
PROGRAM EFFICIENCY &

COMPLEXITY ANALYSIS

1

ALGORITHM DEFINITION

A finite set of statements that guarantees an optimal

solution in finite interval of time

2

GOOD ALGORITHMS?

 Run in less time

 Consume less memory

 But computational resources (time complexity) is usually

more important

3

MEASURING EFFICIENCY

 The efficiency of an algorithm is a measure of the amount of

resources consumed in solving a problem of size n.

 The resource we are most interested in is time

 We can use the same techniques to analyze the consumption of other

resources, such as memory space.

 It would seem that the most obvious way to measure the

efficiency of an algorithm is to run it and measure how much

processor time is needed

 Is it correct ?

4

FACTORS

 Hardware

 Operating System

 Compiler

 Size of input

 Nature of Input

 Algorithm

 Which should be improved?
5

RUNNING TIME OF AN

ALGORITHM

 Depends upon
 Input Size

 Nature of Input

 Generally time grows with size of input, so running time of an
algorithm is usually measured as function of input size.

 Running time is measured in terms of number of
steps/primitive operations performed

 Independent from machine, OS

6

FINDING RUNNING TIME OF AN

ALGORITHM / ANALYZING AN ALGORITHM

 Running time is measured by number of steps/primitive

operations performed

 Steps means elementary operation like

 ,+, *,<, =, A[i] etc

 We will measure number of steps taken in term of size of

input

7

SIMPLE EXAMPLE (1)

// Input: int A[N], array of N integers

// Output: Sum of all numbers in array A

int Sum(int A[], int N)

{

 int s=0;

 for (int i=0; i< N; i++)

 s = s + A[i];

 return s;

}

How should we analyse this?
8

SIMPLE EXAMPLE (2)

9

// Input: int A[N], array of N integers

// Output: Sum of all numbers in array A

int Sum(int A[], int N){

 int s=0;

 for (int i=0; i< N; i++)

 s = s + A[i];

 return s;

}

1

2 3 4

5
6 7

8

1,2,8: Once

3,4,5,6,7: Once per each iteration

 of for loop, N iteration

Total: 5N + 3

The complexity function of the

algorithm is : f(N) = 5N +3

SIMPLE EXAMPLE (3) GROWTH OF 5N+3

Estimated running time for different values of N:

N = 10 => 53 steps

N = 100 => 503 steps

N = 1,000 => 5003 steps

N = 1,000,000 => 5,000,003 steps

 As N grows, the number of steps grow in linear proportion to N for
this function “Sum”

10

WHAT DOMINATES IN PREVIOUS

EXAMPLE?

What about the +3 and 5 in 5N+3?
 As N gets large, the +3 becomes insignificant

 5 is inaccurate, as different operations require varying amounts of time and
also does not have any significant importance

What is fundamental is that the time is linear in N.

Asymptotic Complexity: As N gets large, concentrate on the

 highest order term:
 Drop lower order terms such as +3

 Drop the constant coefficient of the highest order term i.e. N

11

ASYMPTOTIC COMPLEXITY

 The 5N+3 time bound is said to "grow asymptotically"

like N

 This gives us an approximation of the complexity of the

algorithm

 Ignores lots of (machine dependent) details, concentrate

on the bigger picture

12

COMPARING FUNCTIONS:

ASYMPTOTIC NOTATION

 Big Oh Notation: Upper bound

 Omega Notation: Lower bound

 Theta Notation: Tighter bound

13

BIG OH NOTATION [1]

If f(N) and g(N) are two complexity functions, we say

 f(N) = O(g(N))

(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")

if there are constants c and N0 such that for N > N0,

 f(N) ≤ c * g(N)

for all sufficiently large N.

14

BIG OH NOTATION [2]

15

O(F(N))

16

EXAMPLE (2): COMPARING FUNCTIONS

 Which function is better?

 10 n2 Vs n3

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 n 2̂

 n 3̂

17

COMPARING FUNCTIONS

 As inputs get larger, any algorithm of a smaller order will

be more efficient than an algorithm of a larger order

18

T
im

e
(s

te
p
s)

Input (size)

3N = O(N)

0.05 N2 = O(N2)

N = 60

BIG-OH NOTATION

 Even though it is correct to say “7n - 3 is O(n3)”, a better

statement is “7n - 3 is O(n)”, that is, one should make the

approximation as tight as possible

 Simple Rule:

 Drop lower order terms and constant factors

 7n-3 is O(n)

 8n2log n + 5n2 + n is O(n2log n)

19

BIG OMEGA NOTATION

 If we wanted to say “running time is at least…” we use Ω

 Big Omega notation, Ω, is used to express the lower bounds on a
function.

 If f(n) and g(n) are two complexity functions then we can say:

f(n) is Ω(g(n)) if there exist positive numbers c and n0 such that 0<=f(n)>=cΩ (n) for all n>=n0

20

BIG THETA NOTATION

 If we wish to express tight bounds we use the theta notation, Θ

 f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n))

21

WHAT DOES THIS ALL MEAN?

 If f(n) = Θ(g(n)) we say that f(n) and g(n) grow at the same

rate, asymptotically

 If f(n) = O(g(n)) and f(n) ≠ Ω(g(n)), then we say that f(n) is

asymptotically slower growing than g(n).

 If f(n) = Ω(g(n)) and f(n) ≠ O(g(n)), then we say that f(n) is

asymptotically faster growing than g(n).

22

WHICH NOTATION DO WE USE?

 To express the efficiency of our algorithms which of the
three notations should we use?

 As computer scientist we generally like to express our
algorithms as big O since we would like to know the
upper bounds of our algorithms.

 Why?

 If we know the worse case then we can aim to improve it
and/or avoid it.

23

PERFORMANCE CLASSIFICATION

f(n) Classification

1 Constant: run time is fixed, and does not depend upon n. Most instructions are executed once, or

only a few times, regardless of the amount of information being processed

log n Logarithmic: when n increases, so does run time, but much slower. Common in programs which

solve large problems by transforming them into smaller problems. Exp : binary Search

n Linear: run time varies directly with n. Typically, a small amount of processing is done on each

element. Exp: Linear Search

n log n When n doubles, run time slightly more than doubles. Common in programs which break a problem

down into smaller sub-problems, solves them independently, then combines solutions. Exp: Merge

n2 Quadratic: when n doubles, runtime increases fourfold. Practical only for small problems; typically

the program processes all pairs of input (e.g. in a double nested loop). Exp: Insertion Search

n3 Cubic: when n doubles, runtime increases eightfold. Exp: Matrix

2n Exponential: when n doubles, run time squares. This is often the result of a natural, “brute force”

solution. Exp: Brute Force.

Note: logn, n, nlogn, n2>> less Input>>Polynomial

 n3, 2n>>high input>> non polynomial
24

SIZE DOES MATTER[1]

25

What happens if we double the input size N?

 N log2N 5N N log2N N2 2N

 8 3 40 24 64 256

 16 4 80 64 256 65536

 32 5 160 160 1024 ~109

 64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

COMPLEXITY CLASSES
T

im
e

 (
s
te

p
s
)

26

SIZE DOES MATTER[2]

 Suppose a program has run time O(n!) and the run time for

n = 10 is 1 second

For n = 12, the run time is 2 minutes

For n = 14, the run time is 6 hours

For n = 16, the run time is 2 months

For n = 18, the run time is 50 years

For n = 20, the run time is 200 centuries
27

STANDARD ANALYSIS TECHNIQUES

 Constant time statements

 Analyzing Loops

 Analyzing Nested Loops

 Analyzing Sequence of Statements

 Analyzing Conditional Statements

28

CONSTANT TIME STATEMENTS

 Simplest case: O(1) time statements

 Assignment statements of simple data types
 int x = y;

 Arithmetic operations:
 x = 5 * y + 4 - z;

 Array referencing:
 A[j] = 5;

 Array assignment:
  j, A[j] = 5;

 Most conditional tests:
 if (x < 12) ...

29

ANALYZING LOOPS[1]

 Any loop has two parts:

 How many iterations are performed?

 How many steps per iteration?

 int sum = 0,j;

 for (j=0; j < N; j++)

 sum = sum +j;

 Loop executes N times (0..N-1)

 4 = O(1) steps per iteration

 Total time is N * O(1) = O(N*1) = O(N)
30

ANALYZING LOOPS[2]

 What about this for loop?

 int sum =0, j;

 for (j=0; j < 100; j++)

 sum = sum +j;

 Loop executes 100 times

 4 = O(1) steps per iteration

 Total time is 100 * O(1) = O(100 * 1) = O(100) = O(1)

31

ANALYZING LOOPS – LINEAR LOOPS

 Example (have a look at this code segment):

 Efficiency is proportional to the number of iterations.

 Efficiency time function is :

 f(n) = 1 + (n-1) + c*(n-1) +(n-1)

 = (c+2)*(n-1) + 1

 = (c+2)n – (c+2) +1

 Asymptotically, efficiency is : O(n) 32

ANALYZING NESTED LOOPS[1]
 Treat just like a single loop and evaluate each level of nesting as

needed:

 int j,k;

 for (j=0; j<N; j++)

 for (k=N; k>0; k--)

 sum += k+j;

 Start with outer loop:
 How many iterations? N

 How much time per iteration? Need to evaluate inner loop

 Inner loop uses O(N) time

 Total time is N * O(N) = O(N*N) = O(N2) 33

ANALYZING NESTED LOOPS[2]

 What if the number of iterations of one loop depends on the
counter of the other?

 int j,k;

 for (j=0; j < N; j++)

 for (k=0; k < j; k++)

 sum += k+j;

 Analyze inner and outer loop together:

 Number of iterations of the inner loop is:

 0 + 1 + 2 + ... + (N-1) = O(N2)

34

HOW DID WE GET THIS ANSWER?

 When doing Big-O analysis, we sometimes have to compute a
series like: 1 + 2 + 3 + ... + (n-1) + n

 i.e. Sum of first n numbers. What is the complexity of this?

 Gauss figured out that the sum of the first n numbers is always:

35

SEQUENCE OF STATEMENTS

 For a sequence of statements, compute their complexity
functions individually and add them up

 Total cost is O(n2) + O(n) +O(1) = O(n2)

36

CONDITIONAL STATEMENTS

 What about conditional statements such as

 if (condition)

 statement1;

 else

 statement2;

 where statement1 runs in O(n) time and statement2 runs in O(n2)
time?

 We use "worst case" complexity: among all inputs of size n, what is
the maximum running time?

 The analysis for the example above is O(n2)

37

DERIVING A RECURRENCE EQUATION

 So far, all algorithms that we have been analyzing have been non
recursive

 Example : Recursive power method

 If N = 1, then running time T(N) is 2

 However if N ≥ 2, then running time T(N) is the cost of each step taken plus time
required to compute power(x,n-1). (i.e. T(N) = 2+T(N-1) for N ≥ 2)

 How do we solve this? One way is to use the iteration method.

38

ITERATION METHOD

 This is sometimes known as “Back Substituting”.

 Involves expanding the recurrence in order to see a pattern.

 Solving formula from previous example using the iteration method
:

 Solution : Expand and apply to itself :

 Let T(1) = n0 = 2

 T(N) = 2 + T(N-1)

 = 2 + 2 + T(N-2)

 = 2 + 2 + 2 + T(N-3)

 = 2 + 2 + 2 + ……+ 2 + T(1)

 = 2N + 2 remember that T(1) = n0 = 2 for N = 1

 So T(N) = 2N+2 is O(N) for last example.

39

SUMMARY

 Algorithms can be classified according to their

complexity => O-Notation

 only relevant for large input sizes

 "Measurements" are machine independent

 worst-, average-, best-case analysis

40

REFERENCES

Introduction to Algorithms by Thomas H. Cormen

Chapter 3 (Growth of Functions)

41

	Slide 1: Program Efficiency & Complexity Analysis
	Slide 2: Algorithm Definition
	Slide 3: Good Algorithms?
	Slide 4: Measuring Efficiency
	Slide 5: Factors
	Slide 6: RUNNING TIME OF AN ALGORITHM
	Slide 7: Finding running time of an Algorithm / Analyzing an Algorithm
	Slide 8: Simple Example (1)
	Slide 9: Simple Example (2)
	Slide 10: Simple Example (3) Growth of 5n+3
	Slide 11: What Dominates in Previous Example?
	Slide 12: Asymptotic Complexity
	Slide 13: COMPARING FUNCTIONS: ASYMPTOTIC NOTATION
	Slide 14: Big Oh Notation [1]
	Slide 15: Big Oh Notation [2]
	Slide 16: O(f(n))
	Slide 17: Example (2): Comparing Functions
	Slide 18: Comparing Functions
	Slide 19: Big-Oh Notation
	Slide 20: Big Omega Notation
	Slide 21: Big Theta Notation
	Slide 22: What does this all mean?
	Slide 23: Which Notation do we use?
	Slide 24: Performance Classification
	Slide 25: Size does matter[1]
	Slide 26: Complexity Classes
	Slide 27: Size does matter[2]
	Slide 28: Standard Analysis Techniques
	Slide 29: Constant time statements
	Slide 30: Analyzing Loops[1]
	Slide 31: Analyzing Loops[2]
	Slide 32: Analyzing Loops – Linear Loops
	Slide 33: Analyzing Nested Loops[1]
	Slide 34: Analyzing Nested Loops[2]
	Slide 35: How Did We Get This Answer?
	Slide 36: Sequence of Statements
	Slide 37: Conditional Statements
	Slide 38: Deriving A Recurrence Equation
	Slide 39: Iteration Method
	Slide 40: Summary
	Slide 41: references

