Chapter 16: Query Optimization

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Chapter 16: Query Optimization

= Introduction

= Transformation of Relational Expressions

= Catalog Information for Cost Estimation

= Statistical Information for Cost Estimation

= Cost-based optimization

= Dynamic Programming for Choosing Evaluation Plans
= Materialized views

Database System Concepts - 7th Edition 16.2 ©Silberschatz, Korth and Sudarshan

Introduction

= Alternative ways of evaluating a given query
Equivalent expressions
Different algorithms for each operation

”nmn.-.ﬂ. fitle

. | E—
ﬁf.f.c';:lf_m.urm = Musgic ‘ nane, title

bl

N N

Instrictor [}ﬂ \\ Tdm.r_rmm:_ = Music M ‘
teaches | [P instructor teaches nr‘”mr_l_ﬁ "
course COtrse
(a) Initial expression tree (b) Transformed expression tree

Database System Concepts - 7t Edition 16.3 ©Silberschatz, Korth and Sudarshan

Introduction (Cont.)

= An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

{sort to remove duplicates)
LL e, Title

[
|

I {merge jpoin)

|

// g T
e
e
sort

L]

i [=] (hash join)
sort,, ;
/ \
!Iil
!
G:?‘f_iﬁf name = Music |-"I []mn'n"w i, title
tuse index 1} /
{
z i b
IRSTFUCIOF teaches COUFSE

* Find out how to view query execution plans on your favorite
database

Database System Concepts - 7t Edition 16.4 ©Silberschatz, Korth and Sudarshan

Introduction (Cont.)

= Cost difference between evaluation plans for a query can be
enormous

E.g. seconds vs. days in some cases
= Steps in cost-based query optimization

Generate logically equivalent expressions using equivalence
rules

Annotate resultant expressions to get alternative query plans
Choose the cheapest plan based on estimated cost
= Estimation of plan cost based on:
Statistical information about relations. Examples:
number of tuples, number of distinct values for an attribute
Statistics estimation for intermediate results
to compute cost of complex expressions
Cost formulae for algorithms, computed using statistics

Database System Concepts - 7th Edition 16.5 ©Silberschatz, Korth and Sudarshan

Viewing Query Evaluation Plans

Most database support explain <query>
Displays plan chosen by query optimizer, along with cost estimates
Some syntax variations between databases

Oracle: explain plan for <query> followed by select * from table
(dbms_xplan.display)

SQL Server: set showplan_text on

Some databases (e.g. PostgreSQL) support explain analyse
<query>

Shows actual runtime statistics found by running the query, in addition to
showing the plan

Some databases (e.g. PostgreSQL) show cost as f..|
f is the cost of delivering first tuple and | is cost of delivering all results

Database System Concepts - 7th Edition 16.6 ©Silberschatz, Korth and Sudarshan

Generating Equivalent Expressions

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Transformation of Relational

LE Expressions

= Two relational algebra expressions are said to be equivalent if the
two expressions generate the same set of tuples on every legal
database instance

Note: order of tuples is irrelevant

we don’ t care if they generate different results on databases that
violate integrity constraints

= |n SQL, inputs and outputs are multisets of tuples

Two expressions in the multiset version of the relational algebra
are said to be equivalent if the two expressions generate the same
multiset of tuples on every legal database instance.

= An equivalence rule says that expressions of two forms are
equivalent

Can replace expression of first form by second, or vice versa

Database System Concepts - 7th Edition 16.8 ©Silberschatz, Korth and Sudarshan

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

g, 0, (E) = 0g, (Tg, (E))
2. Selection operations are commutative.
00,(00,(E)) = 0y, (0¢,(E))

3. Only the last in a sequence of projection operations is needed, the
others can be omitted.

[T (T (T (B))--)

where L, €L, ... €L,

[1,E)

4. Selections can be combined with Cartesian products and theta joins.
Og(E{XEy) = E{XgE,

g, (Ey P, BE) = B3 >g pe, B2

Database System Concepts - 7th Edition 16.9 ©Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

E,}MNE, = E,ME,

6. (a) Natural join operations are associative:
(E; X Ey)) B = B X(E; MEy)

(b) Theta joins are associative in the following manner:

where 6, involves attributes from only E, and E;.

Database System Concepts - 7th Edition 16.10 ©Silberschatz, Korth and Sudarshan

[Rule 5

/ i i =
[Rule 6.a
/ \ b g
X E,
E, E,
0, Rule 7.a
- -
‘ If # only has
/M\ attributes from £,
E, E,

Database System Concepts - 7t Edition 16.11

©Silb

m Pictorial Depiction of Equivalence Rules

erschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under
the following two conditions:
(a) When all the attributes in 6, involve only the attributes of one
of the expressions (E,) being joined.

0o, (E1 D Ey) = (og,(Ep)) PG E,

(b) When 0, involves only the attributes of E, and 6, involves
only the attributes of E..

Gopno, (E1 DI Ey) = (04,(E1)) Py (04,(E))

Database System Concepts - 7th Edition 16.12 ©Silberschatz, Korth and Sudarshan

—

8. The projection operation distributes over the theta join operation as
follows:

Equivalence Rules (Cont.)

(a) if © involves only attributes from L; U L,:
[T, oLE g By =TT (E) P11 L(Ey)
(b) In general, consider a join E; <y E..
Let L, and L, be sets of attributes from E; and E,, respectively.

Let L, be attributes of E, that are involved in join condition 6, but
arenotinlL, uL,, and

let L, be attributes of E, that are involved in join condition 6, but
arenotinlL, U L,.

H L1 v L2(E1 [><]9 EZ) = H Lq v L2(H Lq v L3(El) [><]9 H Lo L L4(E2))

Similar equivalences hold for outerjoin operations: 1<, <t, and ><

Database System Concepts - 7th Edition 16.13 ©Silberschatz, Korth and Sudarshan

9. The set operations union and intersection are commutative
E, UE, E, UE;
E,NE, E,NE;
(set difference is not commutative).

Equivalence Rules (Cont.)

10.Set union and intersection are associative.
(E,vE,))UE; = E;U(E,UE))
(E;:nE)nEs = Ein(ExnEy)

11.The selection operation distributes over U, N and —.

a. oy (E; VU Ey) oy (E1) W oy(Ey)
b. oy (E; N Ey) gy (E1) N oy(Ey)

C. gy(E1—Ey) g (E1) — 0p(E))
d. oy (EsNEy) op(E1) N E;
e. oy (E1—E) oy(E1) - E;

preceding equivalence does not hold for U

12. The projection operation distributes over union
IL(E, VvEy) = (II(E)) v (TI(Ey))

Database System Concepts - 7th Edition 16.14 ©Silberschatz, Korth and Sudarshan

Exercise

= Create equivalence rules involving
The group by/aggregation operation
Left outer join operation

Database System Concepts - 7t Edition 16.15

©Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

13. Selection distributes over aggregation as below

oo(cVa(E)) = gValoy(E))
provided 6 only involves attributes in G

14. a. Full outerjoin is commutative:
E,><E, = E,X>E;
b. Left and right outerjoin are not commutative, but:
E,><E, = E,<E;

15. Selection distributes over left and right outerjoins as below, provided
0, only involves attributes of E,
a. oy, (E1 >4, Ey) (0, (E1)) > E;
b. oy, (E; >ty Ey) E, > (0y, (E1))

16. Outerjoins can be replaced by inner joins under some conditions

a. oy, (E; >4 Ey)) = oy, (Ey 4 Ey)
b. oy, (E; > Ey) = oy, (E; g Ey)
provided 0, is null rejecting on E,

Database System Concepts - 7th Edition 16.16 ©Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

Note that several equivalences that hold for joins do not hold for outerjoins

" Oyear=2017(INStructor > teaches) # o,-p017(INStructor > teaches)
= Quterjoins are not associative
(r><s)>xt £ rix=(sxt
e.g. with r(A,B) = {(1,1), s(B,C)={(1,1)}, t(A,C)={}

Database System Concepts - 7th Edition 16.17 ©Silberschatz, Korth and Sudarshan

!E Transformation Example: Pushing Selections

= Query: Find the names of all instructors in the Music department,
along with the titles of the courses that they teach

IT

name, title(Gdept_name: ‘Music’
(instructor > (teaches > Iy se i, title (COUTSE))))

= Transformation using rule 7a.

1_[name, title((Gdept_name: ‘Music’(inStrUCtor)) >
(teaches < Heourse id, title (course)))

= Performing the selection as early as possible reduces the size of the
relation to be joined.

Database System Concepts - 7th Edition 16.18 ©Silberschatz, Korth and Sudarshan

“ mane, fitle

Erﬂ!'e,m' mame = Music
A vear = 2017

o

instructor / M

fecachies

Y

l [mum‘_r'd, Litle

course

(&) Initial expression Lree

Database System Concepts - 7t Edition

instructor

16.20

Multiple Transformations (Cont.)

“ mie, firfe

[‘.‘«{]\\

“ cotrse _{d, ifle

[

AT g

2 5
ﬂda’,ﬁ-f_nazm? = Music year = 2017

teaches COLESe

(b) Tree after multiple transformations

©Silberschatz, Korth and Sudarshan

Join Ordering Example

= Forallrelations r, r, and r,,
(ry D<Ury) DArg =1 < (r, X rg)
(Join Associativity) >
= Ifr, > ry is quite large and r, > r, is small, we choose

(ry >r,) Xr,
so that we compute and store a smaller temporary relation.

Database System Concepts - 7t Edition 16.22 ©Silberschatz, Korth and Sudarshan

Join Ordering Example (Cont.)

Consider the expression

1_Iname, title(Gdept_name: ‘Music” (INstructor) > teaches)
> 1_Icourse_id, title (Course))))

= Could compute teaches DX Iy ,se ig. title (COUrse) first, and join
result with -

Odept_name= “Music” (instructor)
but the result of the first join is likely to be a large relation.

= Only a small fraction of the university’ s instructors are likely to be
from the Music department

it is better to compute
Odept_name= “Music” (INStructor) > teaches
first.

Database System Concepts - 7th Edition 16.23 ©Silberschatz, Korth and Sudarshan

— ”

LE Enumeration of Equivalent Expressions

= Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

= Can generate all equivalent expressions as follows:
Repeat

apply all applicable equivalence rules on every subexpression
of every equivalent expression found so far

add newly generated expressions to the set of equivalent
expressions

Until no new equivalent expressions are generated above
= The above approach is very expensive in space and time
Two approaches
Optimized plan generation based on transformation rules

Special case approach for queries with only selections,
projections and joins

Database System Concepts - 7th Edition 16.24 ©Silberschatz, Korth and Sudarshan

!EImplementing Transformation Based Optimization

= Space requirements reduced by sharing common sub-expressions:

when E1 is generated from E2 by an equivalence rule, usually only the top level of
the two are different, subtrees below are the same and can be shared using
pointers

E.g. when applying join commutativity

X X
// \\/ =

Same sub-expression may get generated multiple times
Detect duplicate sub-expressions and share one copy
= Time requirements are reduced by not generating all expressions
Dynamic programming

We will study only the special case of dynamic programming for join order
optimization

Database System Concepts - 7th Edition 16.25 ©Silberschatz, Korth and Sudarshan

Cost Estimation

= Cost of each operator computer as described in Chapter 15

Need statistics of input relations
E.g. number of tuples, sizes of tuples
= |nputs can be results of sub-expressions
Need to estimate statistics of expression results
To do so, we require additional statistics
E.g. number of distinct values for an attribute
= More on cost estimation later

Database System Concepts - 7th Edition 16.26

©Silberschatz, Korth and Sudarshan

Choice of Evaluation Plans

= Must consider the interaction of evaluation techniques when choosing
evaluation plans

choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.

merge-join may be costlier than hash-join, but may provide a
sorted output which reduces the cost for an outer level
aggregation.

nested-loop join may provide opportunity for pipelining

= Practical query optimizers incorporate elements of the following two
broad approaches:

1. Search all the plans and choose the best planin a
cost-based fashion.

2. Uses heuristics to choose a plan.

Database System Concepts - 7th Edition 16.27 ©Silberschatz, Korth and Sudarshan

Cost-Based Optimization

= Consider finding the best join-order for ry I r, < ... D r,,.

= There are (2(n — 1))!/(n — 1)! different join orders for above
expression. With n =7, the number is 665280, with n = 10, the
number is greater than 176 billion!

= No need to generate all the join orders. Using dynamic programming,
the least-cost join order for any subset of
{r,, r,, ... 1.} is computed only once and stored for future use.

Database System Concepts - 7th Edition 16.28 ©Silberschatz, Korth and Sudarshan

—

LE Dynamic Programming in Optimization

= To find best join tree for a set of n relations:

To find best plan for a set S of n relations, consider all possible

plans of the form: S, > (S — S;) where S, is any non-empty
subset of S.

Recursively compute costs for joining subsets of S to find the cost
of each plan. Choose the cheapest of the 2" — 2 alternatives.

Base case for recursion: single relation access plan
Apply all selections on R; using best choice of indices on R,

When plan for any subset is computed, store it and reuse it when
it Is required again, instead of recomputing it

Dynamic programming

Database System Concepts - 7th Edition 16.29 ©Silberschatz, Korth and Sudarshan

E Join Order Optimization Algorithm

procedure findbestplan(S)
If (bestplan[S].cost # «)
return bestplan[S]
I/ else bestplan[S] has not been computed earlier, compute it now
iIf (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S using selections on S and indices (if any) on S
else for each non-empty subset S1 of S such that S1 # S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
for each algorithm A for joining results of P1 and P2
... compute plan and cost of using A (see next page) ..
If cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = plan;
return bestplan[S]

Database System Concepts - 7th Edition 16.30 ©Silberschatz, Korth and Sudarshan

E Join Order Optimization Algorithm (cont.)

for each algorithm A for joining results of P1 and P2
I/ For indexed-nested loops join, the outer could be P1 or P2
/[Similarly for hash-join, the build relation could be P1 or P2
Il We assume the alternatives are considered as separate algorithms

If algorithm A is indexed nested loops
Let P, and P, denote inner and outer inputs
If P, has a single relation r; and r; has an index on the join attribute

plan = “execute P,.plan; join results of P, and r; using A”,
with any selection conditions on P; performed as part of
the join condition
cost = P,.cost + cost of A
else cost = oo; [* cannot use indexed nested loops join */
else
plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A;”
cost = P1.cost + P2.cost + cost of A

.... See previous page

Database System Concepts - 7th Edition 16.31 ©Silberschatz, Korth and Sudarshan

Left Deep Join Trees

[5

= |nleft-deep join trees, the right-hand-side input for each
join is a relation, not the result of an intermediate join.

X X

M/ \\n / \
pq/ \r4 /M\ /M

7\ v

s ™
/M\ rl r2

} r2

(a) Left-deep join tree (b) Non-left-deep join tree

Database System Concepts - 7t Edition 16.32 ©Silberschatz, Korth and Sudarshan

Cost of Optimization

= With dynamic programming time complexity of optimization with
bushy trees is O(3").

With n = 10, this number is 59000 instead of 176 billion!
= Space complexity is O(2")
= To find best left-deep join tree for a set of n relations:

Consider n alternatives with one relation as right-hand side input and the
other relations as left-hand side input.

Modify optimization algorithm:
Replace “for each non-empty subset S1 of S suchthatS1-+S”

By: for each relationrin S
letS1=S-r.

= |f only left-deep trees are considered, time complexity of finding best
join order is O(n 2")

Space complexity remains at O(2")

= Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

Database System Concepts - 7th Edition 16.33 ©Silberschatz, Korth and Sudarshan

Interesting Sort Orders

= Consider the expression (r, b< r,) b ry (with A as common attribute)
= Aninteresting sort order is a particular sort order of tuples that
could make a later operation (join/group by/order by) cheaper

Using merge-join to compute r, b<1r, may be costlier than hash join but
generates result sorted on A

Which in turn may make merge-join with r; cheaper, which may reduce
cost of join with r; and minimizing overall cost

= Not sufficient to find the best join order for each subset of the set of n
given relations

must find the best join order for each subset, for each interesting sort
order

Simple extension of earlier dynamic programming algorithms

Usually, number of interesting orders is quite small and doesn’t affect
time/space complexity significantly

Database System Concepts - 7th Edition 16.34 ©Silberschatz, Korth and Sudarshan

uF{Cost Based Optimization with Equivalence Rules

= Physical equivalence rules allow logical query plan to be converted
to physical query plan specifying what algorithms are used for each
operation.

= Efficient optimizer based on equivalent rules depends on

A space efficient representation of expressions which avoids
making multiple copies of subexpressions

Efficient techniques for detecting duplicate derivations of
expressions

A form of dynamic programming based on memoization, which
stores the best plan for a subexpression the first time it is
optimized, and reuses in on repeated optimization calls on same
subexpression

Cost-based pruning techniques that avoid generating all plans
= Pioneered by the Volcano project and implemented in the SQL Server
optimizer

Database System Concepts - 7th Edition 16.35 ©Silberschatz, Korth and Sudarshan

Heuristic Optimization

= Cost-based optimization is expensive, even with dynamic
programming.

= Systems may use heuristics to reduce the number of choices that
must be made in a cost-based fashion.

= Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)

Perform most restrictive selection and join operations (i.e. with
smallest result size) before other similar operations.

Some systems use only heuristics, others combine heuristics with
partial cost-based optimization.

Database System Concepts - 7th Edition 16.36 ©Silberschatz, Korth and Sudarshan

Structure of Query Optimizers

= Many optimizers considers only left-deep join orders.

Plus heuristics to push selections and projections down the query
tree

Reduces optimization complexity and generates plans amenable
to pipelined evaluation.

= Heuristic optimization used in some versions of Oracle:
Repeatedly pick “best” relation to join next
Starting from each of n starting points. Pick best among these
= Intricacies of SQL complicate query optimization
E.g. nested subqueries

Database System Concepts - 7th Edition 16.37 ©Silberschatz, Korth and Sudarshan

E Structure of Query Optimizers (Cont.)

= Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

Frequently used approach
heuristic rewriting of nested block structure and aggregation
followed by cost-based join-order optimization for each block

Some optimizers (e.g. SQL Server) apply transformations to entire query
and do not depend on block structure

Optimization cost budget to stop optimization early (if cost of plan is
less than cost of optimization)

Plan caching to reuse previously computed plan if query is resubmitted
Even with different constants in query

= Even with the use of heuristics, cost-based query optimization
Imposes a substantial overhead.

But is worth it for expensive queries

Optimizers often use simple heuristics for very cheap queries, and
perform exhaustive enumeration for more expensive queries

Database System Concepts - 7th Edition 16.38 ©Silberschatz, Korth and Sudarshan

Statistics for Cost Estimation

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Statistical Information for Cost Estimation

= n.: number of tuples in a relation r.
= b, number of blocks containing tuples of r.

= |:size of atuple of r.

= f: blocking factor of r — i.e., the number of tuples of r that fit into one
block.

= V(A r): number of distinct values that appear in r for attribute A; same
as the size of [1,(r).

= |f tuples of r are stored together physically in a file, then:

b=|"r
Iy

Database System Concepts - 7th Edition 16.40 ©Silberschatz, Korth and Sudarshan

Histograms

= Histogram on attribute age of relation person

50

s
(e

I
<

frequency
N
=

[
<

= Equi-width histograms 1-5 6-10 11-15 16-20 21-25

= Equi-depth histograms break up range such th&t'&ach range has
(approximately) the same number of tuples

E.g. (4, 8, 14, 19)
= Many databases also store n most-frequent values and their counts
Histogram is built on remaining values only

Database System Concepts - 7th Edition 16.41 ©Silberschatz, Korth and Sudarshan

Histograms (cont.)

= Histograms and other statistics usually computed based on a random
sample

= Statistics may be out of date

Some database require a analyze command to be executed to update
statistics

Others automatically recompute statistics
= e.g. when number of tuples in a relation changes by some percentage

Database System Concepts - 7th Edition 16.42 ©Silberschatz, Korth and Sudarshan

u Selection Size Estimation

" oao(N)
n,/ V(A,r) : number of records that will satisfy the selection
Equality condition on a key attribute: size estimate = 1
oay(r) (case of 6, . \(F) IS Symmetric)

Let c denote the estimated number of tuples satisfying the
condition.

If min(A,r) and max(A,r) are available in catalog
c=0if v<min(A,r)

v—min{ 4.)
C= n. o
S max(A.r) min(A.)

If histograms available, can refine above estimate
In absence of statistical information c is assumed to be n,/ 2.

Database System Concepts - 7th Edition 16.43 ©Silberschatz, Korth and Sudarshan

EE Size Estimation of Complex Selections

= The selectivity of a condition 6, is the probability that a tuple in the
relation r satisfies 6, .

If s, is the number of satisfying tuples in r, the selectivity of 0, is given by
s, /n,.

= Conjunction: oy, 02, . Aon (. Assuming independence, estimate of

. i ARG S A
tuples in the resultis: 5 L "2 :
#H

4]

T

= Disjunction:oy;, 2. .. on (). Estimated number of tuples:

”r "?r ”?,

= Negation: o 4(r). Estimated number of tuples:
N.— size(or))

Database System Concepts - 7th Edition 16.44 ©Silberschatz, Korth and Sudarshan

Join Operation: Running Example

Running example:
student < takes

Catalog information for join examples:
. Nstudent = 5’000'

" fiugent = 20, which implies that
Dsiudgent =2000/50 = 100.

" Niyes = 10000.

" foes = 25, which implies that
Diakes = 10000/25 = 400.

= V(ID, takes) = 2500, which implies that on average, each student who
has taken a course has taken 4 courses.

Attribute ID in takes is a foreign key referencing student.
V(ID, student) = 5000 (primary key!)

Database System Concepts - 7th Edition 16.45 ©Silberschatz, Korth and Sudarshan

Estimation of the Size of Joins

= The Cartesian productr x s contains n,.n tuples; each tuple
occupies s, + s, bytes.

= fRNS=Y,thenr x sisthe same asr xSs.

= |[fR N SisakeyforR, then a tuple of s will join with at most one tuple
fromr

therefore, the number of tuples in r x s is no greater than the
number of tuples in s.

= IfRNSinSisaforeign key in S referencing R, then the number of
tuples inr <@ s is exactly the same as the number of tuples in s.

The case for R N S being a foreign key referencing S is
symmetric.

= In the example query student x takes, ID in takes is a foreign key
referencing student

hence, the result has exactly n,,.. tuples, which is 10000

Database System Concepts - 7th Edition 16.46 ©Silberschatz, Korth and Sudarshan

EE Estimation of the Size of Joins (Cont.)

= IfRNS={A}isnotakeyforRorS.
If we assume that every tuple t in R produces tuplesin R S&the
number of tuples in R > S is estimated to be:

n, * N
V(A,s)

If the reverse is true, the estimate obtained will be:
nf’ * nS
V(A,r)
The lower of these two estimates is probably the more accurate one.
= Can improve on above if histograms are available

Use formula similar to above, for each cell of histograms on the
two relations

Database System Concepts - 7th Edition 16.47 ©Silberschatz, Korth and Sudarshan

— ¥

!E Estimation of the Size of Joins (Cont.)

= Compute the size estimates for depositor <t customer without using
information about foreign keys:

V(ID, takes) = 2500, and
V(ID, student) = 5000

The two estimates are 5000 * 10000/2500 = 20,000 and 5000 *
10000/5000 = 10000

We choose the lower estimate, which in this case, is the same as
our earlier computation using foreign keys.

Database System Concepts - 7th Edition 16.48 ©Silberschatz, Korth and Sudarshan

E Size Estimation for Other Operations

= Projection: estimated size of [1,(r) = V(A,r)
= Aggregation : estimated size of jy,(r) = V(G,r)
= Set operations

For unions/intersections of selections on the same relation:
rewrite and use size estimate for selections

E.Q. 64, () U oy, (1) can be rewritten as Gy o o2 (1)
For operations on different relations:
estimated size of ru s =size of r + size of s.
estimated size of r n's = minimum size of r and size of s.
estimated sizeofr—s =r.

All the three estimates may be quite inaccurate, but provide
upper bounds on the sizes.

Database System Concepts - 7th Edition 16.49 ©Silberschatz, Korth and Sudarshan

Size Estimation (Cont.)

= Quter join:

Estimated size of r><s =sizeof ri<xis + size of r
= Case of right outer join is symmetric
Estimated size of r><t s =size of r <1 s + size of r + size of s

Database System Concepts - 7t Edition 16.50 ©Silberschatz, Korth and Sudarshan

— ”

LE Estimation of Number of Distinct Values

Selections: G, (1)
= |f 0 forces A to take a specified value: V(A,c,(r)) = 1.
e.g.,A=3

= |f O forces A to take on one of a specified set of values:
V(A,o, (r)) = number of specified values.

(e.g.,(A=1VA=3VA=4)),

= |f the selection condition 0 is of the form Aopr
estimated V(A,c,(r)) = V(Ar) *s

where s is the selectivity of the selection.

= |n all the other cases: use approximate estimate of
min(V(A,r), Nso)

More accurate estimate can be got using probability theory, but
this one works fine generally

Database System Concepts - 7th Edition 16.51 ©Silberschatz, Korth and Sudarshan

Estimation of Distinct Values (Cont.)

Joins: r 1 's

= |f all attributes in A are fromr
estimated V(A, rp><s)=min (V(Ar), N,)

= |f A contains attributes Al from r and A2 from s, then estimated
V(A,rp<s) =

min(V(A1,nN*V(A2 — Al,s), V(A1 — A2,r)*V(A2,s), n, .. <)

More accurate estimate can be got using probability theory, but
this one works fine generally

Database System Concepts - 7th Edition 16.52 ©Silberschatz, Korth and Sudarshan

Estimation of Distinct Values (Cont.)

= Estimation of distinct values are straightforward for projections.

They are the same in [1, ; asinr.
= The same holds for grouping attributes of aggregation.

= For aggregated values

For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping
attributes

For other aggregates, assume all values are distinct, and use
V(G,r)

Database System Concepts - 7th Edition 16.53 ©Silberschatz, Korth and Sudarshan

L

ADDITIONAL OPTIMIZATION
TECHNIQUES

= Nested Subqgueries
= Materialized Views

Database System Concepts - 7t Edition 16.54 ©Silberschatz, Korth and Sudarshan

Optimizing Nested Subqueries**

= Nested query example:

select name
from instructor
where exists (select *
from teaches
where instructor.ID = teaches.ID and teaches.year = 2019)

= SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of
values

Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

= Conceptually, nested subquery is executed once for each tuple in the
cross-product generated by the outer level from clause

Such evaluation is called correlated evaluation

Note: other conditions in where clause may be used to compute a join
(instead of a cross-product) before executing the nested subquery

Database System Concepts - 7th Edition 16.55 ©Silberschatz, Korth and Sudarshan

	Chapter 16: Query Optimization
	Chapter 16: Query Optimization
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Viewing Query Evaluation Plans
	Generating Equivalent Expressions
	Transformation of Relational Expressions
	Equivalence Rules
	Equivalence Rules (Cont.)
	Pictorial Depiction of Equivalence Rules
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Exercise
	Equivalence Rules (Cont.)
	Equivalence Rules (Cont.)
	Transformation Example: Pushing Selections
	Multiple Transformations (Cont.)
	Join Ordering Example
	Join Ordering Example (Cont.)
	Enumeration of Equivalent Expressions
	Implementing Transformation Based Optimization
	Cost Estimation
	Choice of Evaluation Plans
	Cost-Based Optimization
	Dynamic Programming in Optimization
	Join Order Optimization Algorithm
	Join Order Optimization Algorithm (cont.)
	Left Deep Join Trees
	Cost of Optimization
	Interesting Sort Orders
	Cost Based Optimization with Equivalence Rules
	Heuristic Optimization
	Structure of Query Optimizers
	Structure of Query Optimizers (Cont.)
	Statistics for Cost Estimation
	Statistical Information for Cost Estimation
	Histograms
	Histograms (cont.)
	Selection Size Estimation
	Size Estimation of Complex Selections
	Join Operation: Running Example
	Estimation of the Size of Joins
	Estimation of the Size of Joins (Cont.)
	Estimation of the Size of Joins (Cont.)
	Size Estimation for Other Operations
	Size Estimation (Cont.)
	Estimation of Number of Distinct Values
	Estimation of Distinct Values (Cont.)
	Estimation of Distinct Values (Cont.)
	Additional Optimization Techniques
	Optimizing Nested Subqueries**

