
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 15: Query Processing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan15.2Database System Concepts - 7th Edition

Chapter 15: Query Processing

 Overview

 Measures of Query Cost

 Selection Operation

 Sorting

 Join Operation

 Other Operations

 Evaluation of Expressions

©Silberschatz, Korth and Sudarshan15.3Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

©Silberschatz, Korth and Sudarshan15.4Database System Concepts - 7th Edition

Basic Steps in Query Processing (Cont.)

 Parsing and translation

• translate the query into its internal form. This is then translated
into relational algebra.

• Parser checks syntax, verifies relations

 Evaluation

• The query-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query.

©Silberschatz, Korth and Sudarshan15.5Database System Concepts - 7th Edition

Basic Steps in Query Processing:
Optimization

 A relational algebra expression may have many equivalent
expressions

• E.g., σsalary<75000(∏salary(instructor)) is equivalent to
∏salary(σsalary<75000(instructor))

 Each relational algebra operation can be evaluated using one of
several different algorithms

• Correspondingly, a relational-algebra expression can be evaluated
in many ways.

 Annotated expression specifying detailed evaluation strategy is called
an evaluation-plan. E.g.:

• Use an index on salary to find instructors with salary < 75000,

• Or perform complete relation scan and discard instructors with
salary ≥ 75000

©Silberschatz, Korth and Sudarshan15.6Database System Concepts - 7th Edition

Basic Steps: Optimization (Cont.)

 Query Optimization: Amongst all equivalent evaluation plans choose
the one with lowest cost.

• Cost is estimated using statistical information from the
database catalog

 e.g. number of tuples in each relation, size of tuples, etc.

 In this chapter we study

• How to measure query costs

• Algorithms for evaluating relational algebra operations

• How to combine algorithms for individual operations in order to
evaluate a complete expression

 In Chapter 16

• We study how to optimize queries, that is, how to find an
evaluation plan with lowest estimated cost

©Silberschatz, Korth and Sudarshan15.7Database System Concepts - 7th Edition

Measures of Query Cost

 Many factors contribute to time cost

• disk access, CPU, and network communication

 Cost can be measured based on

• response time, i.e. total elapsed time for answering query, or

• total resource consumption

 We use total resource consumption as cost metric

• Response time harder to estimate, and minimizing resource
consumption is a good idea in a shared database

 We ignore CPU costs for simplicity

• Real systems do take CPU cost into account

• Network costs must be considered for parallel systems

 We describe how estimate the cost of each operation

• We do not include cost to writing output to disk

©Silberschatz, Korth and Sudarshan15.8Database System Concepts - 7th Edition

Measures of Query Cost

 Disk cost can be estimated as:

• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

 For simplicity we just use the number of block transfers from disk
and the number of seeks as the cost measures

• tT – time to transfer one block

 Assuming for simplicity that write cost is same as read cost

• tS – time for one seek

• Cost for b block transfers plus S seeks
b * tT + S * tS

 tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec

• SSD: : tS = 20-90 microsec and tT = 2-10 microsec for 4KB

©Silberschatz, Korth and Sudarshan15.9Database System Concepts - 7th Edition

Measures of Query Cost (Cont.)

 Required data may be buffer resident already, avoiding disk I/O

• But hard to take into account for cost estimation

 Several algorithms can reduce disk IO by using extra buffer space

• Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during
execution

 Worst case estimates assume that no data is initially in buffer and
only the minimum amount of memory needed for the operation is
available

• But more optimistic estimates are used in practice

©Silberschatz, Korth and Sudarshan15.10Database System Concepts - 7th Edition

Selection Operation

 File scan

 Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

• Cost estimate = br block transfers + 1 seek

 br denotes number of blocks containing records from relation r

• If selection is on a key attribute, can stop on finding record

 cost = (br /2) block transfers + 1 seek

• Linear search can be applied regardless of
 selection condition or

 ordering of records in the file, or

 availability of indices

 Note: binary search generally does not make sense since data is not
stored consecutively
• except when there is an index available,

• and binary search requires more seeks than index search

©Silberschatz, Korth and Sudarshan15.11Database System Concepts - 7th Edition

Selections Using Indices

 Index scan – search algorithms that use an index

• selection condition must be on search-key of index.

 A2 (clustering index, equality on key). Retrieve a single record that
satisfies the corresponding equality condition

• Cost = (hi + 1) * (tT + tS)

 A3 (clustering index, equality on nonkey) Retrieve multiple
records.

• Records will be on consecutive blocks

 Let b = number of blocks containing matching records

• Cost = hi * (tT + tS) + tS + tT * b

©Silberschatz, Korth and Sudarshan15.12Database System Concepts - 7th Edition

Selections Using Indices

 A4 (secondary index, equality on key/non-key).

• Retrieve a single record if the search-key is a candidate key

 Cost = (hi + 1) * (tT + tS)

• Retrieve multiple records if search-key is not a candidate key

 each of n matching records may be on a different block

 Cost = (hi + n) * (tT + tS)

• Can be very expensive!

©Silberschatz, Korth and Sudarshan15.13Database System Concepts - 7th Edition

Selections Involving Comparisons

 Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

• a linear file scan,

• or by using indices in the following ways:

 A5 (clustering index, comparison). (Relation is sorted on A)

 For σA ≥ V(r) use index to find first tuple ≥ v and scan relation
sequentially from there

 For σA≤V (r) just scan relation sequentially till first tuple > v; do
not use index

 A6 (clustering index, comparison).

 For σA ≥ V(r) use index to find first index entry ≥ v and scan
index sequentially from there, to find pointers to records.

 For σA≤V (r) just scan leaf pages of index finding pointers to
records, till first entry > v

 In either case, retrieve records that are pointed to

 requires an I/O per record; Linear file scan may be cheaper!

©Silberschatz, Korth and Sudarshan15.14Database System Concepts - 7th Edition

Implementation of Complex Selections

 Conjunction: σθ1∧ θ2∧. . . θn(r)
 A7 (conjunctive selection using one index).

• Select a combination of θi and algorithms A1 through A7 that
results in the least cost for σθi (r).

• Test other conditions on tuple after fetching it into memory buffer.

 A8 (conjunctive selection using composite index).

• Use appropriate composite (multiple-key) index if available.

 A9 (conjunctive selection by intersection of identifiers).

• Requires indices with record pointers.

• Use corresponding index for each condition, and take intersection
of all the obtained sets of record pointers.

• Then fetch records from file

• If some conditions do not have appropriate indices, apply test in
memory.

©Silberschatz, Korth and Sudarshan15.15Database System Concepts - 7th Edition

Algorithms for Complex Selections

 Disjunction:σθ1∨ θ2 ∨. . . θn (r).
 A10 (disjunctive selection by union of identifiers).

• Applicable if all conditions have available indices.

 Otherwise use linear scan.

• Use corresponding index for each condition, and take union of all
the obtained sets of record pointers.

• Then fetch records from file

 Negation: σ¬θ(r)

• Use linear scan on file

• If very few records satisfy ¬θ, and an index is applicable to θ

 Find satisfying records using index and fetch from file

©Silberschatz, Korth and Sudarshan15.16Database System Concepts - 7th Edition

Bitmap Index Scan

 The bitmap index scan algorithm of PostgreSQL

• Bridges gap between secondary index scan and linear file scan when
number of matching records is not known before execution

• Bitmap with 1 bit per page in relation

• Steps:

 Index scan used to find record ids, and set bit of corresponding page
in bitmap

 Linear file scan fetching only pages with bit set to 1

• Performance

 Similar to index scan when only a few bits are set

 Similar to linear file scan when most bits are set

 Never behaves very badly compared to best alternative

©Silberschatz, Korth and Sudarshan15.17Database System Concepts - 7th Edition

Sorting

 We may build an index on the relation, and then use the index to read
the relation in sorted order. May lead to one disk block access for
each tuple.

 For relations that fit in memory, techniques like quicksort can be used.
For relations that don’t fit in memory, external
sort-merge is a good choice.

©Silberschatz, Korth and Sudarshan15.18Database System Concepts - 7th Edition

Example: External Sorting Using Sort-Merge

©Silberschatz, Korth and Sudarshan15.19Database System Concepts - 7th Edition

External Sort-Merge

1. Create sorted runs. Let i be 0 initially.
Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run Ri; increment i.

Let the final value of i be N

2. Merge the runs (next slide)…..

Let M denote memory size (in pages).

©Silberschatz, Korth and Sudarshan15.20Database System Concepts - 7th Edition

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < M.

1. Use N blocks of memory to buffer input runs, and 1 block to buffer
output. Read the first block of each run into its buffer page

2. repeat

1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer. If the output buffer is full
write it to disk.

3. Delete the record from its input buffer page.
If the buffer page becomes empty then

read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

©Silberschatz, Korth and Sudarshan15.21Database System Concepts - 7th Edition

External Sort-Merge (Cont.)

 If N ≥ M, several merge passes are required.

• In each pass, contiguous groups of M - 1 runs are merged.

• A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor.

 E.g. If M=11, and there are 90 runs, one pass reduces the
number of runs to 9, each 10 times the size of the initial runs

• Repeated passes are performed till all runs have been merged
into one.

©Silberschatz, Korth and Sudarshan15.22Database System Concepts - 7th Edition

External Merge Sort (Cont.)

 Cost analysis:

• 1 block per run leads to too many seeks during merge

 Instead use bb buffer blocks per run

 read/write bb blocks at a time

 Can merge M/bb–1 runs in one pass

• Total number of merge passes required: log M/bb–1(br/M).
• Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost

• we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

 Thus total number of block transfers for external sorting:
br (2 log M/bb–1 (br / M) + 1) 

• Seeks: next slide

©Silberschatz, Korth and Sudarshan15.23Database System Concepts - 7th Edition

External Merge Sort (Cont.)

 Cost of seeks

• During run generation: one seek to read each run and one seek to
write each run

 2 br / M

• During the merge phase

 Need 2 br / bb seeks for each merge pass

• except the final one which does not require a write

 Total number of seeks:
2 br / M + br / bb (2 logM/bb–1(br / M) -1)

©Silberschatz, Korth and Sudarshan15.24Database System Concepts - 7th Edition

Join Operation

 Several different algorithms to implement joins

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge-join

• Hash-join

 Choice based on cost estimate

 Examples use the following information

• Number of records of student: 5,000 takes: 10,000

• Number of blocks of student: 100 takes: 400

©Silberschatz, Korth and Sudarshan15.25Database System Concepts - 7th Edition

Nested-Loop Join

 To compute the theta join r ⨝ θ s
for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition θ
if they do, add tr • ts to the result.

end
end

 r is called the outer relation and s the inner relation of the join.

 Requires no indices and can be used with any kind of join condition.

 Expensive since it examines every pair of tuples in the two relations.

©Silberschatz, Korth and Sudarshan15.26Database System Concepts - 7th Edition

Nested-Loop Join (Cont.)

 In the worst case, if there is enough memory only to hold one block
of each relation, the estimated cost is

nr ∗ bs + br block transfers, plus nr + br seeks

 If the smaller relation fits entirely in memory, use that as the inner
relation.

• Reduces cost to br + bs block transfers and 2 seeks

 Assuming worst case memory availability cost estimate is

• with student as outer relation:

 5000 ∗ 400 + 100 = 2,000,100 block transfers,

 5000 + 100 = 5100 seeks

• with takes as the outer relation

 10000 ∗ 100 + 400 = 1,000,400 block transfers and 10,400 seeks

 If smaller relation (student) fits entirely in memory, the cost
estimate will be 500 block transfers.

 Block nested-loops algorithm (next slide) is preferable.

©Silberschatz, Korth and Sudarshan15.27Database System Concepts - 7th Edition

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is
paired with every block of outer relation.

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

©Silberschatz, Korth and Sudarshan15.29Database System Concepts - 7th Edition

Indexed Nested-Loop Join

 Index lookups can replace file scans if
• join is an equi-join or natural join and

• an index is available on the inner relation’s join attribute

 Can construct an index just to compute a join.

 For each tuple tr in the outer relation r, use the index to look up tuples
in s that satisfy the join condition with tuple tr.

 Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

 Cost of the join: br (tT + tS) + nr ∗ c
• Where c is the cost of traversing index and fetching all matching s tuples

for one tuple or r

• c can be estimated as cost of a single selection on s using the join
condition.

 If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

©Silberschatz, Korth and Sudarshan15.31Database System Concepts - 7th Edition

Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the
join attributes).

2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge
algorithm.

2. Main difference is handling of duplicate values in join attribute —
every pair with same value on join attribute must be matched

3. Detailed algorithm in book

©Silberschatz, Korth and Sudarshan15.32Database System Concepts - 7th Edition

Merge-Join (Cont.)

 Can be used only for equi-joins and natural joins

 Each block needs to be read only once (assuming all tuples for any
given value of the join attributes fit in memory

 Thus the cost of merge join is:
br + bs block transfers + br / bb + bs / bb seeks

• + the cost of sorting if relations are unsorted.

 hybrid merge-join: If one relation is sorted, and the other has a
secondary B+-tree index on the join attribute

• Merge the sorted relation with the leaf entries of the B+-tree .

• Sort the result on the addresses of the unsorted relation’s tuples

• Scan the unsorted relation in physical address order and merge
with previous result, to replace addresses by the actual tuples

 Sequential scan more efficient than random lookup

©Silberschatz, Korth and Sudarshan15.33Database System Concepts - 7th Edition

Hash-Join

 Applicable for equi-joins and natural joins.

 A hash function h is used to partition tuples of both relations

 h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the
common attributes of r and s used in the natural join.

• r0, r1, . . ., rn denote partitions of r tuples

 Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).

• r0,, r1. . ., rn denotes partitions of s tuples

 Each tuple ts ∈s is put in partition si, where i = h(ts [JoinAttrs]).

 Note: In book, Figure 12.10 ri is denoted as Hri, si is denoted as Hsi
and
n is denoted as nh.

©Silberschatz, Korth and Sudarshan15.34Database System Concepts - 7th Edition

Hash-Join (Cont.)

©Silberschatz, Korth and Sudarshan15.36Database System Concepts - 7th Edition

Hash-Join Algorithm

1. Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.

3. For each i:

(a) Load si into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h.

(b) Read the tuples in ri from the disk one by one. For each
tuple tr locate each matching tuple ts in si using the in-
memory hash index. Output the concatenation of their
attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and r is called the probe input.

©Silberschatz, Korth and Sudarshan15.37Database System Concepts - 7th Edition

Hash-Join algorithm (Cont.)

 The value n and the hash function h is chosen such that each si
should fit in memory.

• Typically n is chosen as bs/M * f where f is a “fudge factor”,
typically around 1.2

• The probe relation partitions si need not fit in memory

 Recursive partitioning required if number of partitions n is greater
than number of pages M of memory.

• instead of partitioning n ways, use M – 1 partitions for s

• Further partition the M – 1 partitions using a different hash function

• Use same partitioning method on r

• Rarely required: e.g., with block size of 4 KB, recursive partitioning
not needed for relations of < 1GB with memory size of 2MB, or
relations of < 36 GB with memory of 12 MB

©Silberschatz, Korth and Sudarshan15.38Database System Concepts - 7th Edition

Handling of Overflows

 Partitioning is said to be skewed if some partitions have significantly
more tuples than some others

 Hash-table overflow occurs in partition si if si does not fit in memory.
Reasons could be

• Many tuples in s with same value for join attributes

• Bad hash function

 Overflow resolution can be done in build phase

• Partition si is further partitioned using different hash function.

• Partition ri must be similarly partitioned.

 Overflow avoidance performs partitioning carefully to avoid
overflows during build phase

• E.g. partition build relation into many partitions, then combine them

 Both approaches fail with large numbers of duplicates

• Fallback option: use block nested loops join on overflowed partitions

©Silberschatz, Korth and Sudarshan15.39Database System Concepts - 7th Edition

Cost of Hash-Join

 If recursive partitioning is not required: cost of hash join is
3(br + bs) +4 ∗ nh block transfers +
2(br / bb + bs / bb) seeks

 If recursive partitioning required:

• number of passes required for partitioning build relation s to less
than M blocks per partition is logM/bb–1(bs/M)

• best to choose the smaller relation as the build relation.

• Total cost estimate is:
2(br + bs) logM/bb–1(bs/M) + br + bs block transfers +
2(br / bb + bs / bb) logM/bb–1(bs/M)  seeks

 If the entire build input can be kept in main memory no partitioning is
required

• Cost estimate goes down to br + bs.

©Silberschatz, Korth and Sudarshan15.41Database System Concepts - 7th Edition

Hybrid Hash–Join

 Useful when memory sized are relatively large, and the build input is
bigger than memory.

 Main feature of hybrid hash join:

Keep the first partition of the build relation in memory.

 E.g. With memory size of 25 blocks, instructor can be partitioned into
five partitions, each of size 20 blocks.
• Division of memory:

 The first partition occupies 20 blocks of memory

 1 block is used for input, and 1 block each for buffering the other 4
partitions.

 teaches is similarly partitioned into five partitions each of size 80
• the first is used right away for probing, instead of being written out

 Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for
hybrid hash join, instead of 1500 with plain hash-join.

 Hybrid hash-join most useful if M >> sb

©Silberschatz, Korth and Sudarshan15.42Database System Concepts - 7th Edition

Complex Joins

 Join with a conjunctive condition:

r ⨝ θ1∧ θ 2∧... ∧ θ n s

• Either use nested loops/block nested loops, or

• Compute the result of one of the simpler joins r ⨝ θi s

 final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

θ1∧ . . . ∧ θi –1 ∧ θi +1 ∧ . . . ∧ θn

 Join with a disjunctive condition

r ⨝ θ1 ∨ θ2 ∨... ∨ θn
s

• Either use nested loops/block nested loops, or

• Compute as the union of the records in individual joins r ⨝ θi
s:

(r ⨝ θ1
s) ∪ (r ⨝ θ2

s) ∪ . . . ∪ (r ⨝ θn
s)

©Silberschatz, Korth and Sudarshan15.43Database System Concepts - 7th Edition

Joins over Spatial Data

 No simple sort order for spatial joins

 Indexed nested loops join with spatial indices

• R-trees, quad-trees, k-d-B-trees

©Silberschatz, Korth and Sudarshan15.44Database System Concepts - 7th Edition

Other Operations

 Duplicate elimination can be implemented via hashing or sorting.

• On sorting duplicates will come adjacent to each other, and all but
one set of duplicates can be deleted.

• Optimization: duplicates can be deleted during run generation as
well as at intermediate merge steps in external sort-merge.

• Hashing is similar – duplicates will come into the same bucket.

 Projection:

• perform projection on each tuple

• followed by duplicate elimination.

©Silberschatz, Korth and Sudarshan15.45Database System Concepts - 7th Edition

Other Operations : Aggregation

 Aggregation can be implemented in a manner similar to duplicate
elimination.

• Sorting or hashing can be used to bring tuples in the same group
together, and then the aggregate functions can be applied on each
group.

• Optimization: partial aggregation

 combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values

 For count, min, max, sum: keep aggregate values on tuples
found so far in the group.

• When combining partial aggregate for count, add up the
partial aggregates

 For avg, keep sum and count, and divide sum by count at the
end

©Silberschatz, Korth and Sudarshan15.46Database System Concepts - 7th Edition

Other Operations : Set Operations

 Set operations (∪, ∩ and ): can either use variant of merge-join
after sorting, or variant of hash-join.

 E.g., Set operations using hashing:

1. Partition both relations using the same hash function

2. Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash
index on ri.

2. Process si as follows

 r ∪ s:

1. Add tuples in si to the hash index if they are not already
in it.

2. At end of si add the tuples in the hash index to the
result.

©Silberschatz, Korth and Sudarshan15.47Database System Concepts - 7th Edition

Other Operations : Set Operations

 E.g., Set operations using hashing:

1. as before partition r and s,

2. as before, process each partition i as follows

1. build a hash index on ri
2. Process si as follows

• r ∩ s:

1. output tuples in si to the result if they are already there
in the hash index

• r – s:

1. for each tuple in si, if it is there in the hash index, delete
it from the index.

2. At end of si add remaining tuples in the hash index to
the result.

©Silberschatz, Korth and Sudarshan15.48Database System Concepts - 7th Edition

Answering Keyword Queries

 Indices mapping keywords to documents

• For each keyword, store sorted list of document IDs that contain the
keyword

 Commonly referred to as a inverted index

 E.g.: database: d1, d4, d11, d45, d77, d123
distributed: d4, d8, d11, d56, d77, d121, d333

• To answer a query with several keywords, compute intersection of lists
corresponding to those keywords

 To support ranking, inverted lists store extra information

• “Term frequency” of the keyword in the document

• “Inverse document frequency” of the keyword

• Page rank of the document/web page

©Silberschatz, Korth and Sudarshan15.49Database System Concepts - 7th Edition

Other Operations : Outer Join

 Outer join can be computed either as

• A join followed by addition of null-padded non-participating tuples.

• by modifying the join algorithms.

 Modifying merge join to compute r ⟕ s

• In r ⟕ s, non participating tuples are those in r – ΠR(r ⨝ s)

• Modify merge-join to compute r ⟕ s:

 During merging, for every tuple tr from r that do not match any
tuple in s, output tr padded with nulls.

• Right outer-join and full outer-join can be computed similarly.

©Silberschatz, Korth and Sudarshan15.50Database System Concepts - 7th Edition

Other Operations : Outer Join

 Modifying hash join to compute r ⟕ s

• If r is probe relation, output non-matching r tuples padded with
nulls

• If r is build relation, when probing keep track of which
r tuples matched s tuples. At end of si output
non-matched r tuples padded with nulls

©Silberschatz, Korth and Sudarshan15.51Database System Concepts - 7th Edition

Evaluation of Expressions

 So far: we have seen algorithms for individual operations

 Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs
are relations or are already computed, materialize (store) it on
disk. Repeat.

• Pipelining: pass on tuples to parent operations even as an
operation is being executed

 We study above alternatives in more detail

©Silberschatz, Korth and Sudarshan15.52Database System Concepts - 7th Edition

Materialization

 Materialized evaluation: evaluate one operation at a time, starting at
the lowest-level. Use intermediate results materialized into temporary
relations to evaluate next-level operations.

 E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the
projection on name.

)("Watson" departmentbuilding=σ

©Silberschatz, Korth and Sudarshan15.53Database System Concepts - 7th Edition

Materialization (Cont.)

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading them back can be quite
high

• Our cost formulas for operations ignore cost of writing results to
disk, so

 Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

 Double buffering: use two output buffers for each operation, when
one is full write it to disk while the other is getting filled

• Allows overlap of disk writes with computation and reduces
execution time

©Silberschatz, Korth and Sudarshan15.54Database System Concepts - 7th Edition

Pipelining

 Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next.

 E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store
result of join, pass tuples directly to projection.

 Much cheaper than materialization: no need to store a temporary
relation to disk.

 Pipelining may not always be possible – e.g., sort, hash-join.

 For pipelining to be effective, use evaluation algorithms that generate
output tuples even as tuples are received for inputs to the operation.

 Pipelines can be executed in two ways: demand driven and
producer driven

)("Watson" departmentbuilding=σ

©Silberschatz, Korth and Sudarshan15.55Database System Concepts - 7th Edition

Pipelining (Cont.)

 In demand driven or lazy evaluation

• system repeatedly requests next tuple from top level operation

• Each operation requests next tuple from children operations as required,
in order to output its next tuple

• In between calls, operation has to maintain “state” so it knows what to
return next

 In producer-driven or eager pipelining

• Operators produce tuples eagerly and pass them up to their parents

 Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

 if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

• System schedules operations that have space in output buffer and can
process more input tuples

 Alternative name: pull and push models of pipelining

©Silberschatz, Korth and Sudarshan15.56Database System Concepts - 7th Edition

Pipelining (Cont.)

 Implementation of demand-driven pipelining

• Each operation is implemented as an iterator implementing the
following operations

 open()

• E.g. file scan: initialize file scan

 state: pointer to beginning of file

• E.g.merge join: sort relations;

 state: pointers to beginning of sorted relations

 next()

• E.g. for file scan: Output next tuple, and advance and store
file pointer

• E.g. for merge join: continue with merge from earlier state
till
next output tuple is found. Save pointers as iterator state.

 close()

©Silberschatz, Korth and Sudarshan15.57Database System Concepts - 7th Edition

Blocking Operations

 Blocking operations: cannot generate any output until all input is
consumed

• E.g. sorting, aggregation, …

 But can often consume inputs from a pipeline, or produce outputs to a
pipeline

 Key idea: blocking operations often have two suboperations

• E.g. for sort: run generation and merge

• For hash join: partitioning and build-probe

 Treat them as separate operations

©Silberschatz, Korth and Sudarshan15.58Database System Concepts - 7th Edition

Pipeline Stages

 Pipeline stages:

• All operations in a stage run concurrently

• A stage can start only after preceding stages have completed execution

©Silberschatz, Korth and Sudarshan15.59Database System Concepts - 7th Edition

Evaluation Algorithms for Pipelining

 Some algorithms are not able to output results even as they get input
tuples

• E.g. merge join, or hash join

• intermediate results written to disk and then read back

 Algorithm variants to generate (at least some) results on the fly, as
input tuples are read in

• E.g. hybrid hash join generates output tuples even as probe relation
tuples in the in-memory partition (partition 0) are read in

• Double-pipelined join technique: Hybrid hash join, modified to buffer
partition 0 tuples of both relations in-memory, reading them as they
become available, and output results of any matches between partition 0
tuples

 When a new r0 tuple is found, match it with existing s0 tuples, output

matches, and save it in r0
 Symmetrically for s0 tuples

©Silberschatz, Korth and Sudarshan15.60Database System Concepts - 7th Edition

Pipeling for Continuous-Stream Data

 Data streams
• Data entering database in a continuous manner

• E.g. Sensor networks, user clicks, …

 Continuous queries
• Results get updated as streaming data enters the database

• Aggregation on windows is often used

 E.g. tumbling windows divide time into units, e.g. hours, minutes

 Need to use pipelined processing algorithms

• Punctuations used to infer when all data for a window has been received

©Silberschatz, Korth and Sudarshan15.61Database System Concepts - 7th Edition

Query Processing in Memory

 Query compilation to machine code

• Overheads of interpretation

 E.g. repeatedly finding attribute location within tuple, from metadata

 Overhead of expression evaluation

• Compilation can avoid many such overheads and speed up query
processing

• Often via generation of Java byte code / LLVM, with just-in-time (JIT)
compilation

 Column-oriented storage

• Allows vector operations (in conjunction with compilation)

 Cache conscious algorithms

©Silberschatz, Korth and Sudarshan15.62Database System Concepts - 7th Edition

Cache Conscious Algorithms

 Goal: minimize cache misses, make best use of data fetched into the
cache as part of a cache line

 For sorting:

• Use runs that are as large as L3 cache (a few megabytes) to avoid cache
misses during sorting of a run

• Then merge runs as usual in merge-sort

 For hash-join

• First create partitions such that build+probe partitions fit in memory

• Then subpartition further s.t. build subpartition+index fits in L3 cache

 Speeds up probe phase significantly by avoiding cache misses

 Lay out attributes of tuples to maximize cache usage

• Attributes that are often accessed together should be stored adjacent to
each other

 Use multiple threads for parallel query processing

• Cache misss leads to stall of one thread, but others can proceed

©Silberschatz, Korth and Sudarshan15.63Database System Concepts - 7th Edition

End of Chapter 15

	Chapter 15: Query Processing
	Chapter 15: Query Processing
	Basic Steps in Query Processing
	Basic Steps in Query Processing (Cont.)
	Basic Steps in Query Processing: Optimization
	Basic Steps: Optimization (Cont.)
	Measures of Query Cost
	Measures of Query Cost
	Measures of Query Cost (Cont.)
	Selection Operation
	Selections Using Indices
	Selections Using Indices
	Selections Involving Comparisons
	Implementation of Complex Selections
	Algorithms for Complex Selections
	Bitmap Index Scan
	Sorting
	Example: External Sorting Using Sort-Merge
	External Sort-Merge
	External Sort-Merge (Cont.)
	External Sort-Merge (Cont.)
	External Merge Sort (Cont.)
	External Merge Sort (Cont.)
	Join Operation
	Nested-Loop Join
	Nested-Loop Join (Cont.)
	Block Nested-Loop Join
	Indexed Nested-Loop Join
	Merge-Join
	Merge-Join (Cont.)
	Hash-Join
	Hash-Join (Cont.)
	Hash-Join Algorithm
	Hash-Join algorithm (Cont.)
	Handling of Overflows
	Cost of Hash-Join
	Hybrid Hash–Join
	Complex Joins
	Joins over Spatial Data
	Other Operations
	Other Operations : Aggregation
	Other Operations : Set Operations
	Other Operations : Set Operations
	Answering Keyword Queries
	Other Operations : Outer Join
	Other Operations : Outer Join
	Evaluation of Expressions
	Materialization
	Materialization (Cont.)
	Pipelining
	Pipelining (Cont.)
	Pipelining (Cont.)
	Blocking Operations
	Pipeline Stages
	Evaluation Algorithms for Pipelining
	Pipeling for Continuous-Stream Data
	Query Processing in Memory
	Cache Conscious Algorithms
	End of Chapter 15

