insertion and deletion of a
single entry proportional to height of the tree

With K entries and maximum fanout of n, worst case complexity of
insert/delete of an entry is O(logr,,»1(K))

= |n practice, number of I/O operations is less:
Internal nodes tend to be in buffer

Splits/merges are rare, most insert/delete operations only affect a
leaf node

= Average node occupancy depends on insertion order
2/3rds with random, %2 with insertion in sorted order

Database System Concepts - 7th Edition 14.39 ©Silberschatz, Korth and Sudarshan

Non-Unique Search Keys

= Alternatives to scheme described earlier
Buckets on separate block (bad idea)
List of tuple pointers with each key
Extra code to handle long lists

Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)

Worst case complexity may be linear!
Low space overhead, no extra cost for queries
Make search key unigue by adding a record-identifier
Extra storage overhead for keys
Simpler code for insertion/deletion
Widely used

Database System Concepts - 7th Edition 14.40 ©Silberschatz, Korth and Sudarshan

B*-Tree File Organization

= B*-Tree File Organization:

leaf nodes in a B*-tree file organization store records, instead
of pointers

Helps keep data records clustered even when there are
Insertions/deletions/updates

= |eaf nodes are still required to be half full

Since records are larger than pointers, the maximum number
of records that can be stored in a leaf node is less than the
number of pointers in a nonleaf node.

= Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B*-tree index.

Database System Concepts - 7th Edition 14.41 ©Silberschatz, Korth and Sudarshan

'“J— B*-Tree File Organization (Cont.)

I

(A,4) (B,8) —{(C1)| (D9 ((EA4)™ (F,7)| (G,3) |(H,3)
N J
O] I N O I S) N 5

Example of B*-tree File Organization

= Good space utilization important since records use more space than
pointers.

= To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where
possible) results in each node having at least |2n/3] entries

Database System Concepts - 7th Edition 14.42 ©Silberschatz, Korth and Sudarshan

Other Issues in Indexing

= Record relocation and secondary indices

If a record moves, all secondary indices that store record
pointers have to be updated

Node splits in B*-tree file organizations become very
expensive

Solution: use search key of B*-tree file organization instead of
record pointer in secondary index

Add record-id if B*-tree file organization search key is non-
unique

Extra traversal of file organization to locate record
Higher cost for queries, but node splits are cheap

Database System Concepts - 7th Edition 14.43 ©Silberschatz, Korth and Sudarshan

Indexing Strings

= Variable length strings as keys
Variable fanout

Use space utilization as criterion for splitting, not number of
pointers

= Prefix compression
Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the
subtrees separated by the key value

E.g. “Silas” and “Silberschatz” can be separated by
“Silb”

Keys in leaf node can be compressed by sharing common
prefixes

Database System Concepts - 7th Edition 14.44 ©Silberschatz, Korth and Sudarshan

'"J— Bulk Loading and Bottom-Up Build

= |nserting entries one-at-a-time into a B*-tree requires > 1 10 per entry
assuming leaf level does not fit in memory

can be very inefficient for loading a large number of entries at a time
(bulk loading)

= Efficient alternative 1:

sort entries first (using efficient external-memory sort algorithms
discussed later in Section 12.4)

insert in sorted order
insertion will go to existing page (or cause a split)
much improved IO performance, but most leaf nodes half full
= Efficient alternative 2: Bottom-up B*-tree construction
As before sort entries
And then create tree layer-by-layer, starting with leaf level
details as an exercise
Implemented as part of bulk-load utility by most database systems

Database System Concepts - 7th Edition 14.45 ©Silberschatz, Korth and Sudarshan

B-Tree Index File Example

Einstein| | |Katz| [|Singh
| (N 11 |

voN

Katz Singh
record record

| | Califieri | Crick | El Said | Gold ™1, Kim | Mozart | Srinivasan| |Wu
Brandt Califieri
record record

... and soon for other records...

B-tree (above) and B+-tree (below) on same data

|1| Mozart III | | | |<- --- Root node

|||Einstein| | Gold III —I_l ITIS—rinivasanlll | | | | i‘—“- Internal nodes

Leaf nodes-,

BrandtIIICaliﬁeril ICrickH—»lllEingteinlllEl Saidl | H—»'II Gold III Katz ||| KimH—»IllMozartlll Singh | | |-|->|I|Srinivasan|l|Wu | | | | ;‘—*:--

Database System Concepts - 7t Edition 14.48 ©Silberschatz, Korth and Sudarshan

Indexing on Flash

= Random I/O cost much lower on flash
20 to 100 microseconds for read/write
= Writes are not in-place, and (eventually) require a more expensive erase
= Optimum page size therefore much smaller
= Bulk-loading still useful since it minimizes page erases

= Write-optimized tree structures (discussed later) have been adapted to
minimize page writes for flash-optimized search trees

Database System Concepts - 7th Edition 14.49 ©Silberschatz, Korth and Sudarshan

Indexing in Main Memory

= Random access in memory
Much cheaper than on disk/flash
But still expensive compared to cache read
Data structures that make best use of cache preferable

Binary search for a key value within a large B*-tree node results in
many cache misses

= B*- trees with small nodes that fit in cache line are preferable to reduce
cache misses

= Key idea: use large node size to optimize disk access, but structure
data within a node using a tree with small node size, instead of using an
array.

Database System Concepts - 7th Edition 14.50 ©Silberschatz, Korth and Sudarshan

Hashing

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Static Hashing

= A bucket is a unit of storage containing one or more entries
(a bucket is typically a disk block).

we obtain the bucket of an entry from its search-key value
using a hash function

= Hash function h is a function from the set of all search-key
values K to the set of all bucket addresses B.

= Hash function is used to locate entries for access, insertion
as well as deletion.

= Entries with different search-key values may be mapped to
the same bucket; thus entire bucket has to be searched
sequentially to locate an entry.

= |n ahash index, buckets store entries with pointers to
records

= |nahash file-organization buckets store records

Database System Concepts - 7th Edition 14.52 ©Silberschatz, Korth and Sudarshan

Handling of Bucket Overflows

Bucket overflow can occur because of
Insufficient buckets

Skew In distribution of records. This can occur due to two
reasons:

= multiple records have same search-key value

= chosen hash function produces non-uniform distribution
of key values

Although the probability of bucket overflow can be reduced, it
cannot be eliminated; it is handled by using overflow buckets.

Database System Concepts - 7th Edition 14.53 ©Silberschatz, Korth and Sudarshan

—-J—_ Handling of Bucket Overflows (Cont.)

- =g
—t

= Qverflow chaining — the overflow buckets of a given bucket are chained

together in a linked list.

= Above scheme is called closed addressing (also called closed hashing or
open hashing depending on the book you use)

An alternative, called
open addressing
(also called

open hashing or
closed hashing
depending on the book bucket1
you use) which does not

use overflow buckets, overflow buckets for bucket 1
IS not suitable for
database applications.

bucket 0

Y
Y

bucket 2

bucket 3

Database System Concepts - 7th Edition 14.54 ©Silberschatz, Korth and Sudarshan

Example of Hash File Organization

bucket 0 bucket 4
12121 | Wu Finance [90000

76543 | Singh Finance (80000

bucket 1 bucket 5
15151| Mozart Music 40000 76766| Crick Biology [72000
bucket 2 bucket 6
32343|El Said | History 80000 10101 |Srinivasan |Comp. Sci.[65000
58583 Califieri HiStOI‘y 60000 45565 |Katz Comp, Sci.|75000

83821|Brandt |Comp. Sci.[92000

bucket 3 bucket 7
22222|Einstein | Physics |95000
33456| Gold Physics {87000
98345| Kim Elec. Eng.|80000

Hash file organization of instructor file, using dept_name as key.

Database System Concepts - 7th Edition 14.56 ©Silberschatz, Korth and Sudarshan

Deficiencies of Static Hashing

= |n static hashing, function h maps search-key values to a fixed
set of B of bucket addresses. Databases grow or shrink with
time.

If initial number of buckets is too small, and file grows,
performance will degrade due to too much overflows.

If space is allocated for anticipated growth, a significant
amount of space will be wasted initially (and buckets will be
underfull).

If database shrinks, again space will be wasted.

= One solution: periodic re-organization of the file with a new hash
function

Expensive, disrupts normal operations

= Better solution: allow the number of buckets to be modified
dynamically.

Database System Concepts - 7th Edition 14.57 ©Silberschatz, Korth and Sudarshan

	Chapter 14: Indexing
	Chapter 14: Indexing
	Basic Concepts
	Index Evaluation Metrics
	Ordered Indices
	Dense Index Files
	Dense Index Files (Cont.)
	Sparse Index Files
	Sparse Index Files (Cont.)
	Secondary Indices Example
	Multilevel Index
	Multilevel Index (Cont.)
	Indices on Multiple Keys
	Example of B+-Tree
	B+-Tree Index Files (Cont.)
	B+-Tree Node Structure
	Leaf Nodes in B+-Trees
	Non-Leaf Nodes in B+-Trees
	Example of B+-tree
	Observations about B+-trees
	Queries on B+-Trees
	Queries on B+-Trees (Cont.)
	Queries on B+-Trees (Cont.)
	Non-Unique Keys
	Updates on B+-Trees: Insertion
	Updates on B+-Trees: Insertion (Cont.)
	B+-Tree Insertion
	B+-Tree Insertion
	Insertion in B+-Trees (Cont.)
	Examples of B+-Tree Deletion
	Examples of B+-Tree Deletion (Cont.)
	Example of B+-tree Deletion (Cont.)
	Updates on B+-Trees: Deletion
	Updates on B+-Trees: Deletion
	Complexity of Updates
	Non-Unique Search Keys
	B+-Tree File Organization
	B+-Tree File Organization (Cont.)
	Other Issues in Indexing
	Indexing Strings
	Bulk Loading and Bottom-Up Build
	B-Tree Index File Example
	Indexing on Flash
	Indexing in Main Memory
	Hashing
	Static Hashing
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Example of Hash File Organization
	Deficiencies of Static Hashing

