
166 Chapter 14 Query Optimization

Changes from 3rd edition:
The major change from the previous edition is that the 3rd edition chapter on query
processing has been split into two chapters.

Coverage of size estimation for different operations, which was earlier covered
along with algorithms for the operations has now been separated out into a separate
section (Section 14.2). Some of the formulae for estimation of statistics have been
simplified and a few new ones have been added.

Pseudocode has been provided for the dynamic programming algorithm for join
order optimization. There is a new section on optimization of nested subqueries,
which forms an important part of SQL optimization. The section on materialized
views is also new to this edition.

Exercises

14.1 Clustering indices may allow faster access to data than a nonclustering index
affords. When must we create a nonclustering index, despite the advantages of
a clustering index? Explain your answer.
Answer: There can be only one clustering index for a file, based on the order-
ing key. Any query which needs to search on the other non-ordering keys will
need the non-clustering index. If the query accesses a majority of the tuples in
the file, it may be more efficient to sort the file on the desired key, rather than
using the non-clustering index.

14.2 Consider the relations r1(A,B,C), r2(C,D,E), and r3(E,F ), with primary keys
A, C, and E, respectively. Assume that r1 has 1000 tuples, r2 has 1500 tuples,
and r3 has 750 tuples. Estimate the size of r1

�
r2

�
r3, and give an efficient

strategy for computing the join.
Answer:

• The relation resulting from the join of r1, r2, and r3 will be the same no
matter which way we join them, due to the associative and commutative
properties of joins. So we will consider the size based on the strategy of
((r1

�
r2)

�
r3). Joining r1 with r2 will yield a relation of at most 1000

tuples, since C is a key for r2. Likewise, joining that result with r3 will
yield a relation of at most 1000 tuples because E is a key for r3. Therefore
the final relation will have at most 1000 tuples.

• An efficient strategy for computing this join would be to create an index
on attribute C for relation r2 and on E for r3. Then for each tuple in r1, we
do the following:
a. Use the index for r2 to look up at most one tuple which matches the C

value of r1.
b. Use the created index on E to look up in r3 at most one tuple which

matches the unique value for E in r2.

14.3 Consider the relations r1(A,B,C), r2(C,D,E), and r3(E,F ) of Exercise 14.2.
Assume that there are no primary keys, except the entire schema. Let V (C, r1)
be 900, V (C, r2) be 1100, V (E, r2) be 50, and V (E, r3) be 100. Assume that r1



Exercises 167

has 1000 tuples, r2 has 1500 tuples, and r3 has 750 tuples. Estimate the size of
r1

�
r2

�
r3, and give an efficient strategy for computing the join.

Answer: The estimated size of the relation can be determined by calculating
the average number of tuples which would be joined with each tuple of the
second relation. In this case, for each tuple in r1, 1500/V (C, r2) = 15/11 tu-
ples (on the average) of r2 would join with it. The intermediate relation would
have 15000/11 tuples. This relation is joined with r3 to yield a result of approx-
imately 10,227 tuples (15000/11 × 750/100 = 10227). A good strategy should
join r1 and r2 first, since the intermediate relation is about the same size as r1

or r2. Then r3 is joined to this result.

14.4 Suppose that a B+-tree index on branch-city is available on relation branch, and
that no other index is available. What would be the best way to handle the
following selections that involve negation?

a. σ¬(branch-city<“Brooklyn”)(branch)
b. σ¬(branch-city=“Brooklyn”)(branch)
c. σ¬(branch-city<“Brooklyn” ∨ assets<5000)(branch)

Answer:

a. Use the index to locate the first tuple whose branch-city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, retriev-
ing all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch-city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query

σ
(branch-city≥“Brooklyn” ∧ assets<5000)

(branch)

Using the branch-city index, we can retrieve all tuples with branch-city value
greater than or equal to “Brooklyn” by following the pointer chains from
the first “Brooklyn” tuple. We also apply the additional criteria of assets <
5000 on every tuple.

14.5 Suppose that a B+-tree index on (branch-name, branch-city) is available on rela-
tion branch. What would be the best way to handle the following selection?

σ(branch-city<“Brooklyn”) ∧ (assets<5000)∧(branch-name=“Downtown”)(branch)

Answer: Using the index, we locate the first tuple having branch-name “Down-
town”. We then follow the pointers retrieving successive tuples as long as
branch-city is less than “Brooklyn”. From the tuples retrieved, the ones not sat-
isfying the condition (assets < 5000) are rejected.

14.6 Show that the following equivalences hold. Explain how you can apply then
to improve the efficiency of certain queries:

a. E1
�

θ (E2 − E3) = (E1
�

θ E2 − E1
�

θ E3).


