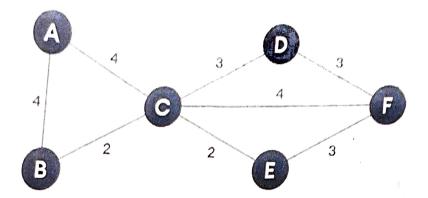
End semester Examination (Monsoon 2023-24)

Department of Computer Science & Engineering, IIT (ISM), Dhanbad Discipline: M.Tech. (CSE) & Research Scholar

Subject: Algorithmic Graph Theory (CSC503) Time: 3 hours, Marks: 100

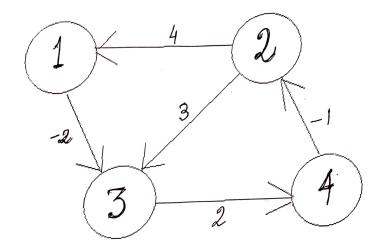
Instructions: Answer all questions


1	ac Prove that for over-	Ma
	a. Prove that for every graph G, $X(G) \le V(G) + 1$. (Here $X(G)$ is the	5
	chromatic number of G)	
	b. Prove that G is bipartite iff the chromatic number of G is 2.	5
2	a. The Prufer sequence S of a labelled tree T is S= {1, 7, 6, 6, 1}. Draw the	<u> </u>
	tree T describing all the intermediate steps pictorially during the process.	5
		5
	b. Write the algorithm of the same.	
3/	a. Prove by method of induction that a graph G is a tree iff G is acyclic and the number of edges m in G is	
	vertices in G.	5
	 Deduce that clique decision problem is NP-Hard using Satisfiability problem. 	5
	a. Prove that for a simple graph G with n number of vertices (n >= 4), and	
	E number of edges and genus g satisfies	5
	$g \geqslant \lceil \frac{1}{6}(E -3n)+1\rceil$	
	b. "A necessary and sufficient condition for a graph G to be planar is that	5
	for every circuit C of G the auxiliary graph G ⁺ (C) is bipartite", prove it.	

5 / 2 Supra	Tues
a. Suppose want to schedule some final exams for C3 courses with	6
following call numbers:	
CSE001, CSE002, CSE003, CSE004, CSE005, CSE006, CSE007, CSE008	
and also suppose also that there are no common students in the	
following pairs of courses because of prerequisites:	
- C2E00)	
CSE001 - CSE004	
CSE001 - CSE003, CSE002- CSE003	
CSEOO7, CSEOO7	
552001 - CSE008, CSE003, CSE003	
	5
many exam slots are necessary to schedule exams?	
b. Illustrate with an example that any graph is a subgraph of a r-regular graph.	4
graph.	'
6 a. If a graph G is maying 1.	
a. If a graph G is maximal planar graph with n vertices ($n \ge 3$) and m edge then show that $m = 3n - 6$.	es 5
b For a polyhodrom	
b. For a polyhedron with N number of vertices, E number of edges and F number of faces, prove by method of indicate.	
V Figure by inethod of induction that $N-E+F=2$.	5
a. Why running time measurement is important to study? Mention some	
of the factors affecting the running time of a program.	
	3
b. Prove that every planar graph has a dual.	
	5
a. Discuss the merits and demits of Dijkstra's Algorithm and Bellman-Ford	d 5
Algorithm with examples.	
	100

m=n+2=1 m=n+2=1 n-m+7=2 n-m+7=2

1,2,6,4


2/4

a. Find the all pairs shortest paths among all vertices for the following graph using Floyd-Warshall Algorithm (showing all intermediate steps)

9

23

a. Prove that Peterson Graph is non-planar using Kuratowski's and Wagner's Theorem as well.

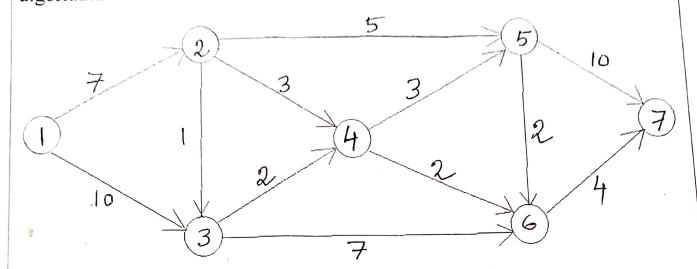
$$2 \rightarrow 3$$

$$2 \rightarrow 1 \quad 1 \rightarrow 84$$

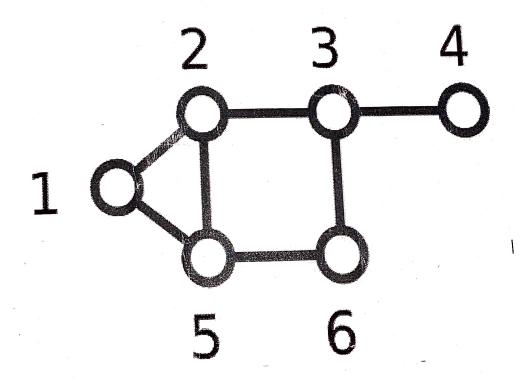
$$4 \rightarrow 2$$

$$4 \rightarrow 2$$

$$2 \rightarrow 1 \quad 1 \rightarrow 84$$


$$4 \rightarrow 2$$

$$2 \rightarrow 4 \quad 4 \rightarrow 2$$


6

- (i) Modify the database so that Amit now lives in Dhanbad city.
- (ii) Give all employees of Facebook a 10 percent salary raise

a. Find the maximum flow through the given network using Ford-Fulkerson algorithm.

b. Consider the following graph to find the minimum connected dominating set showing all the intermediate steps during the constructions.

5