
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 16: Query Optimization

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan16.2Database System Concepts - 7th Edition

Chapter 16: Query Optimization

 Introduction

 Transformation of Relational Expressions

 Catalog Information for Cost Estimation

 Statistical Information for Cost Estimation

 Cost-based optimization

 Dynamic Programming for Choosing Evaluation Plans

 Materialized views

©Silberschatz, Korth and Sudarshan16.3Database System Concepts - 7th Edition

Introduction

 Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

©Silberschatz, Korth and Sudarshan16.4Database System Concepts - 7th Edition

Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite
database

©Silberschatz, Korth and Sudarshan16.5Database System Concepts - 7th Edition

Introduction (Cont.)

 Cost difference between evaluation plans for a query can be
enormous

• E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence
rules

2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost

 Estimation of plan cost based on:

• Statistical information about relations. Examples:

 number of tuples, number of distinct values for an attribute

• Statistics estimation for intermediate results

 to compute cost of complex expressions

• Cost formulae for algorithms, computed using statistics

©Silberschatz, Korth and Sudarshan16.6Database System Concepts - 7th Edition

Viewing Query Evaluation Plans

 Most database support explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

• Some syntax variations between databases

 Oracle: explain plan for <query> followed by select * from table
(dbms_xplan.display)

 SQL Server: set showplan_text on

 Some databases (e.g. PostgreSQL) support explain analyse
<query>

• Shows actual runtime statistics found by running the query, in addition to
showing the plan

 Some databases (e.g. PostgreSQL) show cost as f..l

• f is the cost of delivering first tuple and l is cost of delivering all results

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Generating Equivalent Expressions

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan16.8Database System Concepts - 7th Edition

Transformation of Relational
Expressions

 Two relational algebra expressions are said to be equivalent if the
two expressions generate the same set of tuples on every legal
database instance

• Note: order of tuples is irrelevant

• we don’t care if they generate different results on databases that
violate integrity constraints

 In SQL, inputs and outputs are multisets of tuples

• Two expressions in the multiset version of the relational algebra
are said to be equivalent if the two expressions generate the same
multiset of tuples on every legal database instance.

 An equivalence rule says that expressions of two forms are
equivalent

• Can replace expression of first form by second, or vice versa

©Silberschatz, Korth and Sudarshan16.9Database System Concepts - 7th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

σθ1 ∧ θ2
(E) ≡ σθ1

(σθ2
(E))

2. Selection operations are commutative.
σθ1

(σθ2
(E)) ≡ σθ2

(σθ1
(E))

3. Only the last in a sequence of projection operations is needed, the
others can be omitted.
∏ L1

(∏ L2
(…(∏ Ln

(E))…)) ≡ ∏ L1
(E)

where L1 ⊆ L2 … ⊆ Ln

4. Selections can be combined with Cartesian products and theta joins.

a. σθ (E1 x E2) ≡ E1 ⨝ θ E2

b. σ θ1
(E1 ⨝θ2

E2) ≡ E1 ⨝ θ1∧θ2
E2

©Silberschatz, Korth and Sudarshan16.10Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

E1 ⨝ E2 ≡ E2 ⨝ E1

6. (a) Natural join operations are associative:

(E1 ⨝ E2) ⨝ E3 ≡ E1 ⨝ (E2 ⨝ E3)

(b) Theta joins are associative in the following manner:

(E1 ⨝ θ1
E2) ⨝ θ2 ∧ θ3

E3 ≡ E1 ⨝θ1 ∧ θ3
(E2 ⨝ θ2

E3)

where θ2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan16.11Database System Concepts - 7th Edition

Pictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan16.12Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under
the following two conditions:
(a) When all the attributes in θ0 involve only the attributes of one

of the expressions (E1) being joined.

σθ0
(E1 ⨝θ E2) ≡ (σθ0

(E1)) ⨝θ E2

(b) When θ1 involves only the attributes of E1 and θ2 involves
only the attributes of E2.

σθ1 ∧ θ2
(E1 ⨝θ E2) ≡ (σθ1

(E1)) ⨝θ (σθ2
(E2))

©Silberschatz, Korth and Sudarshan16.13Database System Concepts - 7th Edition

8. The projection operation distributes over the theta join operation as
follows:

(a) if θ involves only attributes from L1 ∪ L2:
∏ L1 ∪ L2

(E1 ⨝θ E2) ≡ ∏ L1
(E1) ⨝θ ∏ L2

(E2)

(b) In general, consider a join E1 ⨝θ E2.

• Let L1 and L2 be sets of attributes from E1 and E2, respectively.

• Let L3 be attributes of E1 that are involved in join condition θ, but
are not in L1 ∪ L2, and

• let L4 be attributes of E2 that are involved in join condition θ, but
are not in L1 ∪ L2.
∏ L1 ∪ L2

(E1 ⨝θ E2) ≡ ∏ L1 ∪ L2
(∏ L1 ∪ L3

(E1) ⨝θ ∏ L2 ∪ L4
(E2))

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗

Equivalence Rules (Cont.)

©Silberschatz, Korth and Sudarshan16.14Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E1 ∪ E2 ≡ E2 ∪ E1

E1 ∩ E2 ≡ E2 ∩ E1

(set difference is not commutative).

10.Set union and intersection are associative.
(E1 ∪ E2) ∪ E3 ≡ E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 ≡ E1 ∩ (E2 ∩ E3)

11.The selection operation distributes over ∪, ∩ and –.
a. σθ (E1 ∪ E2) ≡ σθ (E1) ∪ σθ(E2)
b. σθ (E1 ∩ E2) ≡ σθ (E1) ∩ σθ(E2)
c. σθ (E1 – E2) ≡ σθ (E1) – σθ(E2)
d. σθ (E1 ∩ E2) ≡ σθ(E1) ∩ E2
e. σθ (E1 – E2) ≡ σθ(E1) – E2

preceding equivalence does not hold for ∪

12. The projection operation distributes over union
ΠL(E1 ∪ E2) ≡ (ΠL(E1)) ∪ (ΠL(E2))

©Silberschatz, Korth and Sudarshan16.15Database System Concepts - 7th Edition

Exercise

 Create equivalence rules involving

• The group by/aggregation operation

• Left outer join operation

©Silberschatz, Korth and Sudarshan16.16Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

13. Selection distributes over aggregation as below
σθ(G𝛾𝛾A(E)) ≡ G𝛾𝛾A(σθ(E))

provided θ only involves attributes in G

14. a. Full outerjoin is commutative:
E1 ⟗ E2 ≡ E2 ⟗ E1

b. Left and right outerjoin are not commutative, but:
E1 ⟕ E2 ≡ E2 ⟖ E1

15. Selection distributes over left and right outerjoins as below, provided
θ1 only involves attributes of E1
a. σθ1 (E1 ⟕θ E2) ≡ (σθ1 (E1)) ⟕θ E2
b. σθ1 (E1 ⟖θ E2) ≡ E2 ⟕θ (σθ1 (E1))

16. Outerjoins can be replaced by inner joins under some conditions

a. σθ1 (E1 ⟕θ E2) ≡ σθ1 (E1 ⨝θ E2)
b. σθ1 (E1 ⟖θ E1) ≡ σθ1 (E1 ⨝θ E2)

provided θ1 is null rejecting on E2

©Silberschatz, Korth and Sudarshan16.17Database System Concepts - 7th Edition

Equivalence Rules (Cont.)

Note that several equivalences that hold for joins do not hold for outerjoins

 σyear=2017(instructor ⟕ teaches) ≢ σyear=2017(instructor ⨝ teaches)

 Outerjoins are not associative

(r ⟕ s) ⟕ t ≢ r ⟕ (s ⟕ t)

• e.g. with r(A,B) = {(1,1), s(B,C) = { (1,1)}, t(A,C) = { }

©Silberschatz, Korth and Sudarshan16.18Database System Concepts - 7th Edition

Transformation Example: Pushing Selections

 Query: Find the names of all instructors in the Music department,
along with the titles of the courses that they teach

• Πname, title(σdept_name= ‘Music’
(instructor ⨝ (teaches ⨝ Πcourse_id, title (course))))

 Transformation using rule 7a.

• Πname, title((σdept_name= ‘Music’(instructor)) ⨝
(teaches ⨝ Πcourse_id, title (course)))

 Performing the selection as early as possible reduces the size of the
relation to be joined.

©Silberschatz, Korth and Sudarshan16.20Database System Concepts - 7th Edition

Multiple Transformations (Cont.)

©Silberschatz, Korth and Sudarshan16.22Database System Concepts - 7th Edition

Join Ordering Example

 For all relations r1, r2, and r3,

(r1 ⨝ r2) ⨝ r3 = r1 ⨝ (r2 ⨝ r3)

(Join Associativity) ⨝
 If r2 ⨝ r3 is quite large and r1 ⨝ r2 is small, we choose

(r1 ⨝ r2) ⨝ r3

so that we compute and store a smaller temporary relation.

©Silberschatz, Korth and Sudarshan16.23Database System Concepts - 7th Edition

Join Ordering Example (Cont.)

 Consider the expression

Πname, title(σdept_name= “Music” (instructor) ⨝ teaches)
⨝ Πcourse_id, title (course))))

 Could compute teaches ⨝ Πcourse_id, title (course) first, and join
result with

σdept_name= “Music” (instructor)
but the result of the first join is likely to be a large relation.

 Only a small fraction of the university’s instructors are likely to be
from the Music department

• it is better to compute

σdept_name= “Music” (instructor) ⨝ teaches

first.

©Silberschatz, Korth and Sudarshan16.24Database System Concepts - 7th Edition

Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

 Can generate all equivalent expressions as follows:

• Repeat

 apply all applicable equivalence rules on every subexpression
of every equivalent expression found so far

 add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

• Two approaches

 Optimized plan generation based on transformation rules

 Special case approach for queries with only selections,
projections and joins

©Silberschatz, Korth and Sudarshan16.25Database System Concepts - 7th Edition

Implementing Transformation Based Optimization

 Space requirements reduced by sharing common sub-expressions:

• when E1 is generated from E2 by an equivalence rule, usually only the top level of
the two are different, subtrees below are the same and can be shared using
pointers

 E.g. when applying join commutativity

• Same sub-expression may get generated multiple times

 Detect duplicate sub-expressions and share one copy

 Time requirements are reduced by not generating all expressions

• Dynamic programming

 We will study only the special case of dynamic programming for join order
optimization

E1 E2

©Silberschatz, Korth and Sudarshan16.26Database System Concepts - 7th Edition

Cost Estimation

 Cost of each operator computer as described in Chapter 15

• Need statistics of input relations

 E.g. number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

• To do so, we require additional statistics

 E.g. number of distinct values for an attribute

 More on cost estimation later

©Silberschatz, Korth and Sudarshan16.27Database System Concepts - 7th Edition

Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing
evaluation plans

• choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.

 merge-join may be costlier than hash-join, but may provide a
sorted output which reduces the cost for an outer level
aggregation.

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two
broad approaches:

1. Search all the plans and choose the best plan in a
cost-based fashion.

2. Uses heuristics to choose a plan.

©Silberschatz, Korth and Sudarshan16.28Database System Concepts - 7th Edition

Cost-Based Optimization

 Consider finding the best join-order for r1 ⨝ r2 ⨝ . . . ⨝ rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above
expression. With n = 7, the number is 665280, with n = 10, the
number is greater than 176 billion!

 No need to generate all the join orders. Using dynamic programming,
the least-cost join order for any subset of
{r1, r2, . . . rn} is computed only once and stored for future use.

©Silberschatz, Korth and Sudarshan16.29Database System Concepts - 7th Edition

Dynamic Programming in Optimization

 To find best join tree for a set of n relations:

• To find best plan for a set S of n relations, consider all possible
plans of the form: S1 ⨝ (S – S1) where S1 is any non-empty
subset of S.

• Recursively compute costs for joining subsets of S to find the cost
of each plan. Choose the cheapest of the 2n – 2 alternatives.

• Base case for recursion: single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

• When plan for any subset is computed, store it and reuse it when
it is required again, instead of recomputing it

 Dynamic programming

©Silberschatz, Korth and Sudarshan16.30Database System Concepts - 7th Edition

Join Order Optimization Algorithm

procedure findbestplan(S)
if (bestplan[S].cost ≠ ∞)

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S using selections on S and indices (if any) on S

else for each non-empty subset S1 of S such that S1 ≠ S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
for each algorithm A for joining results of P1 and P2

… compute plan and cost of using A (see next page) ..
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = plan;

return bestplan[S]

©Silberschatz, Korth and Sudarshan16.31Database System Concepts - 7th Edition

Join Order Optimization Algorithm (cont.)

for each algorithm A for joining results of P1 and P2
// For indexed-nested loops join, the outer could be P1 or P2
// Similarly for hash-join, the build relation could be P1 or P2
// We assume the alternatives are considered as separate algorithms

if algorithm A is indexed nested loops
Let Pi and Po denote inner and outer inputs
if Pi has a single relation ri and ri has an index on the join attribute

plan = “execute Po.plan; join results of Po and ri using A”,
with any selection conditions on Pi performed as part of
the join condition

cost = Po.cost + cost of A
else cost = ∞; /* cannot use indexed nested loops join */

else
plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A;”
cost = P1.cost + P2.cost + cost of A

…. See previous page

©Silberschatz, Korth and Sudarshan16.32Database System Concepts - 7th Edition

Left Deep Join Trees

 In left-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

©Silberschatz, Korth and Sudarshan16.33Database System Concepts - 7th Edition

Cost of Optimization

 With dynamic programming time complexity of optimization with
bushy trees is O(3n).
• With n = 10, this number is 59000 instead of 176 billion!

 Space complexity is O(2n)

 To find best left-deep join tree for a set of n relations:
• Consider n alternatives with one relation as right-hand side input and the

other relations as left-hand side input.

• Modify optimization algorithm:

 Replace “for each non-empty subset S1 of S such that S1 ≠ S”

 By: for each relation r in S
let S1 = S – r .

 If only left-deep trees are considered, time complexity of finding best
join order is O(n 2n)
• Space complexity remains at O(2n)

 Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan16.34Database System Concepts - 7th Edition

Interesting Sort Orders

 Consider the expression (r1 ⨝ r2) ⨝ r3 (with A as common attribute)

 An interesting sort order is a particular sort order of tuples that
could make a later operation (join/group by/order by) cheaper

• Using merge-join to compute r1 ⨝ r2 may be costlier than hash join but
generates result sorted on A

• Which in turn may make merge-join with r3 cheaper, which may reduce
cost of join with r3 and minimizing overall cost

 Not sufficient to find the best join order for each subset of the set of n
given relations

• must find the best join order for each subset, for each interesting sort
order

• Simple extension of earlier dynamic programming algorithms

• Usually, number of interesting orders is quite small and doesn’t affect
time/space complexity significantly

©Silberschatz, Korth and Sudarshan16.35Database System Concepts - 7th Edition

Cost Based Optimization with Equivalence Rules

 Physical equivalence rules allow logical query plan to be converted
to physical query plan specifying what algorithms are used for each
operation.

 Efficient optimizer based on equivalent rules depends on

• A space efficient representation of expressions which avoids
making multiple copies of subexpressions

• Efficient techniques for detecting duplicate derivations of
expressions

• A form of dynamic programming based on memoization, which
stores the best plan for a subexpression the first time it is
optimized, and reuses in on repeated optimization calls on same
subexpression

• Cost-based pruning techniques that avoid generating all plans

 Pioneered by the Volcano project and implemented in the SQL Server
optimizer

©Silberschatz, Korth and Sudarshan16.36Database System Concepts - 7th Edition

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic
programming.

 Systems may use heuristics to reduce the number of choices that
must be made in a cost-based fashion.

 Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance:

• Perform selection early (reduces the number of tuples)

• Perform projection early (reduces the number of attributes)

• Perform most restrictive selection and join operations (i.e. with
smallest result size) before other similar operations.

• Some systems use only heuristics, others combine heuristics with
partial cost-based optimization.

©Silberschatz, Korth and Sudarshan16.37Database System Concepts - 7th Edition

Structure of Query Optimizers

 Many optimizers considers only left-deep join orders.

• Plus heuristics to push selections and projections down the query
tree

• Reduces optimization complexity and generates plans amenable
to pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

• Repeatedly pick “best” relation to join next

 Starting from each of n starting points. Pick best among these

 Intricacies of SQL complicate query optimization

• E.g. nested subqueries

©Silberschatz, Korth and Sudarshan16.38Database System Concepts - 7th Edition

Structure of Query Optimizers (Cont.)

 Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

• Frequently used approach

 heuristic rewriting of nested block structure and aggregation

 followed by cost-based join-order optimization for each block

• Some optimizers (e.g. SQL Server) apply transformations to entire query
and do not depend on block structure

• Optimization cost budget to stop optimization early (if cost of plan is
less than cost of optimization)

• Plan caching to reuse previously computed plan if query is resubmitted

 Even with different constants in query

 Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

• But is worth it for expensive queries

• Optimizers often use simple heuristics for very cheap queries, and
perform exhaustive enumeration for more expensive queries

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Statistics for Cost Estimation

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan16.40Database System Concepts - 7th Edition

Statistical Information for Cost Estimation

 nr: number of tuples in a relation r.

 br: number of blocks containing tuples of r.

 lr: size of a tuple of r.

 fr: blocking factor of r — i.e., the number of tuples of r that fit into one
block.

 V(A, r): number of distinct values that appear in r for attribute A; same
as the size of ∏A(r).

 If tuples of r are stored together physically in a file, then:

©Silberschatz, Korth and Sudarshan16.41Database System Concepts - 7th Edition

Histograms

 Histogram on attribute age of relation person

 Equi-width histograms

 Equi-depth histograms break up range such that each range has
(approximately) the same number of tuples

• E.g. (4, 8, 14, 19)

 Many databases also store n most-frequent values and their counts

• Histogram is built on remaining values only

©Silberschatz, Korth and Sudarshan16.42Database System Concepts - 7th Edition

Histograms (cont.)

 Histograms and other statistics usually computed based on a random
sample

 Statistics may be out of date

• Some database require a analyze command to be executed to update
statistics

• Others automatically recompute statistics

 e.g. when number of tuples in a relation changes by some percentage

©Silberschatz, Korth and Sudarshan16.43Database System Concepts - 7th Edition

 σA=v(r)

 nr / V(A,r) : number of records that will satisfy the selection

 Equality condition on a key attribute: size estimate = 1

 σA≤V(r) (case of σA ≥ V(r) is symmetric)

 Let c denote the estimated number of tuples satisfying the
condition.

 If min(A,r) and max(A,r) are available in catalog

 c = 0 if v < min(A,r)

 c =

 If histograms available, can refine above estimate

 In absence of statistical information c is assumed to be nr / 2.

Selection Size Estimation

©Silberschatz, Korth and Sudarshan16.44Database System Concepts - 7th Edition

Size Estimation of Complex Selections

 The selectivity of a condition θi is the probability that a tuple in the
relation r satisfies θi .

• If si is the number of satisfying tuples in r, the selectivity of θi is given by
si /nr.

 Conjunction: σθ1∧ θ2∧. . . ∧ θn (r). Assuming independence, estimate of

tuples in the result is:

 Disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r). Estimated number of tuples:

 Negation: σ¬θ(r). Estimated number of tuples:
nr – size(σθ(r))

©Silberschatz, Korth and Sudarshan16.45Database System Concepts - 7th Edition

Join Operation: Running Example

Running example:
student ⨝ takes

Catalog information for join examples:

 nstudent = 5,000.

 fstudent = 50, which implies that
bstudent =5000/50 = 100.

 ntakes = 10000.

 ftakes = 25, which implies that
btakes = 10000/25 = 400.

 V(ID, takes) = 2500, which implies that on average, each student who
has taken a course has taken 4 courses.

• Attribute ID in takes is a foreign key referencing student.

• V(ID, student) = 5000 (primary key!)

©Silberschatz, Korth and Sudarshan16.46Database System Concepts - 7th Edition

Estimation of the Size of Joins

 The Cartesian product r x s contains nr .ns tuples; each tuple
occupies sr + ss bytes.

 If R ∩ S = ∅, then r ⋈ s is the same as r x s.

 If R ∩ S is a key for R, then a tuple of s will join with at most one tuple
from r

• therefore, the number of tuples in r ⋈ s is no greater than the
number of tuples in s.

 If R ∩ S in S is a foreign key in S referencing R, then the number of
tuples in r ⋈ s is exactly the same as the number of tuples in s.

 The case for R ∩ S being a foreign key referencing S is
symmetric.

 In the example query student ⋈ takes, ID in takes is a foreign key
referencing student

• hence, the result has exactly ntakes tuples, which is 10000

©Silberschatz, Korth and Sudarshan16.47Database System Concepts - 7th Edition

Estimation of the Size of Joins (Cont.)

 If R ∩ S = {A} is not a key for R or S.
If we assume that every tuple t in R produces tuples in R S, the
number of tuples in R ⨝ S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.

 Can improve on above if histograms are available

• Use formula similar to above, for each cell of histograms on the
two relations

©Silberschatz, Korth and Sudarshan16.48Database System Concepts - 7th Edition

Estimation of the Size of Joins (Cont.)

 Compute the size estimates for depositor ⨝ customer without using
information about foreign keys:

• V(ID, takes) = 2500, and
V(ID, student) = 5000

• The two estimates are 5000 * 10000/2500 = 20,000 and 5000 *
10000/5000 = 10000

• We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

©Silberschatz, Korth and Sudarshan16.49Database System Concepts - 7th Edition

Size Estimation for Other Operations

 Projection: estimated size of ∏A(r) = V(A,r)

 Aggregation : estimated size of G𝛾𝛾A(r) = V(G,r)

 Set operations

• For unions/intersections of selections on the same relation:
rewrite and use size estimate for selections

 E.g. σθ1 (r) ∪ σθ2 (r) can be rewritten as σθ1 or θ2 (r)

• For operations on different relations:

 estimated size of r ∪ s = size of r + size of s.

 estimated size of r ∩ s = minimum size of r and size of s.

 estimated size of r – s = r.

 All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

©Silberschatz, Korth and Sudarshan16.50Database System Concepts - 7th Edition

Size Estimation (Cont.)

 Outer join:

• Estimated size of r ⟕ s = size of r ⨝ s + size of r

 Case of right outer join is symmetric

• Estimated size of r ⟗ s = size of r ⨝ s + size of r + size of s

©Silberschatz, Korth and Sudarshan16.51Database System Concepts - 7th Edition

Estimation of Number of Distinct Values

Selections: σθ (r)

 If θ forces A to take a specified value: V(A,σθ (r)) = 1.

 e.g., A = 3

 If θ forces A to take on one of a specified set of values:
V(A,σθ (r)) = number of specified values.

 (e.g., (A = 1 V A = 3 V A = 4)),

 If the selection condition θ is of the form A op r
estimated V(A,σθ (r)) = V(A.r) * s

 where s is the selectivity of the selection.

 In all the other cases: use approximate estimate of
min(V(A,r), nσθ (r))

• More accurate estimate can be got using probability theory, but
this one works fine generally

©Silberschatz, Korth and Sudarshan16.52Database System Concepts - 7th Edition

Estimation of Distinct Values (Cont.)

Joins: r ⨝ s

 If all attributes in A are from r
estimated V(A, r ⨝ s) = min (V(A,r), n r ⨝ s)

 If A contains attributes A1 from r and A2 from s, then estimated
V(A,r ⨝ s) =

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr ⨝ s)

• More accurate estimate can be got using probability theory, but
this one works fine generally

©Silberschatz, Korth and Sudarshan16.53Database System Concepts - 7th Edition

Estimation of Distinct Values (Cont.)

 Estimation of distinct values are straightforward for projections.

• They are the same in ∏A (r) as in r.

 The same holds for grouping attributes of aggregation.

 For aggregated values

• For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping
attributes

• For other aggregates, assume all values are distinct, and use
V(G,r)

©Silberschatz, Korth and Sudarshan16.54Database System Concepts - 7th Edition

ADDITIONAL OPTIMIZATION
TECHNIQUES

 Nested Subqueries

 Materialized Views

©Silberschatz, Korth and Sudarshan16.55Database System Concepts - 7th Edition

Optimizing Nested Subqueries**

 Nested query example:
select name
from instructor
where exists (select *

from teaches
where instructor.ID = teaches.ID and teaches.year = 2019)

 SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values

• Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

 Conceptually, nested subquery is executed once for each tuple in the
cross-product generated by the outer level from clause

• Such evaluation is called correlated evaluation

• Note: other conditions in where clause may be used to compute a join
(instead of a cross-product) before executing the nested subquery

	Chapter 16: Query Optimization
	Chapter 16: Query Optimization
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Viewing Query Evaluation Plans
	Generating Equivalent Expressions
	Transformation of Relational Expressions
	Equivalence Rules
	Equivalence Rules (Cont.)
	Pictorial Depiction of Equivalence Rules
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Exercise
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Transformation Example: Pushing Selections
	Multiple Transformations (Cont.)
	Join Ordering Example
	Join Ordering Example (Cont.)
	Enumeration of Equivalent Expressions
	Implementing Transformation Based Optimization
	Cost Estimation
	Choice of Evaluation Plans
	Cost-Based Optimization
	Dynamic Programming in Optimization
	Join Order Optimization Algorithm
	Join Order Optimization Algorithm (cont.)
	Left Deep Join Trees
	Cost of Optimization
	Interesting Sort Orders
	Cost Based Optimization with Equivalence Rules
	Heuristic Optimization
	Structure of Query Optimizers
	Structure of Query Optimizers (Cont.)
	Statistics for Cost Estimation
	Statistical Information for Cost Estimation
	Histograms
	Histograms (cont.)
	Selection Size Estimation
	Size Estimation of Complex Selections
	Join Operation: Running Example
	Estimation of the Size of Joins
	Estimation of the Size of Joins (Cont.)
	Estimation of the Size of Joins (Cont.)
	Size Estimation for Other Operations
	Size Estimation (Cont.)
	Estimation of Number of Distinct Values
	Estimation of Distinct Values (Cont.)
	Estimation of Distinct Values (Cont.)
	Additional Optimization Techniques
	Optimizing Nested Subqueries**

