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Chapter 22: Object-Based Databases 

 Complex Data Types and Object Orientation 
 Structured Data Types and Inheritance in SQL 
 Table Inheritance 
 Array and Multiset Types in SQL 
 Object Identity and Reference Types in SQL 
 Implementing O-R Features 
 Persistent Programming Languages 
 Comparison of Object-Oriented and Object-Relational Databases 
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Object-Relational Data Models 

 Extend the relational data model by including object orientation and 
constructs to deal with added data types. 

 Allow attributes of tuples to have complex types, including non-atomic 
values such as nested relations. 

 Preserve relational foundations, in particular the declarative access to 
data, while extending modeling power. 

 Upward compatibility with existing relational languages. 
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Complex Data Types 

 Motivation: 
 Permit non-atomic domains (atomic ≡ indivisible) 
 Example of non-atomic domain:  set of integers,or set of 

tuples 
 Allows more intuitive modeling for applications with 

complex data 
 Intuitive definition: 

 allow relations whenever we allow atomic (scalar) values 
— relations within relations 

 Retains mathematical foundation of relational model  
 Violates first normal form. 
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Example of a Nested Relation 

 Example:  library information system 
 Each book has  

 title,  
 a list (array) of authors, 
 Publisher, with subfields name and branch, and 
 a set of keywords 

 Non-1NF relation books 
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4NF Decomposition of Nested Relation 

 Suppose for simplicity that 
title uniquely identifies a 
book 
 In real world ISBN is a 

unique identifier  
 Decompose books into 

4NF using the schemas: 
 (title, author, position ) 
 (title, keyword ) 
 (title, pub-name, pub-

branch ) 
 4NF design requires users 

to include joins in their 
queries. 
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Complex Types and SQL 
 Extensions introduced in SQL:1999 to support complex types: 

 Collection and large object types 
 Nested relations are an example of collection types 

 Structured types 
 Nested record structures like composite attributes  

 Inheritance 
 Object orientation 

 Including object identifiers and references 
 Not fully implemented in any database system currently 

 But some features are present in each of the major commercial 
database systems 
 Read the manual of your database system to see what it 

supports 
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Structured Types and Inheritance in SQL 
 Structured types (a.k.a. user-defined types) can be declared and used in SQL 
      create type Name as 

     (firstname          varchar(20), 
      lastname           varchar(20)) 
      final 

  create type Address as 
     (street          varchar(20), 
      city    varchar(20), 
      zipcode   varchar(20)) 

   not final 
 Note: final and not final  indicate whether subtypes can be created 

 Structured types can be used to create tables with composite attributes 
            create table person ( 
   name Name, 
   address Address, 
   dateOfBirth date) 
 Dot notation used to reference components: name.firstname 
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Structured Types (cont.) 

 User-defined row types 
create type PersonType as ( 

name Name, 
address Address, 
dateOfBirth date) 
not final 

 Can then create a table whose rows are a user-defined type 
     create table customer of CustomerType 

 Alternative using unnamed row types. 
     create table person_r( 
   name row(firstname  varchar(20), 
                                                   lastname  varchar(20)), 
   address row(street      varchar(20), 
                                                   city         varchar(20), 
                                                zipcode   varchar(20)), 
   dateOfBirth date) 
 



©Silberschatz, Korth and Sudarshan 22.10 Database System Concepts - 6th Edition 

Methods 

 Can add a method declaration with a structured type. 
 method ageOnDate (onDate date) 
  returns interval year 
 Method body is given separately. 

create instance method ageOnDate (onDate date) 
  returns interval year 
  for CustomerType 
begin 
  return onDate - self.dateOfBirth; 
end 

 We can now find the age of each customer: 
select name.lastname, ageOnDate (current_date) 
from customer 
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Constructor Functions 

 Constructor functions are used to create values of structured types 
 E.g. 

create function Name(firstname varchar(20), lastname varchar(20)) 
returns Name 
begin 
    set self.firstname = firstname; 
    set self.lastname = lastname; 
end 

 To create a value of type Name, we use 
   new Name(‘John’, ‘Smith’) 

 Normally used in insert statements 
insert into Person values 
     (new Name(‘John’, ‘Smith), 
      new Address(’20 Main St’, ‘New York’, ‘11001’), 
      date ‘1960-8-22’); 
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Type Inheritance 
 Suppose that we have the following type definition for people: 
  create type Person 

      (name varchar(20), 
             address varchar(20)) 

 Using inheritance to define the student and teacher types  
      create type Student 
        under Person 
        (degree        varchar(20), 
         department  varchar(20)) 
      create type Teacher 
        under Person 
        (salary          integer, 
         department  varchar(20)) 

 Subtypes can redefine methods by using overriding method in place of 
method in the method declaration 
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Multiple Type Inheritance 
 SQL:1999 and SQL:2003 do not support multiple inheritance 

 If our type system supports multiple inheritance, we can define a type for 
teaching assistant as follows: 
 create type Teaching Assistant 
            under Student, Teacher 

 To avoid a conflict between the two occurrences of department we can 
rename them  

                create type Teaching Assistant 
           under  
             Student  with (department as student_dept ), 
            Teacher  with (department as teacher_dept ) 

 Each value must have a most-specific type 
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Table Inheritance 

 Tables created from subtypes can further be specified as subtables 
 E.g. create table people of Person; 

        create table students of Student under people; 
        create table teachers of Teacher under people; 

 Tuples added to a subtable are automatically visible to queries on the 
supertable 
 E.g. query on people also sees students and teachers. 
 Similarly updates/deletes on people also result in updates/deletes 

on subtables 
 To override this behaviour, use “only people” in query 

 Conceptually, multiple inheritance is possible with tables 
 e.g. teaching_assistants under students and teachers 
 But is not supported in SQL currently 

 So we cannot create a person (tuple in people) who is both a 
student and a teacher 
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Consistency Requirements for Subtables 

 Consistency requirements on subtables and supertables. 
 Each tuple of the supertable (e.g. people) can correspond to at 

most one tuple in each of the subtables (e.g. students and teachers) 
 Additional constraint in SQL:1999: 
 All tuples corresponding to each other (that is, with the same values 

for inherited attributes) must be derived from one tuple (inserted into 
one table).    
 That is, each entity must have a most specific type 
 We cannot have a tuple in people corresponding to a tuple each 

in students and teachers  
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Array and Multiset Types in SQL 
 Example of array and multiset declaration: 
      create type Publisher as 

     (name             varchar(20), 
      branch            varchar(20)); 
    create type Book as 
     (title                 varchar(20), 
      author_array   varchar(20) array [10], 
      pub_date         date, 
      publisher        Publisher, 
      keyword-set   varchar(20) multiset); 

          create table books of Book; 
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Creation of Collection Values 
 Array construction 
           array [‘Silberschatz’,`Korth’,`Sudarshan’] 
 
 Multisets 

    multiset [‘computer’, ‘database’, ‘SQL’] 
 

 To create a tuple of the type defined by the books relation:               
 (‘Compilers’, array[`Smith’,`Jones’],  
                 new Publisher (`McGraw-Hill’,`New York’),   
           multiset [`parsing’,`analysis’ ]) 

 
 To insert the preceding tuple into the relation books 
      insert into books 

values 
    (‘Compilers’, array[`Smith’,`Jones’],  
                 new Publisher (`McGraw-Hill’,`New York’), 
                 multiset [`parsing’,`analysis’ ]); 
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Querying Collection-Valued Attributes 
 To find all books that have the word “database” as a keyword,  
  select title 

 from books 
 where ‘database’ in (unnest(keyword-set )) 

 We can access individual elements of an array by using indices 
 E.g.: If we know that a particular book has three authors, we could write: 

  select author_array[1], author_array[2], author_array[3] 
 from books 
 where title = `Database System Concepts’ 

 To get a relation containing pairs of the form “title, author_name” for each 
book and each author of the book 

               select B.title, A.author 
  from books as B, unnest (B.author_array) as A (author ) 
 To retain ordering information we add a with ordinality clause 
   select B.title, A.author, A.position 
  from books as B, unnest (B.author_array) with ordinality as  
   A (author, position )   
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Unnesting 
 The transformation of a nested relation into a form with fewer (or no) 

relation-valued attributes us called unnesting. 
 E.g. 

   select title, A as author, publisher.name as pub_name,  
              publisher.branch  as pub_branch, K.keyword 
   from books as B, unnest(B.author_array ) as A (author ), 
       unnest (B.keyword_set ) as K (keyword ) 

 Result relation flat_books 
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Nesting  
 Nesting is the opposite of unnesting, creating a collection-valued attribute 
 Nesting can be done in a manner similar to aggregation, but using the 

function colect() in place of an aggregation operation, to create a multiset 
 To nest the flat_books relation on the attribute keyword: 
 select title, author, Publisher (pub_name, pub_branch ) as publisher,  

           collect (keyword)  as keyword_set 
from flat_books 
groupby title, author, publisher 

 To nest on both authors and keywords: 
      select title, collect (author ) as author_set,  

            Publisher (pub_name, pub_branch) as publisher, 
             collect  (keyword ) as keyword_set 
from   flat_books 
group by title, publisher 
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Nesting (Cont.) 

 Another approach to creating nested relations is to use subqueries in 
the select clause, starting from the 4NF relation books4 

 select title, 
  array (select author 
             from authors as A 
             where A.title = B.title              
             order by A.position) as author_array, 
  Publisher (pub-name, pub-branch) as publisher, 
  multiset (select keyword 
                  from keywords as K 
                  where K.title = B.title) as keyword_set 
from books4 as B 
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Object-Identity and Reference Types 
 Define a type Department with a field name and a field head which is a 

reference to the type Person, with table people as scope: 
      create type Department ( 

        name varchar (20), 
        head ref (Person) scope people) 

 We can then create a table departments as follows 
             create table departments of Department 
 We can omit the declaration scope people from the type declaration 

and instead make an addition to the create table statement: 
 create table departments of Department 
        (head with options scope people) 

 Referenced table must have an attribute that stores the identifier, called 
the self-referential attribute 

               create table people of Person 
          ref is  person_id system generated; 
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Initializing Reference-Typed Values 
 To create a tuple with a reference value, we can first create the tuple 

with a null reference and then set the reference separately: 
 insert into departments 
        values (`CS’, null) 
 update departments 
      set head = (select p.person_id 
                   from people as p 
        where name = `John’) 
      where name = `CS’ 
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User Generated Identifiers 
 The type of the object-identifier must be specified as part of the type 

definition of the referenced table, and 
 The table definition must specify that the reference is user generated 
         create type Person 

            (name varchar(20) 
             address varchar(20)) 
           ref using varchar(20) 
        create table people of Person 
          ref is person_id user generated 

 When creating a tuple, we must provide a unique value for the identifier: 
       insert into people (person_id, name, address ) values 

      (‘01284567’, ‘John’, `23 Coyote Run’) 
 We can then use the identifier value when inserting a tuple into 

departments 
 Avoids need for a separate query to retrieve the identifier: 

            insert into departments 
           values(`CS’, `02184567’) 
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User Generated Identifiers (Cont.) 
 

 Can use an existing primary key value as the identifier:  
 create type Person 

      (name varchar (20) primary key, 
       address varchar(20)) 
    ref from (name) 
create table people of Person 
    ref is person_id derived 

 When inserting a tuple for departments, we can then use 
 insert into departments 

    values(`CS’,`John’) 
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Path Expressions 

 Find the names and addresses of the heads of all departments: 
  select head –>name, head –>address 

 from departments 
 An expression such as “head–>name” is called a path expression 
 Path expressions help avoid explicit joins 

 If department head were not a reference, a join of departments 
with people would be required to get at the address 

 Makes expressing the query much easier for the user 
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Implementing O-R Features 

 Similar to how E-R features are mapped onto relation schemas 
 Subtable implementation 

 Each table stores primary key and those attributes defined in that 
table 

or, 
 Each table stores both locally defined and inherited attributes 
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Persistent Programming Languages 

 Languages extended with constructs to handle persistent data 
 Programmer can manipulate persistent data directly 

 no need to fetch it into memory and store it back to disk (unlike 
embedded SQL) 

 Persistent objects: 
 Persistence by class - explicit declaration of persistence 
 Persistence by creation - special syntax to create persistent 

objects 
 Persistence by marking - make objects persistent after creation  
 Persistence by reachability - object is persistent if it is declared 

explicitly to be so or is reachable from a persistent object 
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Object Identity and Pointers 

 Degrees of permanence of object identity 
 Intraprocedure: only during execution of a single procedure 
 Intraprogram: only during execution of a single program or query 
 Interprogram: across program executions, but not if data-storage 

format on disk changes 
 Persistent: interprogram, plus persistent across data 

reorganizations 
 Persistent versions of C++ and Java have been implemented 

 C++ 
 ODMG C++ 
 ObjectStore 

 Java 
 Java Database Objects (JDO) 
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Persistent C++ Systems 

 Extensions of C++ language to support persistent storage of objects 
 Several proposals, ODMG standard proposed, but not much action of 

late 
 persistent pointers: e.g. d_Ref<T> 
 creation of persistent objects: e.g. new (db) T() 
 Class extents: access to all persistent objects of a particular class 
 Relationships: Represented by pointers stored in related objects 

 Issue: consistency of pointers 
 Solution: extension to type system to automatically maintain 

back-references 
 Iterator interface 
 Transactions 
 Updates: mark_modified() function to tell system that a persistent 

object that was fetched into memory has been updated 
 Query language 
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Persistent Java Systems 

 Standard for adding persistence to Java : Java Database Objects (JDO) 
 Persistence by reachability 
 Byte code enhancement 

 Classes separately declared as persistent 
 Byte code modifier program modifies class byte code to support 

persistence 
– E.g. Fetch object on demand 
– Mark modified objects to be written back to database 

 Database mapping 
 Allows objects to be stored in a relational database 

 Class extents 
 Single reference type 

 no difference between in-memory pointer and persistent pointer 
 Implementation technique based on hollow objects (a.k.a. 

pointer swizzling) 
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Object-Relational Mapping 

 Object-Relational Mapping (ORM) systems built on top of traditional 
relational databases 

 Implementor provides a mapping from objects to relations 
 Objects are purely transient, no permanent object identity 

 Objects can be retried from database 
 System uses mapping to fetch relevant data from relations and 

construct objects 
 Updated objects are stored back in database by generating 

corresponding update/insert/delete statements 
 The Hibernate ORM system is widely used 

 described in Section 9.4.2 
 Provides API to start/end transactions, fetch objects, etc 
 Provides query language operating direcly on object model 

 queries translated to SQL 
 Limitations: overheads, especially for bulk updates  
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Comparison of O-O and O-R Databases 
 
 Relational systems 

 simple data types, powerful query languages, high protection. 
 Persistent-programming-language-based OODBs 

 complex data types, integration with programming language, high 
performance. 

 Object-relational systems 
 complex data types, powerful query languages, high protection. 

 Object-relational mapping systems 
 complex data types integrated with programming language, but built 

as a layer on top of a relational database system 
 Note: Many real systems blur these boundaries 

 E.g. persistent programming language built as a wrapper on a 
relational database offers first two benefits, but may have poor 
performance. 
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Figure 22.05 
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Figure 22.07 
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