
Relational Databases

Integrity Constraints:

Relational:

• A relation is a named, two-dimensional table of data

• Every relation has a unique name, and consists of a set of named columns and an

arbitrary number of unnamed rows

• An attribute is a named column of a relation, and every attribute value is atomic.

• Every row is unique, and corresponds to a record that contains data attributes for a

single entity.

• The order of the columns is irrelevant.

• The order of the rows is irrelevant.

Relational Structure:

• We can express the structure of a relation by a Tuple, a shorthand notation

• The name of the relation is followed (in parentheses) by the names of the attributes of

that relation, e.g.:

• EMPLOYEE1(Emp_ID, Name, Dept, Salary)

Relational Keys:

• Must be able to store and retrieve a row of data in a relation, based on the data values

stored in that row

• A primary key is an attribute (or combination of attributes) that uniquely identifies each

row in a relation.

• The primary key in the EMPLOYEE1 relation is EMP_ID (this is why it is underlined)

as in:

• EMPLOYEE1(Emp_ID, Name, Dept, Salary)

Composite and Foreign Keys:

• A Composite key is a primary key that consists of more than one attribute.

• e.g., the primary key for the relation DEPENDENT would probably consist of the

combination Emp-ID and Dependent_Name

• A Foreign key is used when we must represent the relationship between two tables and

relations

• A foreign key is an attribute (possibly composite) in a relation of a database that serves

as the primary key of another relation in the same database

GulTion

Foreign Keys:

• Consider the following relations:

• EMPLOYEE1(Emp_ID, Name, Dept_Name,Salary)

• DEPARTMENT(Dept_Name, Location, Fax)

• The attribute Dept_Name is a foreign key in EMPLOYEE1. It allows the user to

associate any employee wit the department they are assigned to.

• Some authors show the fact that an attribute is a foreign key by using a dashed

underline.

Integrity Constraints:

• These help maintain the accuracy and integrity of the data in the database

• Domain Constraints - a domain is the set of allowable values for an attribute.

• Domain definition usually consists of 4 components: domain name, meaning, data type,

size (or length), allowable values/allowable range (if applicable)

• Entity Integrity ensures that every relation has a primary key, and that all the data values

for that primary key are valid. No primary key attribute may be null.

Entity Integrity:

• In some cases a particular attribute cannot be assigned a data value, e.g. when there is

no applicable data value or the value is not known when other values are assigned

• In these situations we can assign a null value to an attribute (null signifies absence of a

value)

• But still primary key values cannot be null – the entity integrity rule states that “no

primary key attribute (or component of a primary key attribute) may be null

Referential Integrity:

• A Referential Integrity constraint is a rule that maintains consistency among the rows

of two relations – it states that any foreign key value (on the relation of the many side)

MUST match a primary key value in the relation of the one side. (Or the foreign key

can be null)

• In the following Fig., an arrow has been drawn from each foreign key to its associated

primary key. A referential integrity constraint must be defined for each of these arrows

in the schema

• How do you know if a foreign key is allowed to be null?

• In this example, as each ORDER must have a CUSTOMER the foreign key of

Customer_ID cannot be null on the ORDER relation

• Whether a foreign key can be null must be specified as a property of the foreign key

attribute when the database is designed

• Whether foreign key can be null can be complex to model, e.g. what happens to order

data if we choose to delete a customer who has submitted orders? We may want to see

sales even though we do not care about the customer anymore. 3 choices are possible:

• Restrict – don’t allow delete of “parent” side if related rows exist in “dependent” side,

i.e. prohibit deletion of the customer until all associated orders are first deleted

GulTion

Solution:

Cascade – automatically delete “dependent” side rows that correspond with the “parent” side

row to be deleted, i.e. delete the associated orders, in which case we lose not only the customer

but also the sales history

Set-to-Null – set the foreign key in the dependent side to null if deleting from the parent side

- an exception that says although an order must have a customer_ID value when the order is

created, Customer_ID can become null later if the associated customer is deleted [not allowed

for weak entities]

Example:

Referential integrity constraints (Pine Valley Furniture)

By

Prof. Ramesh D Hari Nandan

Faculty of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines)

drramesh@iitism.ac.in

Referential integrity

constraints are drawn via

arrows from dependent

to parent table

mailto:drramesh@iitism.ac.in
GulTion

Relational Database Design

Pitfalls in Relational Database Design

Functional Dependencies

Multivalued Dependencies and Fourth Normal Form

Pitfalls in Relational Database Design

Relational database design requires that we find a “good” collection

of relation schemas. A bad design may lead to

Repetition of Information.

Inability to represent certain information.

Design Goals:

Avoid redundant data

Ensure that relationships among attributes are represented

Facilitate the checking of updates for violation of database

integrity constraints.

Example

Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

Redundancy:

Data for branch-name, branch-city, assets are repeated for each loan that a branch makes

Wastes space

Complicates updating, introducing possibility of inconsistency of assets value

Null values

Cannot store information about a branch if no loans exist

Can use null values, but they are difficult to handle.

Decomposition

Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,

branch-name, amount)

All attributes of an original schema (R) must appear in the

decomposition (R1, R2):

R = R1  R2

Lossless-join decomposition.

For all possible relations r on schema R

r = R1 (r) R2 (r)

Example of Non Lossless-Join Decomposition

Decomposition of R = (A, B)

R1 = (A) R2 = (B)

A B







1

2

1

A





B

1

2

r
A(r) B(r)

A (r) B (r)
A B









1

2

1

2

Goal — Devise a Theory for the Following

Decide whether a particular relation R is in “good” form.

In the case that a relation R is not in “good” form, decompose it into a set of

relations {R1, R2, ..., Rn} such that

each relation is in good form

the decomposition is a lossless-join decomposition

Our theory is based on:

functional dependencies

multivalued dependencies

Functional Dependencies

Constraints on the set of legal relations.

Require that the value for a certain set of attributes determines uniquely the

value for another set of attributes.

A functional dependency is a generalization of the notion of a key.

Functional Dependencies (Cont.)

Let R be a relation schema

   R and   R

The functional dependency

  → 
holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2

of r agree on the attributes , they also agree on the attributes . That is,

 t1[] = t2 []  t1[] = t2 []

Example: Consider r(A,B) with the following instance of r.

On this instance, A → B does NOT hold, but B → A does hold.

1 4

1 5

3 7

Functional Dependencies (Cont.)

K is a superkey for relation schema R if and only if K → R

K is a candidate key for R if and only if

K → R, and

for no   K,  → R

Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

 Loan-info-schema = (customer-name, loan-number,
 branch-name, amount).

 We expect this set of functional dependencies to hold:

 loan-number → amount
 loan-number → branch-name

 but would not expect the following to hold:

 loan-number → customer-name

Use of Functional Dependencies

We use functional dependencies to:

test relations to see if they are legal under a given set of functional

dependencies.

 If a relation r is legal under a set F of functional dependencies, we say that

r satisfies F.

specify constraints on the set of legal relations

We say that F holds on R if all legal relations on R satisfy the set of

functional dependencies F.

Note: A specific instance of a relation schema may satisfy a functional dependency

even if the functional dependency does not hold on all legal instances.

For example, a specific instance of Loan-schema may, by chance, satisfy

 loan-number → customer-name.

Functional Dependencies (Cont.)

A functional dependency is trivial if it is satisfied by all instances of a relation

E.g.

 customer-name, loan-number → customer-name

 customer-name → customer-name

In general,  →  is trivial if   

Closure of a Set of Functional

Dependencies

Given a set F set of functional dependencies, there are certain other functional

dependencies that are logically implied by F.

E.g. If A → B and B → C, then we can infer that A → C

The set of all functional dependencies logically implied by F is the closure of F.

We denote the closure of F by F+.

We can find all of F+ by applying Armstrong’s Axioms:

if   , then  →  (reflexivity)

if  → , then   →   (augmentation)

if  → , and  → , then  →  (transitivity)

These rules are

sound (generate only functional dependencies that actually hold) and

complete (generate all functional dependencies that hold).

Example

R = (A, B, C, G, H, I)
F = { A → B
 A → C
 CG → H
 CG → I
 B → H}

some members of F+

A → H

by transitivity from A → B and B → H

AG → I

by augmenting A → C with G, to get AG → CG
 and then transitivity with CG → I

CG → HI

from CG → H and CG → I : “union rule” can be inferred from

– definition of functional dependencies, or

– Augmentation of CG → I to infer CG → CGI, augmentation of
CG → H to infer CGI → HI, and then transitivity

Procedure for Computing F+

To compute the closure of a set of functional dependencies F:

 F+ = F

repeat

 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f

 add the resulting functional dependencies to F+

 for each pair of functional dependencies f1and f2 in F+

 if f1 and f2 can be combined using transitivity

 then add the resulting functional dependency to F+

until F+ does not change any further

NOTE: We will see an alternative procedure for this task later

Closure of Functional Dependencies

(Cont.)

We can further simplify manual computation of F+ by using the following

additional rules.

If  →  holds and  →  holds, then  →   holds (union)

If  →   holds, then  →  holds and  →  holds (decomposition)

If  →  holds and   →  holds, then   →  holds

(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

Closure of Attribute Sets

Given a set of attributes  define the closure of  under F (denoted by +) as the

set of attributes that are functionally determined by  under F:

  →  is in F+    +

Algorithm to compute +, the closure of  under F

 result := ;

 while (changes to result) do

 for each  →  in F do

 begin

 if   result then result := result  

 end

Example of Attribute Set Closure

R = (A, B, C, G, H, I)

F = {A → B
 A → C
 CG → H
 CG → I
 B → H}

(AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG  AGBC)

4. result = ABCGHI (CG → I and CG  AGBCH)

Is AG a candidate key?

1. Is AG a super key?

1. Does AG → R? == Is (AG)+  R

2. Is any subset of AG a superkey?

1. Does A → R? == Is (A)+  R

2. Does G → R? == Is (G)+  R

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

Testing for superkey:

To test if  is a superkey, we compute +, and check if + contains all

attributes of R.

Testing functional dependencies

To check if a functional dependency  →  holds (or, in other words, is in

F+), just check if   +.

That is, we compute + by using attribute closure, and then check if it

contains .

Is a simple and cheap test, and very useful

Computing closure of F

For each   R, we find the closure +, and for each S  +, we output a

functional dependency  → S.

Canonical Cover

Sets of functional dependencies may have redundant dependencies that can be

inferred from the others

Eg: A → C is redundant in: {A → B, B → C, A → C}

Parts of a functional dependency may be redundant

E.g. on RHS: {A → B, B → C, A → CD} can be simplified to

 {A → B, B → C, A → D}

E.g. on LHS: {A → B, B → C, AC → D} can be simplified to

 {A → B, B → C, A → D}

Intuitively, a canonical cover of F is a “minimal” set of functional dependencies

equivalent to F, having no redundant dependencies or redundant parts of

dependencies

Design Goals

Goal for a relational database design is:

BCNF.

Lossless join.

Dependency preservation.

If we cannot achieve this, we accept one of

Lack of dependency preservation

Redundancy due to use of 3NF

Interestingly, SQL does not provide a direct way of specifying functional

dependencies other than superkeys.

 Can specify FDs using assertions, but they are expensive to test

Even if we had a dependency preserving decomposition, using SQL we would not

be able to efficiently test a functional dependency whose left hand side is not a key.

Testing for FDs Across Relations

If decomposition is not dependency preserving, we can have an extra materialized view for
each dependency  → in Fc that is not preserved in the decomposition

The materialized view is defined as a projection on   of the join of the relations in the
decomposition

Many newer database systems support materialized views and database system maintains the
view when the relations are updated.

No extra coding effort for programmer.

The functional dependency  →  is expressed by declaring  as a candidate key on the
materialized view.

Checking for candidate key cheaper than checking  → 

BUT:

Space overhead: for storing the materialized view

Time overhead: Need to keep materialized view up to date when
relations are updated

Database system may not support key declarations on
materialized views

Multivalued Dependencies

There are database schemas in BCNF that do not seem to be sufficiently

normalized

Consider a database

 classes(course, teacher, book)

such that (c,t,b)  classes means that t is qualified to teach c, and b is a required

textbook for c

The database is supposed to list for each course the set of teachers any one of

which can be the course’s instructor, and the set of books, all of which are

required for the course (no matter who teaches it).

There are no non-trivial functional dependencies and therefore the relation is in

BCNF

Insertion anomalies – i.e., if Sara is a new teacher that can teach database, two

tuples need to be inserted

 (database, Sara, DB Concepts)

 (database, Sara, Ullman)

course teacher book

database

database

database

database

database

database

operating systems

operating systems

operating systems

operating systems

Avi

Avi

Hank

Hank

Sudarshan

Sudarshan

Avi

Avi

Jim

Jim

DB Concepts

Ullman

DB Concepts

Ullman

DB Concepts

Ullman

OS Concepts

Shaw

OS Concepts

Shaw

classes

Multivalued Dependencies (Cont.)

Therefore, it is better to decompose classes into:

course teacher

database

database

database

operating systems

operating systems

Avi

Hank

Sudarshan

Avi

Jim

teaches

course book

database

database

operating systems

operating systems

DB Concepts

Ullman

OS Concepts

Shaw

text

We shall see that these two relations are in Fourth Normal

Form (4NF)

Multivalued Dependencies (Cont.)

Multivalued Dependencies (MVDs)

Let R be a relation schema and let   R and   R. The multivalued

dependency

  →→ 

 holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r

such that t1[] = t2 [], there exist tuples t3 and t4 in r such that:

 t1[] = t2 [] = t3 [] = t4 []

 t3[] = t1 []

 t3[R – ] = t2[R – ]

 t4 [] = t2[]

 t4[R – ] = t1[R – ]

MVD (Cont.)

Tabular representation of  →→ 

Example

Let R be a relation schema with a set of attributes that are partitioned into 3

nonempty subsets.

 Y, Z, W

We say that Y →→ Z (Y multidetermines Z)

if and only if for all possible relations r(R)

 < y1, z1, w1 >  r and < y2, z2, w2 >  r

 then

 < y1, z1, w2 >  r and < y2, z2, w1 >  r

Note that since the behavior of Z and W are identical it follows that Y →→ Z if Y

→→ W

Example (Cont.)

In our example:

 course →→ teacher
 course →→ book

The above formal definition is supposed to formalize the notion that given a
particular value of Y (course) it has associated with it a set of values of Z
(teacher) and a set of values of W (book), and these two sets are in some
sense independent of each other.

Note:

If Y → Z then Y →→ Z

Indeed we have (in above notation) Z1 = Z2

The claim follows.

Use of Multivalued Dependencies

We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set

of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus

concern ourselves only with relations that satisfy a given set of

functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we can

construct a relations r that does satisfy the multivalued dependency by

adding tuples to r.

Theory of MVDs

From the definition of multivalued dependency, we can derive the following rule:

If  → , then  →→ 

 That is, every functional dependency is also a multivalued dependency

The closure D+ of D is the set of all functional and multivalued dependencies

logically implied by D.

We can compute D+ from D, using the formal definitions of functional

dependencies and multivalued dependencies.

We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice

For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules (see Appendix C).

Fourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and

multivalued dependencies if for all multivalued dependencies in D+ of the form 

→→ , where   R and   R, at least one of the following hold:

 →→  is trivial (i.e.,    or    = R)

 is a superkey for schema R

If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

The restriction of D to Ri is the set Di consisting of

All functional dependencies in D+ that include only attributes of Ri

All multivalued dependencies of the form

  →→ (  Ri)

 where   Ri and  →→  is in D+

	Slide 1: Relational Database Design
	Slide 2: Pitfalls in Relational Database Design
	Slide 3: Example
	Slide 4: Decomposition
	Slide 5: Example of Non Lossless-Join Decomposition
	Slide 6: Goal — Devise a Theory for the Following
	Slide 7: Functional Dependencies
	Slide 8: Functional Dependencies (Cont.)
	Slide 9: Functional Dependencies (Cont.)
	Slide 10: Use of Functional Dependencies
	Slide 11: Functional Dependencies (Cont.)
	Slide 12: Closure of a Set of Functional Dependencies
	Slide 13: Example
	Slide 14: Procedure for Computing F+
	Slide 15: Closure of Functional Dependencies (Cont.)
	Slide 16: Closure of Attribute Sets
	Slide 17: Example of Attribute Set Closure
	Slide 18: Uses of Attribute Closure
	Slide 19: Canonical Cover
	Slide 20: Design Goals
	Slide 21: Testing for FDs Across Relations
	Slide 22: Multivalued Dependencies
	Slide 23: Multivalued Dependencies (Cont.)
	Slide 24: Multivalued Dependencies (Cont.)
	Slide 25: Multivalued Dependencies (MVDs)
	Slide 26: MVD (Cont.)
	Slide 27: Example
	Slide 28: Example (Cont.)
	Slide 29: Use of Multivalued Dependencies
	Slide 30: Theory of MVDs
	Slide 31: Fourth Normal Form
	Slide 32: Restriction of Multivalued Dependencies

