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gL Introduction

m Parallel machines are becoming quite common and affordable

Prices of microprocessors, memory and disks have dropped
sharply

Recent desktop computers feature multiple processors and this
trend is projected to accelerate

m Databases are growing increasingly large

large volumes of transaction data are collected and stored for later
analysis.

multimedia objects like images are increasingly stored in
databases

B Large-scale parallel database systems increasingly used for:
storing large volumes of data
processing time-consuming decision-support queries
providing high throughput for transaction processing
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Parallelism in Databases

Data can be partitioned across multiple disks for parallel I/O.

Individual relational operations (e.g., sort, join, aggregation) can be
executed in parallel

data can be partitioned and each processor can work
independently on its own partition.

Queries are expressed in high level language (SQL, translated to
relational algebra)

makes parallelization easier.

Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

Thus, databases naturally lend themselves to parallelism.



yal /0 Parallelism

Reduce the time required to retrieve relations from disk by partitioning
The relations on multiple disks.

Horizontal partitioning — tuples of a relation are divided among many
disks such that each tuple resides on one disk.

m Partitioning techniques (number of disks = n):
Round-robin:
Send the | 1" tuple inserted in the relation to disk i mod n.
Hash partitioning:
Choose one or more attributes as the partitioning attributes.
Choose hash function h with range 0...n -1

Let i denote result of hash function h applied tothe partitioning
attribute value of a tuple. Send tuple to disk i.
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Sy /O Parallelism (Cont.)

m Partitioning techniques (cont.):

m Range partitioning:
Choose an attribute as the partitioning attribute.
A patrtitioning vector [v,, V4, ..., V,»] IS chosen.

Let v be the partitioning attribute value of a tuple. Tuples such that
VvV, <V, gotodisk | + 1. Tuples with v < v, go to disk O and tuples
with v > v, , go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.
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ﬂ Comparison of Partitioning Techniques

—

—

m Evaluate how well partitioning techniques support the following types
of data access:

1. Scanning the entire relation.
2. Locating a tuple associatively — point queries.
E.g.,,rL-A=25,
3. Locating all tuples such that the value of a given attribute lies within
a specified range — range queries.
E.g., 10<rA<25.
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-_. Comparison of Partitioning Techniques (Cont.)

Round robin:
® Advantages

Best suited for sequential scan of entire relation on each query.

All disks have almost an equal number of tuples; retrieval work is
thus well balanced between disks.

® Range queries are difficult to process
No clustering -- tuples are scattered across all disks

Database System Concepts - 6th Edition 18.8 ©Silberschatz, Korth and Sudarshan



l ' Comparison of Partitioning Techniques (Cont.)

Hash partitioning:
B Good for sequential access

Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

Retrieval work is then well balanced between disks.
m  Good for point queries on partitioning attribute

Can lookup single disk, leaving others available for answering
other queries.

Index on partitioning attribute can be local to disk, making lookup
and update more efficient

® No clustering, so difficult to answer range queries
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-! Comparison of Partitioning Techniques (Cont.)

Range partitioning:
Provides data clustering by partitioning attribute value.
Good for sequential access

Good for point queries on partitioning attribute: only one disk needs to
be accessed.

®m For range queries on partitioning attribute, one to a few disks may need
to be accessed

Remaining disks are available for other queries.
Good if result tuples are from one to a few blocks.

If many blocks are to be fetched, they are still fetched from one to a
few disks, and potential parallelism in disk access is wasted

» Example of execution skew.
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2; Partitioning a Relation across Disks

m [f a relation contains only a few tuples which will fit into a single disk
block, then assign the relation to a single disk.

®m Large relations are preferably partitioned across all the available
disks.

m |[f arelation consists of m disk blocks and there are n disks available in
the system, then the relation should be allocated min(m,n) disks.
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yal Handling of Skew

®m The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

B Types of skew:
Attribute-value skew.

» Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

» Can occur with range-partitioning and hash-partitioning.
Partition skew.

» With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

» Less likely with hash-partitioning if a good hash-function is
chosen.
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ﬂ Handling Skew In Range-Partitioning

S—

®m To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):

Sort the relation on the partitioning attribute.

Construct the partition vector by scanning the relation in sorted
order as follows.

» After every 1/nt of the relation has been read, the value of
the partitioning attribute of the next tuple is added to the
partition vector.

n denotes the number of partitions to be constructed.

Duplicate entries or imbalances can result if duplicates are
present in partitioning attributes.

m Alternative technique based on histograms used in practice
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ﬂ Handling Skew using Histograms

—T

m Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion

Assume uniform distribution within each range of the histogram

®m Histogram can be constructed by scanning relation, or sampling (blocks
containing) tuples of the relation
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-. Handling Skew Using Virtual Processor
Partitioning

m Skew in range partitioning can be handled elegantly using virtual
processor partitioning:

create a large number of partitions (say 10 to 20 times the number
of processors)

Assign virtual processors to partitions either in round-robin fashion
or based on estimated cost of processing each virtual partition

B Basic idea:

If any normal partition would have been skewed, it is very likely
the skew is spread over a number of virtual partitions

Skewed virtual partitions get spread across a number of
processors, so work gets distributed evenly!
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—l Interquery Parallelism

Queries/transactions execute in parallel with one another.

B Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

m Easiest form of parallelism to support, particularly in a shared-memory
parallel database, because even sequential database systems
support concurrent processing.

B More complicated to implement on shared-disk or shared-nothing
architectures

Locking and logging must be coordinated by passing messages
between processors.

Data in a local buffer may have been updated at another
processor.

Cache-coherency has to be maintained — reads and writes of
data in buffer must find latest version of data.
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e Cache Coherency Protocol

m Example of a cache coherency protocol for shared disk systems:

Before reading/writing to a page, the page must be locked in
shared/exclusive mode.

On locking a page, the page must be read from disk

Before unlocking a page, the page must be written to disk if it
was modified.

® More complex protocols with fewer disk reads/writes exist.

m Cache coherency protocols for shared-nothing systems are similar.
Each database page is assigned a home processor. Requests to
fetch the page or write it to disk are sent to the home processor.
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* Intraquery Parallelism

m Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.
m Two complementary forms of intraquery parallelism:
Intraoperation Parallelism — parallelize the execution of each
individual operation in the query.
Interoperation Parallelism — execute the different operations in
a query expression in parallel.

the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically more

than the number of operations in a query.
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=a Farallel Processing of Relational Operations

® Our discussion of parallel algorithms assumes:
read-only queries
shared-nothing architecture

n processors, Py, ..., P4, and n disks D, ..., D,_;, where disk D, is
associated with processor P;.

m If a processor has multiple disks they can simply simulate a single disk
D..

®m Shared-nothing architectures can be efficiently simulated on shared-
memory and shared-disk systems.

Algorithms for shared-nothing systems can thus be run on shared-
memory and shared-disk systems.

However, some optimizations may be possible.
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= Parallel Sort

Range-Partitioning Sort
® Choose processors Py, ..., P,,, where m < n -1 to do sorting.
m Create range-partition vector with m entries, on the sorting attributes
® Redistribute the relation using range partitioning
all tuples that lie in the it range are sent to processor P,
P, stores the tuples it received temporarily on disk D..
This step requires I/O and communication overhead.
Each processor P; sorts its partition of the relation locally.

Each processors executes same operation (sort) in parallel with other
processors, without any interaction with the others (data parallelism).

® Final merge operation is trivial: range-partitioning ensures that, for 1 j
m, the key values in processor P! are all less than the key values in P;.
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Parallel Sort (Cont.)

Parallel External Sort-Merge

Assume the relation has already been partitioned among disks D, ...,
D,.; (in whatever manner).

Each processor P; locally sorts the data on disk D..

The sorted runs on each processor are then merged to get the final
sorted output.

Parallelize the merging of sorted runs as follows:

The sorted partitions at each processor P; are range-partitioned
across the processors Py, ..., P, ;.

Each processor P; performs a merge on the streams as they are
received, to get a single sorted run.

The sorted runs on processors P,,..., P, are concatenated to get
the final result.
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— Parallel Join

® The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join
output.

m Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join
locally.

®m |n a final step, the results from each processor can be collected
together to produce the final result.
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Partitioned Join

For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

Let r and s be the input relations, and we want to compute r [} =<5 S-

r and s each are partitioned into n partitions, denoted r, 14, ..., I,,.; and
Sos S1» -++» Sp1-

Can use either range partitioning or hash partitioning.

r and s must be partitioned on their join attributes r.A and s.B), using
the same range-partitioning vector or hash function.

Partitions r, and s; are sent to processor P;,

Each processor P; locally computes r; X}i.A=si.B Si- Any of the
standard join methods can be used.



r
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— Fragment-and-Replicate Join

m Partitioning not possible for some join conditions
E.g., non-equijoin conditions, such as r.A > s.B.

®m For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

Depicted on next slide
®m Special case — asymmetric fragment-and-replicate:

One of the relations, say r, is partitioned; any partitioning
techniqgue can be used.

The other relation, s, is replicated across all the processors.

Processor P; then locally computes the join of r; with all of s using
any join technique.
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Depiction of Fragment-and-Replicate Joins
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g Fragment-and-Replicate Join (Cont.)

m General case: reduces the sizes of the relations at each processor.

r is partitioned into n partitions,r,, ry, ..., I ,.4;S IS partitioned into m
partitions, Sy, Sy, --+; Sp.1-

Any partitioning technique may be used.
There must be at least m * n processors.
Label the processors as

I:)0,0’ I:)0,1’ T I:)O,m-1’ I:)1,0’ T I:)n-lm-l'
P;; computes the join of r; with s;. In order to do so, r; is replicated
to P;o, Pi1, ..., Pim.1, While s; is replicated to Py, Py, ..., Py

Any join technique can be used at each processor P; .
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1 Fragment-and-Replicate Join (Cont.)

®m Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

m Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) have to be replicated.

® Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.

E.g., say s is small and r is large, and already partitioned. It may
be cheaper to replicate s across all processors, rather than
repartition r and s on the join attributes.
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Sy Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:

m Assume s is smaller than r and therefore s is chosen as the build
relation.

® A hash function h, takes the join attribute value of each tuple in s and
maps this tuple to one of the n processors.

m Each processor P, reads the tuples of s that are on its disk D;, and
sends each tuple to the appropriate processor based on hash function
h,. Let s; denote the tuples of relation s that are sent to processor P;.

B As tuples of relation s are received at the destination processors, they
are partitioned further using another hash function, h,, which is used
to compute the hash-join locally. (Cont.)
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....'*I- Partitioned Parallel Hash-Join (Cont.)
® Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h,

Let r; denote the tuples of relation r that are sent to processor P;.

B As the r tuples are received at the destination processors, they are
repartitioned using the function h,

(just as the probe relation is partitioned in the sequential hash-join
algorithm).

m Each processor P; executes the build and probe phases of the hash-
join algorithm on the local partitions r; and s of r and s to produce a
partition of the final result of the hash-join.

® Note: Hash-join optimizations can be applied to the parallel case

e.g., the hybrid hash-join algorithm can be used to cache some of
the incoming tuples in memory and avoid the cost of writing them
and reading them back in.
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Sy Parallel Nested-Loop Join

B Assume that

relation s is much smaller than relation r and that r is stored by
partitioning.

there is an index on a join attribute of relation r at each of the
partitions of relation r.

m Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r.

m Each processor P; where a partition of relation s is stored reads the
tuples of relation s stored in D;, and replicates the tuples to every other
processor P..

At the end of this phase, relation s is replicated at all sites that
store tuples of relation .

m Each processor P, performs an indexed nested-loop join of relation s
with the it partition of relation r.
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e Other Relational Operations

Selection cy(r)
m If Ois of the form aj=V, where a IS an attribute and v a value.

If r is partitioned on a; the selection is performed at a single
processor.

m [f0is of the form | <=a;<=u (i.e., 0 is a range selection) and the
relation has been range-partitioned on a;

Selection is performed at each processor whose partition overlaps
with the specified range of values.

®m In all other cases: the selection is performed in parallel at all the
processors.
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..'..._;._I- Other Relational Operations (Cont.)
B Duplicate elimination
Perform by using either of the parallel sort techniques
» eliminate duplicates as soon as they are found during sorting.

Can also partition the tuples (using either range- or hash-
partitioning) and perform duplicate elimination locally at each

pProcessor.

® Projection

Projection without duplicate elimination can be performed as
tuples are read in from disk in parallel.

If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.
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ﬂ Grouping/Aggregation

m Partition the relation on the grouping attributes and then compute the
aggregate values locally at each processor.

m Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

m Consider the sum aggregation operation:

Perform aggregation operation at each processor P; on those
tuples stored on disk D;

results in tuples with partial sums at each processor.

Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor
P; to get the final result.

m Fewer tuples need to be sent to other processors during partitioning.
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= 'I-I

"= Cost of Parallel Evaluation of Operations

m [f there is no skew in the partitioning, and there is no overhead due to
the parallel evaluation, expected speed-up will be 1/n

m |f skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as
Tpart
Tpart IS the time for partitioning the relations
Is the time for assembling the results

+ Togm + Max (TO, LETRY Tn-l)

Tasm
T; Is the time taken for the operation at processor P;

» this needs to be estimated taking into account the skew, and
the time wasted in contentions.
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—l Interoperator Parallelism

m Pipelined parallelism
Consider a join of four relations
> r1|><| I‘2 [><] r3|><]r4
Set up a pipeline that computes the three joins in parallel

» Let P1 be assigned the computation of
templ =rqpq Iy

» And P2 be assigned the computation of temp2 = temp1 X r,
» And P3 be assigned the computation of temp2 X r,

Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing
further results

» Provided a pipelineable join evaluation algorithm (e.g., indexed
nested loops join) is used
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—r Factors Limiting Utility of Pipeline
- Parallelism

m Pipeline parallelism is useful since it avoids writing intermediate
results to disk

m  Useful with small number of processors, but does not scale up well
with more processors. One reason is that pipeline chains do not
attain sufficient length.

m Cannot pipeline operators which do not produce output until all
inputs have been accessed (e.g., aggregate and sort)

m Little speedup is obtained for the frequent cases of skew in which
one operator's execution cost is much higher than the others.
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Sy Independent Parallelism

® [Independent parallelism
Consider a join of four relations
(D<A X g Iy
» Let P, be assigned the computation of
templ=ripq I
» And P, be assigned the computation of temp2 =r3 pqry
» And P, be assigned the computation of temp1l x| temp,
» P, and P, can work independently in parallel
» P4 has to wait for input from P, and P,

Can pipeline output of P, and P, to P;, combining
independent parallelism and pipelined parallelism

Does not provide a high degree of parallelism
» useful with a lower degree of parallelism.
» less useful in a highly parallel system.
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Sy Query Optimization

® Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

m Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

B When scheduling execution tree in parallel system, must decide:

How to parallelize each operation and how many processors to
use for it.

What operations to pipeline, what operations to execute
independently in parallel, and what operations to execute
sequentially, one after the other.

m Determining the amount of resources to allocate for each operation is
a problem.

E.g., allocating more processors than optimal can result in high
communication overhead.

® Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources
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Query Optimization (Cont.)

B The number of parallel evaluation plans from which to choose from is much
larger than the number of sequential evaluation plans.

Therefore heuristics are needed while optimization
B Two alternative heuristics for choosing parallel plans:

No pipelining and inter-operation pipelining; just parallelize every
operation across all processors.

Finding best plan is now much easier --- use standard optimization
technique, but with new cost model

Volcano parallel database popularize the exchange-operator model

exchange operator is introduced into query plans to partition and
distribute tuples

each operation works independently on local data on each
processor, in parallel with other copies of the operation

First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.

Can explore pipelined parallelism as an option

® Choosing a good physical organization (partitioning technique) is important
to speed up queries.



Sy Design of Parallel Systems

Some issues in the design of parallel systems:

m Parallel loading of data from external sources is needed in order to
handle large volumes of incoming data.

B Resilience to failure of some processors or disks.

Probability of some disk or processor failing is higher in a parallel
system.

Operation (perhaps with degraded performance) should be
possible in spite of failure.

Redundancy achieved by storing extra copy of every data item at
another processor.
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— - Design of Parallel Systems (Cont.)

® On-line reorganization of data and schema changes must be
supported.

For example, index construction on terabyte databases can take
hours or days even on a parallel system.

» Need to allow other processing (insertions/deletions/updates)
to be performed on relation even as index is being constructed.

Basic idea: index construction tracks changes and “catches up” on
changes at the end.

®m Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).
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End of Chapter
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50

2
|

e
~ N

w
¥ 5
L3

r

Database System Concepts - 6th Edition 18.45 ©Silberschatz, Korth and Sudarshan



(a) Asymmetric
fragment and replicate
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