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Euler paths and cycles

Hamilton paths and cycles

Planar graphs
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◦ Euler characteristic

◦ Edge-Face Handshaking

◦ Girth

Graph Coloring
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Euler and Hamilton Paths
-Motivation

An pictorial way to motivate the graph theoretic concepts of Eulerian 
and Hamiltonian paths and circuits is with two puzzles:

The pencil drawing problem

The taxicab problem



Pencil Drawing Problem
-Euler Paths

Which of the following pictures can be drawn on paper without ever lifting 
the pencil and without retracing over any segment?



Pencil Drawing Problem
-Euler Paths

Graph Theoretically:  Which of the following graphs has an Euler path?



Pencil Drawing Problem
-Euler Paths

Answer:  the left but not the right.

start finish
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Euler Paths and Circuits
Definition

DEF:  An Euler path in a graph G is a simple path containing every edge 
in G.  An Euler circuit (or Euler cycle) is a cycle which is an Euler path.

NOTE:  The definition applies both to undirected as well as directed 
graphs of all types.



Taxicab Problem
-Hamilton Paths

Can a taxicab driver milk his customer by visiting every intersection exactly 
once, when driving from point A to point B ?

A

B



Taxicab Problem
-Hamilton Paths

Graph Theoretically:  Is there a Hamilton path from A to B in the following 
graph?

(NO in this case)
A

B



Hamilton Paths and Circuits
Definition

DEF:  A Hamilton path in a graph G is a path which visits ever vertex in G exactly 
once.  A Hamilton circuit (or Hamilton cycle) is a cycle which visits every vertex 
exactly once, except for the first vertex, which is also visited at the end of the 
cycle.

NOTE:  Again, the definition applies both to undirected as well as directed 
graphs of all types.



Implications to CS
Finding Hamilton paths is a very important problem in CS.

EG:  Visit every city (vertex) in a region using the least trips (edges) as 
possible.

EG:  Encode all bit strings of a certain length as economically as possible 
so that only change one bit at a time.  (Gray codes).



Implications to CS
Analyzing difficulty of Euler vs. Hamilton paths is a great CS case study.

Finding Euler paths can be done in     O (n) time

Finding Hamilton paths is NP-complete!

Slight change in definition can result in dramatic algorithmic bifurcation!



Finding Euler Paths

To find Euler paths, we’ll first give an algorithm for finding Euler cycles and then 
modify it to give Euler paths.

THM:   An undirected graph G has an Euler circuit iff it is connected and every 
vertex has even degree.  

NOTE: for directed graphs the condition is that G be weakly connected and that 
every vertex has same in-degree as out-degree.



Finding Euler Circuits
Q:  Why does the following graph have no Euler circuit?



Finding Euler Circuits
A:  It contains a vertex of odd degree.



Generalizing to Euler Paths
Q:  Does the following have an Euler circuit?



Planar Graphs
Planar graphs are graphs that can be drawn in the 
plane without edges having to cross.

Understanding planar graph is important:

Any graph representation of maps/ topographical 
information is planar.
◦ graph algorithms often specialized to planar graphs (e.g. 

traveling salesperson)

Circuits usually represented by planar graphs



Planar Graphs
-Common Misunderstanding

Just because a graph is drawn with edges crossing doesn’t mean its not 
planar.

Q:  Why can’t we conclude that the following is non-planar?



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:



Proving Planarity
To prove that a graph is planar amounts to redrawing the edges in a way 
that no edges will cross.  May need to move vertices around and the 
edges may have to be drawn in a very indirect fashion.

E.G. show that the 3-cube is planar:



Proving Planarity
3-Cube



Proving Planarity?
4-Cube

Seemingly not planar, but how would one prove this!



Disproving Planarity
The book gives several methods.  I’ll describe one method that will 
always work in examples that you’ll get on the final.  You may also use 
any of the methods that the book mentions.

(One method –Kuratowski’s theorem– in principle always works, though 
in practice can be quite unwieldy.)



Disproving Planarity
The idea is to try to find some invariant quantities possessed by graphs 
which are constrained to certain values, for planar graphs.  Then to 
show that a graph is non-planar, compute the quantities and show that 
they do not satisfy the constraints on planar graphs.



Regions

The first invariant of a planar graph will be the number of 
regions that the graph defines in the plane.  A region is a 
part of the plane completely disconnected off from other 
parts of the plane by the edges of the graph.  

EG: the car graph has 4 regions:

21

3
4



Regions
Q:  How many regions does the 3-cube have?



Regions
A:  6 regions

1 2

3

46
5



Regions

THM:  The number of regions defined by a connected 
planar graph is invariant of how it is drawn in the plane 
and satisfies the formula involving edges and vertices:

r = |E | - |V | + 2

EG:  Verify formula for car and 3-cube:

1 2

3

46=12-8+2

5
21

3
4=6-4+2



Euler Characteristic
The formula is proved by showing that the quantity (chi) c = r - |E | + |V 
| must equal 2 for planar graphs.  c is called the Euler characteristic.  
The idea is that any connected planar graph can be built up from a 
vertex through a sequence of vertex and edge additions.  For example, 
build 3-cube as follows:



Euler Characteristic



Euler Characteristic
Thus to prove that c is always 2 for planar graphs, one calculate c for the 
trivial vertex graph:

c = 1-0+1 = 2

and then checks that each possible move does not change c .



Euler Characteristic
Check that moves don’t change c :

1) Adding a degree 1 vertex:

r is unchanged.  |E | increases by 1.  |V | increases by 1.   c += (0-1+1)

2) Adding an edge between pre-existing vertices:

r increases by 1. |E | increases by 1.  |V | unchanged.   c += (1-1+0)

EG:

EG:



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

1 0 1 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

2 1 1 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

3 2 1 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

4 3 1 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

4 4 2 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

5 5 2 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

6 6 2 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

7 7 2 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

8 8 2 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

8 9 3 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

8 10 4 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

8 11 5 2



Animated Invariance of
Euler Characteristic

|V | |E | r
c =

r - |E | + |V |

8 12 6 2



Face-Edge Handshaking
For all graphs handshaking theorem relates degrees of vertices to number of 

edges.

For planar graphs, can relate regions to edges in similar fashion:

EG: There are two ways to count the number of edges in 3-cube:

1) Count directly:  12

2) Count no. of edges around 

each region; divide by 2:

(4+4+4+4+4+4)/2 = 12 (2 triangles per edge)



Face-Edge Handshaking

DEF:  The degree of a region F  is the number of edges at its boundary, and 
is denoted by deg(F ).

THM: Let G be a planar graph with region set R.  Then:
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Girth
The girth of a graph is the length of the smallest simple cycle in the 
graph.

Q:  What the girth of each of the following?



Girth
A:  

g = 2 g = 4 g = 4

Q:  What the smallest possible girth for simple bipartite graphs?



Girth
A:  g = 4 is the smallest possible girth:  Any cycle must start and end in the same 
color, so must have even length.  Since simple, cannot have a 2-cycle, so 4-
cycle is shortest possible.



Proving that Q4 is Non-Planar
Now we have enough invariants to prove that the 4-

cube is non-planar.

1) Count the number of vertices and edges:

|V | = 16 (twice the number for 3-cube)

|E | = 32 (twice the number for 3-cube plus number of 
vertices in 3-cube)

2) Suppose 4-cube were planar so by Euler’s formula 
number of regions would be:

r = 32-16+2=18



Proving that Q4 is Non-Planar
3) Calculate the girth:  g = 4

4) Apply handshaking theorem to get a lower bound on the number of 
edges, since the degree of each face must be at least as large as the 
girth:

In our case, this give |E |  ½·18·4=36

contradicting |E | = 32 !  

Thus 4-cube cannot be planar. •
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Blackboard exercises for 7.7
Show that the following graphs are non-planar:

1) K5

2) K3,3

3) Qn for n  4



Graph Coloring
Consider a fictional continent.



Map Coloring
Suppose removed all borders but still wanted to see all the countries.  1 
color insufficient.



Map Coloring
So add another color.  Try to fill in every country with one of the two colors.



Map Coloring
So add another color.  Try to fill in every country with one of the two colors.



Map Coloring
So add another color.  Try to fill in every country with one of the two colors.



Map Coloring
So add another color.  Try to fill in every country with one of the two colors.



Map Coloring
PROBLEM:  Two adjacent countries forced to have same color.  Border 
unseen. 



Map Coloring
So add another color:



Map Coloring
Insufficient.  Need 4 colors because of this country.



Map Coloring
With 4 colors, could do it.



4-Color Theorem
THM:  Any planar map of regions can be depicted using 4 colors so that 
no two regions that share a positive-length border have the same color.

Proof by Haaken and Appel used exhaustive computer search.



From Map Coloring 
to Graph Coloring

The problem of coloring a map, can be reduced to a graph-theoretic 
problem:



From Map Coloring 
to Graph Coloring

For each region introduce a vertex:



From Map Coloring 
to Graph Coloring

For each pair of regions with a positive-length common border introduce 
an edge: 



From Maps to Graphs 
to Dual Graphs

Really, could think of original map as a graph, and we are looking at dual 
graph: 



From Maps to Graphs 
to Dual GraphsDual Graphs :

1) Put vertex inside each region: 



From Maps to Graphs 
to Dual GraphsDual Graphs :

2) Connect vertices across common edges:



Definition of Dual Graph
DEF:  The dual graph G ^ of a planar graph G = (V, E, R)  [Vertices, Edges, 
Regions] is the graph obtained by setting 

◦ Vertices of G ^: V (G ^ ) = R

◦ Edges of G ^: E (G ^ ) = set of edges of the form {F1,F2} where F1 and F2 share a 
common edge.



From Maps to Graphs 
to Dual Graphs

So take dual graph:



From Map Coloring 
to Graph Coloring

Coloring regions is equivalent to coloring vertices of dual graph.



Definition of Colorable
DEF:  Let n be a positive number.  A simple graph is n -colorable if the vertices 
can be colored using n colors so that no two adjacent vertices have the same 
color.

The chromatic number of a graph is smallest number n for which it is n -
colorable.

EG:  A graph is bipartite iff it is 2-colorable.



From Map Coloring 
to Graph Coloring

Map not 2-colorable, so dual graph not 2-colorable:



From Map Coloring 
to Graph Coloring

Map not 3-colorable, so graph not 3-colorable:



From Map Coloring 
to Graph Coloring

Graph is 4-colorable, so map is as well:



4-Color Theorem 
–Graph Theory Version

THM:  Any planar graph is 4-colorable.



Graph Coloring and Schedules
EG: Suppose want to schedule some final exams for CS courses with 
following call numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no common students in the following pairs 
of courses because of prerequisites:

1007-3137

1007-3157, 3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115

1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?



Graph Coloring and Schedules
Turn this into a graph coloring problem.  Vertices are 
courses, and edges are courses which cannot be 
scheduled simultaneously because of possible students 
in common:

1007

3137

3157

3203

4115

3261

4156

4118



Graph Coloring and Schedules
One way to do this is to put edges down where students mutually excluded…

1007

3137

3157

3203

4115

3261

4156

4118



Graph Coloring and Schedules
…and then compute the complementary graph:

1007

3137

3157

3203

4115

3261

4156

4118



Graph Coloring and Schedules
…and then compute the complementary graph:

1007

3137

3157

3203

4115

3261

4156

4118



Graph Coloring and Schedules
Redraw:

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
Not 1-colorable because of edge

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
Not 2-colorable because of triangle

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
Is 3-colorable. Try to color by Red, Green, Blue.

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
WLOG.  3203-Red, 3157-Blue, 4118-Green:

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
So 4156 must be Blue:

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
So 3261 and 4115 must be Red.

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
3137 and 1007 easy to color.

1007

3137

3157

3203

4115

3261

4156
4118



Graph Coloring and Schedules
So need 3 exam slots:

1007

3137

3157

3203

4115

3261

4156
4118

Slot 1

Slot 2

Slot 3


