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Introduction 

 Parallel machines are becoming quite common and affordable 

 Prices of microprocessors, memory and disks have dropped 
sharply 

 Recent desktop computers feature multiple processors and this 
trend is projected to accelerate 

 Databases are growing increasingly large 

 large volumes of transaction data are collected and stored for later 
analysis. 

 multimedia objects like images are increasingly stored in 
databases 

 Large-scale parallel database systems increasingly used for: 

 storing large volumes of data 

 processing time-consuming decision-support queries 

 providing high throughput for transaction processing  
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Parallelism in Databases 

 Data can be partitioned across multiple disks for parallel I/O. 

 Individual relational operations (e.g., sort, join, aggregation) can be 
executed in parallel 

 data can be partitioned and each processor can work 
independently on its own partition. 

 Queries are expressed in high level language (SQL, translated to 
relational algebra) 

 makes parallelization easier. 

 Different queries can be run in parallel with each other.     
Concurrency control takes care of conflicts.  

 Thus, databases naturally lend themselves to parallelism. 
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I/O Parallelism 

 Reduce the time required to retrieve relations from disk by partitioning 

 The relations on multiple disks. 

 Horizontal partitioning – tuples of a relation are divided among many 
disks such that each tuple resides on one disk. 

 Partitioning techniques (number of disks = n): 

Round-robin:  

Send the I th tuple inserted in the relation to disk i mod n.   

Hash partitioning:   

 Choose one or more attributes as the partitioning attributes.    

  Choose hash function h with range 0…n - 1 

 Let i denote result of hash function h applied to the partitioning 
attribute value of a tuple. Send tuple to disk i. 
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I/O Parallelism (Cont.) 

 Partitioning techniques (cont.): 

 Range partitioning:  

 Choose an attribute as the partitioning attribute. 

 A partitioning vector [vo, v1, ..., vn-2]  is chosen. 

 Let v be the partitioning attribute value of a tuple. Tuples such that 
vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples 
with v ≥ vn-2 go to disk n-1. 

     E.g., with a partitioning vector [5,11], a tuple with partitioning 
attribute value of 2 will go to disk 0, a tuple with value 8 will go to 
disk 1, while a  tuple with value 20 will go to disk2. 
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Comparison of Partitioning Techniques 

 Evaluate how well partitioning techniques support the following types 
of data access: 

     1.  Scanning the entire relation. 

     2.  Locating a tuple associatively – point queries. 

 E.g., r.A = 25. 

     3.  Locating all tuples such that the value of a given attribute lies within  
a specified range – range queries. 

 E.g.,  10 ≤ r.A < 25. 
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Comparison of Partitioning Techniques (Cont.) 

Round robin: 

 Advantages 

  Best suited for sequential scan of entire relation on each query. 

 All disks have almost an equal number of tuples; retrieval work is 
thus well balanced between disks. 

 Range queries are difficult to process 

 No clustering -- tuples are scattered across all disks 
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Hash partitioning: 

  Good for sequential access  

 Assuming hash function is good, and partitioning attributes form a 
key, tuples will be equally distributed between disks 

 Retrieval work is then well balanced between disks. 

 Good for point queries on partitioning attribute 

 Can lookup single disk, leaving others available for answering 
other queries.  

 Index on partitioning attribute can be local to disk, making lookup 
and update more efficient 

 No clustering, so difficult to answer range queries 

 

Comparison of Partitioning Techniques (Cont.) 
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Comparison of Partitioning Techniques (Cont.) 

 Range partitioning: 

 Provides data clustering by partitioning attribute value. 

 Good for sequential access 

 Good for point queries on partitioning attribute: only one disk needs to 
be accessed. 

 For range queries on partitioning attribute, one to a few disks may need 
to be accessed 

 Remaining disks are available for other queries. 

 Good if result tuples are from one to a few blocks.  

 If many blocks are to be fetched, they are still fetched from one to a 
few disks, and potential parallelism  in disk access is wasted 

 Example of execution skew. 



©Silberschatz, Korth and Sudarshan 18.11 Database System Concepts - 6th Edition 

Partitioning a Relation across Disks 

 If a relation contains only a few tuples which will fit into a single disk 
block, then assign the relation to a single disk. 

 Large relations are preferably partitioned across all the available 
disks. 

 If a relation consists of m disk blocks and there are n disks available in 
the system, then the relation should be allocated min(m,n) disks. 
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Handling of Skew 

 The distribution of tuples to disks may be skewed — that is, some 
disks have many tuples, while others may have fewer tuples. 

 Types of skew: 

 Attribute-value skew. 

 Some values appear in the partitioning attributes of many 
tuples; all the tuples with the same value for the partitioning 
attribute end up in the same partition. 

 Can occur with range-partitioning and hash-partitioning. 

 Partition skew. 

 With range-partitioning, badly chosen partition vector may 
assign too many tuples to some partitions and too few to 
others. 

 Less likely with hash-partitioning if a good hash-function is 
chosen. 
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Handling Skew in Range-Partitioning 

 To create a balanced partitioning vector (assuming partitioning 
attribute forms a key of the relation): 

 Sort the relation on the partitioning attribute. 

 Construct the partition vector by scanning the relation in sorted 
order as follows. 

 After every 1/nth of the relation has been read, the value of  
the partitioning attribute of the next tuple is added to the 
partition vector. 

 n denotes the number of partitions to be constructed. 

 Duplicate entries or imbalances can result if duplicates are 
present in partitioning attributes. 

 Alternative technique based on histograms used in practice 
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Handling Skew using Histograms 

 Balanced partitioning vector can be constructed from histogram in a 
relatively straightforward fashion 

 Assume uniform distribution within each range of the histogram 

 Histogram can be constructed by scanning relation, or sampling (blocks 
containing) tuples of the relation 
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Handling Skew Using Virtual Processor 
Partitioning  

 Skew in range partitioning can be handled elegantly using virtual 
processor partitioning:  

 create a large number of partitions (say 10 to 20 times the number 
of processors) 

 Assign virtual processors to partitions either in round-robin fashion 
or based on estimated cost of processing each virtual partition 

 Basic idea: 

 If any normal partition would have been skewed, it is very likely 
the skew is spread over a number of virtual partitions 

 Skewed virtual partitions get spread across a number of 
processors, so work gets distributed evenly! 
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Interquery Parallelism 

 Queries/transactions execute in parallel with one another. 

 Increases transaction throughput; used primarily to scale up a 
transaction processing system to support a larger number of 
transactions per second. 

 Easiest form of parallelism to support, particularly in a shared-memory 
parallel database, because even sequential database systems 
support concurrent processing. 

 More complicated to implement on shared-disk or shared-nothing 
architectures 

 Locking and logging must be coordinated by passing messages 
between processors. 

 Data in a local buffer may have been updated at another 
processor. 

 Cache-coherency has to be maintained — reads and writes of 
data in buffer must find latest version of data. 
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Cache Coherency Protocol 

 Example of a cache coherency protocol for shared disk systems: 

 Before reading/writing to a page, the page must be locked in 
shared/exclusive mode. 

 On locking a page, the page must be read from disk 

 Before unlocking a page, the page must be written to disk if it 
was modified. 

 More complex protocols with fewer disk reads/writes exist. 

 Cache coherency protocols for shared-nothing systems are similar. 
Each database page is assigned a home processor. Requests to 
fetch the page or write it to disk are sent to the home processor. 
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Intraquery Parallelism 

 Execution of a single query in parallel on multiple processors/disks; 
important for speeding up long-running queries. 

 Two complementary forms of intraquery parallelism: 

 Intraoperation Parallelism – parallelize the execution of each 
individual operation in the query. 

 Interoperation Parallelism – execute the different operations in 
a query expression in parallel. 

     the first form scales better with increasing parallelism because 
the number of tuples processed by each operation is typically more 
than the number of operations in a query. 
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Parallel Processing of Relational Operations 

 Our discussion of parallel algorithms assumes: 

 read-only queries 

 shared-nothing architecture 

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  where disk Di is 
associated with processor Pi. 

 If a processor has multiple disks they can simply simulate a single disk 
Di. 

 Shared-nothing architectures can be efficiently simulated on shared-
memory and shared-disk systems.    

 Algorithms for shared-nothing systems can thus be run on shared-
memory and shared-disk systems.   

 However, some optimizations may be possible. 
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Parallel Sort 

Range-Partitioning Sort 

 Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting. 

 Create range-partition vector with m entries, on the sorting attributes 

 Redistribute the relation using range partitioning 

  all tuples that lie in the ith range are sent to processor Pi 

 Pi stores the tuples it received temporarily on disk Di.  

 This step requires I/O and communication overhead. 

 Each processor Pi sorts its partition of the relation locally. 

 Each processors executes same operation (sort) in parallel with other 
processors, without any interaction with the others (data parallelism). 

 Final merge operation is trivial: range-partitioning ensures that, for 1  j  
m, the key values in processor Pi are all less than the key values in Pj. 
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Parallel Sort (Cont.) 

Parallel External Sort-Merge 

 Assume the relation has already been partitioned among disks D0, ..., 
Dn-1 (in whatever manner). 

 Each processor Pi locally sorts the data on disk Di. 

 The sorted runs on each processor are then merged to get the final 
sorted output. 

 Parallelize the merging of sorted runs as follows: 

 The sorted partitions at each processor Pi are range-partitioned 
across the processors P0, ..., Pm-1. 

 Each processor Pi performs a merge on the streams as they are 
received, to get a single sorted run. 

 The sorted runs on processors P0,..., Pm-1 are concatenated to get 
the final result. 
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Parallel Join 

 The join operation requires pairs of tuples to be tested to see if they 
satisfy the join condition, and if they do, the pair is added to the join 
output. 

 Parallel join algorithms attempt to split the pairs to be tested over 
several processors.  Each processor then computes part of the join 
locally.   

 In a final step, the results from each processor can be collected 
together to produce the final result. 
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Partitioned Join 

 For equi-joins and natural joins, it is possible to partition the two input 
relations across the processors, and compute the join locally at each 
processor. 

 Let r and s be the input relations, and we want to compute r      r.A=s.B s. 

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and 
s0, s1, ..., sn-1. 

 Can use either range partitioning or hash partitioning. 

 r and s must be partitioned on their join attributes r.A and s.B), using 
the same range-partitioning vector or hash function. 

 Partitions ri and si are sent to processor Pi, 

 Each processor Pi locally computes ri        ri.A=si.B si. Any of the 
standard join methods can be used. 
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Partitioned Join (Cont.) 
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Fragment-and-Replicate Join 

 Partitioning not possible for some join conditions  

 E.g., non-equijoin conditions, such as r.A > s.B. 

 For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique 

 Depicted on next slide 

 Special case – asymmetric fragment-and-replicate: 

 One of the relations, say r, is partitioned; any partitioning 
technique can be used. 

 The other relation, s, is replicated across all the processors. 

 Processor Pi then locally computes the join of ri with all of s using 
any join technique. 



©Silberschatz, Korth and Sudarshan 18.26 Database System Concepts - 6th Edition 

Depiction of Fragment-and-Replicate Joins 
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Fragment-and-Replicate Join (Cont.) 

 General case: reduces the sizes of the relations at each processor. 

 r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m 
partitions, s0, s1, ..., sm-1. 

 Any partitioning technique may be used. 

 There must be at least m * n processors. 

 Label the processors as 

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1. 

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated 
to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i 

 Any join technique can be used at each processor Pi,j. 
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Fragment-and-Replicate Join (Cont.) 

 Both versions of fragment-and-replicate work with any join condition, 
since every tuple in r can be tested with every tuple in s. 

 Usually has a higher cost than partitioning, since one of the relations 
(for asymmetric fragment-and-replicate) or both relations (for general 
fragment-and-replicate) have to be replicated. 

 Sometimes asymmetric fragment-and-replicate is preferable even 
though partitioning could be used. 

 E.g., say s is small and r is large, and already partitioned. It may 
be cheaper to replicate s across all processors, rather than 
repartition r and s on the join attributes. 
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Partitioned Parallel Hash-Join 

Parallelizing partitioned hash join: 

 Assume s is smaller than r and therefore s is chosen as the build 
relation. 

 A hash function h1 takes the join attribute value of each tuple in s and 
maps this tuple to one of the n processors. 

 Each processor Pi reads the tuples of s that are on its disk Di, and 
sends each tuple to the appropriate processor based on hash function 
h1. Let si denote the tuples of relation s that are sent to processor Pi. 

 As tuples of relation s are received at the destination processors, they 
are partitioned further using another hash function, h2, which is used 
to compute the hash-join locally. (Cont.) 
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Partitioned Parallel Hash-Join (Cont.) 

 Once the tuples of s have been distributed, the larger relation r is 
redistributed across the m processors using the hash function h1 

   Let ri denote the tuples of relation r  that are sent to processor Pi. 

 As the r tuples are received at the destination processors, they are 
repartitioned using the function h2  

 (just as the probe relation is partitioned in the sequential hash-join 
algorithm). 

 Each processor Pi executes the build and probe phases of the hash-
join algorithm on the local partitions ri and s of  r and s to produce a 
partition of the final result of the hash-join. 

 Note: Hash-join optimizations can be applied to the parallel case 

  e.g., the hybrid hash-join algorithm can be used to cache some of 
the incoming tuples in memory and avoid the cost of writing them 
and reading them back in. 
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Parallel Nested-Loop Join 

 Assume that 

 relation s is much smaller than relation r and that r is stored by 
partitioning. 

 there is an index on a join attribute of relation r at each of the 
partitions of relation r. 

 Use asymmetric fragment-and-replicate, with relation s being 
replicated, and using the existing partitioning of relation r. 

 Each processor Pj where a partition of relation s is stored reads the 
tuples of relation s stored in Dj, and replicates the tuples to every other 
processor Pi.  

 At the end of this phase, relation s is replicated at all sites that 
store tuples of relation r.  

 Each processor Pi performs an indexed nested-loop join of relation s 
with the ith partition of relation r. 
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Other Relational Operations 

Selection σθ(r) 

 If θ is of the form ai = v, where ai is an attribute and v a value. 

 If r is partitioned on ai the selection is performed at a single 
processor. 

 If θ is of the form l <= ai <= u  (i.e., θ is a range selection) and the 

relation has been range-partitioned on ai 
 Selection is performed at each processor whose partition overlaps 

with the specified range of values. 

 In all other cases: the selection is performed in parallel at all the 
processors. 
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Other Relational Operations (Cont.) 

 Duplicate elimination 

 Perform by using either of the parallel sort techniques 

  eliminate duplicates as soon as they are found during sorting. 

 Can also partition the tuples (using either range- or hash- 
partitioning) and perform duplicate elimination locally at each 
processor. 
 

 Projection 

 Projection without duplicate elimination can be performed as 
tuples are read in from disk in parallel. 

 If duplicate elimination is required, any of the above duplicate 
elimination techniques can be used. 
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Grouping/Aggregation 

 Partition the relation on the grouping attributes and then compute the 
aggregate values locally at each processor. 

 Can reduce cost of transferring tuples during partitioning by partly 
computing aggregate values before partitioning. 

 Consider the sum aggregation operation: 

 Perform aggregation operation at each processor Pi on those 
tuples stored on disk Di  

 results in tuples with partial sums at each processor. 

 Result of the local aggregation is partitioned on the grouping 
attributes, and the aggregation performed again at each processor 
Pi to get the final result. 

 Fewer tuples need to be sent to other processors during partitioning. 
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Cost of Parallel Evaluation of Operations  

 If there is no skew in the partitioning, and there is no overhead due to 
the parallel evaluation, expected speed-up will be 1/n    

 If skew and overheads are also to be taken into account, the time 
taken by a parallel operation can be estimated as  

            Tpart + Tasm + max (T0, T1, …, Tn-1) 

 Tpart is the time for partitioning the relations 

 Tasm is the time for assembling the results 

 Ti is the time taken for the operation at processor Pi 
 this needs to be estimated taking into account the skew, and 

the time wasted in contentions.  
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Interoperator Parallelism 

 Pipelined parallelism 

 Consider a join of four relations  

 r1      r2       r3     r4 

 Set up a pipeline that computes the three joins in parallel 

 Let P1 be assigned the computation of  
 temp1 = r1     r2 

 And P2 be assigned the computation of temp2 = temp1     r3 

 And P3 be assigned the computation of temp2      r4 

 Each of these operations can execute in parallel, sending result 
tuples it computes to the next operation even as it is computing 
further results 

 Provided a pipelineable join evaluation algorithm (e.g., indexed 
nested loops join) is used 
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Factors Limiting Utility of Pipeline 
Parallelism  

 Pipeline parallelism is useful since it avoids writing intermediate 
results to disk 

 Useful with small number of processors, but does not scale up well 
with more processors. One reason is that pipeline chains do not 
attain sufficient length. 

 Cannot pipeline operators which do not produce output until all    
inputs have been accessed (e.g., aggregate and sort)  

 Little speedup is obtained for the frequent cases of skew in which        
one operator's execution cost is much higher than the others. 
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Independent Parallelism 

 Independent parallelism 

 Consider a join of four relations  

     r1     r2      r3      r4 
 Let P1 be assigned the computation of  

 temp1 = r1      r2 
 And P2 be assigned the computation of temp2 = r3     r4 
 And P3 be assigned the computation of temp1     temp2 
 P1 and P2 can work independently in parallel 

 P3 has to wait for input from P1 and P2 

– Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism 

 Does not provide a high degree of parallelism 

 useful with a lower degree of parallelism. 

 less useful in a highly parallel system.  
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Query Optimization 

 Query optimization in parallel databases is significantly more complex 
than query optimization in sequential databases. 

 Cost models are more complicated, since we must take into account 
partitioning costs and issues such as skew and resource contention. 

 When scheduling execution tree in parallel system, must decide: 

 How to parallelize  each operation and how many processors  to 
use for it. 

 What operations to pipeline, what operations to execute 
independently in parallel, and what operations to execute 
sequentially, one after the other.   

 Determining the amount of resources to allocate for each operation is 
a problem. 

  E.g., allocating more processors than optimal can result in high 
communication overhead. 

 Long pipelines should be avoided as the final operation may wait a lot 
for inputs, while holding precious resources 
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Query Optimization (Cont.) 

 The number of parallel evaluation plans from which to choose from is much 
larger than the number of sequential evaluation plans. 

  Therefore heuristics are needed while optimization 

 Two alternative heuristics for choosing parallel plans: 

 No pipelining and inter-operation pipelining; just parallelize every 
operation across all processors.  

 Finding best plan is now much easier --- use standard optimization 
technique, but with new cost model 

 Volcano parallel database popularize the exchange-operator model  

– exchange operator is introduced into query plans to partition and 
distribute tuples 

– each operation works independently on local data on each 
processor, in parallel with other copies of the operation 

 First choose most efficient sequential plan and then choose how best to 
parallelize the operations in that plan. 

 Can explore pipelined parallelism as an option  

 Choosing a good physical organization (partitioning technique) is important 
to speed up queries. 
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Design of Parallel Systems 

Some issues in the design of parallel systems: 

 Parallel loading of data from external sources is needed in order to 
handle large volumes of incoming data. 

 Resilience to failure of some processors or disks. 

 Probability of some disk or processor failing is higher in a parallel 
system.   

 Operation (perhaps with degraded performance) should be 
possible in spite of failure.  

 Redundancy achieved by storing extra copy of every data item at 
another processor. 
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Design of Parallel Systems (Cont.) 

 On-line reorganization of data and schema changes must be 
supported. 

 For example, index construction on terabyte databases can take 
hours or days even on a parallel system. 

 Need to allow other processing (insertions/deletions/updates) 
to be performed on relation even as index is being constructed. 

 Basic idea: index construction tracks changes and “catches up” on 
changes at the end. 

 Also need support for on-line repartitioning and schema changes 
(executed concurrently with other processing). 
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Figure 18.01 
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Figure 18.02 
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Figure 18.03 
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