PROGRAM EFFICIENCY &
COMPLEXITY ANALYSIS

ALGORITHM DEFINITION

A finite set of statements that guarantees an optimal

solution In finite interval of time

(GO0D ALGORITHMS?

Run in less time
Consume less memory

But computational resources (time complexity) is usually
more important

MEASURING EFFICIENCY

The efficiency of an algorithm is a measure of the amount of
resources consumed in solving a problem of size n.
The resource we are most interested in is time

We can use the same techniques to analyze the consumption of other
resources, such as memory space.

It would seem that the most obvious way to measure the

efficiency of an algorithm is to run it and measure how much
processor time is needed

IS 1t correct ?

FACTORS

Hardware
Operating System
Compiler

Size of input
Nature of Input
Algorithm

Which should be improved?

RUNNING TIME OF AN
ALGORITHM

Depends upon

o Input Size
o Nature of Input

Generally time grows with size of input, so running time of an
algorithm is usually measured as function of input size.

Running time is measured in terms of number of
steps/primitive operations performed

Independent from machine, OS

FINDING RUNNING TIME OF AN
ALGORITHM / ANALYZING AN ALGORITHM

Running time Is measured by number of steps/primitive
operations performed

Steps means elementary operation like
+, *,<, =, Ali] etc

We will measure number of steps taken in term of size of
Input

SIMPLE EXAMPLE (1)

I/ Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N)
{
Int s=0;
for (int 1=0; I< N; 1++)
s=s+All];
return s;

}

How should we analyse this?

SIMPLE EXAMPLE (2)

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N){

int ;<— @
for (int 1—] 1<] 1++
2 @@
@/ \@ 1,2,8: Once
[return s; ,\ 3,4,5,6,7: Once per each iteration
} of for loop, N iteration
Total: 5N + 3

The complexity function of the
algorithm is : f(N) = 5N +3

SIMPLE EXAMPLE (3) GROWTH OF 5N+3

Estimated running time for different values of N:

N =10 => 53 steps

N =100 => 503 steps

N =1,000 => 5003 steps

N = 1,000,000 => 5,000,003 steps

As N grows, the number of steps grow in linear proportion to N for
this function “Sum”

WHAT DOMINATES IN PREVIOUS
EXAMPLE?

What about the +3 and 5 in 5N+3?

As N gets large, the +3 becomes insignificant

5 Is inaccurate, as different operations require varying amounts of time and
also does not have any significant importance

What iIs fundamental is that the time is linear in N.

Asymptotic Complexity: As N gets large, concentrate on the

highest order term:
Drop lower order terms such as +3
Drop the constant coefficient of the highest order term i.e. N

ASYMPTOTIC COMPLEXITY

The 5N+3 time bound is said to "grow asymptotically"
like N

This gives us an approximation of the complexity of the
algorithm

Ignores lots of (machine dependent) details, concentrate
on the bigger picture

COMPARING FUNCTIONS:
ASYMPTOTIC NOTATION

o Big Oh Notation: Upper bound
o Omega Notation: Lower bound

o Theta Notation: Tighter bound

BI1G OH NOTATION [1]

If f(N) and g(N) are two complexity functions, we say

f(N) =O(g(N))

(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")

If there are constants ¢ and N, such that for N > N,
f(N) <c * g(N)

for all sufficiently large N.

BIG OH NOTATION [2]

* Function cg(n) always dominates
f(n) to the right of n

O(F(N))

12000 | |

10000

8000

6000

4000

2000

_ZDDU | | | | | | 1 | |
0 10 20 30 40 o0 60 70 80 90 100

EXAMPLE (2): COMPARING FUNCTIONS

o Which function is better? | 4000
10 n? Vs n3 3500

3000

2500

—=— 10 n"2
n"3

2000

1500

1000

500

0

—_

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

COMPARING FUNCTIONS

As inputs get larger, any algorithm of a smaller order will
be more efficient than an algorithm of a larger order

0.05 N2 = O(N2)

A 3N = O(N)
LT
Y |
E i
= |

|

| -

N = 60 Input (size)

B1G-OH NOTATION

Even though it is correct to say “7n - 3 is O(n%)”, a better
statement 1s “7n - 3 1s O(n)”, that 1s, one should make the

approximation as tight as possible

Simple Rule:

Drop lower order terms and constant factors
/n-31s O(n)
8nZlog n + 5n2+ n is O(n%log n)

B1G OMEGA NOTATION

If we wanted to say “running time is at least...” we use Q

Big Omega notation, €2, 1s used to express the lower bounds on a
function.

If f(n) and g(n) are two complexity functions then we can say:

‘ f(n) is ©(g(n)) if there exist positive numbers ¢ and n, such that 0<=f(n)>=cQ (n) for all n>=n,

,*;L::"""_________ Cg Il) * In this instance, function cg(n) 1s
-'--'"';'-""*--‘-‘f"ﬁ dominated by function f(n) to the right
of ng
n, " n

* Example : 3n+ 2 = Q(n)

B1G THETA NOTATION

If we wish to express tight bounds we use the theta notation, ©

f(n) = ®(g(n)) means that f(n) = O(g(n)) and f(n) = Q(g(n))

i Ct%l%)
c'g(n)
> n

WHAT DOES THIS ALL MEAN?

If f(n) = O(g(n)) we say that f(n) and g(n) grow at the same
rate, asymptotically

If f(n) = O(g(n)) and f(n) # 2(g(n)), then we say that f(n) 1s
asymptotically slower growing than g(n).

If f(n) = Q(g(n)) and f(n) # O(g(n)), then we say that f(n) 1s
asymptotically faster growing than g(n).

WHICH NOTATION DO WE USE?

To express the efficiency of our algorithms which of the
three notations should we use?

As computer scientist we generally like to express our
algorithms as big O since we would like to know the
upper bounds of our algorithms.

Why?

If we know the worse case then we can aim to improve it
and/or avoid it.

PERFORMANCE CLASSIFICATION

f(n) Classification

1 Constant: run time is fixed, and does not depend upon n. Most instructions are executed once, or
only a few times, regardless of the amount of information being processed

log n Logarithmic: when n increases, so does run time, but much slower. Common in programs which
solve large problems by transforming them into smaller problems. Exp : binary Search

n Linear: run time varies directly with n. Typically, a small amount of processing is done on each
element. Exp: Linear Search

nlogn When n doubles, run time slightly more than doubles. Common in programs which break a problem
down into smaller sub-problems, solves them independently, then combines solutions. Exp: Merge

n2 Quadratic: when n doubles, runtime increases fourfold. Practical only for small problems; typically
the program processes all pairs of input (e.g. in a double nested loop). Exp: Insertion Search

n3 Cubic: when n doubles, runtime increases eightfold. Exp: Matrix

2n Exponential: when n doubles, run time squares. This is often the result of a natural, “brute force”
solution. Exp: Brute Force.

Note: logn, n, nlogn, n?>> less Input>>Polynomial
n3 2">>high input>> non polynomial

SIZE DOES MATTER|[1]

What happens if we double the input size N?

N log,N 5N Nlog,N N? 2N

8 3 40 24 64 256
16 4 80 64 256 655360
32 5 160 160 1024 ~10°
64 6 320 384 4096 ~10%°
128] 640 896 16384 ~1038
256 8 1280 2048 65536 ~107°

COMPLEXITY CLASSES

#o(ne) O(M2) O(nlog n) O(n)
linear search
~~
7))
o
)
whd
2
)
E
- binary search
O(log n)
input size (n)

SIZE DOES MATTER|2]

Suppose a program has run time O(n!) and the run time for
n =101is 1 second

For n =12, the run time Is 2 minutes
For n = 14, the run time is 6 hours
For n = 16, the run time is 2 months
For n = 18, the run time is 50 years

For n = 20, the run time is 200 centuries

STANDARD ANALYSIS TECHNIQUES

Constant time statements

Analyzing Loops

Analyzing Nested Loops
Analyzing Sequence of Statements

Analyzing Conditional Statements

CONSTANT TIME STATEMENTS

Simplest case: O(1) time statements

Assignment statements of simple data types
Intx =y,

Arithmetic operations:
X=0*y+4-7z;

Array referencing:
All = 5;

Array assignment:
v], All =5;

Most conditional tests:
if (x<12)...

ANALYZING LOOPS|1]

Any loop has two parts:
How many iterations are performed?
How many steps per iteration?

int sum =0,j;
for (j=0; j < N; j++)

sum = sum +j;

Loop executes N times (0..N-1)
4 = O(1) steps per iteration

Total time is N * O(1) = O(N*1) = O(N)

ANALYZING LOOPS|2]

What about this for loop?

Int sum =0, j;

for (J=0; j <100; j++)
sum = sum +j;

Loop executes 100 times

4 = O(1) steps per iteration

Total time 1s 100 * O(1) = O(100 * 1) = O(100) = O(1)

ANALYZING LOOPS — LINEAR LOOPS

Example (have a look at this code segment):

mii=1; « Executed 1 times
while (i<1) < :
{. 1l COIMpArisons
<<list GfS‘Ef_}HE‘H(’E statements }’3_ R Lets presume there is constant ¢ steps
J++, | present here; so we have c*n steps
b

————— | Executed n times

Efficiency is proportional to the number of iterations.
Efficiency time function is :
f(n) =1+ (n-1) + c*(n-1) +(n-1)
=(c+2)*(n-1) + 1
= (c+2)n —(c+2) +1
Asymptotically, efficiency is : O(n)

ANALYZING NESTED LOOPS|1]

Treat just like a single loop and evaluate each level of nesting as
needed:

int j,k;
for (J=0; J<N; j++)
for (k=N; k>0; k--)
sum += k+j;

Start with outer loop:
How many iterations? N

How much time per iteration? Need to evaluate inner loop

Inner loop uses O(N) time

Total time is N * O(N) = O(N*N) = O(N?)

ANALYZING NESTED LOOPS|2]

What if the number of iterations of one loop depends on the
counter of the other?

int j,k;
for (J=0; J < N; j++)
for (k=0; k <j; k++)
sum += k+j;

Analyze inner and outer loop together:

Number of iterations of the inner loop is:
0+1+2+..+(N-1) = O(N?)

How DID WE GET THIS ANSWER?

When doing Big-O analysis, we sometimes have to compute a
serieslike:1+2+3+ ...+ (n-1) +n

I.e. Sum of first n numbers. What is the complexity of this?

Gauss figured out that the sum of the first n numbers is always:

n (n+l) n‘+n
Z = = O

SEQUENCE OF STATEMENTS

For a sequence of statements, compute their complexity
functions individually and add them up

for (3j=0; j < N; j++)
for (k =0; k < j; k++) r O(N?)
sum = sum + J*k;
for (1=0; 1 < N; 1l++)
sum = sum -1; O(N)
System.out.print ("sum is now” +sum) ; O(1)

Total cost is O(n?) + O(n) +O(1) = O(n?)

CONDITIONAL STATEMENTS

What about conditional statements such as

If (condition)
statementl,;
else
statement2;

where statement1 runs in O(n) time and statement2 runs in O(n?)
time?

We use "worst case" complexity: among all inputs of size n, what is
the maximum running time?

The analysis for the example above is O(n?)

DERIVING A RECURRENCE EQUATION

So far, all algorithms that we have been analyzing have been non
recursive

Example : Recursive power method

double power(double x, intn) {

if(tn==20)
return 1.0; // base calse
/else
return power(x, n-1)*x; // recursive case

/

If N = 1, then running time T(N) is 2

However if N > 2, then running time T(N) is the cost of each step taken plus time
required to compute power(x,n-1). (i.e. T(N) = 2+T(N-1) for N > 2)

How do we solve this? One way is to use the iteration method.

ITERATION METHOD

This 1s sometimes known as “Back Substituting”.
Involves expanding the recurrence in order to see a pattern.

Solving formula from previous example using the iteration method

Solution : Expand and apply to itself :
Let T(1)=n0=2
T(N) =2 + T(N-1)
=2+2+T(N-2)
=2+2+2+T(N-3)
=24+2+2+...... +2+T(1)
=2N + 2 remember that T(1) =n0=2forN =1

So T(N) = 2N+2 i1s O(N) for last example.

SUMMARY

Algorithms can be classified according to their
complexity => O-Notation
only relevant for large input sizes

"Measurements" are machine independent
worst-, average-, best-case analysis

REFERENCES

Introduction to Algorithms by Thomas H. Cormen
Chapter 3 (Growth of Functions)

	Slide 1: Program Efficiency & Complexity Analysis
	Slide 2: Algorithm Definition
	Slide 3: Good Algorithms?
	Slide 4: Measuring Efficiency
	Slide 5: Factors
	Slide 6: RUNNING TIME OF AN ALGORITHM
	Slide 7: Finding running time of an Algorithm / Analyzing an Algorithm
	Slide 8: Simple Example (1)
	Slide 9: Simple Example (2)
	Slide 10: Simple Example (3) Growth of 5n+3
	Slide 11: What Dominates in Previous Example?
	Slide 12: Asymptotic Complexity
	Slide 13: COMPARING FUNCTIONS: ASYMPTOTIC NOTATION
	Slide 14: Big Oh Notation [1]
	Slide 15: Big Oh Notation [2]
	Slide 16: O(f(n))
	Slide 17: Example (2): Comparing Functions
	Slide 18: Comparing Functions
	Slide 19: Big-Oh Notation
	Slide 20: Big Omega Notation
	Slide 21: Big Theta Notation
	Slide 22: What does this all mean?
	Slide 23: Which Notation do we use?
	Slide 24: Performance Classification
	Slide 25: Size does matter[1]
	Slide 26: Complexity Classes
	Slide 27: Size does matter[2]
	Slide 28: Standard Analysis Techniques
	Slide 29: Constant time statements
	Slide 30: Analyzing Loops[1]
	Slide 31: Analyzing Loops[2]
	Slide 32: Analyzing Loops – Linear Loops
	Slide 33: Analyzing Nested Loops[1]
	Slide 34: Analyzing Nested Loops[2]
	Slide 35: How Did We Get This Answer?
	Slide 36: Sequence of Statements
	Slide 37: Conditional Statements
	Slide 38: Deriving A Recurrence Equation
	Slide 39: Iteration Method
	Slide 40: Summary
	Slide 41: references

