Mid semester Examination (Monsson 2023)
Department of Computer Science & Engineering, IIT (ISM), Dhanbad

Discipline: M.Tech. (CSE) & Research Scholar

Subject: Algorithmic Graph Theory (CSC503) Time: 2 hours, Marks: 50

Instructions: Answer all questions

N		Marks
J.	 a. Suppose want to schedule some final exams for CS courses with following call numbers: 1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156 and also suppose also that there are no common students in the following pairs of courses because of prerequisites: 	6
	1007-3137 1007-3157, 3137-3157 1007-3203 1007-3261, 3137-3261, 3203-3261 1007-4115, 3137-4115, 3203-4115, 3261-4115 1007-4118, 3137-4118	
	1007-4156, 3137-4156, 3157-4156 How many exam slots are necessary to schedule exams? b. Illustrate with an example that any graph is a subgraph of a regular graph.	4
2	a. If a graph G is maximal planar graph with n vertices ($n > = 3$) and m edges then show that $m = 3n - 6$.	4
	b. For a planar graph G with n number of vertices and e number of edges with r regions, prove by method of induction that $n - e + r = 2$.	3
	c. Illustrate the situation when Dijkstra's Algorithm may fail to find the shortest path but Bellman-Ford Algorithm may succeed. And	3

	also mention the situation when Bellman-Ford Algorithm may fail (illustrate with an example).	
	a. Illustrate with suitable example (considering a labelled tree <i>T</i> with at least 9 vertices) and converting <i>T</i> into its equivalent Prufer Sequence <i>S</i> and vice versa.	6
	b. Mention the important differences between BFS and DFS	4
	a. Prove that Peterson Graph is non-planar using Kuratowski's and Wagner's Theorem as well.	6
	b. Prove that every planar graph has a dual.	4
•	a. Find the all pairs shortest paths among all vertices for the following	6
	graph using Floyd-Warshall Algorithm (showing all intermediate	
	steps)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 (a,3)
	b. Also describe Floyd-Warshall Algorithm to find the shortest paths	4
	among all vertices.)
	$\begin{array}{c} 4 \\ (3,1) \end{array}$ $(3,2)$ (4.1)	3,1) (2