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Euler and Hamilton Paths
-Motivation

An pictorial way to motivate the graph theoretic concepts of Eulerian
and Hamiltonian paths and circuits is with two puzzles:

The pencil drawing problem

The taxicab problem




Pencil Drawing Problem
-Euler Paths

Which of the following pictures can be drawn on paper without ever lifting
the pencil and without retracing over any segment?




Pencil Drawing Problem
-Euler Paths

Graph Theoretically: Which of the following graphs has an Euler path?




Pencil Drawing Problem
-Euler Paths

Answer: the left but not the right.

start ¢ % finish




Fuler Paths and Circuits
Definition

DEF: An Euler path in a graph G is a simple path containing every edge
in G. An Euler circuit (or Euler cycle) is a cycle which is an Euler path.

NOTE: The definition applies both to undirected as well as directed
graphs of all types.




Taxicab Problem
-Hamilton Paths

Can a taxicab driver milk his customer by visiting every intersection exactly
once, when driving from point A to point B ?

(o, oy >0

A




Taxicab Problem
-Hamilton Paths

Graph Theoretically: Is there a Hamilton path from A to B in the following
graph?

(o, oy >0

(NO in this case)

A




Hamilton Paths and Circuits
Definition

DEF: A Hamilton path in a graph G is a path which visits ever vertex in G exactly
once. A Hamilton circuit (or Hamilton cycle) is a cycle which visits every vertex
exactly once, except for the first vertex, which is also visited at the end of the
cycle.

NOTE: Again, the definition applies both to undirected as well as directed
graphs of all types.




Implications to CS

Finding Hamilton paths is a very important problem in CS.

EG: Visit every city (vertex) in a region using the least trips (edges) as
possible.

EG: Encode all bit strings of a certain length as economically as possible
so that only change one bit at a time. (Gray codes).




Implications to CS

Analyzing difficulty of Euler vs. Hamilton paths is a great CS case study.

Finding Euler paths can be donein O (n) time

Finding Hamilton paths is NP-complete!

Slight change in definition can result in dramatic algorithmic bifurcation!




Finding Euler Paths

To find Euler paths, wé’ll first give an algorithm for finding Euler cycles and then
modify it to give Euler paths.

THM: An undirected graph G has an Euler circuit iff it is connected and every
vertex has even degree.

NOTE: for directed graphs the condition is that G be weakly connected and that
every vertex has same in-degree as out-degree.



Finding Euler Circuits

Q: Why does the following graph have no Euler circuit?




Finding Euler Circuits

A: It contains a vertex of odd degree.




Generalizing to Euler Paths

Q: Does the following have an Euler circuit?

N




Planar Graphs

Planar graphs are graphs that can be drawn in the
plane without edges having to cross.

Understanding planar graph is important:

Any graph representation of maps/ topographical
information is planar.

> graph algorithms often specialized to planar graphs (e.g.
traveling salesperson)

Circuits usually represented by planar graphs



Planar Graphs
-Common Misunderstanding

Just because a graph is drawn with edges crossing doesn’t mean its not
planar.

Q: Why can’t we conclude that the following is non-planar?

A




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:

A

P




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:

P

P




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:

A

=1




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:

%l




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:

f




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:




Planar Graphs
-Common Misunderstanding

A: Because it is isomorphic to a graph which is planar:




Proving Planarity

To prove that a graph is planar amounts to redrawing the edges in a way
that no edges will cross. May need to move vertices around and the
edges may have to be drawn in a very indirect fashion.

E.G. show that the 3-cube is planar:




Proving Planarity
3-Cube

A/
4 /-> jj




Proving Planarity?
4-Cube

—>

/ \

Seemingly not planar, but how would one prove this!




Disproving Planarity

The book gives several methods. I'll describe one method that will
always work in examples that you’ll get on the final. You may also use
any of the methods that the book mentions.

(One method —Kuratowski’s theorem— in principle always works, though
in practice can be quite unwieldy.)




Disproving Planarity

The idea is to try to find some invariant quantities possessed by graphs
which are constrained to certain values, for planar graphs. Then to
show that a graph is non-planar, compute the quantities and show that
they do not satisfy the constraints on planar graphs.




Regions

The first invariant of a planar graph will be the number of
regions that the graph defines in the plane. A region is a
part of the plane completely disconnected off from other
parts of the plane by the edges of the graph.

EG: the car graph has 4 regions:

4




Regions

Q: How many regions does the 3-cube have?




Regions

A: 6 regions




Regions

THM: The number of regions defined by a connected
planar graph is invariant of how it is drawn in the plane
and satisfies the formula involving edges and vertices:

r=|E|-|V]|+2

EG: Verify formula for car and 3-cube:

6 — 12-8+2




Fuler Characteristic

The formula is proved by showing that the quantity (chi) y =r- |E| + |V
| must equal 2 for planar graphs. 7y is called the Euler characteristic.
The idea is that any connected planar graph can be built up from a
vertex through a sequence of vertex and edge additions. For example,
build 3-cube as follows:




—Eee
jugugaie

jn@EQEqingis




Fuler Characteristic

Thus to prove that y is always 2 for planar graphs, one calculate ¢ for the
trivial vertex graph:

v =1-041=2

and then checks that each possible move do®s not change % .




Fuler Characterlstlc

Check that moves cyn 't change v : P Y—,

k

risunchanged. |E | increases by 1. |V | increases by 1. y +=(0-1+1)

1) Adding a degree 1 vertex: J
2) Adding an edge between pre-existing vertices:

rincreases by 1. |E | increases by 1. |V | unchanged. y +=(1-1+0)




Animated Invariance of
Fuler Characteristic




Animated Invariance of
Fuler Characteristic




Animated Invariance of
Fuler Characteristic




Animated Invariance of
Fuler Characteristic




Animated Invariance of
Fuler Characteristic




Animated Invariance of
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Animated Invariance of
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Animated Invariance of
Fuler Characteristic




Animated Invariance of
Fuler Characteristic
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Animated Invariance of
Fuler Characteristic
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Animated Invariance of
Fuler Characteristic

BRmn =

/ .\. 8 10 | 4 2




Animated Invariance of
Fuler Characteristic

BRmn =

/ .\. 8 11 5 2




Animated Invariance of
Fuler Characteristic




dshaking . .

For all graphs ?ands@akmg th&8rem Hate egrees of vertices
edges.

For planar graphs, can relate regions to edges in similar fashion:
EG: There are two ways to count the number of edges in 3-cube:
1) Countdirectly: 12

2)  Count no. of edges around

each region; divide by 2:

(a+a+a+4+4+4)/2 = 12 (2 triangles per edge)




Face-Edge Handshaking

DEF: The degree of a region F is the number of edges at its boundary, and
is denoted by deg(F ).

THM: Let G be a planar graph with region set R. Then:

E| = " deg(F)

FeR



Girth

The girth of a graph is the length of the smallest simple cycle in the
graph.

Q: What the girth of each of the following?




Q:

hat the smallest possible girth for simple bipar

i

graphs?




Girth

A: g =4is the smallest possible girth: Any cycle must start and end in the same
color, so must have even length. Since simple, cannot have a 2-cycle, so 4-
cycle is shortest possible.




Proving that Q, is Non-Planar

Now we have enough invariants to prove that the 4-
cube is non-planar.

1)  Count the number of vertices and edges:
|V | =16 (twice the number for 3-cube)

|E | = 32 (twice the number for 3-cube plus number of
vertices in 3-cube)

2)  Suppose 4-cube were planar so by Euler’s formula
number of regions would be:

r=32-16+2=18



Proving that Q, is Non-Planar

3) Calculate the girth: g=4

4) Apply handshaking theorem to get a lower bound on the number of
edges, since the degree of each face must be at least as large as the
girth:

[E| = Zdeg(F)> Zg——rg

FeR FeR
In our case, this give |E | > %-18-:4=36

contradicting |E | =32 !

Thus 4-cube cannot be planar.



Blackboard exercises for 7.7

Show that the following graphs are non-planar:
1) K
2) K 3

3) Q,forn=4




Graph Coloring

Consid fictional .




Map Coloring

.......

..- - DMOVedr.-a
color insufficient.




So add anothe olle




So add anothe olle




So add anothe olle




So add anothe olle




I ~ Map C\orig -




~Map Coloring

So add-another col




Map Co_\oring

Insufficient. Need 4 colors because of thiscountry. —




Map Coloring

With 4 colors, could do it.




A-Color Theorem

THM: Any planar map of regions can be depicted using 4 colors so that
no two regions that share a positive-length border have the same color.

Proof by Haaken and Appel used exhaustive computer search.




From Map Coloring

Th roplem-o alla
problem:




From Map Coloring

o exchregon o2 PN Coloring




From Map Coloring




From Maps to Graphs




From Maps to Graphs
Dual Graphs to Dual Graphs

1) Put vertex inside each region:




From Maps to Graphs
Dual Graphs : to Dual Graphs

2) Connect vertices across common edges:




Defmltlon Dual Grah

Reglons] is the graph obtamed by settmg
> Verticesof G™: V(G")=R

© Edges of G": E (G ") = set of edges of the form {F,,F,} where F, and F, share a
common edge.




From Maps to Graphs
to Dual Graphs




From Map Coloring
L0 Graph Coloring

CO ing =YeiTaYat M|




Deﬂnltlon of Co\orable

can be colored usmg n colors SO that no two adjacent vertlces have the same
color.

The chromatic number of a graph is smallest number n for which it is n -
colorable.

EG: A graph is bipartite iff it is 2-colorable.




From Map Coloring

§ _ to Grth C_jolori:ng




From Map Coloring

§ _ to Graph Coloring




From Map Coloring

Gr@mymM




4-Color Theorem
—Graph Theory Version

THM: Any planar graph is 4-colorable.




Graph Coloring and Schedules

EG: Suppose want to sche ule so al exams ftor CS co ur es with
following call numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no common students in the following pairs
of courses because of prerequisites:

1007-3137

1007-3157,3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115
1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?




Graph Coloring and Schedules
Turnthis into a graph coloring problem. Vertices are -

courses, and edges are courses which cannot be
scheduled simultaneously because of possible students
In common:




Graph Coloring and schedules,
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~Graph Coloring and Schedules




Redg,raph Coloring and Schedules




_Graph Coloring and Schedules




_Graph Coloring and Schedules




Graph Coloring and Schedules

Is 3- i




o Gra h Colorin a:nd Schedules
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- Gragh Coloring and Schedules




Graph Coloring and Schedules

31




Graph Coloring and Schedules

So




