Relational Databases

Integrity Constraints:

Relational:

A relation is a named, two-dimensional table of data

Every relation has a unique name, and consists of a set of nhamed columns and an
arbitrary number of unnamed rows

An attribute is a named column of a relation, and every attribute value is atomic.

Every row is unique, and corresponds to a record that contains data attributes for a
single entity.

The order of the columns is irrelevant.

The order of the rows is irrelevant.

Relational Structure:

We can express the structure of a relation by a Tuple, a shorthand notation

The name of the relation is followed (in parentheses) by the names of the attributes of
that relation, e.g.:

EMPLOYEEL1(Emp_ID, Name, Dept, Salary)

Relational Keys:

Must be able to store and retrieve a row of data in a relation, based on the data values
stored in that row

A primary key is an attribute (or combination of attributes) that uniquely identifies each
row in a relation.

The primary key in the EMPLOYEEL relation is EMP_ID (this is why it is underlined)
as in:

EMPLOYEEL1(Emp_ID, Name, Dept, Salary)

Composite and Foreign Keys:

A Composite key is a primary key that consists of more than one attribute.

e.g., the primary key for the relation DEPENDENT would probably consist of the
combination Emp-ID and Dependent_Name

A Foreign key is used when we must represent the relationship between two tables and
relations

A foreign key is an attribute (possibly composite) in a relation of a database that serves
as the primary key of another relation in the same database

GulTion

Foreign Keys:

Consider the following relations:

EMPLOYEEL1(Emp_ID, Name, Dept_Name,Salary)

DEPARTMENT (Dept_Name, Location, Fax)

The attribute Dept_Name is a foreign key in EMPLOYEEL1. It allows the user to
associate any employee wit the department they are assigned to.

Some authors show the fact that an attribute is a foreign key by using a dashed
underline.

Integrity Constraints:

These help maintain the accuracy and integrity of the data in the database
Domain Constraints - a domain is the set of allowable values for an attribute.

Domain definition usually consists of 4 components: domain name, meaning, data type,
size (or length), allowable values/allowable range (if applicable)

Entity Integrity ensures that every relation has a primary key, and that all the data values
for that primary key are valid. No primary key attribute may be null.

Entity Integrity:

In some cases a particular attribute cannot be assigned a data value, e.g. when there is
no applicable data value or the value is not known when other values are assigned

In these situations we can assign a null value to an attribute (null signifies absence of a
value)

But still primary key values cannot be null — the entity integrity rule states that “no
primary key attribute (or component of a primary key attribute) may be null

Referential Integrity:

A Referential Integrity constraint is a rule that maintains consistency among the rows
of two relations — it states that any foreign key value (on the relation of the many side)
MUST match a primary key value in the relation of the one side. (Or the foreign key
can be null)

In the following Fig., an arrow has been drawn from each foreign key to its associated
primary key. A referential integrity constraint must be defined for each of these arrows
in the schema

How do you know if a foreign key is allowed to be null?

In this example, as each ORDER must have a CUSTOMER the foreign key of
Customer_ID cannot be null on the ORDER relation

Whether a foreign key can be null must be specified as a property of the foreign key
attribute when the database is designed

Whether foreign key can be null can be complex to model, e.g. what happens to order
data if we choose to delete a customer who has submitted orders? We may want to see
sales even though we do not care about the customer anymore. 3 choices are possible:

Restrict — don’t allow delete of “parent” side if related rows exist in “dependent” side,
i.e. prohibit deletion of the customer until all associated orders are first deleted

GulTion

Solution:

Cascade — automatically delete “dependent” side rows that correspond with the “parent” side
row to be deleted, i.e. delete the associated orders, in which case we lose not only the customer
but also the sales history

Set-to-Null — set the foreign key in the dependent side to null if deleting from the parent side
- an exception that says although an order must have a customer_ID value when the order is
created, Customer_ID can become null later if the associated customer is deleted [not allowed
for weak entities]

Example:

Referential integrity constraints (Pine Valley Furniture)

CUSTOMER

Customer_|D Customer_Mame Address City State Zip

{

ORDER

Order_ID Order_Date | Customer_ID . . .
Dt et Referential integrity

constraints are drawn via

ORDER LINE arrows from dependent
Order_ID Product_ID Quantity to parent table
J,'XIPRDDLJDT

Product_ID Product_Description | Product_Finish | Standard_Price On_Hand

By

Prof. Ramesh D Hari Nandan

Faculty of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines)
drramesh@iitism.ac.in

mailto:drramesh@iitism.ac.in
GulTion

Relational Database Design

0 Pitfalls in Relational Database Design
0 Functional Dependencies
0 Multivalued Dependencies and Fourth Normal Form

Pitfalls in Relational Database Design

0 Relational database design requires that we find a “good” collection
of relation schemas. A bad design may lead to

Repetition of Information.
Inability to represent certain information.
0 Design Goals:
Avoid redundant data
Ensure that relationships among attributes are represented

Facilitate the checking of updates for violation of database
integrity constraints.

Example

0 Consider the relation schema:
Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

customer- | loan-
branch-name | branch-city assets name number | amount
Downtown Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck 1700000 | Hayes L-15 1500
Downtown Brooklyn 9000000 | Jackson L-14 1500

0 Redundancy:
[Data for branch-name, branch-city, assets are repeated for each loan that a branch makes
'l Wastes space
1 Complicates updating, introducing possibility of inconsistency of assets value
0 Null values
' Cannot store information about a branch if no loans exist
.| Can use null values, but they are difficult to handle.

Decomposition

0 Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number,
branch-name, amount)

0 All attributes of an original schema (R) must appear in the
decomposition (R;, R,):

R=R,UR,

0 Lossless-join decomposition.
For all possible relations r on schema R

r=1Igs () Ilra(r)

X

Example of Non Lossless-Join Decomposition

0 Decomposition of R = (A, B)

R, =(A) R, =(B)
A|lB A B
all o 1
2 p 2

SN
=
—]
=

[1A(r)

r

[a (r) X 115 (r)

>
oy,

D™ KR K
N R NP

Goal — Devise a Theory for the Following

Decide whether a particular relation R is in “good” form.

In the case that a relation R is not in “good” form, decompose it into a set of
relations {R;, R,, ..., R,} such that

each relation is in good form

the decomposition is a lossless-join decomposition
Our theory is based on:

functional dependencies

multivalued dependencies

Functional Dependencies

Constraints on the set of legal relations.

Require that the value for a certain set of attributes determines uniquely the
value for another set of attributes.

A functional dependency is a generalization of the notion of a key.

Functional Dependencies (Cont.)

Let R be a relation schema
acR and fc R
The functional dependency

oa—f
holds on R if and only if for any legal relations r(R), whenever any two tuples t; and t,
of r agree on the attributes a, they also agree on the attributes g. That s,

tla] =t [a] = {[B] =48]

Example: Consider r(A,B) with the following instance of r.

On this instance, A — B does NOT hold, but B — A does hold.

1 4
1 5
3 7

Functional Dependencies (Cont.)

K is a superkey for relation schema R if and only if K > R
K is a candidate key for R if and only if

K— R, and

fornoacK,a—>R

Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

Loan-info-schema = (customer-name, loan-number,
branch-name, amount).

We expect this set of functional dependencies to hold:

loan-number — amount
loan-number — branch-name

but would not expect the following to hold:
loan-number — customer-name

Use of Functional Dependencies

0 We use functional dependencies to:

test relations to see if they are legal under a given set of functional
dependencies.

0 If arelation ris legal under a set F of functional dependencies, we say that
r satisfies F.

specify constraints on the set of legal relations

0 We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.

0 Note: A specific instance of a relation schema may satisfy a functional dependency
even if the functional dependency does not hold on all legal instances.

For example, a specific instance of Loan-schema may, by chance, satisfy
loan-number — customer-name.

Functional Dependencies (Cont.)

0 A functional dependency is trivial if it is satisfied by all instances of a relation
1 E.g.
0 customer-name, loan-number — customer-name
0 customer-name — customer-name
1l In general, a — gistrivial if fc a

Closure of a Set of Functional
Dependencies

Given a set F set of functional dependencies, there are certain other functional
dependencies that are logically implied by F.

E.g. If A>Band B — C, then we can infer that A— C
The set of all functional dependencies logically implied by F is the closure of F.
We denote the closure of F by F*.
We can find all of F* by applying Armstrong’s Axioms:
if fc a,thena — (reflexivity)
ifa— g thenya —> v /4 (augmentation)
ifa — g, and g — vy, then o > y (transitivity)
These rules are
sound (generate only functional dependencies that actually hold) and
complete (generate all functional dependencies that hold).

Example

0 some members of F*
A—H
0 by transitivity from A—»Band B > H
AG — |

0 by augmenting A — C with G, to get AG —» CG
and then transitivity with CG — |

CG — Hi
0 from CG > Hand CG — | : “union rule” can be inferred from
definition of functional dependencies, or

Augmentation of CG — | to infer CG — CGI, augmentation of
CG — Hto infer CGl — HI, and then transitivity

Procedure for Computing F*

0 To compute the closure of a set of functional dependencies F:

F'=F
repeat
for each functional dependency f in Fr
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to Fr
for each pair of functional dependencies f;and f, in Fr
if f, and f, can be combined using transitivity
then add the resulting functional dependency to Fr
until F* does not change any further

NOTE: We will see an alternative procedure for this task later

Closure of Functional Dependencies
(Cont.)

0 We can further simplify manual computation of F* by using the following
additional rules.

' If a > gholds and o — y holds, then o — gy holds (union)
I If o« > By holds, then o« — £ holds and o — y holds (decomposition)

' If a > g holds and y f— & holds, then o y — & holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

Closure of Attribute Sets

0 Given a set of attributes o, define the closure of a under F (denoted by a*) as the
set of attributes that are functionally determined by o under F:
a—>BisinF" & pcat

0 Algorithm to compute o*, the closure of o under F
result ;= a;
while (changes to result) do
for each p > yin Fdo
begin
if B < result then result :=result U y
end

Example of Attribute Set Closure

R=(A, B, C,G,H,I

F={A—>B
A—->C
CG—->H
CG -
B —» H}

(AG)*
1. result=AG
2. result=ABCG (A—>Cand A— B)
3. result=ABCGH (CG > Hand CG c AGBC)
4. result = ABCGHI (CG —» land CG < AGBCH)
Is AG a candidate key?
1. Is AG a super key?
1. Does AG » R?==1Is(AG)"oR
2. Is any subset of AG a superkey?
1. DoesA—>R?==Is(A)"oR
2. DoesG > R?==1Is(G)"oR

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
0 Testing for superkey:

To test if o is a superkey, we compute o™ and check if a* contains alll
attributes of R.

0 Testing functional dependencies

To check if a functional dependency o — B holds (or, in other words, is in
F7), just check if B < o™

That is, we compute o by using attribute closure, and then check if it
contains 3.

Is a simple and cheap test, and very useful
0 Computing closure of F

For each y c R, we find the closure y*, and for each S — y*, we output a
functional dependency y — S.

Canonical Cover

0 Sets of functional dependencies may have redundant dependencies that can be
inferred from the others

Eg: A— Cisredundantin:. {A—->B, B—>C, A—>C}
Parts of a functional dependency may be redundant

0 E.g.onRHS: {A—>B, B—>C, A— CD} can be simplified to
{A—>B, B>C, A->D}

0 E.g.onLHS: {A—>B, B—C, AC — D} can be simplified to
{A—>B, B>C, A->D}

0 Intuitively, a canonical cover of F is a “minimal” set of functional dependencies
equivalent to F, having no redundant dependencies or redundant parts of
dependencies

Design Goals

Goal for a relational database design is:
BCNF.
Lossless join.
Dependency preservation.

If we cannot achieve this, we accept one of
Lack of dependency preservation
Redundancy due to use of 3NF

Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test

Even if we had a dependency preserving decomposition, using SQL we would not
be able to efficiently test a functional dependency whose left hand side is not a key.

Testing for FDs Across Relations

If decomposition is not dependency preserving, we can have an extra materialized view for
each dependency a —f in F, that is not preserved in the decomposition

The materialized view is defined as a projection on o 3 of the join of the relations in the
decomposition

Many newer database systems support materialized views and database system maintains the
view when the relations are updated.

No extra coding effort for programmer.

The functional dependency o — B is expressed by declaring o as a candidate key on the
materialized view.

Checking for candidate key cheaper than checking o« —
BUT:
Space overhead: for storing the materialized view

Time overhead: Need to keep materialized view up to date when
relations are updated

Database system may not support key declarations on
materialized views

Multivalued Dependencies

0 There are database schemas in BCNF that do not seem to be sufficiently
normalized

0 Consider a database

classes(course, teacher, book)
such that (c,t,b) € classes means that t is qualified to teach c, and b is a required
textbook for c

[0 The database is supposed to list for each course the set of teachers any one of
which can be the course’s instructor, and the set of books, all of which are
required for the course (no matter who teaches it).

Multivalued Dependencies (Cont.)

course teacher book
database Avi DB Concepts
database Avi Ullman
database Hank DB Concepts
database Hank Ullman
database Sudarshan DB Concepts
database Sudarshan Ullman
operating systems | Avi OS Concepts
operating systems | Avi Shaw
operating systems | Jim OS Concepts
operating systems | Jim Shaw
classes

There are no non-trivial functional dependencies and therefore the relation is in
BCNF

Insertion anomalies — i.e., if Sara is a new teacher that can teach database, two
tuples need to be inserted

(database, Sara, DB Concepts)
(database, Sara, Ullman)

Multivalued Dependencies (Cont.)

0 Therefore, it is better to decompose classes into:

course teacher
database Avi
database Hank
database Sudarshan
operating systems Avi
operating systems Jim

teaches

course book
database DB Concepts
database Ullman
operating systems OS Concepts
operating systems Shaw

text

We shall see that these two relations are in Fourth Normal
Form (4NF)

Multivalued Dependencies (MVDs)

0 LetR be arelation schema and let o c R and c R. The multivalued
dependency

o -

holds on R if in any legal relation r(R), for all pairs for tuples t,and t, in r
such that t;[a] = t, [a], there exist tuples t; and t, in r such that:

tla] =t [a] =15 [a] =t,[0]

t3[P] = 4[]
GR =Bl = R -]
ty [P] = H[P]

LR =Bl = 4R -]

MVD (Cont.)

0 Tabular representation of oo »— 3

Example

Let R be a relation schema with a set of attributes that are partitioned into 3
nonempty subsets.

Y,Z, W

We say that Y - Z (Y multidetermines Z)
if and only if for all possible relations r(R)

<Y, Z;,W,>erand<y,, z,, W,> e r
then
<Y, Z,W,>erand<y,, z,, w; > er

Note that since the behavior of Z and W are identical it follows that Y -—» Zif Y
>-> W

Example (Cont.)

In our example:

course »— teacher
course -»— book

The above formal definition is supposed to formalize the notion that given a
particular value of Y (course) it has associated with it a set of values of Z
(teacher) and a set of values of W (book), and these two sets are in some
sense independent of each other.

Note:
IfY > Z then Y 55 Z

Indeed we have (in above notation) Z, = Z,
The claim follows.

Use of Multivalued Dependencies

We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set
of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus
concern ourselves only with relations that satisfy a given set of
functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we can
construct a relations r” that does satisfy the multivalued dependency by
adding tuples to r.

Theory of MVDs

From the definition of multivalued dependency, we can derive the following rule:
If o — B, then oo »>— B
That is, every functional dependency is also a multivalued dependency

The closure D* of D is the set of all functional and multivalued dependencies
logically implied by D.
We can compute D* from D, using the formal definitions of functional
dependencies and multivalued dependencies.

We can manage with such reasoning for very simple multivalued
dependencies, which seem to be most common in practice

For complex dependencies, it is better to reason about sets of
dependencies using a system of inference rules (see Appendix C).

Fourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and
multivalued dependencies if for all multivalued dependencies in D* of the form o,
—»— 3, where o R and 3 — R, at least one of the following hold:

o —»— Pistrivial (e, caorau B =R)
o is a superkey for schema R
If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

0 The restriction of D to R, is the set D, consisting of
[All functional dependencies in D* that include only attributes of R;
.l All multivalued dependencies of the form
a->-BNR)
where o c R; and o »— B isin D'

	Slide 1: Relational Database Design
	Slide 2: Pitfalls in Relational Database Design
	Slide 3: Example
	Slide 4: Decomposition
	Slide 5: Example of Non Lossless-Join Decomposition
	Slide 6: Goal — Devise a Theory for the Following
	Slide 7: Functional Dependencies
	Slide 8: Functional Dependencies (Cont.)
	Slide 9: Functional Dependencies (Cont.)
	Slide 10: Use of Functional Dependencies
	Slide 11: Functional Dependencies (Cont.)
	Slide 12: Closure of a Set of Functional Dependencies
	Slide 13: Example
	Slide 14: Procedure for Computing F+
	Slide 15: Closure of Functional Dependencies (Cont.)
	Slide 16: Closure of Attribute Sets
	Slide 17: Example of Attribute Set Closure
	Slide 18: Uses of Attribute Closure
	Slide 19: Canonical Cover
	Slide 20: Design Goals
	Slide 21: Testing for FDs Across Relations
	Slide 22: Multivalued Dependencies
	Slide 23: Multivalued Dependencies (Cont.)
	Slide 24: Multivalued Dependencies (Cont.)
	Slide 25: Multivalued Dependencies (MVDs)
	Slide 26: MVD (Cont.)
	Slide 27: Example
	Slide 28: Example (Cont.)
	Slide 29: Use of Multivalued Dependencies
	Slide 30: Theory of MVDs
	Slide 31: Fourth Normal Form
	Slide 32: Restriction of Multivalued Dependencies

