
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 22: Object-Based Databases

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

©Silberschatz, Korth and Sudarshan 22.2 Database System Concepts - 6th Edition

Chapter 22: Object-Based Databases

 Complex Data Types and Object Orientation
 Structured Data Types and Inheritance in SQL
 Table Inheritance
 Array and Multiset Types in SQL
 Object Identity and Reference Types in SQL
 Implementing O-R Features
 Persistent Programming Languages
 Comparison of Object-Oriented and Object-Relational Databases

©Silberschatz, Korth and Sudarshan 22.3 Database System Concepts - 6th Edition

Object-Relational Data Models

 Extend the relational data model by including object orientation and
constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

 Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

 Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan 22.4 Database System Concepts - 6th Edition

Complex Data Types

 Motivation:
 Permit non-atomic domains (atomic ≡ indivisible)
 Example of non-atomic domain: set of integers,or set of

tuples
 Allows more intuitive modeling for applications with

complex data
 Intuitive definition:

 allow relations whenever we allow atomic (scalar) values
— relations within relations

 Retains mathematical foundation of relational model
 Violates first normal form.

©Silberschatz, Korth and Sudarshan 22.5 Database System Concepts - 6th Edition

Example of a Nested Relation

 Example: library information system
 Each book has

 title,
 a list (array) of authors,
 Publisher, with subfields name and branch, and
 a set of keywords

 Non-1NF relation books

©Silberschatz, Korth and Sudarshan 22.6 Database System Concepts - 6th Edition

4NF Decomposition of Nested Relation

 Suppose for simplicity that
title uniquely identifies a
book
 In real world ISBN is a

unique identifier
 Decompose books into

4NF using the schemas:
 (title, author, position)
 (title, keyword)
 (title, pub-name, pub-

branch)
 4NF design requires users

to include joins in their
queries.

©Silberschatz, Korth and Sudarshan 22.7 Database System Concepts - 6th Edition

Complex Types and SQL
 Extensions introduced in SQL:1999 to support complex types:

 Collection and large object types
 Nested relations are an example of collection types

 Structured types
 Nested record structures like composite attributes

 Inheritance
 Object orientation

 Including object identifiers and references
 Not fully implemented in any database system currently

 But some features are present in each of the major commercial
database systems
 Read the manual of your database system to see what it

supports

©Silberschatz, Korth and Sudarshan 22.8 Database System Concepts - 6th Edition

Structured Types and Inheritance in SQL
 Structured types (a.k.a. user-defined types) can be declared and used in SQL
 create type Name as

 (firstname varchar(20),
 lastname varchar(20))
 final

 create type Address as
 (street varchar(20),
 city varchar(20),
 zipcode varchar(20))

 not final
 Note: final and not final indicate whether subtypes can be created

 Structured types can be used to create tables with composite attributes
 create table person (
 name Name,
 address Address,
 dateOfBirth date)
 Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan 22.9 Database System Concepts - 6th Edition

Structured Types (cont.)

 User-defined row types
create type PersonType as (

name Name,
address Address,
dateOfBirth date)
not final

 Can then create a table whose rows are a user-defined type
 create table customer of CustomerType

 Alternative using unnamed row types.
 create table person_r(
 name row(firstname varchar(20),
 lastname varchar(20)),
 address row(street varchar(20),
 city varchar(20),
 zipcode varchar(20)),
 dateOfBirth date)

©Silberschatz, Korth and Sudarshan 22.10 Database System Concepts - 6th Edition

Methods

 Can add a method declaration with a structured type.
 method ageOnDate (onDate date)
 returns interval year
 Method body is given separately.

create instance method ageOnDate (onDate date)
 returns interval year
 for CustomerType
begin
 return onDate - self.dateOfBirth;
end

 We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)
from customer

©Silberschatz, Korth and Sudarshan 22.11 Database System Concepts - 6th Edition

Constructor Functions

 Constructor functions are used to create values of structured types
 E.g.

create function Name(firstname varchar(20), lastname varchar(20))
returns Name
begin
 set self.firstname = firstname;
 set self.lastname = lastname;
end

 To create a value of type Name, we use
 new Name(‘John’, ‘Smith’)

 Normally used in insert statements
insert into Person values
 (new Name(‘John’, ‘Smith),
 new Address(’20 Main St’, ‘New York’, ‘11001’),
 date ‘1960-8-22’);

©Silberschatz, Korth and Sudarshan 22.12 Database System Concepts - 6th Edition

Type Inheritance
 Suppose that we have the following type definition for people:
 create type Person

 (name varchar(20),
 address varchar(20))

 Using inheritance to define the student and teacher types
 create type Student
 under Person
 (degree varchar(20),
 department varchar(20))
 create type Teacher
 under Person
 (salary integer,
 department varchar(20))

 Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Silberschatz, Korth and Sudarshan 22.13 Database System Concepts - 6th Edition

Multiple Type Inheritance
 SQL:1999 and SQL:2003 do not support multiple inheritance

 If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:
 create type Teaching Assistant
 under Student, Teacher

 To avoid a conflict between the two occurrences of department we can
rename them

 create type Teaching Assistant
 under
 Student with (department as student_dept),
 Teacher with (department as teacher_dept)

 Each value must have a most-specific type

©Silberschatz, Korth and Sudarshan 22.14 Database System Concepts - 6th Edition

Table Inheritance

 Tables created from subtypes can further be specified as subtables
 E.g. create table people of Person;

 create table students of Student under people;
 create table teachers of Teacher under people;

 Tuples added to a subtable are automatically visible to queries on the
supertable
 E.g. query on people also sees students and teachers.
 Similarly updates/deletes on people also result in updates/deletes

on subtables
 To override this behaviour, use “only people” in query

 Conceptually, multiple inheritance is possible with tables
 e.g. teaching_assistants under students and teachers
 But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a
student and a teacher

©Silberschatz, Korth and Sudarshan 22.15 Database System Concepts - 6th Edition

Consistency Requirements for Subtables

 Consistency requirements on subtables and supertables.
 Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)
 Additional constraint in SQL:1999:
 All tuples corresponding to each other (that is, with the same values

for inherited attributes) must be derived from one tuple (inserted into
one table).
 That is, each entity must have a most specific type
 We cannot have a tuple in people corresponding to a tuple each

in students and teachers

©Silberschatz, Korth and Sudarshan 22.16 Database System Concepts - 6th Edition

Array and Multiset Types in SQL
 Example of array and multiset declaration:
 create type Publisher as

 (name varchar(20),
 branch varchar(20));
 create type Book as
 (title varchar(20),
 author_array varchar(20) array [10],
 pub_date date,
 publisher Publisher,
 keyword-set varchar(20) multiset);

 create table books of Book;

©Silberschatz, Korth and Sudarshan 22.17 Database System Concepts - 6th Edition

Creation of Collection Values
 Array construction
 array [‘Silberschatz’,`Korth’,`Sudarshan’]

 Multisets

 multiset [‘computer’, ‘database’, ‘SQL’]

 To create a tuple of the type defined by the books relation:
 (‘Compilers’, array[`Smith’,`Jones’],
 new Publisher (`McGraw-Hill’,`New York’),
 multiset [`parsing’,`analysis’])

 To insert the preceding tuple into the relation books
 insert into books

values
 (‘Compilers’, array[`Smith’,`Jones’],
 new Publisher (`McGraw-Hill’,`New York’),
 multiset [`parsing’,`analysis’]);

©Silberschatz, Korth and Sudarshan 22.18 Database System Concepts - 6th Edition

Querying Collection-Valued Attributes
 To find all books that have the word “database” as a keyword,
 select title

 from books
 where ‘database’ in (unnest(keyword-set))

 We can access individual elements of an array by using indices
 E.g.: If we know that a particular book has three authors, we could write:

 select author_array[1], author_array[2], author_array[3]
 from books
 where title = `Database System Concepts’

 To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

 select B.title, A.author
 from books as B, unnest (B.author_array) as A (author)
 To retain ordering information we add a with ordinality clause
 select B.title, A.author, A.position
 from books as B, unnest (B.author_array) with ordinality as
 A (author, position)

©Silberschatz, Korth and Sudarshan 22.19 Database System Concepts - 6th Edition

Unnesting
 The transformation of a nested relation into a form with fewer (or no)

relation-valued attributes us called unnesting.
 E.g.

 select title, A as author, publisher.name as pub_name,
 publisher.branch as pub_branch, K.keyword
 from books as B, unnest(B.author_array) as A (author),
 unnest (B.keyword_set) as K (keyword)

 Result relation flat_books

©Silberschatz, Korth and Sudarshan 22.20 Database System Concepts - 6th Edition

Nesting
 Nesting is the opposite of unnesting, creating a collection-valued attribute
 Nesting can be done in a manner similar to aggregation, but using the

function colect() in place of an aggregation operation, to create a multiset
 To nest the flat_books relation on the attribute keyword:
 select title, author, Publisher (pub_name, pub_branch) as publisher,

 collect (keyword) as keyword_set
from flat_books
groupby title, author, publisher

 To nest on both authors and keywords:
 select title, collect (author) as author_set,

 Publisher (pub_name, pub_branch) as publisher,
 collect (keyword) as keyword_set
from flat_books
group by title, publisher

©Silberschatz, Korth and Sudarshan 22.21 Database System Concepts - 6th Edition

Nesting (Cont.)

 Another approach to creating nested relations is to use subqueries in
the select clause, starting from the 4NF relation books4

 select title,
 array (select author
 from authors as A
 where A.title = B.title
 order by A.position) as author_array,
 Publisher (pub-name, pub-branch) as publisher,
 multiset (select keyword
 from keywords as K
 where K.title = B.title) as keyword_set
from books4 as B

©Silberschatz, Korth and Sudarshan 22.22 Database System Concepts - 6th Edition

Object-Identity and Reference Types
 Define a type Department with a field name and a field head which is a

reference to the type Person, with table people as scope:
 create type Department (

 name varchar (20),
 head ref (Person) scope people)

 We can then create a table departments as follows
 create table departments of Department
 We can omit the declaration scope people from the type declaration

and instead make an addition to the create table statement:
 create table departments of Department
 (head with options scope people)

 Referenced table must have an attribute that stores the identifier, called
the self-referential attribute

 create table people of Person
 ref is person_id system generated;

©Silberschatz, Korth and Sudarshan 22.23 Database System Concepts - 6th Edition

Initializing Reference-Typed Values
 To create a tuple with a reference value, we can first create the tuple

with a null reference and then set the reference separately:
 insert into departments
 values (`CS’, null)
 update departments
 set head = (select p.person_id
 from people as p
 where name = `John’)
 where name = `CS’

©Silberschatz, Korth and Sudarshan 22.24 Database System Concepts - 6th Edition

User Generated Identifiers
 The type of the object-identifier must be specified as part of the type

definition of the referenced table, and
 The table definition must specify that the reference is user generated
 create type Person

 (name varchar(20)
 address varchar(20))
 ref using varchar(20)
 create table people of Person
 ref is person_id user generated

 When creating a tuple, we must provide a unique value for the identifier:
 insert into people (person_id, name, address) values

 (‘01284567’, ‘John’, `23 Coyote Run’)
 We can then use the identifier value when inserting a tuple into

departments
 Avoids need for a separate query to retrieve the identifier:

 insert into departments
 values(`CS’, `02184567’)

©Silberschatz, Korth and Sudarshan 22.25 Database System Concepts - 6th Edition

User Generated Identifiers (Cont.)

 Can use an existing primary key value as the identifier:
 create type Person

 (name varchar (20) primary key,
 address varchar(20))
 ref from (name)
create table people of Person
 ref is person_id derived

 When inserting a tuple for departments, we can then use
 insert into departments

 values(`CS’,`John’)

©Silberschatz, Korth and Sudarshan 22.26 Database System Concepts - 6th Edition

Path Expressions

 Find the names and addresses of the heads of all departments:
 select head –>name, head –>address

 from departments
 An expression such as “head–>name” is called a path expression
 Path expressions help avoid explicit joins

 If department head were not a reference, a join of departments
with people would be required to get at the address

 Makes expressing the query much easier for the user

©Silberschatz, Korth and Sudarshan 22.27 Database System Concepts - 6th Edition

Implementing O-R Features

 Similar to how E-R features are mapped onto relation schemas
 Subtable implementation

 Each table stores primary key and those attributes defined in that
table

or,
 Each table stores both locally defined and inherited attributes

©Silberschatz, Korth and Sudarshan 22.28 Database System Concepts - 6th Edition

Persistent Programming Languages

 Languages extended with constructs to handle persistent data
 Programmer can manipulate persistent data directly

 no need to fetch it into memory and store it back to disk (unlike
embedded SQL)

 Persistent objects:
 Persistence by class - explicit declaration of persistence
 Persistence by creation - special syntax to create persistent

objects
 Persistence by marking - make objects persistent after creation
 Persistence by reachability - object is persistent if it is declared

explicitly to be so or is reachable from a persistent object

©Silberschatz, Korth and Sudarshan 22.29 Database System Concepts - 6th Edition

Object Identity and Pointers

 Degrees of permanence of object identity
 Intraprocedure: only during execution of a single procedure
 Intraprogram: only during execution of a single program or query
 Interprogram: across program executions, but not if data-storage

format on disk changes
 Persistent: interprogram, plus persistent across data

reorganizations
 Persistent versions of C++ and Java have been implemented

 C++
 ODMG C++
 ObjectStore

 Java
 Java Database Objects (JDO)

©Silberschatz, Korth and Sudarshan 22.30 Database System Concepts - 6th Edition

Persistent C++ Systems

 Extensions of C++ language to support persistent storage of objects
 Several proposals, ODMG standard proposed, but not much action of

late
 persistent pointers: e.g. d_Ref<T>
 creation of persistent objects: e.g. new (db) T()
 Class extents: access to all persistent objects of a particular class
 Relationships: Represented by pointers stored in related objects

 Issue: consistency of pointers
 Solution: extension to type system to automatically maintain

back-references
 Iterator interface
 Transactions
 Updates: mark_modified() function to tell system that a persistent

object that was fetched into memory has been updated
 Query language

©Silberschatz, Korth and Sudarshan 22.31 Database System Concepts - 6th Edition

Persistent Java Systems

 Standard for adding persistence to Java : Java Database Objects (JDO)
 Persistence by reachability
 Byte code enhancement

 Classes separately declared as persistent
 Byte code modifier program modifies class byte code to support

persistence
– E.g. Fetch object on demand
– Mark modified objects to be written back to database

 Database mapping
 Allows objects to be stored in a relational database

 Class extents
 Single reference type

 no difference between in-memory pointer and persistent pointer
 Implementation technique based on hollow objects (a.k.a.

pointer swizzling)

©Silberschatz, Korth and Sudarshan 22.32 Database System Concepts - 6th Edition

Object-Relational Mapping

 Object-Relational Mapping (ORM) systems built on top of traditional
relational databases

 Implementor provides a mapping from objects to relations
 Objects are purely transient, no permanent object identity

 Objects can be retried from database
 System uses mapping to fetch relevant data from relations and

construct objects
 Updated objects are stored back in database by generating

corresponding update/insert/delete statements
 The Hibernate ORM system is widely used

 described in Section 9.4.2
 Provides API to start/end transactions, fetch objects, etc
 Provides query language operating direcly on object model

 queries translated to SQL
 Limitations: overheads, especially for bulk updates

©Silberschatz, Korth and Sudarshan 22.33 Database System Concepts - 6th Edition

Comparison of O-O and O-R Databases

 Relational systems

 simple data types, powerful query languages, high protection.
 Persistent-programming-language-based OODBs

 complex data types, integration with programming language, high
performance.

 Object-relational systems
 complex data types, powerful query languages, high protection.

 Object-relational mapping systems
 complex data types integrated with programming language, but built

as a layer on top of a relational database system
 Note: Many real systems blur these boundaries

 E.g. persistent programming language built as a wrapper on a
relational database offers first two benefits, but may have poor
performance.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 22

http://www.db-book.com/�
http://www.db-book.com/�
http://www.db-book.com/�

©Silberschatz, Korth and Sudarshan 22.35 Database System Concepts - 6th Edition

Figure 22.05

©Silberschatz, Korth and Sudarshan 22.36 Database System Concepts - 6th Edition

Figure 22.07

	Chapter 22: Object-Based Databases
	Chapter 22: Object-Based Databases
	Object-Relational Data Models
	Complex Data Types
	Example of a Nested Relation
	4NF Decomposition of Nested Relation
	Complex Types and SQL
	Structured Types and Inheritance in SQL
	Structured Types (cont.)
	Methods
	Constructor Functions
	Type Inheritance
	Multiple Type Inheritance
	Table Inheritance
	Consistency Requirements for Subtables
	Array and Multiset Types in SQL
	Creation of Collection Values
	Querying Collection-Valued Attributes
	Unnesting
	Nesting
	Nesting (Cont.)
	Object-Identity and Reference Types
	Initializing Reference-Typed Values
	User Generated Identifiers
	User Generated Identifiers (Cont.)
	Path Expressions
	Implementing O-R Features
	Persistent Programming Languages
	Object Identity and Pointers
	Persistent C++ Systems
	Persistent Java Systems
	Object-Relational Mapping
	Comparison of O-O and O-R Databases
	End of Chapter 22
	Figure 22.05
	Figure 22.07

