Chapter 15: Query Processing

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/

Chapter 15: Query Processing

= Qverview

= Measures of Query Cost
= Selection Operation

= Sorting

= Join Operation

= QOther Operations

= Evaluation of Expressions

Database System Concepts - 7t Edition 15.2 ©Silberschatz, Korth and Sudarshan

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

uer parser and relational-algebra
thocd) translator expression
query . . :
output evaluation engine execution plan

' o

Database System Concepts - 7t Edition 15.3 ©Silberschatz, Korth and Sudarshan

% Basic Steps in Query Processing (Cont.)

= Parsing and translation

translate the query into its internal form. This is then translated
into relational algebra.

Parser checks syntax, verifies relations
= Evaluation

The gquery-execution engine takes a query-evaluation plan,
executes that plan, and returns the answers to the query.

Database System Concepts - 7th Edition 154 ©Silberschatz, Korth and Sudarshan

Basic Steps in Query Processing:
Optimization

= Arelational algebra expression may have many equivalent
expressions

E.Q., Osalary<75000{ Isaary/(INStructor)) is equivalent to

1_[salary(cysalary<75000(inStrUCtO)

= Each relational algebra operation can be evaluated using one of
several different algorithms

Correspondingly, a relational-algebra expression can be evaluated
In many ways.
= Annotated expression specifying detailed evaluation strategy is called
an evaluation-plan. E.g.:
Use an index on salary to find instructors with salary < 75000,

Or perform complete relation scan and discard instructors with
salary > 75000

Database System Concepts - 7th Edition 155 ©Silberschatz, Korth and Sudarshan

Basic Steps: Optimization (Cont.)

= Query Optimization: Amongst all equivalent evaluation plans choose
the one with lowest cost.

Cost is estimated using statistical information from the
database catalog

e.g. number of tuples in each relation, size of tuples, etc.
= In this chapter we study
How to measure query costs
Algorithms for evaluating relational algebra operations

How to combine algorithms for individual operations in order to
evaluate a complete expression

= |n Chapter 16

We study how to optimize queries, that is, how to find an
evaluation plan with lowest estimated cost

Database System Concepts - 7th Edition 15.6 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost

= Many factors contribute to time cost
disk access, CPU, and network communication

= Cost can be measured based on
response time, i.e. total elapsed time for answering query, or
total resource consumption

= \We use total resource consumption as cost metric

Response time harder to estimate, and minimizing resource
consumption is a good idea in a shared database

= We ighore CPU costs for simplicity
Real systems do take CPU cost into account
Network costs must be considered for parallel systems

We describe how estimate the cost of each operation
We do not include cost to writing output to disk

Database System Concepts - 7th Edition 15.7 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost

= Disk cost can be estimated as:
Number of seeks * average-seek-cost
Number of blocks read * average-block-read-cost
Number of blocks written * average-block-write-cost

= For simplicity we just use the number of block transfers from disk
and the number of seeks as the cost measures

t; — time to transfer one block
Assuming for simplicity that write cost is same as read cost
ts — time for one seek
Cost for b block transfers plus S seeks
b*t;+S *tg
= tsand t; depend on where data is stored; with 4 KB blocks:
High end magnetic disk: ts = 4 msec and t; =0.1 msec
SSD: : tg = 20-90 microsec and t; = 2-10 microsec for 4KB

Database System Concepts - 7th Edition 15.8 ©Silberschatz, Korth and Sudarshan

Measures of Query Cost (Cont.)

= Required data may be buffer resident already, avoiding disk 1/0
But hard to take into account for cost estimation
= Several algorithms can reduce disk 10 by using extra buffer space

Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during
execution

= \Worst case estimates assume that no data is initially in buffer and
only the minimum amount of memory needed for the operation is
available

But more optimistic estimates are used in practice

Database System Concepts - 7th Edition 15.9 ©Silberschatz, Korth and Sudarshan

Selection Operation

= File scan

= Algorithm Al (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.

Cost estimate = b, block transfers + 1 seek

b, denotes number of blocks containing records from relation r
If selection is on a key attribute, can stop on finding record

cost = (b, /2) block transfers + 1 seek
Linear search can be applied regardless of

selection condition or

ordering of records in the file, or

availability of indices

= Note: binary search generally does not make sense since data is not
stored consecutively

except when there is an index available,
and binary search requires more seeks than index search

Database System Concepts - 7th Edition 15.10 ©Silberschatz, Korth and Sudarshan

Selections Using Indices

= |ndex scan — search algorithms that use an index
selection condition must be on search-key of index.

= A2 (clustering index, equality on key). Retrieve a single record that
satisfies the corresponding equality condition

Cost=(h,+ 1) * (t; + tg)

= A3 (clustering index, equality on nonkey) Retrieve multiple
records.

Records will be on consecutive blocks
= Let b = number of blocks containing matching records

Cost=h *(t; +ty) +tg+t; *b

Database System Concepts - 7th Edition 15.11 ©Silberschatz, Korth and Sudarshan

Selections Using Indices

= A4 (secondary index, equality on key/non-key).
Retrieve a single record if the search-key is a candidate key
= Cost=(h,+1)*(t; + tg)
Retrieve multiple records if search-key is not a candidate key
= each of n matching records may be on a different block
= Cost= (h;+n)*(t; +tg)
Can be very expensive!

Database System Concepts - 7t Edition 15.12 ©Silberschatz, Korth and Sudarshan

Selections Involving Comparisons

= Can implement selections of the form o, (r) or 6, . \(r) by using
a linear file scan,
or by using indices in the following ways:

= A5 (clustering index, comparison). (Relation is sorted on A)

For o, .(r) use index to find first tuple > v and scan relation
sequentially from there

For 6, (r) just scan relation sequentially till first tuple > v; do
not use index

= AG (clustering index, comparison).

For o, .(r) use index to find first index entry > v and scan
index sequentially from there, to find pointers to records.

For 6, (r) just scan leaf pages of index finding pointers to
records, till first entry > v

In either case, retrieve records that are pointed to
requires an I/O per record; Linear file scan may be cheaper!

Database System Concepts - 7th Edition 15.13 ©Silberschatz, Korth and Sudarshan

Implementation of Complex Selections

= Conjunction: GgiA goA. -« . gn(F)
= A7 (conjunctive selection using one index).

Select a combination of 6, and algorithms Al through A7 that
results in the least cost for G (r).

Test other conditions on tuple after fetching it into memory buffer.
= A8 (conjunctive selection using composite index).

Use appropriate composite (multiple-key) index if available.
= A9 (conjunctive selection by intersection of identifiers).

Requires indices with record pointers.

Use corresponding index for each condition, and take intersection
of all the obtained sets of record pointers.

Then fetch records from file

If some conditions do not have appropriate indices, apply test in
memory.

Database System Concepts - 7th Edition 15.14 ©Silberschatz, Korth and Sudarshan

'"J— Algorithms for Complex Selections

= Disjunction:Gy;V g5 V. . . g ().
= AI10 (disjunctive selection by union of identifiers).
Applicable if all conditions have available indices.

Otherwise use linear scan.

Use corresponding index for each condition, and take union of all
the obtained sets of record pointers.

Then fetch records from file
= Negation: oc_g4(r)
Use linear scan on file
If very few records satisfy —0, and an index is applicable to 0
Find satisfying records using index and fetch from file

Database System Concepts - 7th Edition 15.15 ©Silberschatz, Korth and Sudarshan

Bitmap Index Scan

= The bitmap index scan algorithm of PostgreSQL

Bridges gap between secondary index scan and linear file scan when
number of matching records is not known before execution

Bitmap with 1 bit per page in relation
Steps:

Index scan used to find record ids, and set bit of corresponding page
in bitmap

Linear file scan fetching only pages with bit set to 1
Performance

Similar to index scan when only a few bits are set

Similar to linear file scan when most bits are set

Never behaves very badly compared to best alternative

Database System Concepts - 7th Edition 15.16 ©Silberschatz, Korth and Sudarshan

Sorting

We may build an index on the relation, and then use the index to read

the relation in sorted order. May lead to one disk block access for
each tuple.

For relations that fit in memory, techniques like quicksort can be used.
For relations that don’ t fit in memory, external
sort-merge is a good choice.

Database System Concepts - 7th Edition 15.17 ©Silberschatz, Korth and Sudarshan

Example: External Sorting Using Sort-Merge

a |19 2|19

Z 19 g (24 c |33 a| 19

31 W T4 31 b |14

¢ (33 c |33
c 133 e |16

b |14 d| 7
e |16 g | 24

e |16 d| 21

r (16 1121 1d|31

d [21 —3 ol e |16
d| 7

m| 3 r |16 g | 24
d| 21

p| 2 m| 3

d|7 a |14 m| 3 pl 2

a 14 d|7 p| 2 r |16
5 r |16

initial sorted

relation runs runs output

create merge merge
runs pass—1 pass—2

Database System Concepts - 7th Edition 15.18 ©Silberschatz, Korth and Sudarshan

External Sort-Merge

Let M denote memory size (in pages).

1. Create sorted runs. Letibe O initially.

Repeatedly do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run R;; increment I.

Let the final value of i be N

2. Merge the runs (next slide).....

Database System Concepts - 7th Edition 15.19 ©Silberschatz, Korth and Sudarshan

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < M.

Use N blocks of memory to buffer input runs, and 1 block to buffer
output. Read the first block of each run into its buffer page

repeat
Select the first record (in sort order) among all buffer pages

Write the record to the output buffer. If the output buffer is full
write it to disk.

Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.

until all input buffer pages are empty:

Database System Concepts - 7th Edition 15.20 ©Silberschatz, Korth and Sudarshan

External Sort-Merge (Cont.)

e T"I

= |f N> M, several merge passes are required.

In each pass, contiguous groups of M - 1 runs are merged.

A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor.

E.g. If M=11, and there are 90 runs, one pass reduces the
number of runs to 9, each 10 times the size of the initial runs

Repeated passes are performed till all runs have been merged
Into one.

Database System Concepts - 7th Edition 15.21 ©Silberschatz, Korth and Sudarshan

External Merge Sort (Cont.)

= Cost analysis:

1 block per run leads to too many seeks during merge

Instead use b, buffer blocks per run
=» read/write b, blocks at a time

Can merge | M/b, -1 runs in one pass

Total number of merge passes required: | log | M/bb J_l(br/M)—l.

Block transfers for initial run creation as well as in each pass is 2b,
for final pass, we don’ t count write cost

we ignore final write cost for all operations since the output
of an operation may be sent to the parent operation without
being written to disk

Thus total number of block transfers for external sorting:
b, (21109 | wpps B,/ M)+ 1) [

Seeks: next slide

Database System Concepts - 7th Edition 15.22 ©Silberschatz, Korth and Sudarshan

External Merge Sort (Cont.)

= Cost of seeks

During run generation: one seek to read each run and one seek to
write each run

= 2[b,/M]
During the merge phase
* Need 2| b,/ bbT seeks for each merge pass
except the final one which does not require a write

= Total number of seeks:
2 |_br/ M+ |—br/ bb—| (2 I—logLM/bbJ—l(br/ M)—| -1)

Database System Concepts - 7t Edition 15.23 ©Silberschatz, Korth and Sudarshan

i r‘._-'

= Several different algorithms to implement joins

Join Operation

Nested-loop join
Block nested-loop join
Indexed nested-loop join
Merge-join
Hash-join
= Choice based on cost estimate
= Examples use the following information
Number of records of student. 5,000 takes: 10,000
Number of blocks of student:. 100 takes: 400

Database System Concepts - 7th Edition 15.24 ©Silberschatz, Korth and Sudarshan

Nested-Loop Join

= To compute the theta join r><lys
for each tuple t, in r do begin

for each tuple t; in s do begin
test pair (t,.t;) to see if they satisfy the join condition 6

If they do, add t, « t. to the result.
end
end

= r is called the outer relation and s the inner relation of the join.
= Requires no indices and can be used with any kind of join condition.
= Expensive since it examines every pair of tuples in the two relations.

Database System Concepts - 7th Edition 15.25 ©Silberschatz, Korth and Sudarshan

Nested-Loop Join (Cont.)

= |n the worst case, if there is enough memory only to hold one block
of each relation, the estimated cost is
n, * b, + b, block transfers, plus n, + b, seeks

= |f the smaller relation fits entirely in memory, use that as the inner
relation.

Reduces cost to b, + b block transfers and 2 seeks
= Assuming worst case memory availability cost estimate is
with student as outer relation:
5000 * 400 + 100 = 2,000,100 block transfers,
5000 + 100 = 5100 seeks
with takes as the outer relation
10000 = 100 + 400 = 1,000,400 block transfers and 10,400 seeks

= |f smaller relation (student) fits entirely in memory, the cost
estimate will be 500 block transfers.

= Block nested-loops algorithm (next slide) is preferable.

Database System Concepts - 7th Edition 15.26 ©Silberschatz, Korth and Sudarshan

Block Nested-Loop Join

= Variant of nested-loop join in which every block of inner relation is
paired with every block of outer relation.

for each block B, of r do begin
for each block B, of s do begin
for each tuple t, in B, do begin
for each tuple tg in B do begin
Check if (t.t;) satisfy the join condition
If they do, add t, « t; to the result.
end
end

end
end

Database System Concepts - 7th Edition 15.27 ©Silberschatz, Korth and Sudarshan

Indexed Nested-Loop Join

= |ndex lookups can replace file scans if
join is an equi-join or natural join and
an index is available on the inner relation’ s join attribute
Can construct an index just to compute a join.

= For each tuple t, in the outer relation r, use the index to look up tuples
In s that satisfy the join condition with tuple t,.

= Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

= Costofthejoin: b, (t;+1t5) +n, *cC

Where c is the cost of traversing index and fetching all matching s tuples
for one tuple or r

c can be estimated as cost of a single selection on s using the join
condition.

= |findices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

Database System Concepts - 7th Edition 15.29 ©Silberschatz, Korth and Sudarshan

Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the
join attributes).

2. Merge the sorted relations to join them

Join step is similar to the merge stage of the sort-merge
algorithm.

Main difference is handling of duplicate values in join attribute —
every pair with same value on join attribute must be matched

Detailed algorithm in book al a2 al a3

pr ps

—> a3 ——{a | A
b|1 b|G
d| 8 c |L
d |13 d|N
f m| B
m S
q

Database System Concepts - 7th Edition 15.31 ©Silberschatz, Korth and Sudarshan

Merge-Join (Cont.)

= Can be used only for equi-joins and natural joins

= Each block needs to be read only once (assuming all tuples for any
given value of the join attributes fit in memory

= Thus the cost of merge join is:
b, + b, block transfers +[b,/by|+[b,/b,| seeks

+ the cost of sorting if relations are unsorted.

= hybrid merge-join: If one relation is sorted, and the other has a
secondary B*-tree index on the join attribute

Merge the sorted relation with the leaf entries of the B*-tree .
Sort the result on the addresses of the unsorted relation’ s tuples

Scan the unsorted relation in physical address order and merge
with previous result, to replace addresses by the actual tuples

Sequential scan more efficient than random lookup

Database System Concepts - 7th Edition 15.32 ©Silberschatz, Korth and Sudarshan

Hash-Join

= Applicable for equi-joins and natural joins.
= A hash function h is used to partition tuples of both relations

= h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the
common attributes of r and s used in the natural join.

ro, 1, - - -, Iy denote partitions of r tuples

Each tuple t, e ris putin partition r; where i = h(t, [JoinAttrs]).
ro. I1- . ., Iy denotes partitions of s tuples

Each tuple tg s is put in partition s;, where i = h(tg [JoinAttrs]).

= Note: In book, Figure 12.10r; is denoted as H,; s;is denoted as Hg;
and

nis denoted as ny,

Database System Concepts - 7th Edition 15.33 ©Silberschatz, Korth and Sudarshan

Hash-Join (Cont.)

VU I RN
>< \/-
1
. 2)
3
4

=

4

partitions partitions
of r of s

Database System Concepts - 7t Edition 15.34 ©Silberschatz, Korth and Sudarshan

Hash-Join Algorithm

The hash-join of r and s is computed as follows.

1. Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.
3. Foreachi:

(a) Load s; into memory and build an in-memory hash index
on it using the join attribute. This hash index uses a
different hash function than the earlier one h.

(b) Read the tuples in r; from the disk one by one. For each
tuple t, locate each matching tuple t, in s; using the in-
memory hash index. Output the concatenation of their
attributes.

Relation s is called the build input and r is called the probe input.

Database System Concepts - 7th Edition 15.36 ©Silberschatz, Korth and Sudarshan

Hash-Join algorithm (Cont.)

= The value n and the hash function h is chosen such that each s;
should fit in memory.

Typically n is chosen as|bg/M|* f where fis a “fudge factor”,
typically around 1.2

The probe relation partitions s; need not fit in memory

= Recursive partitioning required if number of partitions n is greater
than number of pages M of memory.

iInstead of partitioning n ways, use M — 1 partitions for s
Further partition the M — 1 partitions using a different hash function
Use same partitioning method on r

Rarely required: e.g., with block size of 4 KB, recursive partitioning
not needed for relations of < 1GB with memory size of 2MB, or
relations of < 36 GB with memory of 12 MB

Database System Concepts - 7th Edition 15.37 ©Silberschatz, Korth and Sudarshan

Handling of Overflows

= Partitioning is said to be skewed if some partitions have significantly
more tuples than some others

= Hash-table overflow occurs in partition s; if s; does not fit in memory.
Reasons could be

Many tuples in s with same value for join attributes
Bad hash function
= Qverflow resolution can be done in build phase
Partition s; is further partitioned using different hash function.
Partition r; must be similarly partitioned.

= Qverflow avoidance performs partitioning carefully to avoid
overflows during build phase

E.g. partition build relation into many partitions, then combine them

= Both approaches fail with large numbers of duplicates
Fallback option: use block nested loops join on overflowed partitions

Database System Concepts - 7th Edition 15.38 ©Silberschatz, Korth and Sudarshan

Cost of Hash-Join

= |f recursive partitioning is not required: cost of hash join is
3(b, + b,) +4 * n,, block transfers +

2([b,/b, 1+ b/ by,]) seeks
= |f recursive partitioning required:

number of passes required for partitioning build relation s to less
than M blocks per partition is [10g; 11 (0/M) |

best to choose the smaller relation as the build relation.

Total cost estimate is:
2(b, + b)) [10g s L1(D/M) 1+ b, + by block transfers +

2(Ib,/ b, 1+ b/ by) [10g s 1 (0/M) T seeks

= |f the entire build input can be kept in main memory no partitioning is
required

Cost estimate goes down to b, + b..

Database System Concepts - 7th Edition 15.39 ©Silberschatz, Korth and Sudarshan

Hybrid Hash—-Join

= Useful when memory sized are relatively large, and the build input is
bigger than memory.

= Main feature of hybrid hash join:
Keep the first partition of the build relation in memory.

= E.g. With memory size of 25 blocks, instructor can be partitioned into
five partitions, each of size 20 blocks.

Division of memory:
The first partition occupies 20 blocks of memory

1 block is used for input, and 1 block each for buffering the other 4
partitions.

= teaches is similarly partitioned into five partitions each of size 80
the first is used right away for probing, instead of being written out

= Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for
hybrid hash join, instead of 1500 with plain hash-join.

Hybrid hash-join most useful if M >> \/E

Database System Concepts - 7th Edition 15.41 ©Silberschatz, Korth and Sudarshan

Complex Joins

= Join with a conjunctive condition:
> 9100 24..A0NS
Either use nested loops/block nested loops, or
Compute the result of one of the simpler joins r B ;S

final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

= Join with a disjunctive condition

r 01 v 0o v.. vens
Either use nested loops/block nested loops, or

Compute as the union of the records in individual joins r D 0; S
(rl><lels)u(r[><1925)u...u(rmens)

Database System Concepts - 7th Edition 15.42 ©Silberschatz, Korth and Sudarshan

Joins over Spatial Data

= No simple sort order for spatial joins

= |Indexed nested loops join with spatial indices
R-trees, quad-trees, k-d-B-trees

Database System Concepts - 7t Edition 15.43 ©Silberschatz, Korth and Sudarshan

Other Operations

= Duplicate elimination can be implemented via hashing or sorting.

On sorting duplicates will come adjacent to each other, and all but
one set of duplicates can be deleted.

Optimization: duplicates can be deleted during run generation as
well as at intermediate merge steps in external sort-merge.

Hashing is similar — duplicates will come into the same bucket.
= Projection:

perform projection on each tuple

followed by duplicate elimination.

Database System Concepts - 7th Edition 15.44 ©Silberschatz, Korth and Sudarshan

Other Operations : Aggregation

= Aggregation can be implemented in a manner similar to duplicate
elimination.

Sorting or hashing can be used to bring tuples in the same group
together, and then the aggregate functions can be applied on each

group.
Optimization: partial aggregation

combine tuples in the same group during run generation and
Intermediate merges, by computing partial aggregate values

For count, min, max, sum:. keep aggregate values on tuples
found so far in the group.

When combining partial aggregate for count, add up the
partial aggregates

For avg, keep sum and count, and divide sum by count at the
end

Database System Concepts - 7th Edition 15.45 ©Silberschatz, Korth and Sudarshan

Other Operations : Set Operations

Set operations (U, N and —): can either use variant of merge-join
after sorting, or variant of hash-join.

= E.g., Set operations using hashing:
Partition both relations using the same hash function
Process each partition i as follows.

Using a different hashing function, build an in-memory hash
index on ;.

Process s; as follows
rvs:

1. Add tuples in s; to the hash index if they are not already
In it.

2. At end of s; add the tuples in the hash index to the
result.

Database System Concepts - 7th Edition 15.46 ©Silberschatz, Korth and Sudarshan

'"J— Other Operations : Set Operations

= E.g., Set operations using hashing:
as before partition r and s,
as before, process each partition i as follows

1. build a hash index on r;
2. Process s; as follows
rNs:

1. output tuples in s; to the result if they are already there
In the hash index

r—S.

1. for each tuple in s;, if it is there in the hash index, delete
it from the index.

2. Atend of s; add remaining tuples in the hash index to
the result.

Database System Concepts - 7th Edition 15.47 ©Silberschatz, Korth and Sudarshan

Answering Keyword Queries

o [& 7=
=
_'h.;
o e

= Indices mapping keywords to documents

For each keyword, store sorted list of document IDs that contain the
keyword

= Commonly referred to as a inverted index

= E.g.: database: d1, d4, d11, d45, d77, d123
distributed: d4, d8, d11, d56, d77, d121, d333

To answer a query with several keywords, compute intersection of lists
corresponding to those keywords

= To support ranking, inverted lists store extra information
“Term frequency” of the keyword in the document
“Inverse document frequency” of the keyword
Page rank of the document/web page

Database System Concepts - 7th Edition 15.48 ©Silberschatz, Korth and Sudarshan

Other Operations : OQuter Join

= (Quter join can be computed either as
A join followed by addition of null-padded non-participating tuples.
by modifying the join algorithms.

= Modifying merge join to compute r < s
In r > S, non participating tuples are those in r — Ix(r < s)
Modify merge-join to compute r < S:

During merging, for every tuple t, from r that do not match any
tuple in s, output t, padded with nulls.

Right outer-join and full outer-join can be computed similarly.

Database System Concepts - 7th Edition 15.49 ©Silberschatz, Korth and Sudarshan

Other Operations : Outer Join

= Modifying hash join to compute r > s

If ris probe relation, output non-matching r tuples padded with
nulls

If r is build relation, when probing keep track of which
r tuples matched s tuples. At end of s; output
non-matched r tuples padded with nulls

Database System Concepts - 7t Edition 15.50 ©Silberschatz, Korth and Sudarshan

Evaluation of Expressions

- [& 7=
=
_'h.;
. e

= So far: we have seen algorithms for individual operations

= Alternatives for evaluating an entire expression tree

Materialization: generate results of an expression whose inputs
are relations or are already computed, materialize (store) it on
disk. Repeat.

Pipelining: pass on tuples to parent operations even as an
operation is being executed

= We study above alternatives in more detalil

Database System Concepts - 7th Edition 15.51 ©Silberschatz, Korth and Sudarshan

Materialization

= Materialized evaluation: evaluate one operation at a time, starting at
the lowest-level. Use intermediate results materialized into temporary
relations to evaluate next-level operations.

= E.g., Infigure below, compute and store

Gbuilding ="Watson" (departrnent)
then compute the store its join with instructor, and finally compute the
projection on name.

Database System Concepts - 7th Edition

I name

G/N\

instructor

building = “Watson”

department
15.52

©Silberschatz, Korth and Sudarshan

Materialization (Cont.)

= Materialized evaluation is always applicable
= Cost of writing results to disk and reading them back can be quite
high
Our cost formulas for operations ignore cost of writing results to
disk, so

Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

= Double buffering: use two output buffers for each operation, when
one is full write it to disk while the other is getting filled

Allows overlap of disk writes with computation and reduces
execution time

Database System Concepts - 7th Edition 15.53 ©Silberschatz, Korth and Sudarshan

Pipelining

= Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next.

= E.g., in previous expression tree, don’ t store result of

O puilding="wason® (AEPAr tment)

instead, pass tuples directly to the join.. Similarly, don’ t store
result of join, pass tuples directly to projection.

= Much cheaper than materialization: no need to store a temporary
relation to disk.

= Pipelining may not always be possible — e.g., sort, hash-join.

= For pipelining to be effective, use evaluation algorithms that generate
output tuples even as tuples are received for inputs to the operation.

= Pipelines can be executed in two ways: demand driven and
producer driven

Database System Concepts - 7th Edition 15.54 ©Silberschatz, Korth and Sudarshan

Pipelining (Cont.)

= Indemand driven or lazy evaluation

system repeatedly requests next tuple from top level operation

Each operation requests next tuple from children operations as required,
in order to output its next tuple

In between calls, operation has to maintain “state” so it knows what to
return next

= In producer-driven or eager pipelining

Operators produce tuples eagerly and pass them up to their parents

Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

System schedules operations that have space in output buffer and can
process more input tuples

= Alternative name: pull and push models of pipelining

Database System Concepts - 7th Edition 15.55 ©Silberschatz, Korth and Sudarshan

Pipelining (Cont.)

= Implementation of demand-driven pipelining

Each operation is implemented as an iterator implementing the
following operations

open()
E.g. file scan: initialize file scan
= state: pointer to beginning of file

E.g.merge join: sort relations;
= state: pointers to beginning of sorted relations

next()
E.g. for file scan: Output next tuple, and advance and store
file pointer
E.g. for merge join: continue with merge from earlier state
trllléxt output tuple is found. Save pointers as iterator state.
close()

Database System Concepts - 7th Edition 15.56 ©Silberschatz, Korth and Sudarshan

Blocking Operations

= Blocking operations: cannot generate any output until all input is
consumed

E.g. sorting, aggregation, ...
= But can often consume inputs from a pipeline, or produce outputs to a
pipeline
= Key idea: blocking operations often have two suboperations
E.g. for sort: run generation and merge
For hash join: partitioning and build-probe

= Treat them as separate operations

(a) Logical Query (b) Pipelined Plan
Database System Concepts - 7t Edition 15.57 ©Silberschatz, Korth and Sudarshan

Pipeline Stages

= Pipeline stages:
All operations in a stage run concurrently
A stage can start only after preceding stages have completed execution

Database System Concepts - 7t Edition 15.58 ©Silberschatz, Korth and Sudarshan

Evaluation Algorithms for Pipelining

= Some algorithms are not able to output results even as they get input
tuples

E.g. merge join, or hash join
intermediate results written to disk and then read back
= Algorithm variants to generate (at least some) results on the fly, as
Input tuples are read Iin

E.g. hybrid hash join generates output tuples even as probe relation
tuples in the in-memory partition (partition 0) are read in

Double-pipelined join technique: Hybrid hash join, modified to buffer
partition O tuples of both relations in-memory, reading them as they
become available, and output results of any matches between partition O
tuples

When a new rg tuple is found, match it with existing s tuples, output
matches, and save it in ry

Symmetrically for s tuples

Database System Concepts - 7th Edition 15.59 ©Silberschatz, Korth and Sudarshan

Pipeling for Continuous-Stream Data

Data streams
Data entering database in a continuous manner
E.g. Sensor networks, user clicks, ...
= Continuous gqueries
Results get updated as streaming data enters the database
Aggregation on windows is often used
= E.g. tumbling windows divide time into units, e.g. hours, minutes

Need to use pipelined processing algorithms
Punctuations used to infer when all data for a window has been received

Database System Concepts - 7t Edition 15.60 ©Silberschatz, Korth and Sudarshan

Query Processing in Memory

e T"I

= Query compilation to machine code

Overheads of interpretation
E.g. repeatedly finding attribute location within tuple, from metadata
Overhead of expression evaluation

Compilation can avoid many such overheads and speed up query
processing

Often via generation of Java byte code / LLVM, with just-in-time (JIT)
compilation

= Column-oriented storage
Allows vector operations (in conjunction with compilation)

= Cache conscious algorithms

Database System Concepts - 7th Edition 15.61 ©Silberschatz, Korth and Sudarshan

Cache Conscious Algorithms

= Goal: minimize cache misses, make best use of data fetched into the
cache as part of a cache line

= For sorting:

Use runs that are as large as L3 cache (a few megabytes) to avoid cache
misses during sorting of a run

Then merge runs as usual in merge-sort
= For hash-join
First create partitions such that build+probe partitions fit in memory
Then subpartition further s.t. build subpartition+index fits in L3 cache
Speeds up probe phase significantly by avoiding cache misses
= Lay out attributes of tuples to maximize cache usage

Attributes that are often accessed together should be stored adjacent to
each other

= Use multiple threads for parallel query processing
Cache misss leads to stall of one thread, but others can proceed

Database System Concepts - 7th Edition 15.62 ©Silberschatz, Korth and Sudarshan

End of Chapter 15

Database System Concepts - 7t Edition 15.63 ©Silberschatz, Korth and Sudarshan

	Chapter 15: Query Processing
	Chapter 15: Query Processing
	Basic Steps in Query Processing
	Basic Steps in Query Processing (Cont.)
	Basic Steps in Query Processing: Optimization
	Basic Steps: Optimization (Cont.)
	Measures of Query Cost
	Measures of Query Cost
	Measures of Query Cost (Cont.)
	Selection Operation
	Selections Using Indices
	Selections Using Indices
	Selections Involving Comparisons
	Implementation of Complex Selections
	Algorithms for Complex Selections
	Bitmap Index Scan
	Sorting
	Example: External Sorting Using Sort-Merge
	External Sort-Merge
	External Sort-Merge (Cont.)
	External Sort-Merge (Cont.)
	External Merge Sort (Cont.)
	External Merge Sort (Cont.)
	Join Operation
	Nested-Loop Join
	Nested-Loop Join (Cont.)
	Block Nested-Loop Join
	Indexed Nested-Loop Join
	Merge-Join
	Merge-Join (Cont.)
	Hash-Join
	Hash-Join (Cont.)
	Hash-Join Algorithm
	Hash-Join algorithm (Cont.)
	Handling of Overflows
	Cost of Hash-Join
	Hybrid Hash–Join
	Complex Joins
	Joins over Spatial Data
	Other Operations
	Other Operations : Aggregation
	Other Operations : Set Operations
	Other Operations : Set Operations
	Answering Keyword Queries
	Other Operations : Outer Join
	Other Operations : Outer Join
	Evaluation of Expressions
	Materialization
	Materialization (Cont.)
	Pipelining
	Pipelining (Cont.)
	Pipelining (Cont.)
	Blocking Operations
	Pipeline Stages
	Evaluation Algorithms for Pipelining
	Pipeling for Continuous-Stream Data
	Query Processing in Memory
	Cache Conscious Algorithms
	End of Chapter 15

