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Preface 

In the last decade or so work in graph theory has centred on algorithmic 
interests rather than upon existence or characterisation theorems. This 
book reflects that change of emphasis and is intended to be an intro­
ductory text for undergraduates or for new postgraduate students. 

The book is aimed primarily at computer scientists. For them graph 
theory provides a useful analytical tool and algorithmic interests are 
bound to be uppermost. The text does, however, contain an element of 
traditional material and it is quite likely that the needs of a wider audience, 
including perhaps mathematicians and engineers, will be met. Hopefully, 
enough of this material has been included to suggest the mathematical 
richness of the field. 

Prerequisites for an understanding of the text have been kept to a 
minimum. It is essential however to have had some exposure to a high­
level, procedural and preferably recursive programming language, to be 
familiar with elementary set notation and to be at ease with (for example, 
inductive) theorem proving. Where more advanced concepts are required 
the text is largely self-contained. This is true, for example, in the use of 
linear programming and in the proofs of NP-completeness. 

There is rather more material than would be required for a one-semester 
course. It is possible to use the text for courses of more or ofless difficulty, 
or to select material as it appeals. For example an elementary course might 
not include, amongst other material, that on branchings (in chapter 2), 
minimum-cost flows (in chapter 4), maximum-weight matchings (in 
chapter 5), postman problems (in chapter 6) and proofs of NP-completeness 
(all of chapter 8). Whatever the choice of material, any course will in­
evitably reflect the main preoccupation of the text. This is to identify those 
important problems in graph theory which have an efficient algorithmic 
solution (that is, those whose time-complexity is polynomial in the problem 
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size) and those which, it is thought, do not. In this endeavour the most 
efficient of the known polynomial time algorithms have not necessarily 
been described. These algorithms can require explanations that are too 
lengthy and may have difficult proofs of correctness. One such example is 
graph planarity testing in linear-time. It has been thought preferable to go 
for breadth of material and, where required, to provide references to more 
difficult and stronger results. Nevertheless, a body of material and quite a 
few results, which are not easily available elsewhere, have been presented 
in elementary fashion. 

The exercises which appear at the ends of chapters often extend or 
motivate the material of the text. For this reason outlines of solutions are 
invariably included. Some benefit can certainly be obtained by reading 
these sections even if detailed solutions are not sought. 

Thanks are due to Valerie Gladman for her cheerful typing of the manu­
script. Primary and secondary sources of material are referenced at the ends 
of chapters. I gratefully acknowledge my debt to the authors of these works. 
However, I claim sole responsibility for any obscurities and errors that 
the text may contain. 

A. M. Gibbons Warwick, January 1984 



1 

Introducing graphs and algorithmic 
complexity 

In this chapter we introduce the basic language of graph theory and of 
algorithmic complexity. These mainstreams of interest are brought together 
in several examples of graph algorithms. 

Most problems on graphs require a systematic traversal or search of the 
graph. The actual method of traversal used can have advantageous struc­
tural characteristics which make an efficient solution possible. We illustrate 
both this and the use of an efficient representation of a graph for compu­
tational purposes. 

The definitions and concepts outlined here will serve as a foundation for 
the material of later chapters. 

1.1 Introducing graphs 
This section introduces the basic vocabulary of graph theory. The 

subject contains an excess of non-standardised terminology. In the fol­
lowing paragraphs we introduce a relatively small number of widely used 
definitions which will nevertheless meet our needs with very few later 
additions. 

Geometrically we define a graph to be a set of points (vertices) in space 
which are interconnected by a set oflines (edges). For a graph G we denote 

Fig.1.1 
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the vertex-set by Vand the edge-set by E and write G = (V, E). Figure 1.1 
shows a graph, G = ({v1, v1, ... , v9}, {e1, e1, ... , e11}). 

We shall denote the number of vertices in a graph by n = IVI and the 
number of edges by IE I. If both n and IE I are finite, as we shall normally 
presume to be the case, then the graph is said to be finite. 

We can specify an edge by the two vertices (called its end-points) that it 
connects. If the end-points of e are v, and v1 then we write e = (v,t, v1) or 
e = (v1, vJ. Thus an equivalent definition of the graph in figure 1.1 is: 

G = (V, E), V = {v1, v1, ••• , v9} 

E = {(v1, v.), (v1, va), (v1, va), (v3, vi;), (v,, vJ, (v,, v.), 
(v,, v,), (v6, v.), (v,, v7), (v,, va), (v7, v.), (v8, v.)} 

If an edge e has v as an end-point, then we say that e is incident with v. 
Also if(u, v) e Ethen u is said to be adjacent to v. For example, in figure 1.1 
the edges e,, e11 and e8 are incident with v11 which is adjacent to v3, v, and v8• 

We also say that two edges are adjacent if they have a common end-point. 
In figure 1.1, for example, any pair of e8, e9, e10 and e11 are adjacent. 

The degree of a vertex v, written d(v), is the number of edges incident 
with v. In figure 1.1 we have d(vJ = d(v.J = d(va) = d(v.) = 2, d(va) = 
d(vJ = d(vJ = d(va) = 3 and d(v,) = 4. A vertex v for which d(v) = 0 is 
called an isolated vertex. Our first theorem is a well-known one concerning 
the vertex degrees of a graph. 

Theorem 1.1. The number of vertices of odd-degree in a finite graph is even. 

Proof. If we add up the degrees of all the vertices of a graph then the result 
must be twice the number of edges. This is because each edge contributes 
once to the sum for each of its ends. Hence: 

~ d(vJ = 2· IEI 
' 

The right-hand side of this equation is an even number as is the contri-
bution to the left-hand side from vertices of even-degree. Therefore the 
sum of the degrees of those vertices of odd-degree is even and the theorem 
follows. ■ 

A self-loop is an edge (u, v) for which u = v. An example is e1 in the 
graph of figure 1.2(a). A parallel edge cannot be uniquely identified by 
specifying its end-points only. In figure 1.2(a), e1 is parallel to e3• In this 
text we shall normally be concerned with simple graphs, that is, graphs 
which contain no self-loops or parallel edges. Of course, every graph has 
an underlying simple graph obtained by the removal of self-loops and 
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parallel edges. Thus figure 1.2(b)shows the simple graph underlying figure 
l.2(a). By the term multi-graph we mean a graph with parallel edges but 
with no self-loops. From now on we shall employ the term graph to mean 
a simple graph unless we explicitly say otherwise. 

Fig.1.2 

(a) (b) 

[> 
A graph for which every p;ur of distinct vertices defines an edge is called 

a complete graph. The complete graph with n vertices is denoted by K". 
Figure 1.3 shows K8 and K6• In a regular graph every vertex has the same 
degree, if this is k then the graph is called k-regular. Notice that K,,,, is 
(n-1)-regular. Figure 1.4 shows two examples of 3-regular graphs (also 
called cubic graphs) which, as a class, are important in colouring planar 
maps as we shall see in a later chapter. 

Fig.1.3 

Fig.1.4 
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If it is possible to partition the vertices of a graph G into two subsets, Yi, 
and V., such that every edge of G connects a vertex in Yi to a vertex in V. then 
G is said to be bipartite. Figure 1.S(a) and (b) shows two bipartite graphs. 
If every vertex of Vi is connected to every vertex of V. then G is said to be a 
complete bipartite graph. In this case we denote the graph by ~., where 
IVil = i and IV.I = j. Figure 1.S(b) shows X.. 3• There is an obvious 
generalisation of these definitions for bipartite graphs to k-partite graphs 
where k is an integer greater than two. 

Fig.1.5 

(a) 

Two graphs G1 and G8 are isomorphic if there is a one-to-one corre­
spondence between the vertices of G1 and the vertices of G1 such that the 
number of edges joining any two vertices in G1 is equal to the number of 
edges joining the corresponding two vertices in G8• For example, figure 
1.6 shows two graphs which are isomorphic, each being a representation 
of K3, 3• 

Fig.1.6 

A (proper) subgraph of G is a graph obtainable by the removal of a 
(non-zero) number of edges and/or vertices of G. The removal of a vertex 
necessarily implies the removal of every edge incident with it, whereas the 
removal of an edge does not remove a vertex although it may result in one 
( or even two) isolated vertices. If we remove an edge e or a vertex v from G, 
then the resulting graphs are respectively denoted by (G-e) and (G-v). 
If H is a subgraph of G then G is called a supergraph of H and we write 
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H s; G. A subgraph of G induced by a subset of its vertices, V' c: V, is the 
graph consisting of V' and those edges of G with both end-points in V'. 

A path from v1 to v, is a sequence P = Vi, e1, v11, e1, ... , ~-1> v, of alter­
nating vertices and edges such that for 1 ~ j < i, e1 is incident with v1 and 
v.1+i• If Vi = v, then P is said to be a cycle or a circuit. In a simple graph a 
path or a cycle Vi, e1, v1, e1, ••• , e,_i, v, can be more simply specified by the 
sequence of vertices v1, v1, ••• , v,. Ifin a path each vertex only appears once, 
then the sequence is called a simple path. If each vertex appears once except 
that Vi = v, then P is a simple circuit. The length of a pat:h or a cycle is the 
number of edges it contains. Two paths are edge-disjoint if they do not have 
an edge in common. 

Two vertices v, and v1 are connected if there is a path from v, to v1• By 
convention, every vertex is connected to itself. Connection is an equi­
valence relation (see problem 1.9) on the vertex set of a graph which 
partitions it into subsets J'i, V., ... , J'rc. A pair of vertices are connected if 
and only if they belong to the same subset of the partition. The subgraphs 
induced in turn by the subsets Pi, V., ... , J'rc, are called the components of the 
graph. A connected graph has only one component, otherwise it is dis­
connected. Thus the graph of figure 1.1 is connected whilst that of figure 1.9 
has two components. 

A spanning subgraph of a connected graph G is a subgraph of G obtained 
by removing edges only and such that any pair of vertices remain connected. 

Let Hbe a connected graph or a component. If the removal of a vertex v 
disconnects H, then v is said to be an articulation point. For example, in 
figure 1.1 v8, v6 and v7 are all articulation points. If H eontains no articu­
lation point then H is a block, sometimes called a 2-connected graph or 
component. If H contains an edge e, such that its removal will disconnect H, 
then e is said to be a cut-edge. Thus in figiae 1.1 e, is a cut-edge. The end­
points of a cut-edge are usually articulation points. 

A graph with one or more articulation points is also called a separable 
graph. This refers to the fact that the blocks of a separable graph can be 
identified by disconnecting the graph at each articulation point in tum in 
such a way that each separated part of the graph retains a copy of the 
articulation point. For example, figure 1.7 shows the separated parts (or 
. blocks) of the graph depicted in figure 1.1. Clearly, any graph is the union 
of its blocks. 

In some applications it is natural to assign a direction to each edge of a 
graph. Thus in a diagram or lhe graph each edge is represented by an 
arrow. A graph augmented in this way is called a directed graph or a 
digraph. An example is shown in figure 1.8. If e = (v,, v1) is an edge of a 
digraph then the order of v, and v1 becomes significant. The edge e is under-
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Fig.1.7 

.. ~~ .. <]' 
Fig.1.8 

stood to be directed from the first vertex v, to the second vertex v1• Thus if 
a digraph contains the edge (v,, v1) then it may or it may not contain the 
edge (v1, vJ. The directed edge (v,, v1) is said to be incident from v, and 
incident to v1• For the vertex v, the out-degree d+(v) and the in-degree d-(v) 
are, respectively, the number of edges incident from v and the number of 
edges incident to v. A symmetric digraph is a digraph in which for every 
edge (v,, v1) there is an edge (v1, v,). A digraph is balanced if for every 
vertex v, d+(v) = d-(v). 

Of course, every digraph has an rmderlying (undirected simple) graph 
obtained by deleting the edge directions. Thus figure 1.9 shows this graph 
for the digraph of figure 1.8. As defined earlier, a path (or circuit) in a 
corresponding undirected graph is a sequence S = v1, ei, Va, ea, •.. , v,_1, e,, 
of vertices and edges. In the associated digraph this sequence may be such 

F,g.1.9 

t'hat for allj, 1 ~ j < i, e1 is incident from v1 and incident to vs+i• In this 
cmie Sis said to be a directed path (or circuit). Otherwise it is an undirected 
patb.(otclrcuit). Tousintigure I 8 ( '· • V11, es, Va, e8, v5, e,, v,, ea, v3, e11, v81 1s an 
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undirected non-simple path, while(vi, e1, v1, ea, Va, e9, vi)isasimpledirected 
circuit. Because in a digraph we can define two different types of paths we 
can also define two different types of connectedness. Two vertices, Vi and 
v1, are said to be strongly connected if there is a directed path from Vi to v11 

and a directed path from v1 to Vi. If Vi and v8 are not strongly connected but 
are connected in the corresponding undirected graph, then v1 and v1 are 
said to be weakly connected. 

Both strong connection and weak connection are equivalence relations 
(see problem 1.9) on the vertex set of a digraph. Of course weak connection 
partitions the vertices in precisely the same way that connection would 
partition the vertices of the corresponding undirected graph. Thus for 
the graph in figure 1.8, weak connection partitions the vertices into the 
two subsets {vi, v8, v8, v,, v6, vJ and {v7, va, v9}. The subgraphs induced by 
these subsets are called the weakly connected components of the digraph. 
On the other hand strong connection partitions the vertices of this graph 
into the subsets {v1, v8, va}, {v8, v,, v5}, {v7} and {va, v8}. Each of these subsets 
induces a strongly connected component of the digraph. ~otice that each 
edge of a digraph belongs to some weakly connected component but that 
it does not necessarily belong to a strongly connected component. 

We now briefly introduce an important class of graphs called trees. 
A tree is a connected graph containing no circuits. Aforest is a graph whose 
components (one or more in number) are trees. An out-tree is a directed 
tree in which precisely one vertex has zero in-degree. Similarly, an in-tree 
is a directed tree in which precisely one vertex has zero out-degree. A tree 
in which one vertex, the root, is distinguished, is called a rooted-tree. In a 
rooted-tree any vertex of degree one, unless it is the root, is called a leaf. 
As we shall see in theorem 1.2 there is precisely one path between any two 
vertices of a tree. The depth or level of II vertex in a rooted-tree is the 
number of edges in the path from the root to that vertex. If (u, v) is an edge 
of a rooted-tree such that u lies on the path from the root to v, then u is 
said to be the/ at her of v and v is the son of u. An ancestor of u is any vertex 
of the path from u to the root of the tree. A proper ancestor of u is any 
ancestor of u excluding u. Similarly, if u is an ancestor of v, then vis a 
descendant of u. A proper descendant of u excludes u. Finally, a binary tree 
is a rooted-tree in which every vertex, unless it is a leaf, has two sons. 

Theorem 1.2. If T is a tree with n vertices, then 

(a) Any two vertices of Tare connected by precisely oQ.e path. 
(b) For any edge e, not in T, but connecting two vertices of T, the 

graph (T+e) contains exactly one circuit. 
(c) Thas (n-1) edges. 
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Proof. (a) T is connected and so there exists at least one path between any 
two vertices u and v. Suppose that two distinct paths. P1 and P,. exist 
between u and v. Following these paths from u to v. let them first diverge 
at r/ and first converge at v'. That section of P1 from u' to v' followed by, 
that section of P,. from v' to r/ must form a circuit. By definition. T contains 
no circuit and so we have a contradiction. 

(b) Let e = (u. v). According to (a) there is precisely one path P from 
u to v within T. The addition of e therefore creates exactly one circuit 
(P+e). 

(c) Proof is by induction on the numbet of vertices n in T. Ifn = 1 or 2 
then. trivially. the number of edges in T is (n-1). We assume that the 
statement is true for all trees with less than n vertices. Let T haven vertices. 
There must be a vertex of degree one contained in T. otherwise we could 
trace a circuit by following any path from vertex to vertex entering each 
vertex by one edge and leaving by another. If we remove a vertex of degree 
one. v, from Twe neither disconnect Tor create a circuit. Hence (T-v) is 
a tree with (n-1) vertices. By the induction hypothesis (T-v) has (n-2) 
edges. Hence replacing v provides T with (n-1) edges. ■ 

We complete our catalogue of definitions by introducing weighted graphs. 
In some applications it is natural to assign a number to each edge of a 
graph. For any edge e, this number is written w(e) and is called its weight. 
Naturally the graph in question is called a weighted graph. The weight of a 
(sub)graph is equal to the sum of the weights of its edges. Often of interest 
here is a path (or cycle) in which case it may be appropriate to refer to the 
length rather than the weight of the path (or cycle). This should not be 
confused with the length of a path ( or cycle) in an unweighted graph which 
we defined earlier. 

In the following section we introduce the other central interest of this 
text, namely. that of algorithmic complexity. 

1.2 Introducing algorithmic complexity 
Although fairly brief, thisJntroduction to algorithmic efficiency 

will provide a sufficient basis for all but the final chapter of this text. That 
chapter provides further insight into what is introduced here. and. in 
particular, it explores an important class of intractable problems. 

Our interest in efficiency is particularly concerned with what is called the 
time-complexity of algorithms. Since the analogous concept of space­
complexity will be of little interest to us, we can use the term complexity in 
an unambiguous way. The complexity of an algorithm is simply the 
number of computational steps that it takes to transform the input data to 
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the result of a computation. Generally this is a function of the quantity of 
the input data, commonly called the problem size. For graph algorithms 
the problem size is determined by one or perhaps both of the variables n 
and IEI. 

For a probiem size s, we denote the complexity of a graph algorithm 
A by C .. h), dropping the subscript A when no ambiguity will arise. C .. tCs) 
may vary significantly if algorithm A is applied to structurally different 
graphs but which are nevertheless of the same size. We therefore need to 
be more specific in our definition. In this text we take C .. t(s) to mean the 
worst-case complexity. Namely, to be the maximum number, over all input 
sizes s, of computational steps required for the execution of algorithm A. 
Other definitions can be used. For example, the expected time-complexity 
is the average, over all input sizes s, of the number of computational steps 
required. 

The complexities of two algorithms for the same problem will in general 
differ. Let A1 and A1 be two such algorithms and suppose that C .A.,(n) = ½n1 

and that C.A.1(n) = Sn. Then A1 is faster than A1 for all problem sizes 
n > 10. In fact whatever had been the (finite and positive) coefficients of 
n1 and of n in these expressions, A1 would be faster than A1 for all n 
greater than some value, n0 say. The reason, of course, is thatthe asymptotic 
growth, as the problem size tends to infinity, of n1 is greater than that of n. 
The complexity of A1 is said to be oflower order than that of A1• The idea 
of the order of a function is important in complexity theory and we now 
need to define and to further illustrate it. 

Given two functions F and G whose domain is the natural numbers, we 
say that the order of F is lower than or equal to the order of G provided 
that: 

F(n) ~ K·G(n) 

for all n > n0, where Kand n0 are two positive constants. If the order of F 
is lower than or is equal to the order of G then we write F = O(G) or we 
say that Fis O(G). F and G are of the same order provided that F = O(G) 
and that G = O(F). It is occasionally convenient to write fJ(G) to specify 
the set of all functions which are of the same order as G. Although fJ(G) 
is defined to be a set, we conventionally write F = fJ( G) to mean Fe fJ( G). 
Illustrating these definitions, we see that Sn is O(½nl) but that Sn =/: fJ(½n11) 

because ½n1 is not O(Sn). Note also that low order terms of a function can 
be ignored in determining the overall order. Thus the polynomial 
(3n3 +6n11 +n+6) is 0(3n3). It is obviously convenient when specifying the 
order of a function to describe it in terms of the simplest representative 
function. Thus (3n8+6nl) is O(n3) and ½n 11 is O(nl). 

When comparing two functions in terms of order, it is often convenient 
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to take the following alternative definition. Letting lim F(n)/G(n) = L, 
tl--+00 

we see that: 

(i) If L = a finite positive constant, then F = O(G). 
(ii) If L = 0, then Fis of lower order than G. 

(iii) If L = oo, then G is of lower order than F. 

We provide four illustrations: 

(a) F(n) = 3n1 -4n+2 and G(n) = ½,,1• ThenL = 6, so that F = O(G). 
(b) F(n) = log. n and G(n) = n. Then: 

L = lim lnn·log.e = lim (log.e) = O 
a--+oo n a--+oo n 

Here we have used L'H8pital's rule which states that if 

lim F(n) = lim G(n) = oo 
ft.--+CO tl,--+00 

and provided the derivatives F' and G' and the limits exist, then: 

lim F(n) = lim F'(n) 
a--+oo G(n) a--+oo G'(n) 

Since L = 0, we see that log.n is of lower order than n. 
(c) F(n) = x" and G(n) = nk, where x and k are arbitrary but fixed 

constants, both greater than one. We define U(n) = F(n)/G(n), so that: 

U(n+ 1)/U(n) = x(n/(n+ I))k 

Thus for fixed k, we can always find a sufficiently large value of n, n0, say, 
such that for n > n0 : 

U(n+ I) ~ x· U(n) 

Hence for n ;;i. n0 

and 
U(n) ~ x"'-tlaU(no) 

L = lim U(n) = oo 
fl,--+00 

So that F, which is exponential inn, is of greater order than any polynomial 
inn. 

(d) If we take F and G to be as defined in (c), and if H(n) = nl, then 
using the same approach as in ( c) the reader may readily verify that His of 
greater order than both F and G. In other wbrds, factorial n is of greater 
order than polynomial n. Moreover, it is of greater order than exponential n. 

The order of C .A.(s) describes the asymptotic behaviour of C .A.(s) ass➔ oo. 
If C .A.(s) is O(F), then A is said to be an O(F)-algorithm. The asymptotic 
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complexity essentially determines the largest problem size that can be 
handled. If two algorithms for the same problem are of the same order, 
then roughly speaking, neither performs significantly better than the other. 

For sufficiently large s, the difference is negligible compared with what it 
would be for two algorithms of different order. 

In table 1.1 we have tabulated various commonly occurring complexities 
for a range of problem sizes. This table also provides information from 
which the tabulated numbers of computational steps might be realistically 
related to computation times. 

Table 1.1. Computation times for a variety of time-complexities over a 
range of problem sizes 

Problem size n 
Time- 2 8 
complexities 

n 2 2a 
n log2 n 2 3 X 28 

nl 2• 2a 
n8 2a 2• 
2" 2• 2s 
~n! 2 5 X 218 

210 steps/second ~ 0.9 x 211 steps/minute 
~ 0.9 x 211 steps/hour 
~ 1.3 x 218 steps/day 
~ 0.9 x 281 steps/year 
~ 0.7 x 2'1 steps/century 

128 1024 

21 210 
7x27 lOx 210 
21• 200 
211 210 
211s 2108' 
5 X 2711 7 X 28788 

The complexity of an algorithm is imp<Xtant to the computer scientist. 

One reason for this is that the existence of an algorithm does not guarantee 
in practical terms that the problem can be solved. The algorithm may be so 
inefficient that, even with computation speeds vastly increased over those 

of the present day, it would not be possible to obtain a result within a useful 
period of time. We need then to characterise those algorithms which are 
efficient enough to make their implementation useful so that they can be 
distinguished from those which may have to be disregarded for practical 
purposes. Fortunately, computer scientists have been able to make use of 
a rather simple characterising distinction which, for most occasions, 
satisfies the need. The yardstick is that any O(P)-algorithm, where P is a 
polynomial in the problem size, is an efficient algorithm. Many algorithms 
have complexities which are exponential, or even factorial, in the problem 
size. From our illustrations of determining the relative order of functions, 
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we see that these algorithms cannot, at least according to the technical 
definition, be regarded as efficient. In table 1.1 we can see, for the 
examples shown, that there is a phenomenal difference in the growth of 
computation times for these algorithms compared with that for some 
polynomial time algorithms. (Note thatn log. n is O(nll).) We must, however, 
not lose sight of the dictionary definition of efficient. It is quite possible 
for a particular algorithm to be inefficient in the technical sense and yet 
to be preferable in practice. 

The technical distinction, as it has been drawn, between efficient and 
inefficient algorithms can be a crude one since it takes no account of the 
coefficients or the degree of a specific polynomial in question. For very 
small problem sizes, we can see from the table 1.1 that algorithms with 
complexity 2" or n ! are actually more efficient than an algorithm of com­
plexity n3• The range of this greater efficiency would clearly extend to much 
greater problem sizes if the comparison had been made with a complexity 
of 1000n3 or with a complexity of n100, say. However, it is true that, in 
practice, these considerations are uncommonly an issue because the 
polynomials encountered are usually of low degree and contain modest 
coefficients. In a different vein, we must also remember that the complexity 
of an algorithm describes its worst case behaviour. Its average behaviour 
may be a much more attractive prospect. A well-known example, which 
falls outside our technical definition of efficiency, concerns the problem of 
linear programming. Here, as we point out at the end of the appendix on 
linear programming, there is a common,ly used exponential-time algorithm 
which is nevertheless efficient in practice (lnd yet there exists a polynomial 
time algorithm which is at present hopeless from a practical standpoint. 

It might be thought that our specification of efficiency will lose its 
usefulness as new generations of copiputers operate at higher and higher 
speeds. It is perhaps remarkable that this is not the case. We can best see 
this by tabulating the maximum problem sizes that can be solved with 
various time-complexities, over a common time period, as the speed of 
computation is increased. This has been done in table 1.2. This demon­
strates that higher computation speeds have a significant multiplicative 
effect upon the maximum problem size that can be solved by polynomial 
time algorithms but only a marginal additive effect for exponential-time 
algorithms. Of course, this only serves to enhance our notion of what 
.algorithms may be regarded as efficient. 

Notwithstanding our earlier caveats, we call any problem for which no 
polynomial time algorithm is known, and for which it is conjectured that 
no such algorithm exists, an intractable problem. 

As illustrations, we now analyse two algorithms. The first is a well-
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Table 1.2. The effect off aster computation speeds on the largest problem 
size solvable in a given time by some polynomial and exponential-time 
algorithms 

Time- At present 
complexity speeds 21 xfaster 27 xfaster 210 xfaster 

n N1 8N1 l28N1 1O24N1 
n• N■ 2.8N1 11.3N1 32N, 
2" N, Na+3 N,+7 N,+1O 
gn N, N,+1 N,+2.3 N,+3.3 

known one due to Dijkstra which finds the shortest path from a specified 
vertex in a weighted graph to any other vertex, or indeed to all other 
vertices. The second algorithm solves the seemingly similar problem of find­
ing the maximum length simple path between any two specified vertices in a 
similar graph. Both algorithms work for directed or for undirected graphs. 

For the purpose of communicating algorithms, we assume that the 
reader has some experience of computer programming in a high-level 
language such as ALGOL or PASCAL. In this text we describe algorithms 
in terms of a simple model language which will require no formal definition 
for the experienced programmer. Also our programs concentrate on what 
is basically algorithmic and avoid any inessential verbosity and unbending 
syntax than an actual programming language might force upon us. 

Dijkstra's algorithm is shown in figure 1.10. For an undirected graph, 
we replace each edge (u, v) by two di~ed edges (u, v) and (v, u). Each 
vertex v of a graph G = (V, E) which is subjected to the algorithm, has an 
associated label L(_v). This is initially assigned a value equal to the weight 
w((u, v)) of the edge (u, v), where u is the ~rtex from which path lengths 
are to be measured. lfu and v are distinct and (u, v);, Ethen w((u, v)) = oo, 
while w((v, v)) = 0. On termination of the algorithm L(_v), for all v e E, 
is the length of the shortest path from u to v. The algorithm works by 
constructing a set T s;; V in such a way that the current shortest path from 
u to any v e T only passes through vertices in T. Figure 1.11 illustrates an 
application of Dijkstra's algorithm. For the graph shown there the table 
lists the values of the L(_v) and T for each iteration of the while-statement 
ofline 4 of figure 1.10. 

Before establishing the complexity of Dijkstra's algorithm we prove in 
theorem 1.3 that it does indeed do what is claimed for it. 

11teorem 1.3. Dijkstra's algorithm finds the shortest path from u to every 
other vertex. 
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Proof. We first prove by induction on the size of T that: 

(a) for every v e T, L(_v) is equal to the length of the shortest path 
from u to v, and 

(b) for every v I/ T, L(_v) is equal to the length of the shortest path 
from u to v which, apart from v, passes only through vertices in T. 

As the basis of our induction notice that when I TI = 1 at line 3 of 
figure 1.10, lines 1 and 2 have initialised the labels to satisfy (a) and (b). 

The inductive step, embodied in line 6, adds to T the vertex v' which has 
the smallest label of those not yet in T. By the inductive hypothesis, just 
before v' is added to T, L<.. v') is equal to the shortest path from u to v' which, 
apart from v', only utilises vertices in T. Suppose that when v' is added to T, 
L(_v') is not equal to the shortest path from u to v'. Then a shortest path 
must contain, apart from v', at least one other vertex not in T. Let v" be the 
first such vertex in tracing this path from u. Then the distance along this 
path to v" (which lies entirely within T and which is the shortest from u to 
v" - otherwise an even shorter path from u to v' would exist) is less than 
L(_v'). By the induction hypothesis L(_v") is the distance along this path and 
so L(v') > L(_v") when v' was added to T. This contradicts line 5 of the 
program and so we conclude that there is in fact no path shorter than 
L(_v') when v' is added to T. Thus (a) is maintained as Tis added to and so 
is (b) through the statement beginning at line 7. 

On completion of Dijkstra's algorithm every vertex is in T and so the 
theorem follows. ■ 

Fig. 1.1 O. Dijkstra's shortest path algorithm. 

1. for all v -:I- u L(v) +- w((u, v)) 
2. Lf..u) +-0 
3. T+-{u} 
4. while T-:1- Vdo 

begin 
S. find a v' I/ T such that for all v I/ T Lf..v') E; Lf..v) 
6. T +- TU {v'} 
7. for all v I/ T 

L(v) +- If Lf..v) > Lf..v') + w((v', v)) 
then Lf..v') + w((v', v)) 

end. 

It is easy to see that Dijkstra's algorithm can be implemented so as to 
run in O(nl)-time. The determination of the minimum L(_v') in line 5 can be 
achieved with O(n) comparisons and line 7 requires not more than n 
assignments. Both lines 5 and 7 are contained within the body of the while 
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statement beginning at line 4 and this body is executed (n-1) times. The 
for statement can therefore be made to run in O(nll)-time. The remainder 
of the program, lines I to 3, requires only O(n)-time. In exercise 1.16(b) we 
show how the algorithm may be implemented using a priority queue and 
adjacency lists both of which we define later. In this form we obtain 
O((IEI +n) log n) complexity. For large sparse graphs (i.e., with relatively 
few edges), this represents a much improved running time. 

Fig.1.11 

u 

Iteration 11' L(u) L<.111) L(vJ L(11a) L(11,) T 

0 0 1 3 00 6 {u} 

111 0 1 2 4 6 {u, 11J 

2 111 0 2 -3 6 {u, 111, 11.} 

3 111 0 1 2 3 s { U, Iii, 111, Ila} 

4 111 0 2 3 s V 

Dijkstra's algorithm determines the shontst path from u to every other 
vertex of the graph. If we are simply interested in finding the shortest 
distance from u to another specified vertex t, then the while-statement 
beginning at line 4 could be terminated as soon as T includes t. Of course, 
this would not affect the order of the complexity of the computation. 

We turn our attention now to the second example. As we stated earlier, 
this is to find the maximum-length simple path between two specified 
vertices, u and t, of a graph. Any simple. path between u and t consists of a 
subset of the edges of the graph. The algorithm outlined in figure 1.12 
enumerates all subsets of E in turn and, for those which represent such a 
path, a current record of the longest path is kept. It is easy to check that 
E' is a simple path from u to t in polynomial time. This check is executed 
for every iteration of the for statement in the algorithm. However, there 
are 2111:1 such iterations (because there are 21EI subsets of E) and so 
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without any further detailing of the algorithm, we can see that it is 
inefficient. 

Fig. 1.12. A longest simple path algorithm. 

1. MAXP+-0 
2. for all subsets E' s; E do 
3. If E' is a simple path from u to t 

then MAXP +- If w(E') > MAXP then w(E') 

We have now seen, by the criteria specified earlier, one algorithm which 
is efficient and one which is inefficient. As far as the second problem is 
concerned, we could marginally improve on the complexity of the algorithm 
supplied by the use of a more cunning or direct enumeration of paths. 
However, no enumeration for an arbitrary graph is polynomially bounded. 
In fact, no algorithm is known for this problem which operates within 
polynomial time. In chapter 8, we shall see that a related decision problem 
(Given an integer K, does G have a simple path between two specified 
vertices of length greater than K ?) belongs to a large class of problems 
called non-deterministic polynomial time complete (normally abbreviated to 
NP-complete) which are widely held to be intractable. 

It is characteristic of the NP-complete problems that known algorithms 
require an exponentially large number of executions of a polynomial time 
subtask. For example, in the decision problem just mentioned, it is easy to 
check the length of a given path in polynomial time, but there are an 
exponentially large number of these. By definition, any one NP-complete 
problem can be transformed into any other within polynomial time. Thus 
the discovery of a polynomial time algorithm for one would guarantee that 
such an algorithm exists for any other. So much fruitless effort has been 
expended in the search for these algorithms that they are thought now not 
to exist. There is, however, no proof of this conjecture. 

We now suspend discussion of NP-completeness until chapter 8. There 
we provide proof that many of those problems to be met in the intervening 
chapters and for which we can provide no efficient algorithms do in fact 
belong to this class of NP-complete problems. In the interim we shall rely 
upon the small insight provided here and will identify the problems as they 
arise. 

1.3 Introducing data structures and depth-first 
searching 
We introduce here elementary representations of graphs for com­

putational purposes. We also describe an efficient method for traversing 
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graphs, called depth-first searching. This section then concludes with 
detailed descriptions of two algorithms made efficient by utilising this 
material. Another commonly used method for traversing a graph, called 
breadth-first searching, is described in exercise 1.14 and made use of in 
exercise 1.15. 

1.3.1. Adjacency matrices and adjacency lists 
The data structures introduced here are commonly used to repre­

sent graphs. In particular, as we shall see later, the use of adjacency lists 
can make an important contribution to the efficiency of an algorithm. 

An adjacency matrix for the graph G = (V, E) is an n x n matrix A, such 
that: 

A(i,j) = 1 if (i,j) e E 

= 0 otherwise 

If G is an undirected graph then A(i,j) = AU, i), whilst if G is a digraph 
then A is generally asymmetric. Figure 1.13 illustrates the two cases. 
A specification of A clearly requires O(nl) steps. This eliminates any 
possibility of O(IE I)-algorithms if A represents a sparse graph, that is one 
forwhichtheratio IEl/nislow. However, as we shall see, O(IEl)-algorithms 
are certainly possible in some cases by making use of adjacency lists. 

In an adjacency list representation of a graph, each vertex has an associ­
ated list of its adjacent vertices. Examples are shown in Figure 1.13. 
These lists can be embodied in a table T, examples of which are also shown 
in the diagram. In order to trace the list for v,, say, in the table, we consult 
T(i, 2) which points to T(T(i, 2), 1) where the first vertex adjacent to v, is 
recorded. Then T(T(i, 2), 2) points to T(T(T(i, 2), 2), 1) where the second 
vertex adjacent to v, is recorded, and so on. The list for v, terminates when 
a zero pointer is found. Notice the conventi® of numerically ordering the 
vertices adjacent to v, within v/s adjacency list; this is relevant to under­
standing some later examples of applying algorithms. Qearly, T has 
(n+ IEI) rows for a directed graph and (n+2IEI) for an undirected graph. 
In some circumstances it is additionally useful to use doubly linked lists 
for undirected graphs; we might also link the two occurrences of an edge 
(u, v), the first in u's adjacency list and the second in v's. 

In connection with adjacency matrices we note the following well-known 
theorem. This concerns the kth matrical product, Ak, of the adjacency 
matrix, defined inductively as follows: 

n 
Ak(i,j) = :I: Ak-1(;, s) A(s,J) 

8=1 
where 

A1(i,J) = A(t,J) 
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Fig. 1.13. (a) A digraph Gi, its adjacency matrix A1 and adjacency 
lists with their tabular representation T1• (b) An undirected graph G1, 

its adjacency matrix A1 and adjacency lists with their tabular 
representation T1• 

(a) 

(b) 

IA3 
5tL-t 

G, 

Adjacency lists 

I. fil3-- (lliJ 
2. II.@] 
3.(!@] 
4. ff , the empty list 

5. ~ 

IA3 
5~-t 

G, 

1. ~ 

2.[I[::HTifil 

3. ~ 
4. ffi:Hill] 
5.m:::H:IT3-@fil 

Adjacency lists 

0 

0 0 
A,= 0 0 0 

0 0 0 

0 

I 

2 
3 
4 
5 

T1 = 6 
7 
8 

9 
10 
II 
12 

0 

Ao= 

0 
I 

I 

0 
I 

0 

0 

2 
3 
4 
'5 
6 
7 

r1 - 8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 

I 

I 

I 

0 

I 

I 

0 0 

0 0 

0 

0 0 

0 

6 

8 
9 
0 

10 
2 7 
3 0 
3 0 
4 0 
I II 
3 12 
4 0 

0 

0 0 
I I 

0 I 

I 0 

6 
9 
II 
15 

17 
2 7 
3 8 

5 0 
I IO 
3 0 
I 12 
2 13 
4 14 
5 0 
3 16 
5 0 
I 18 
3 19 
4 0 



Introducing data structures and depth-first searching 19 

11aeorem 1.4. Ak(i,j) is the number of (non.simple) paths from i to j, 
containing k edges. 

Proof. By induction on k. If k = l then Ak(i,j) = 1 if (i,j) exists and is 
zero otherwise. Thus we have a basis for the induction. We assume that the 
theorem is true for all powers of A less than the kth. Now, by definition: 

tt 
Ak(i,j) = ~ Ak-1(i, s) A(s,j) 

•-1 
and by the induction hypothesis Ak-1(i, s) is the number of paths from 
i to sand oflength (k-1). Thus Ak-1(i, s) A(s,j) is the number of paths of 
length k from i to j which have (s,J) as a final edge. The sum is over all 
possible vertices adjacent to j and so the result follows. ■ 

Before coming to a description of depth-first searching we describe a 
matricial method to find the shortest paths between each pair of vertices 
in a weighted graph. This is in contrast to Dijkstra's algorithm we described 
earlier which finds the shortest paths from a specified vertex to all the 
others. The algorithm starts with a matrix W for which W(i,j) is the 
weight, w((v,, v1)), of the edge (v,, v1). Ifv, and v1 are distinct and (v,, v1) ~ E 
then w((v,, v1)) = co, while w((v, v)) = 0. Then a series of matrices, 
Wi, W., ... , W" are constructed according to the following inductive rule: 

W-.(i,j) = min (W-._1(i,j), (W-._1(i, k)+ W-._i(k,j))) 
where 

W0(i,j) = W(i,j) 

W" then provides the desired result according to the following theorem: 

Theorem 1.5. W"(i,j) is the length of the shortest path from v, to v1• 

Proof. We first show by induction on k, that W-.(i,j) is the shortest path 
from v, to v1 which passes only through vertices in the subset {v1, v1, ... , v-.}. 
If k = 0 then W-.(i,j) = w((v,, v1)), so that W-.(i,j) is the length of the path 
(if it exists) from v, to v1 which passes through no other vertex. We assume 
that the statement is true for W-._1(1,j). Now W-.(i,j) is the smallest of 
W-._i(i,j) and (W-._1(i, k)+ W-._i(k,j)). By the induction hypothesis 
W-._1(i,j) is the shortest path from v, to v1 passing only through vertices in 
the subset V' = {v1, v1, ••• , v-._J. If there is a shorter path which utilises v-. 
as well as the vertices of V' then its length, by the induction hypothesis 
must be (W-._1(i, k)+ W-._1(k,j). Thus the induction step follows. 

When W" has been constructed V' includes every vertex of the graph and 
so the theorem follows. ■ 

Figure 1.14 shows that this algorithm can be implemented to run in 
O(n8)-time. The complexity is dominated by the nested for statements 
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in lines 2 to 5. Notice that the space-complexity of the algorithm as outlined 
in figure 1.14 can be considerably improved (without detriment to the 
time-complexity) by recognising that W1c is only required for the compu­
tation of W1:+i and not for W1:+•• ••• , W~. 

Fig.1.14 

1. Initialise w. 
2. fork= 1 ton do 
3. for i = 1 to n do 
4. forj= 1 ton do 
S. Wt(i,J) -E- min ((WH(i, k)+ Wa_1(k,j)), Wa-1(i,/)) 
6. Output w. 

1.3.2. Depth-first searching 
Most graph algorithms require a systematic method of visiting the 

vertices ofa graph. A depth-first search (DFS) is just such a method which, 
as we shall see, has certain characteristics making some especially efficient 
algorithms possible. 

For the time being we concern ourselves with undirected graphs only. 
Suppose then that in a depth-first search of an undirected graph we are 
currently visiting vertex v. The general step in the search then requires that 
we next visit a vertex adjacent to v which has not yet been visited. If no 
such vertex exists then the search returns to the vertex visited just before v 
and the general step is repeated until every vertex in that component of the 
graph has been visited. Such a search .cannot revisit a vertex except by 
returning to that vertex via edges that have been used since the previous 
visit. Hence the edges traversed in a depth-first search form a spanning­
tree for each separate component of the graph. This set of trees is called a 
depth first spanning forest, F. Thus a DFS partitions the edges E into two 
sets, F and B = E-F. The edges in B are called, for reasons which shall 
become evident, back-edges. 

Before providing an example of a DFS of a graph we describe the method 
in terms of our algorithmic language. This is naturally achieved through 
the recursive procedure employed in figure 1.15. The input to this program 
consists of an adjacency list A(v) for each vertex v of G. The output consists 
of the edge-set F. The algorithm uses a label DFI(v) for each vertex v. 
Initially DFI(v) = 0, but on termination DFI(v) is the order in which v was 
visited in the search. We shall call DFI(v) the depth-first index of v. This 
ordering of the vertices is important for later algorithms and is best 
thought of as a renaming of the vertices. For a connected undirected graph 
line 11 of the algorithm. could be omitted. 
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Fig. 1.15. A depth-fitst search of G = {A(v)lv e V} where A(v) is the 
adjacency list for v. 

1. procedure DFS(v) 
begin 

2. DFI(v) +- i 
3. i+-i+1 
4. for all v' e A(v) do 
5. if DFI(v') = 0 then 

begin 
6. F+-FU {(v v')} 
7. DFS(v') 

end 
end of DFS 

8. i +-1 
9. F+- fl1 

10. for all v E V do DFI(v) +- 0 
11. while for some u,DFI(u) = 0 do 
12. DFS(u) 
13. output F 

The particularly efficient algorithms to be described in section 1.3.3 make 
use of the efficiency of DFS, which is established below, and the charac­
teristics of the algorithm outlined in theorems 1.6 and I. 7. 

Theorem 1.6. Following a depth-first search of an undirected graph each 
back-edge (u, v), connects an ancestor to a descendant. 

Proof. We can, without loss of generality, presume that in a DFS u is 
visited before v. Thus DFS(u) is called before DFS(v) and DFl(v) = 0 
when u is visited. All those vertices visited during the execution of .TJFS(u) 

become descendants of u. Since u is in v's adjacency list, DFS(u) will not 
terminate before v has been visited and so the theorem follows. ■ 

Figure 1.16 shows an application of the DFS algorithm and an illus­
tration of theorem 1.6. 

The complexity of the DFS algorithm is O(max (n, IEI)) as follows. For 
each v e V, DFS(v) is called only once because after the first execution 
DFl(v) = 0. Apart from recursive calls of DFS, the time spent by DFS(v) 

is proportional to d(v), or for directed graphs d+(v). Thus calls of DFS 

take a total time proportional to I E I. On the other hand, line 10 requires 
O(n) steps as does the search for successive components of the graph in 
line 11. Line 13 requires O(IEI) steps. The result therefore follows. 

Let us now suppose that a directed graph is subjected to the algorithm. 
In this case the edges of F form a spanning out-forest of the graph. Edges 
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(a) 

(b) 

Fig. 1.16. An example illustrating an application of the DFS 
algorithm. In lines 5 and 11 of figure 1.15 it is presumed that within 
the adjacency lists the vertices are ordered numerically according to 
their labels. (a) The two-component graph whose adjacency lists. 
when input to the DFS algorithm, produce the output below. 
(b) The spanning-forest F (in solid lines) output from the DFS 
algorithm. The back-edges are shown by dashed lines. (c) The 
depth-first order of visiting vertices. 
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Fig. 1.17. An example illustrating an application of the DFS 
algorithm to a digraph. (a) A digraph which subjected to the DFS 
algorithm produces the output below. (b) The spanning out-forest F 
shown in solid lines. Back-, forward- and cross-edges are shown by 
dashed lines. (c) The depth-first order of visiting vertices. 
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F = {(I, 3), (3, 2), (I, 5), (5, 4), (5, 6), (7, 8), (7, 9)} B1 = {(2, I)} 

C = {(4, 3), (6, 4), (9, 8), (9, 6)} Bz = {(I, 6)} 

can only be added to F if they are directed away from the current vertex 
being visited. If no such edge exists to an unvisited vertex from those 
already visited, then the next vertex to be visited (if one exists) becomes the 
root of an out-tree. Figure 1.17 illustrates such an application of DFS. 
Notice that the search partitions the edges of the digraph into four types: 

(i) a set of spanning-out forest edges, F, 
(ii) a set of back-edges, B1, which are directed from descendants to 

ancestors, 
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(iii) a set of forward-edges, Ba, which are directed from ancestors to 
descendants, 

(iv) a set of cross-edges, C, which connect two vertices neither of which 
is a descendant of the other. 

Despite this apparent complication for digraphs as compared with 
undirected graphs, there is a useful theorem analogous to theorem 1.6: 

Theorem 1.7. Following a depth-first search of a digraph, if (u, v) is a cross­
edge, then DFl(u) > DFl(v). 

Proof. Assume, contrary to the theorem, that DFI(u) < DFl(v), that is, u is 
visited before v. Now vis in u's adjacency list and so must be visited within 
DFS(u). Consider the possible type of the edge (u, v). If DFI(v) is assigned 
when (u, v) is explored then (u, v) must be a tree edge. Otherwise vis first 
visited as a descendant, but not a son, of u. Then (u, v) must be a forward­
edge. Hence (u, v) cannot be a cross-edge and so we have a contradiction. ■ 

1.3.3. Two linear-time algorithms 
We now describe our first example of an algorithm made especially 

efficient by depth-first searching. This algorithm finds all the blocks of an 
undirected graph given its adjacency lists as input. Theorem 1.6 is crucial 
to this algorithm because the following observations can be made as a 
result of it: 

If v is an articulation point then: 

(a) If vis the root of a tree in the DFS spanning forest then v has more 
than one son. 

(b) If vis not the root of a tree in the DFS spanning forest then v has 
a son v' such that no descendant of v' {which includes v') is con­
nected by a back-edge to a proper ancestor of v. 

These observations are illustrate<! in figure 1.16(b), where v = 1 is both 
a root and an articulation point and where v = 10 is not a root but is an 
articulation point. 

In order to identify the blocks of a graph we need to identify its articu­
lation points and the above observations can be used to do this. For the 
purpose of encoding (b) we associate a parameter P(v) with each vertex v. 
If the vertices are labelled according to the order in which they are visited 
in a depth-first search, that is, by DFI(v), then P(v) is defined to be the 
smallest of v and those vertices which are connected by a back-edge to a 
descendant of v (including v). The maximum value of P(v) is clearly v. 
Given this definition we can restate observation (b): 
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Ifv is an articulation point then: 

(b') If vis not the root of a tree in the DFS spanning forest, then v has 
a son v' such that P(v') ;;,, DFl(v). 

We use the DFS algorithm as a basis for the block-finding algorithm and 
embed within it a calculation of P(v). Since the DFS algorithm consists 
essentially of a recursive procedure, we need a recursive means to evaluate 
P(v). This is provided by: 

P(v) = min ({DFl(v)} U {P(v')lv' is a son of v} 

U {DFI(v')l(v, v') e B}) 

Figure 1.18 incorporates this within the DFS algorithm. Line 3 of this 
depth-first search for blocks (DFSB) algorithm initialises P(v) to its 
maximum possible value DFl(v). Line 11 updates P(v) if a son v' is found 
such that P(v) ;;,, P(v') and again P(v) is updated in line 12 if an appro­
priate back-edge is found. The articulation points are identified through 
line 10 whenever a vertex v is found such that P(v') ;;,, DFI(v) for some 
son v'. 

Fig. 1.18. The depth-first search for blocks algorithm. 

1. procedure DFSB(v) 
begin 

2. DFI(v) +- i 
3. P(v) +- DFI(v) 
4. i+-1+1 
5, for all v' e A(v) do 

begin 
6. stack (v, v') if it has not already been stacked 
7. If DFl(v') = 0 then 

begin 
8. father (v') +- v 
9. DFSB(v') 

10. If P(v') > DFI(v) then pop and output the stack up 
to and including (v, v') 

11. P(v) +- min (P(v), P(v')) 
end 

12. else If v' '# father (v) then P(v) +- min (P(v), DFl(v')) 
end 

end of DFSB 
13. i +-1 
14. empty the stack 
15. for all v e V do DFI(v) +- 0 
16. while for some v, DFl(v) = 0 do 
17. DFSB(v) 
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The DFSB algorithm incorporates a stack from which the set of edges 
of a block is popped as soon as it is found. Line 14 initialises the stack and 
line 6 stacks edges. We need to show that when a vertex v and a son v' are 
found for which P(v') ~ DFl(v), then those edges on the stack, above and 
including (v, v'), define a block. This is easily shown by induction on the 
number of blocks Bin a graph. If B = l, then the only vertex v for which 
P(v') ~ DFl(v) is the root of the DFS tree. When this is established every 
edge of the graph is on the stack with (v, v') at the bottom. We thus have a 
basis for our induction. As our induction hypothesis we assume that the 
statement is true for all graphs with less than B blocks. Now consider a 
graph with B blocks and let v be the first vertex for which it is found that 
P(v') ~ DFl(v). No edges have been removed from the stack and those 
above (v, v') must be incident with vertices which are descendants of v'. 
Since v is an articulation point with no descendant which is an articulation 
point, those edges above and including (v, v') on the stack can only define 
the block containing (v, v'). When the edges of this block are removed 
from the stack, the algorithm behaves precisely as it would for the graph 
with (B-1) blocks obtained by deleting the blocks containing (v, v'). This 
completes the inductive step of the proof. 

Before providing an illustration of this algorithm we point out that if v 
is the root of a DFS tree then for every son v' of v we have P(v') ~ DFl(v). 
This ensures that whenever v is revisited in a DFS search for blocks, the 
edges of the block containing (v, v') are removed from the stack. Thus the 
case when v is both a root and an articulation point is automatically 
accommodated. 

Figure 1.19 shows an application of the depth-first search for blocks 
algorithm. In (a) the graph subjected to the algorithm is shown as are the 
spanning-tree, and the values of DFl(v) and P(v) found during the course 
of computation. In (b) we illustrate the state of the stack just before and 
just after the three occasions in which a vertex v is found for which 
P(v') ~ DFl(v) for some son v'. We also indicate within which of the 
recursive calls of the DFSB procedure these occur. 

The complexity of the depth-first search for blocks algorithm is 
O(max (n, IEI)). This follows by a simple extension of the argument used 
for the complexity of the DFS algorithm. The only complication arises 
from the use of a stack. Clearly, however, the total time required over all 
calls of the DFSB procedure to stack and to subsequently pop edges is 
O(IEI) and so the result follows. Thus the algorithm is especially efficient, 
operating within linear-time. This efficiency. is achieved through the 
efficiency of the DFS algorithm and the particular characteristic expressed 
in theorem 1.6. 
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Fig. 1.19. Illustrating an application of the depth-first search for 
blocks algorithm of figure 1.18. 
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Stack popping through line 10. Block found 
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[(4, 3)] 

(iii) (S,l) -§ 
(4, S) 

(1, 4) 

[(I, 4), (4, S), (S, I)] 

(i) Occurs within DFSB(l) after co111pletion of DFSB(2), which 
itself contains a nested call of DFSB(6). 

(ii) Occurs within DFSB(4) (which is nested within DFSB(l)) after 
completion of DFSB(3). 

(iii) Occurs within DFSB(l) after completion of DFSB(4), which 
itself contains a call of DFSB(3) and a call of DFSB(S). 

We now come to our second example of an algorithm made especially 
efficient by depth-fint searching. This algorithm determines the strongly 
connected components of a digraph. The algorithm depends crucially 
upon theorem 1.8, which itself utilises theorem 1. 7. 

Theorem 1.8. If G, = ~. EJ is a strongly connected component of the 
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digraph G and if F = (V.,., E.,.) is a depth-first spanning forest, then 
7' = ~. E, n E.,.) is a tree. 

Proof. We first show that any two vertices u, v e Yc have a common ancestor 
in Yc- Let us assume, without loss of generality, that DFI(u) < DFI(v). 
Since u and v belong to the same strongly connected component, there 
exists a directed path P from u to v. We define w to be a vertex on P such 
that DFI(w) < DFI(x) for any other vertex x on P. Ifwe trace P from u, 
then as soon as we reach w, P can only pass through vertices which are 
descendants of w. This is because edges from descendants of w to vertices 
which are not descendants of w are either cross-edges (and note theorem 
1.7) or back-edges and both must be to vertices with smaller depth-first 
indices. Thus w is an ancestor of v. Also since DFI(w) ~ DFI(u) < DFI(v), 
u can only be a descendant of w. This completes the first part of the proof. 

Let r be the root of the subtree containing every vertex in Yc- If x e Yc and 
if y is on the tree path from r to x, then we complete the proof by showing 
that y e Yc- This is obviously the case since there is a path from r to y along 
the tree path, and there is a path from y to r via x. ■ 

The root of the tree ~ in the statement of theorem 1.8 is called the root 
of the strongly connected component G,, and we denote it by r,. In passing 
we note that what vertex within G, is its root is a function of which edges 
are tree edges. A given digraph has, of course, a number of possible depth­
first spanning forests. The DFS algorithm ofFigure 1.15 might produce any 
one of these depending upon the initial (input) numbering of the vertices. 

Theorem 1.8 suggests a natural way to determine the strongly connected 
components of a digraph G. We find the roots, r1, r1, ••• , r1c, which we 
conveniently order so that if i < j, then r, is last visited in a depth-first 
traversal of G before r1 is last visited. From theorem 1.8 and that r1 cannot 
be a descendant of r, if DFI(rJ > DFI(r1), we deduce that G, is the sub­
graph induced by those vertices which are descendants of r, but which are 

not also descendants of r1, r1, •.. , r,_1• 

In the same way that we defined the parameter P(v) to help in the 
computational discovery of articulation points in undirected graphs, we 
define a parameter Q(v) to help in the computational identification of the 
roots of the strongly connected components of a digraph. Q(v) is defined 
as follows: 

Q(v) = min ({DFI(v)} U {DFI(v')l(x, v') is in Bi or C, x is a 
descendant of v and the root, r, of the strongly 
connected component containing v' is an ancestor 
ofv}) 

The value of this definition lies in the following theorem. 
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Theorem 1.9. In a digraph G, vis the root of a strongly connected com­
ponent if and only if Q(v) = DFI(v). 

Proof. Notice that by definition Q(v) ~ DFI(v). 
We first show that if v is the root of a strongly connected component then 

Q(v) = DFI(v). Suppose that, on the contrary, Q(v) < DFI(v). Therefore 
thereexistsavertexv',asinthedefinitionofQ(v),suchthatDF/(v') < DFl(v). 
Now DFI(r) < DFI(v') so that we have DFI(r) < DFI(v). But rand v must 
belong to the same strongly connected component because there is a path 
from r to v and a path from v tor via (x, v'). Thus, since DFI(r) < DFI(v), 

v cannot be the root of a strongly connected component. This is a contra­
diction and so we conclude that Q(v) = DFI(v). 

We now only need show that if vis not the root of a strongly connected 
component then Q(v) < DFI(v). Letusassume,however, that Q(v) = DFI(v), 

so that no vertex v', as described in the definition of Q(v), should exist 
for which DFI(v') < DFI(v). Since vis not the root, some other vertex r 
must be the root. Then there must exist a path P from v to r which contains 
a first vertex (maybe r) which is not a descendant of v. Let this vertex be v'. 
Clearly, rand v' belong to the same strongly connected component. The 
edge of P incident to v' is in B1 or C. Thus DFI(v') < DFI(v) which is a 
contradiction. Hence Q(v) < DFI(v). ■ 

Again we use the DFS algorithm as a basis and embed within it a 
calculation of Q(v). As with P(v) of the previous example, we require a 
recursive method of evaluation for Q(v). This is provided by: 

Q(v) = min ({DFI(v)} U {Q(v')lv' is a son of v} U {DFI(v')l(v, v') 
is in B1 or C such that the root of the strongly con­
nected component containing v' is an ancestor of v})( 

Figure 1.20 incorporates this within the DFS algorithm. The modified 
procedure DFSSCC(v), depth-first search for strongly connected com­
ponents, includes a stack upon which vertices are placed in line 5. An 
array called stacked is used to record which vertices are on the stack. 
Line 3 initialises Q(v) to its maximum possible value and line 9 updates 
Q(v) if a son of v, v', is found such that Q(v') < Q(v). Line 10 further 
updates Q(v) if an edge (v, v') in B1 or C is found such that the root of the 
strongly connected component containing v' is an ancestor of v. Notice 
that at line 10 DFI(v') ,,fa O and so v' has been previously visited and since 
DFI(v') < DFI(v) for the update to take place, (v, v') cannot be a forward­
edge. Also, since v' is stacked, the root of the strongly connected com­
ponent containing v' has yet to be identified and so, because of the order 
in which roots are identified, must be an ancestor of v. Line 11 identifies 
roots and, again because of theorem 1.8 and the order of identifying roots, 
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those vertices above and including the root on the stack must induce a 
strongly connected component. These are then removed from the stack and 
output. 

Fig. 1.20. The depth-first search for strongly connected components 
algorithm. 

1. procedure DFSSCC(v) 
begin 

2. DFI(v) +- i 
3. Q(v) +- DFI(v) 
4. i+-i+l 
5. put v on the stack and set stacked (v) +- true 
6. for all v' E A(v) do 
7. if DFI(v') = 0 then 

begin 
8. DFSSCC(v') 
9. Q(v) +- min (Q(v), Q(v')) 

end 
10. else if DFl(v') < DFI(v) and stacked (v') 

then Q(v) +- min (Q(v), DFl(v')) 
11. if Q(v) = DFJ(v) then pop and output the stack up to 

and including v, for each popped vertex u reset 
stacked (u) +- false 

end of DFSSCC 
12. i +-1 
13. empty the stack 
14. for all v E V do begin DFl(v) +-0, stacked (v) +-false end 
15. while for some u, DFI(u) = 0 do 
16. DFSSCC(u) 

Figure 1.21 shows an application of the depth-first search for strongly 
connected components algorithm. In (a) the graph subjected to the 
algorithm is shown as are the spanning forest and the values of DFI(v) and 
Q(v) found during the course of computation. In (b) we illustrate the state 
of the stack just before a vertex is found for which Q(v) = DFI(v) and just 
after the vertices of a strongly connected component have been popped 
from it. We also indicate within which of the recursive calls of DFSSCC 
the strongly connected components are found. 

The DFSSCC algorithm operates within linear time, having a com­
plexity O(max (n, IE I)). This follows by a similar argument to that em­
ployed for the DFSB algorithm. Notice that the use of the array called 
stacked enables line 11 of figure 1.20 to check whether v' is on the stack or 
not in one step. This avoids unnecessary enhancement of the complexity 
through a search of the stack in line 11. 
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Fig. 1.21. Illustrating an application of the depth-first search for 
strongly connected components algorithm of figure 1.20. 
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(i) Occurs within DFSSCC(I) after completion of DFSSCC(8) 
which contains a nested call of DFSSCC(2). 

(ii) Occurs within DFSSCC(6) which is nested successively within 
DFSSCC(S), DFSSCC(4) and DFSSCC(3). 

(iii) Occurs within DFSSCC(7) which is called immediately after 
DFSSCC(6). 

(iv) Occurs within DFSSCC(3) which is called after the completion 
of DFSSCC(l). 
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1.4 Summary and references 
The basic definitions of this chapter concerning graphs and 

algorithmic efficiency provide a basis for later chapters. The ideas of 
algorithmic efficiency which we briefly described were first formalised by 
EdmondsCll. In chapter 8 we shall pursue the question of intractable 
problems in a formalised way, although we shall encounter many such 
problems in the intervening chapters. 

The depth-first search of a depth of a graph was first exploited by 
Hopcroft and Tarjan in [2] and [3], and it is their algorithms that are 
described in section 1.3.3. Several other linear-time algorithms also utilise 
depth-first searching. 

It is possible that no other problem in graph theory has received as much 
attention as one used as an example in this chapter. This is the problem of 
finding shortest paths. The problem can be posed with different constraints 
and for each case there can be an appropriate algorithm. The review by 
Dreyfusc,1 is recommended. Dijkstra's algorithm,c111 described in the test, 
applies to directed or to undirected graphs with non-negative edge-weights. 
The O(n8) algorithm for all pairs of vertices described in the text 
is due to Floyd11J and is based on work by Warshall.m For this problem 
note Spira.ll31 Exercises 1.8 and I.IS are also about shortest path 
algorithms. 

As far as general reading is concerned, Aho, Hopcroft & Ullman,C81 
Deol81 and Even1101 provide particularly useful elaboration for this chapter. 

To some extent the problems that follow extend material in this chapter. 
Exercises 1.14 to I.I 6 are particularly recommended. 

[l] Edmonds, J. 'Paths, trees and flowers', Canad. J. of Maths, 17, 449-67 
(1965). 

[2] Hopcroft, J. & Tarjan, R. • Algorithm 447: efficient algorithms for graph 
manipulation', CACM, 16, 372-78 (1973). 

-[3] Tarjan, R. 'Depth-first search and linear graph algorithms', SIAM. J. 
Comput, 1, 146-60 (1972). 

[4] Dreyfus, S. B. 'An appraisal of some shortest path algorithms',J. Operations 
Research, 17 (3), 395--412 (1969). 

[S] Dijkstra, B. W. 'A note on two problems in connection with graphs', 
Numerische Math., 1, 269--71 (1959). 

[6] Floyd, R. W. !Algorithm 97: Shortest path', CA.CM, 5, 345 (1962). 
[7] Warshall, S. 'A theorem on Boolean matrices', JA.CM, 9, 11-12 (1962). 
[8] Aho, A. V., Hopcroft, J.B. & Ullman, J. D. The Design and Analysis of 

Computer Algorithms. Addison-Wesley (1974). 
[9] Deo, N. Graph Theory with Applications to Engineering and Computer 

Science. Prentice-Hall (1974). 
[10] Even, S. Graph Algorithms. Computer Science Press (1979). 
[11] Moore, E. F. 'The shortest path through a maze', Proc. Internal. Symp. 

Switching Th., 1957, Part 11, Harvard University Press, pp. 285-92 (1959). 
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[12) Munro, J. I. 'Efficient determination of the transitive closure of a directed 
graph', l,iformatlonProcessing utters, 1, 56-8 (1971). 

[13) Spira, P. M. •Anew algorithm for finding all shortest paths in a graph of 
positive arcs in average time O(~ log 1n)', SIAM J. Computing, 2, 28-32 
(1973). 

EXERCISES 
1.1. Draw every simple graph with n vertices, 1 .;; n ~ 4. 
1.2. Show that any two of the following regular bipartite graphs are iso­

morphic. 

1.3. Show that in a disconnected graph there must be a path from any 
vertex of odd-degree to some other vertex of odd-degree. 
(Use theorem 1.1.) 

1.4. Show that any connected graph G with n vertices and (n-1) edges 
must be a tree. 
(Show that the assumption that G is not a tree, that is it contains a 
circuit, leads to a contradiction that G cannot be connected.) 

1.5. Show that in a binary tree with n vertices: 
(a) n is always odd. 
(b) The number of vertices of degree 1 is ½(n+l). 

1.6. Show that in a connected simple graph with n vertices, the number of 
edges IE I satisfies: 

(n-1) ~ IEI ~ ½n(n-1) 

(The lower limit corresponds to a tree, and the upper limit to a complete 
graph.) 

1. 7. Show that if a simple graph has more than ½(n-1) (n- 2) edges, then 
it must be connected. 
(First show, by induction on k, that a simple graph with k components 
has at most ½(n-k) (n-k+l) edges.) 

1.8. Figure 1.14 illustrates an O(n8)-algorithm to find the shortest distance 
between every pair of vertices in a weighted graph. Describe an alter­
native algorithm for this task which procedurally incorporates Dijkstra's 
algorithm. What is the complexity of your algorithm? 

1.9. A binary relation R is an equivalence relation on the set S if R is: 
(a) reflexive, that is, aRa for all a e S, 
(b) symmetric, that is, aRb implies bRa for all a, b e S, 
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and 
(c) transitive, that is, aRb and bRc implies that aRc. 
It is easy to see that an equivalence relation on S partitions S into 
disjoint subsets called equivalence classes. Two elements of Sare in the 
same equivalence class if and only if they are related by R. 

Show that the relations of: 
(a) 'connected to' -in an undirected graph, 
and 
(b) 'strongly connected to' - in a directed graph 
are examples of equivalence relations on the vertex-set of a graph. 

1.10. For the undirected weighted graph shown and as in the matricial 
algorithms of section 1.3.1: 
(a) Construct A1 and so confirm that there are ten non-simple distinct 

paths consisting of three edges from v1 to v1• Describe each of these 
paths. 

(b) Construct W0, Wi, ... , W., so finding the shortest paths between 
each pair of vertices and which, for w,, only have Vi, v1, ••• , v, as 
internal vertices. 

1.11. The transitive closure of a digraph G = ( V, EJ is a digraph Te= ( V, E1) 

such that if there is a path from u to v in G, then (u, v) e E,,. Clearly E1 

is a subset of &. Describe an algorithm to construct the adjacency 
matrix A(Ta) of T9 from the adjacency matrix of G. For obvious reasons 
A(T9) is sometimes called the reachability matrix of G. 
(An O(n8) algorithm can easily be obtained by modifyipg the algorithm 
for finding the shortest paths between all pairs of vertices which is 
described in the text. Note that Munro has described faster algo­
rithms. 1111) 

1.12. Given the reachability matrix of a digraph (see the previous question 
design an O(_nl)-algorithm to identify its strongly connected components. 
(If A,i(Ti,) = A1iT11) = 1 then v, and v, belong to the same strongly 
connected component.) 

1.13. The condensation c,, of a digraph G is a digraph obtained from G by 
replacing each of its strongly connected components by a vertex and 
each non-empty set of edges from one strongly connected component 
to another by a single edge. For example: 
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G 

Show that the condensation of a directed graph cannot contain a 
(directed) circuit. 

1.14. Given the adjacency lists A(v) for each vertex v of a connected graph 
(directed or undirected), the following algorithm conducts a breadth­
first search. On completion of the search each vertex has acquired a 
breadth-first index (BFI) indicating the order in which the vertex was 
visited. Vertex u is visited first and BFl(u) = 0. Hand-turn the algo­
rithm on a small graph of your choice. Notice that use is made of a 
queue which is a data structure in which items are removed in the same 
order that they are added. Such a structure is also known as FIFO 
(first-in, first-out) store. Show that any graph will be traversed by the 
algorithm in O(max(n, IEI) steps. Why is such a traversal called a 
breadth-first search? 

1. forallve YdoBFl(v)+-0 
2. i +- 1, BFl(u) +-1 
3. add u to the queue 
4. while the queue is not empty do 

bealn 
S. remove a vertex from the queue, call it w 
6. for all v e A(w) do 
7. If BFl(v) = 0 then 

bealn 
8. BFl(v) +- i + 1 
9. i+-i+l 

10. add v to the queue 
end 

encl 

The depth-first search algorithm of figure 1.15 constructs a depth-first 
spanning-tree for a connected graph. Modify the above algorithm to 
construct a breadth-first spanning tree. 

1.15. Just as depth-first searching is a suitable way to traverse a graph for 
some algorithms, so is breadth-first searching as described in the 
previous question. For example, an algorithm which finds the lengths 
of the shortest paths from a vertex u to every other vertex of an un­
weighted connected graph can be obtained by editing the algorithm of 
the previous question as follows: 
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(a) Between lines 5 and 6 insert: 

If BFI(w) '# I 11am i +- i+ 1. 

(b) Delete line 9, 
(c) Throughout replace BFI by L. 
Show that on completion of this breadth-first search for shortest paths 
(BFSSP) algorithm, due to Moore,1111 (L(v)-1) is the shortest path 
from uto v. 
(Use induction on L(v).) 

Show that the BFSSP algorithm has complexity O (max(n, IE I) and 
therefore for sparse graphs (in which IEI -< nl) it is more efficient than 
Dijkstra's algorithm. However, notice that the BFSSP algorithm 
cannot be used for weighted graphs. Also note the implementation of 
Dijkstra's algorithm outlined in exercise 1.16(b) which has an improved 
complexity for sparse graphs. 

1.16. Here we introduce a data structure known as a priority queue and 
illustrate one use of it. Another illustration can be found in exercise 
2.14. 
(a) A priority queue is an abstract data type in which a priority 1s 
associated with each of its k elements. We can add an element to the 
data structure and we can delete (or remove) the element of lowest 
priority. Such a structure can be implemented in several ways. For 
example a sorted or an unsorted list will do. For the former the in­
sertion operation, and for the latter the priority deletion operation, will 
require O(k)-time. We can improve on this by using, for example, a 
partially ortkred tree. As we shall see, O(log k)-time is then sufficient 
for either operation. 

We define a partially ordered tree to be a binary tree with the 
(priorities of the) data elements located at the vertices. The elements are 
arranged in partial order, by which we mean that the priority of any 
vertex is no greater than the priority of its sons. Moreover, the tree is 
as balanced as possible (path lengths from the root to the leaves differ 
by at most one) with leaves furthest from the root being arranged to the 
left. Such a tree is shown opposite (figure (a)). 

Consider first the operation of removing the item of lowest priority. 
This item will be located at the root of the tree so that its removal no 
longer leaves us with a tree. To overcome this, the root is initially 
replaced with the rightmost element from the lowest level of the tree. 
In order to re-establish the partial ordering, this element is repeatedly 
exchanged with one of its sons (the one of least priority) until no son 
has lower priority than this element. Figure (b) shows this process 
for the tree of figure (a). 

Now consider adding an element to the tree. We can do this by 
creating a new leaf at the lowest level and as far to the left as possible. 
Placing the new element may require the partial ordering to be re-
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(a) A partially ordered tree 

(b) Removing an element of lowest priority and reconstructing the tree 

(c) Inserting an element and reconstructing the tree 

2 2 2 
A As tA8 2A8 

~~~AAA AA 
91189 9189 9389~389 

AA AA AA /"A 
17 1618 1 '--._ 17 1618 II 17 1618 11 17 1618 II 

established. This is done by repeatedly exchanging the new element with 
its father so long as its father has higher priority. This is illustrated in 
figure (c) where an item with priority 1 is added to the tree of figure 
(a). In this example the new item eventu.lly filters to the root of the tree. 

Justify the following claims: 
(i) In a partially ordered tree, the element of lowest priority is at the 

root of the tree. 
(ii) A partially ordered tree is in fact re-established after the operations 

of adding an item and removing the one ofleast priority as we have 
described. 

(iii) The complexity of adding an item and the complexity of removing 
one of lowest priority are both O(los. k). 
(I'he complexity will be determined by the number of exchanges of 
elements required to re-establish the partial ordering. This. is 
obviously bounded by the maximum path length from root to leaf.) 

(iv) A priority queue of k items can be constructed in O(k log k)-time 
if it is implemented using a partially ordered tree. 

It is interesting to note that a partially ordered tree. as defined, can 
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be very usefully represented in terms of an array. We number the vertices 
of the tree from top to bottom and within each level from left to right. 
Then using an array H, the Ith vertex is located in H[i]. With this 
arrangement, the left son of H[i] is in H[2i] and the right son is in 
H[2i+ 1]. Moreover, the father of H[i], if it exists, is in H[i dfv 2]. 
Here i div 2 is the integral part of ½i. Such an array is called a HEAP. 
(v) Making use of a HEAP, write detailed O(log k)-algorithms both 

for removing an element of lowest priority and for adding an 
an element to a priority queue. 

(b) Consider again Dijkstra's algorithm of figure 1.10. Set up before 
line 4 a priority queue for the vertices in ( Y-T). Line S can then simply 
be the priority deletion operation on this structure. Thus for all 
iterations of line S, O(n log n)-time is required. For line 7, the only 
possible changes to theL(.v) are for those v adjacent to v'. These can be 
attended to by skipping down an adjacency list of v'. For all v' the total 
number of skips will be proportional to I E 1- For each skip, apart from 
updating L(v), the partial order will need to be restored as a result of 
this updating. This can be achieved in O(log n)-time, moving L(v) up 
the tree as required. Thus overall, construct an O((IE I + n) log n) 
implementation of Dijkstra's algorithm. For large sparse graphs (in 
which IE I < ,,S/log n) this complexity represents a considerable saving 
in running time compared with the O(,,S) implementation implied in 
the chapter. 



2 

Spanning-trees, branchings and 
connectivity 

Trees are the most commonly occurring type of graph in models and 
computations of all kinds. Computer scientists are particularly familiar 
with these structures through the consideration of parse trees, tree searches, 
game trees and so on. In chapter 1 we defined trees and provided further 
characterisation of them through theorem 1.2. 

Given an arbitrary graph, our interest in this chapter is with certain of its 
subgraphs which are trees. In the first half of the chapter we consider 
weighted graphs and digraphs. For these algorithms are described which 
find spanning-trees and forests of out-trees of optimal weight. In the 
second half of the chapter we show how spanning-trees play an important 
role in connection with the circuit space and with the separability of a 
graph. This leads naturally to a generalisation of the definitions of cut­
edge and articulation point which we provided in chapter 1. 

2.1 Spanning-trees and branehings 
A spanning-tree of a connected undirected graph G is a subgraph 

which is both a tree and which contains all the vertices of G. As we saw in 
chapter 1, such a spanning-tree can be found in linear-time using, for 
example, a depth-first search, such as we described in section 1.3.2 or a 
breadth-first search as indicated in exercise 1.14. In this section we first 
describe an algorithm which solves a more general task. This is to find, 
given a weighted, connected and undirected graph, a spanning-tree of 
minimum weight. This problem may appear in a number of guises, the 
most common of which concerns the construction of a communication 
network, perhaps a road or a railway system linking a set of towns. Given 
the cost of directly connecting any two towns, the problem is to find a 
network at minimum cost and which provides some route between every 
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two towns. The solution is the minimum-weight spanning-tree of the 
associated complete weighted graph. Because of this description the problem 
is often called the connector problem. The similar problem of finding a 
maximum weight spanning-tree can be solved by making a minor modifica­
tion to the minimum weight spanning-tree algorithm we shall describe. 

We shall also describe an algorithm to solve a similar but more difficult 
problem for digraphs. Given a weighted digraph the problem is to find 
a maximum- (or minimum-) weight forest of out-trees which is a subgraph 
of the digraph. Such a forest is called a maximum ( or minimum) branching. 

We complete this section with a description of how to count the 
spanning-trees of a graph. 

2.1.1. Optimum weight spanning-trees 
There are a number of algorithms known to solve the connector 

problem for undirected graphs. The best-known of these are due to 
Prim111 which we describe here, and to Kruskal11111 which is outlined in 
exercise 2.4. 

Prim's algorithm is described in figure 2.1. At each iterative stage of the 
algorithm a new edge e is added to T. Now, T is a connected subgraph of 
the minimum-weight spanning-tree under construction, and it spans a 
subset of vertices V' c V. The edge e is the edge of least weight con­
necting a vertex in (V- V') to a vertex in V'. Initially V' contains some 
arbitrary vertex u. At each stage, the label L(v), for each vertex v, records 
the edge ofleast weight from v e (V- V') to a vertex in V'. Thus each L(v) 
is initialised to the weight w((u, v)) of the edge (u, v), provided (u, v) e E. 
Otherwise w((u, v)) = co if u and v are distinct, whilst w((v, v)) = 0. Line 8 
of the algorithm updates the L(v) whenever a new vertex w has been added 
to V'. The algorithm stops when V' = Vat line 4. An example of an 
application of Prim's algorithm is shown in figure 2.2. 

The following theorem proves that Prim's algorithm works. 

Theorem 2.1. Prim's algorithm finds a minimum-weight spanning-tree of a 
connected undirected graph G. 

Proof. We prove by induction on the size of V' that T is a subtree of a 
minimum-weight spanning-tree of G spanning the vertices of V'. 

As the basis for our induction, we note that the statement is trivially 
true when T and V' are initialised in lines l and 2 of the algorithm. We 
assume then, that it is true, whatever the value of I V'I, just before e is 
added to Tin line 6. Now consider (T+e). We first show that (T+e) is 
a tree. 

The edge e serves to connect w to a vertex of T. Since by the induction 
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hypothesis Tis connected, (T+e) must be also. Now (T+e) cannot contain 
a circuit because T does not and because one end-point of e, namely w, is of 
degree one in (T+e). Thus (T+e) is both connected and acyclic and must 

therefore be a tree. 

6 

Fig. 2.1. Prim's minimum-weight spanning-tree algorithm. 

1. T+-0 
2. V' +-{u} 
3. for all v E (V- V') do L(v) +-w((u, v)) 
4. while V' ¥- V do 

begin 
5. find a w for which L(w) = min {L(v)jv E (V- V')} and denote 

the associated edge from V' to w by e 
6. T+-TU {e} 
7. V'+-V'U{w} 
8. for all v E (V- V') do 

L(v) +- if w((v, w)) < L(v) then w((v, w)) 
end 

Fig. 2.2. An application of Prim's algorithm. For each iteration of 
the while-loop T becomes TU {e} and V' becomes V' U {w}. Finally, 
T is the minimum-weight spanning-tree consisting of the heavily 
scored edges. 

Iteration w e 

1 V1 (u, V1) 

2 Vz (u, V1) 

3 Va (vi, v8) 

4 v. (v8, v4) 

5 Va (V4, V5) 

6 Va (v8, v8) 

We now show that (T + e) is a subtree of a minimum-weight spanning­
tree of G. By the induction hypothesis T c TM, where TM is some minimum­
weight spanning-tree of G. Suppose that e is not an edge of TM. Then by 
theorem 1.2 (TM+e) contains a circuit C. One edge of C, namely e, con­
nects a vertex in V' to a vertex in (V - V'). There is therefore another edge 
e' from V'to (V- V')on C. IfwenowconstructthetreeTM = (TM+e)-e', 
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we notice that (TM +e) c T'M. Moreover T'M is a minimum-weight spanning­
tree because: 

w(T.i,) = w(TM)+w(e)-w(e') 

and from line 5 of the algorithm: 

w(e) ~ w(e') 

so that: 

w(T.v) = w(TM) 

Thus when e is added to T, (T+e) is still a subtree of some minimum­
weight spanning-tree. 

On completion of 'the algorithm through line 4, V' = V so that T 
spans G. ■ 

Prim's algorithm is an efficient one, as can easily be seen as follows. 
The while body, lines 5 to 8 of figure 2.1, is executed (n-1) times. Within 
each execution both the computation of min {L(v)lv e (V - V')} at line 5 
and the for statement of line 8 can be executed within O(n) steps. Thus 
overall we have an O(n1)-algorithm. More efficient algorithms are known. 
See, for example, Cheriton & Tarjan.131 Note also exercise 2.14. 

Prim's algorithm, as we have described it, finds a minimum-weight 
spanning-tree. It is easy to see that the simple modification of replacing 
min {L(v)} by max {L(v)} in line 5 will cause the algorithm to find a 
maximum-weight spanning-tree. The proof of this is obtained by replacing 
'minimum' by 'maximum' throughout theorem 2.1. 

The following is a generalisation of the minimum-weight spanning-tree 
problem. Given a proper subset, V', of the vertices of a weighted connected 
and undirected graph, find a minimum-weight tree which spans the vertices 
of V' and, if necessary, some others. Such a tree is called a Steiner tree. No 
efficient algorithm is known for the Steiner tree problem. In fact the related 
decision problem (Given a constant W, does G have a subtree which both 
spans V' and is of weight ~ W?) is NP-complete. Changf'l has, however, 
described an efficient algorithm to find an approximate solution. 

2.1.1. Optimum branchings 
In the preceding subsection we were concerned to find optimal 

weighted trees for undirected graphs. Here we look at a similar problem for 
digraphs. We describe an algorithm due to Edmonds.161 This finds a sub­
graph of a digraph which is a maximum-weight, which doeiJ not necessarily 
mean spanning, forest of out-trees called a maximum branching. We shall 
see that the same algorithm, with minor changes, can be used, to find a 
minimum branching. 
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The algorithm traverses the digraph examining vertices and edges. It 
places vertices in a so-called vertex-bucket BV as they have been examined, 
and edges in an edge-bucket BE if they have been provisionally chosen for 
the branching. Throughout the course of the algorithm BE always contains 
a branching, that is an acyclic collection of directed edges with at most 
one edge incident to any given vertex. The examination of a vertex v 
consists simply of choosing an edge of maximum positive weight e that is 
incident to v. Notice that no edge of negative weight would be chosen for a 
maximum branching (a digraph consisting of negative weighted edges 
only has a maximum branching of zero weight and no edges). The edge e is 
checked to see if it forms a circuit with the edges already in BE. If it does 
not then e is added to BE and a new vertex is examined. If is does then the 
graph is restructured by shrinking this circuitto a single vertex and assigning 
new weights to those edges which are incident to this new 'artificial' vertex. 
The process of examining vertices then continues until BV contains all the 
vertices of a final graph. It contains just these vertices, several of which 
may in general be 'artificial', because whenever a circuit is shrunk to form 
a new graph the edges and vertices of the circuit are removed from BE and 
BV. BE at this stage contains the edges of a maximal branching for the 
final graph. The reverse process of replacing in turn each of the artificially 
created vertices by its associated circuit then begins. At each replacement 
the choice of edges placed in BE is such that for the currently recon­
structed graph BE contains the edges of a maximum branching. As we 
shall see, the crucial element of the algorithm is the rule for reassigning 
weights to edges when circuits are shrunk. It is this which forces the choice 
of edges to be included in the branching when the reconstruction phase is 
underway. 

An outline of the algorithm is shown in ;lgure 2.3. The original digraph, 
input to the algorithm, is G0 = (Yo, Eo) and G, = (~, EJ is the graph 
obtained after the ith circuit c, has been replaced by a single vertex "'· 
Lines 1-13 inclusive generate the succession of graphs G1, G1, ••• , G1c pro­
vided one or more circuits have to be shrunk to artificial vertices. This 
process ceases when BV contains the edges of the current graph at line 4. 
We need to fill in the details by which G, is constructed from G,_1 and by 
which BE, BV and some edge-weights are modified in lines 10 and 11. 

As might be imagined G, contains every vertex of G,_1 except for those 
in c,. ~ also includes the new vertex "'· E, contains every edge of E,_1 

except those with one or more end-points in c,. We also add to E, new 
edges as follows. For every edge (x,y) eE,_1 for which Xf c, and ye c, (or 
for which x e c, and y f CJ, E, contains an edge (x, uJ ( or an edge("', y)). 
Any edge in G, has the same weight as its corresponding edge in G,_1 
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Fig. 2.3. Edmond's algorithm to find a maximum branching. 

1. BV +-BE+- 0 
2. i+-0 
3. If BY = Vi then go to 14 
4. for some vertex v , BY and v e Vi do 

begin 
S. BY +-BVU {v} 
6. find an edge e = (x, v) such that 

w(e) = max {w(y, v)j(y, v) e E,} 
7. If w(e) ,=,; 0 then go to 3 

end 
8. If BE U {e} contains a circuit then 

begin 
9. i +-i+l 

10. construct G, by shrinking C, to u, 
11. modify BE, BV and some edge-weights 

end 
12. BE+- BE U {e} 
13. go to 3 
14. while i '# 0 do 

begin 
1S. reconstruct G,_1 and rename some edges in BE 
16. if u, was a root of an out-tree in BE then 
17. BE+- BEU {ele e c, and e '# en 
18. else BE+- BE u {ele e c, and e '# eJ 
19. i+-i--:1 

end 
20. Maximum branching weight+- l: w(e) 

eeBJI 

except for those edges incident to "'· For any edge (x, uJ let us denote its 
equivalent edge in E,_1 by e = (x, y). This defines a vertex y on c, and a 
unique edge e in c, which is incident to y. We also define an edge of 
minimum weight in c, by ef. Then the weight of each edge (x, uJ in G, is 
defined to be: 

w(x, uJ = w(e)-w(e)+w(e?) 

The motivation for this assignment will become clear in theorem 2.2. BV 
is modified simply by removing any vertices of BV that might be in c;. BE 
is modified by removing edges of c, and by replacing those edges with a 
single end-point on c, with their equivalent edges in &,. Notice that the 
latter will involve, if any, only edges incident from u,. Edges of maximum 
weight into vertices of c, are actually edges of c,, otherwise c, would not 
have been identified. When "' is subsequently chosen in line 4, an edge 
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incident to "'might be added to BE at line 12 if it has, given line 7, a 
positive weight. 

The while statement of lines 14--19 selects, in tum, those edges of each 
circuit C1c, C1c-1> ••• , C that are to be included in the branching. At 
line 1S G,_1 is reconstructed from G, in an obvious way (in fact, a detailed 
algorithm might actually retain G,_1 when G, is constructed from it). Also 
at line 11 any edges of BE with "' as an end-point are replaced by their 
equivalent edges in G,_1• Which edges of each c, are added to BE depends 
upon whether or not BE already contains an edge incident to a vertex of c,. 
The details can be seen in the conditional statement starting at line 16. 

As indicated in line 20, -the final set of edges in BE defines a maximum 
branching for G0• We prove this in the following theorem. 

11teorem 2.2. Edmond's algorithm finds a maximum branching for a 
weighted digraph. 

Proof. We shall show that if BE contains the edges of a maximum branching 
for G, then it subsequently does so for G,_1 in the reconstruction phase of 
the algorithm. If BE contains the edges of a maximum branching for 
the smallest constructed graph G1c, then we shall have an inductive proof 
that eventually BE will contain the edges of some maximum branching 
ofG0• 

As the basis for our induction let us then consider G1c when BV contains 
all the vertices of V,.,, as detected at line 3. Then BE contains just one edge 
of maximum-weight incident to each vertex of V,., provided that edge is of 
positive weight. Also the edges of BE are acyclic. Clearly, BE then repre­
sents a maximal branching for G1c. 

Now, by the induction hypothesis, BE corttains the edges of a maximum 
branching of G,. Consider G,_1 and the coiresponding set of edges BE, as 
redefined in the while statement starting at line 13 of the algorithm. Let 
E,_1 be the set of edges of G,_1 which are incident to vertices of c, and 
let E,_1 be the remaining edges of G,_1• We denote those edges of E,_1 

that are in BE by BE' and those edges of ~-i that are in BE by BE•. If 
BE does not represent a maximum branching of G,_1 then there must be 
a branching B with edges B' in E,_1 and edges B• in E,_1 such that: 
either 

or 
(a) w(B') > w(BE'), 

{b) w(Bj > w(BEj. 

In fact we shall show that BE' is a maximum branching for E,_1 and 
that w(Bj = w(BEj. Consider E,_1 first. 
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For every vertex of c, the incoming edge of maximum weight, and it will 
be of positive weight, is an edge of c,. Otherwise c, would not have been 
identified as a circuit. No maximum branching of Ei-l can contain every 
edge of c,. However, there is maximum branching of E,_1 which includes 
all but one edge of c,. This is because, from a branching excluding two or 
more edges of c,, we can always obtain a branching of greater or equal 
weight as follows. Let v be a vertex of c, which has no edge of c, incident 
to it. Then either v has an edge e, not of c,, incident to it or it does not. If 
e exists then it is replaced by another edge of greater weight, e incident to v 
and in c,, otherwise a branching of greater weight is obtained by simply 
including e. Now consider which of those branchings of E,_1 with all 
but one edge of c, is of maximum weight. Any such branching can have 
at most one edge of the form e = (x, y), x ,j c, and ye c,, where the edge 
of c, incident to y, e, would be absent. Now if such an edge e exists for a 
branching of E,_1, then the weight of the branching would be: 

w( c,) + w(e)-w(e) 

Let us suppose that e has been chosen to maximise this expression. Of 
those branchings not using an edge such as e, the one having maximum 
weight has the weight: 

w(CJ-w(e?) 

where 4 is the edge of c, with the minimum weight. Thus if 

w(CJ+w(e)-w(l} > w(C,)-w(e?) 

that is, if 

w(e)-w(e)+w(4) > 0 

then a branching of maximum weight of E,_1, which includes every edge 
but one of c,, would have an edge such as e. Otherwise it would not. The 
left-hand side of the last inequality is precisely the weight assigned to e 

when C,c is shrunk to "' in the algorithm. When the algorithm finds a 
branching for G, then it includes e in BE if the inequality holds for the edge 
of maximum weight incident to "t· Then line 18 assigns the edges of 
c, -{e} to BE' when "' is expanded to c, to form G,_1• If the last inequality 
holds for no edge into "' for G,, then "' becomes the root of an out-tree in 
BE. Line 17 of the algorithm then assigns the edges of c,-4 to BE'. Thus 
the algorithm provides a maximum matching for E,_1• 

We now show that w(B") = w(BE"). Without loss of generality we can 
assume that B' is of the form generated for BE' by the algorithm. If it is 
not then it can be converted into such a form without affecting B•. There 
are then two cases to consider: 
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(i) The branching of E,_1 contains no edge outside c,. 
(ii) The branching of E,_1 contains an edge e = (x, y) where x ~ c, 

and ye c,. 
By the induction hypothesis BE represents a maximum branching for G, 
before "' is expanded to c,. In case (i) this maximum branching has a one­
to-one edge correspondence with the branching produced for E,_1 by the 
algorithm. Thus in this case w(B") = w(BE"). In case (ii) the branching of 
E,_1 produced by the algorithm has a one-to-one edge correspondence 
with the maximum branching of G, less the edge of this branching incident 
to "'· However it is still clear that w(B") = w(BE") because if the weight of 
the branching for E,_1 could be increased, without including a path from 
a vertex of c, to x, then the branching for G, would not be maximal. We 
could construct another of greater weight from that branching with a one­
to-one edge correspondence with enhanced branching of E,_1 plus the 
edge of the original maximum branching of G, into "'· ■ 

Figure 2.4 shows an application of Edmond's algorithm. The vertices 
are imagined to be examined in alphabetical order, with artificial vertices 
being added at the tail end of the order as they are created. Starting with 
G0, (a) shows the successive graphs G1 and G1 obtained in the circuit 
reduction stage of the algorithm. Coincidentally, for it would not generally 
be the case, BVand BE are empty when the processing of G1 and G1 starts. 
For G0, G1 and G,. the final values of BE and BV are shown. Figure 2.4(b) 
shows the successive contents of BE as G1 and G0 are reconstructed. Notice 
that the final set of edges in BE, which define a maximum branching for 
G0, is in fact a single out-tree rooted at B which does not, incidentally, 
include the edge of maximum weight in Go11r 

Edmond's algorithm is efficient, runnilfJ in O(nlEl)-time. The most 
expensive stages concern the construction and reconstruction of graphs. 
For each new graph we require O(IEI) steps and this process is repeated 
no more than n times. Perhaps the only other steps of any complexity are 
embodied in lines 6 and 8. For each vertex v, the incoming edge of maxi­
mum weight requires ~ d-(v) comparisons. Hence line 6 requires for all 
vertices (even those artificially created which cannot exceed n in number) 
only O(IEI) steps. For line 8, any circuit, if it exists, can be detected in 
O(n)-time. A newly created circuit must contain the edge denoted by e in 
line 8. If a circuit exists it can be detected by tracing edges in reverse 
direction starting at e and by visiting no more than n vertices. 

Ifwe require a minimum rather than a maximum branching, it is easy to 
modify Edmond's algorithm to find one. We simply replace the weight of 
each edge by its negative and then apply the algorithm as it has been 
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described. Obviously a maximum branching for the graph with modified 
edge-weights provides a minimum branching for the original graph. 

We now conclude this section with a completely different type of problem. 

2.1.3. Enumeration of spanning-trees 
Generally a graph has a number of distinct spanning-trees. For 

some applications it is useful to construct spanning-trees with specific 

qualities. For example, there are the depth-first or the breadth-first trees 

which we met in chapter 1. Or we might be interested in, the much more 
difficult to obtain, degree-constrained spanning-trees in which no vertex 
has degree exceeding a specified value. We can describe a large variety of 
spanning-trees. However, we are not concerned here with their individual 
qualities but, rather, with the total number of trees associated with a given 
graph. 

Before solving the general problem we prove a well-known specific 
result first obtained by Cayley.l51 

Theorem 2.3. The number of spanning trees of K,. is n .. - 2• 

Proof The overall number of spanning-trees of K,. is clearly the same as 
the number of trees that can be constructed on n distinguished, that is, 
labelled vertices. Let The a tree in which the vertices are labelled 1, 2, ... , n. 

Fig. 2.5 

5 8 

2 6 

We can construct a sequence of(n-2) labels, S, which uniquely encodes T 

as follows. In choosing the ith element of S we remove the vertex of degree 
one from Twhich has the smallest label. The ith element is then the label of 
the vertex remaining in T which was adjacent to the removed vertex. The 
process stops when only two vertices remain in T. For example, for the 
tree in figure 2.5 we obtain the sequence (1, 3, 3, 4, 4, 4). Notice that 110 

vertex originally of degree one in T appears in S. 
Conversely we can construct a unique tree with n vertices from a 

sequence S, of(n-2) labels as follows. Let /be the list oflabels (1, 2, ... , n). 
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We first look for the smallest label in I that is not in S. Let this be i1• The 
edge (i1, sJ is then in T. We remove i1 from I and s1 from Sand the process 
is repeated with the new Sand the new /. Finally, S contains no elements 
and the last edge to be added to T is that defined by the remaining pair of 
labels in/. 

Thus there is a one-to-one correspondence between the spanning-trees 
of Kn and the words of length (n-2) over the alphabet (l, 2, ... , n). The 
number of such words is nn-1 and so the theorem follows. ■ 

We come now to the general problem of counting the number of 
spanning trees for an arbitrary multi-graph G. This requires that we first 
concentrate on digraphs and counting the number of spanning out-trees 
rooted at a particular vertex. To this end we now introduce the so-called 
Kirchoff or in-degree matrix K(G). The elements of K are defined as follows: 

K(i,j) = d-(vJ, i = j 
=-k, i 'Fi 

where k is the number of edges from i to j. Within this definition the graph 
is presumed to have no self-loops. If they exist in a graph of interest, then 
they can be safely erased because they can make no contribution to the 
number of spanning trees. Figure 2:6(a) shows a digraph and its Kirchoff 
matrix. 

Notice that the sum of the entries in any column of K is necessarily zero. 
We can use K to identify the set {gJ of subgraphs of G, in which every 
vertex v has d-(v) = l, provided in G, d-(v) ;;i: l. The procedure is best 
understood with the aid of an example. In figure 2.6(b) the determinant 
of K, for the graph of figure 2.6(a) is expanded into a sum of determinants, 
each corresponding to some g,. This procedure is always possible by a 
continued application of the identity: 

det (c1, c8, ••• , (c1+c1), ... , cJ 

= det (c1, c1, .•• , c1, ••• , cJ+det (ci, c1, ••• , c1, ... , cJ 

where each c, is a column of n elements. Subsequent applications are used 
to reduce the value of a diagonal element which is greater than one and to 
produce two determinants, each of which has the sum of the elements in 
any column equal to zero. Thus each is of a Kirchoff matrix for some 
graph. The expansion stops when every diagonal element of the deter­
minants produced are not greater than one. We then have 

det (K(G)) = ~ det (K(gJ) 

' where K(gJ is the in-degree matrix of g,. In our example g, is drawn below 
its associated det (K(gJ) in figure 2.6(b). 
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Fig.2.6 
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In the expansion of figure 2.6 (b) each g, corresponds to a subgraph of G 
inwhichd-(v) = 1,ifinG,d-(v) ;Ji: 1.Clearly,everysuchsubgraphofGis 
represented precisely once in this expansion. Consider the spanning out­
trees rooted at a particular vertex r of G and let The such a tree. If d-(r) > I 
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then T appears within exactly d-(r) of the g,. Each of these g, being T plus 
one possible edge incident tor. If, however, d-Cr) = 0 or 1 then Tappears 
in one g, only. If we let Gr denote G with those edges incident to r deleted, 
then we can expand det (K(Gr)) according to the method prescribed 
earlier. In this expansion, however, any particular out-tree rooted at r will 
be represented by exactly one term. In figure 2.6(c) we see two examples. 
Notice that each term in these expansions is the determinant of an in-degree 
matrix for a subgraph g, of Gin which d-(v) :ie;; 1, v ,fr, and d-(r) = 0. 

We now require the following theorem in which det (K,.,.(G)) denotes the 
minor resulting from the deletion of the rth column and the rth row of 
det (K(G)). 

Theorem 2.4. If g is a finite digraph such that for each vertex v, d-(v) :ie. l, 
then 

det (K,.,.(g)) = l if g contains a spanning out-tree rooted at r 

= 0 otherwise 

Proof. Suppose that g contains a spanning out-tree T rooted at r and that 
itsverticesarelabelled 1, 2, ... ,n. Theneitherg = Torg = T+ewheree 
is an edge incident tor. We can relabel the vertices according to a breadth­
first order of traversing T, visiting r first. Then , = 1 so that K(l, 1) :ie. 1 
and for i > 1, K(i, i) = 1. Also if i ,f 1 and i > j then K(i,j) = 0. Thus 
K11(g) is an upper-right-triangular matrix with unit diagonal elements, and 
so det (K11(g)) = 1. 

Now suppose that g does not contain a spanning out-tree rooted at r. 
If any vertex v ,f r has d-(v) = 0 then the corresponding column of K 
consists of zeros only, so that det (K,.,.(g)) = 0. Suppose then that every 
vertex v ,f r has d-(v) = 1. Since g does not contain a tree rooted at r, 
then it must contain a circuit which excludes r as follows. Trace the edge 
into v, ,f r backwards to v1 and the edge into v1 backwards to vrc and so on. 
If r is finally reached in this process then v,, v1, vrc, ... belong to a subtree 
rooted at r. Otherwise the process ends up tracing a circuit not including r. 
If r is reached we repeat the process starting at vertices not in the subtree. 
Clearly we can accommodate every vertex, without constructing a spanning 
out-tree rooted at ,, only by completing a circuit. Consider now the set of 
columns of K corresponding to vertices on a circuit. Any row of this set 
contains zeros only or it contains a single (- I) and a single ( + 1). Thus the 
sum of these columns is a column of zeros. It follows that det (K,.,.(g)) = 0. ■ 

The g, (and incidentally the gJ defined earlier satisfy theorem 2.4. We 
note that K,.,.(G) is identical to K(Gr) except that the (rr)th element is unity 
instead of zero. There is obviously a one-to-one correspondence between 
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the terms of det (K,.,.(G)) and of det (K(Gr)) if each is expanded according 
to the prescription given earlier. In fact: 

det (K,.,.(G)) = ~ det (K,,.(g~) 

' 
and if we apply theorem 2.4 to each term of the above sum we immediately 
obtain the following theorem. 

Theorem 2.5. The number of spanning out-trees rooted at r in a finite 
digraph G is equal to det (K,.,.(G)). 

Figure 2. 7 illustrates an efficient algorithm based on theorem 2.5 to 
calculate the number of spanning out-trees rooted at r. Now, K is an n x n 
Kirchoff matrix and line 1 of the algorithm assigns (or inputs) the elements 
of K,,. to an (n -1) x (n-1) determinant A. This can clearly be done in 
O(nl) steps. Lines 2-5 use a Gaussian method to convert A. into an upper 
triangular form. In other words, a series of weighted row subtractions 
reduces each element A.(i,j) of A, for which i > j, to zero. This is achieved 
in O(n8) steps. The determinant is then evaluated by a diagonal expansion 
in line 7 using O(n) steps, the result being assigned to D KRR. Overall, 
therefore, figure 2. 7 illustrates an O(n8)-algorithm. 

Fig. 2.7. An algorithm to find the number of spanning out-trees 
rooted at r in a digraph with in-degree matrix K, or the number of 
spanning trees of an undirected graph with degree matrix K. 

1. A +-K;... 
2. fork= 2 to (n-1) do 
3. for I= k to (n-1) do 
4. for J = 1 to (n-1) do 
S. A(i,J) +-A(i,J)-(A(i, (k-1))/A[k-1), (k-1))).A((k-1),J) 
6. DKRR +- A(l, 1) 
7. for i = 2 to (n-1) do DK.RR+- DKRR.A(i, i) 

Having resolved the problem of counting the number of spanning out­
trees rooted at a given vertex in a digraph, we can very quickly see a solution 
to the problem of counting the spanning-trees of an undirected graph. To 
do this we note, given an undirected graph G, that we can construct a 
digraph G' by replacing each edge (u, v) by two directed edges (u, v) and 
(v, u). Then for every spanning-tree of G there corresponds a spanning 
out-tree in G' rooted at a particular vertex, and vice-versa. We define the 
degree matrix of G to be identical to the in-degree matrix of G', and we 
denote it also by K. We therefore have the following theorem. 
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Theorem 2.6. The number of spanning-trees in a finite undirected graph 
is equal to any one of the minors det (.K,.,( G)) for 1 :E; r :E; n. 

The theorem embodies the obvious conclusion that the number of 
spanning trees cannot depend on the choice of r. As the caption to 
figure 2. 7 implies, we can obviously use that O(n8)-algorithm to count the 
number of spanning-trees of an undirected graph as well as to count the 
spanning out-trees rooted at a particular vertex in a digraph. 

2.2 Circuits, cut-sets and connectivity 
In this section we demonstrate the importance of spanning-trees 

with respect to the circuit space and the so-called cut-set space of a graph. 
We shall also be concerned with the separability of a graph by generalising 
the notions of articulation point and cut-edge which were introduced in 
chapter 1. 

It is convenient here to extend our definitions. A co-tree of a graph 
G = (V, E) with respect to a spanning-tree T = (V, E') is the set of edges 
(E-E'). If G has n vertices then any co-tree, if one exists, has IEl-(n-1) 
edges. Any edge of a co-tree is called a chord of the spanning-tree. We need 
also to define the operation of ring-sum. The ring-sum of two graphs 
G1 = (Vi_, EJ and G1 = CV., .Ei), which we write G1 E9 G1, is the graph 
((Vi u V.), ((Ei_ U .Ei)-(E1 n E.)). In other words the edge-set of G1 E9 G1 

consists of those edges which are either in G1 or are in G1 but which are not 
in both. It is easy to see that the operatipn of ring-sum is both commutative 
and associative. That is, that: 

G1 E9 G1 = G1 E9 G1 

and that 

(G1 E9 G.) E9 G8 = G1 E9 (G1 E9 Ga) 

2.2.1. Fundamental circuits of a graph 
From theorem 1.2 we see that the addition of a chord to a spanning­

tree of a graph creates precisely one circuit. In a graph the collection of 
these circuits with re~pect to a particular spanning-tree is called a set of 
fundamental circuits. As we shall see, any arbitrary circuit of the graph may 
be expressed as a linear combination of the fundamental circuits using the 
operation of ring-sum. In other words, the fundamental circuits form 
a basis for the circuit space. 

Figure 2.8 shows, for the graph illustrated there, a spanning-tree T, the 
corresponding set of fundamental circuits and some other circuits expressed 
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Fig. 2.8. Some circuits of G expressed as linear combinations of the 
fundamental circuits of G with respect to T. 

G 

L ··~·· 
'• 

T: a spanning-tree of G 

The fundamental set of circuits of G with respect to T 

~~ .. 
'• 

~ ··v·· 
'• 

as linear combinations of these. In general then, we have the following 
theorem. 

Theorem 2.7. A set t'ffundamental circuits, with respect to some spanning­
tree of a graph G, forms a basis for the circuit space of G. 
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Proof. We first show that any circuit can be expressed as a linear combi­
nation of the fundamental circuits Fwith respect to some spanning-tree T. 
We denote an arbitrary circuit C by its set of edges: 

C = {ei, ea, ... , ~. ei+l• ... , e1} 

where e,e for 1 E.: k E. i is a chord of T and for i < k E. j is an edge of T. 
F contains precisely one fundamental circuit containing each e,e. for 
1 E. k E. i. We denote the fundamental circuit containing e,e by C(e,e). We 
now define C' as follows: 

C' = C(e.J ED C(eJ ED ... ED C(e,e) 

and show that C and C' contain precisely the same set of edges. If they do 
not then: 

C ED C' =I- 0 

For any two circuits C1 and Ca, C1 ED Ca must be a circuit or an edge 
disjoint union of circuits. Thus C' is a circuit or an edge disjoint union of 
circuits and so is C ED C'. But C and C' each contain the set of chords 
e1, e8, ••• , e,e of T and no other chords. Thus C EB C' could only contain 
edges of T and could not therefore contain a circuit. Thus we have a contra­
diction so that our assumption that C =I- C' must be wrong. 

We complete the proof by noting that no member of F can be expressed 
as a linear ring-sum of the other circuits of F. This follows immediately 
from the observation that each chord of T is contained in one and only one 

fundamental circuit. ■ 

We have an immediate corollary: 

Corollary 2.1. The circuit space for a graph with IEI edges and n vertices has 
dimension (IEl-n+ 1). 

A set of fundamental circuits, FCS, for a graph G can easily be found in 
polynomial time. The algorithm outlined in figure 2.9 for example operates 
in O(n8)-time. Line 1 states that a spanning-tree T and the corresponding 
co-tree CT of G are found first. We saw in chapter 1 that a spanning-tree 
can be found in O(max(n, IEl))-time. It is easy to modify such an algorithm 
so that when an edge is found not to be required for T, then it is not 
discarded but is added to CT. What is more, this can easily~ done at no 
cost to the order of the complexity. Thus line 1 can be achieved in 
O(max(n, IEl))-time. 

For each edge e, e CT the body of the for lltatement in lines 4-6 finds one 
fundamental circuit and adds it to the set FCS. The search for the path in 
T which makes a circuit with e, in line 4 can be achieved in O(n) steps as 
follows. Vertex v, in T is labelled one. Then starting at v, and using a 
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breadth-first scan of T, each vertex v is labelled (L -f 1) where L is the label 
of the father of v. The process stops when v, acquires a label. The path 
from v, to v, is then easily traced by starting at v, and proceeding so that at 
each step the next vertex visited has a label which is numerically one less 
than that for the current vertex. In this subalgorithm the initial labelling 

can clearly be achieved in O(n) steps. The total time spent scanning edges 
at individual vertices when tracing the path is O(n), at worst each edge is 
scanned twice except for the initial and final edges and T has (n -1) edges. 
The path itself is the accumulation of at most (n-1) edges and so the 
whole path finding process requires no more than O(n)-time. 

Fig.2.9 

1. Find a spanning-tree T and the corresponding co-tree CT of G. 
2. FCS +- flJ 
3. for all e, = (v1, v~ e CT do 

begin 
4. find the path from v1 to ~ in T and denote it by P, 
5. C, +-P, U {e,} 
6. FCS +- FCS U C, 

end 

The number of edges in CT is O(IE I), that is, O(nl) generally or O(n) for 
a sparse graph. Thus the body of the for statement is executed O(IE I)· 

times so that lines 3--6, which essentially determine the overall complexity 
of the algorithm, can be executed in O(nl)-time for a sparse graph and, at 
worst, in O(n8)-time. 

K.irchoff181 was an early developer of the theory of trees, in his case in 

connection with electrical circuits. A well..'known consequence of theorem 
2.7 and its corollary concerns K.irchoff's voltage law. That is, that the net 
voltage drop around any cycle of an electrical circuit is zero. This law is 
generally used to obtain a set of simultaneous equations in the unknown 
voltage drops across individual components of the network. One equation 
is obtainable from each circuit of the network. Theorem 2. 7 and its corollary 
tell us which circuits of the underlying graph of the network, and how 
many of them, provide a linearly independent set of equations. 

2.2.2. Fundamental cut-sets of a graph 
A cut-set of a connected graph, or component, is a set of edges 

whose removal would disconnect the graph or component. As a part of 
the definition no proper subset of a cut-set will cause disconnection. 
A consequence of this is that a cut-set produces exactly two components. 
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It is sometimes useful to denote a cut-set by the partition of vertices that it 
induces. If V denotes the vertex-set of G and if P is the subset of vertices in 
one component of G induced by the cut-set, then the cut-set can be 
specified by (P, Ji) where P = V-P. 

As we shall see in chapter 4, cut-sets play an important role in the study 
of transport networks. Also another practical application concerns the 
wlnerability of communicating systems with respect to failure. In a graph. 
whose edges represent the lines of communication in such a system, the 
weakest link is the cut-set of smallest size. 

In the previous section we defined-a ,basis for the circuits of a graph in 
terms of fundamental circuits. We shall similarly define a set of fundamental 
cut-sets. Again, the idea of a spanning-tree plays an important rate here. 
Let T be such a spanning-tree of the connected graph G. Any edge of T 
defines a partition of the vertices of G since its removal disconnects Tinto 
two components. There will be a corresponding cut-set of G producing the 
same partition of vertices. This cut-set contains precisely one edge and a 
number of chords of T. Such a cut-set is called a fundamental cut-set of G 
with respect to T. Figure 2.10 shows, for the graph of that diagram, a 
spanning-tree, a corresponding set offundamental cut-sets and some other 
cut-sets expressed as linear ring-sums of fundamental cut-sets. In general 
we have theorem 2.8. 

Fig. 2.10. 

G 

C1 = {e10 e1, ea, ea} 
C1 = {e,, e1, e,, e7} 

C8 == {e., e7, ea} 
C, = {e1, e,, ea} 

T: a spanning-tree of G 

The set of fundamental cut-sets of G with respect to T 

{e8, ea, e,, e7} = C1 EB C, 
{ei, e,, e,} = C1 EB C1 EB C8 

{ei, e1, e,, ea} = C1 EB Ca EB Ca EB C, 

Some cut-sets of G expressed as linear combinations or the funda­
mental cut-sets or G with respect to T. 
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Theorem 2.8. The fundamental cut-sets with respect to some spanning­
tree form a basis for the cut-sets of a graph. 

Proof. This is entirely analogous to that for theorem 2. 7 and so we omit the 
details; The main function of the proof, given an arbitrary cut-set CS: 

CS = e1, e2, ••• , e,, e,+t• ... , e; 

where ek for l ~ k ~ i are edges of the spanning-tree and ek for i < k ~ j 
are chords, is to show that CS is identical to CS': 

CS'= CS(e.J EB CS(eJ EB ... EB CS(eJ 

where CS(e) is the fundamental cut-set associated with the edge e of T. 
We proceed exactly as in the proof of theorem 2.7, the only difficulty 

here is that it may not be immediately obvious that the ring-sum of two 
cut-sets is a cut-set or an edge disjoint union of cut-sets. We can see this 
informally as follows. Let C1 = (Vi, VJ and Ca = (Vii, VJ be cut-sets of a 
graph G. If the edges of both C1 and Ca are removed from G, then the 
vertices are partitioned into four subsets (Yi n VJ, (V1 n VJ (Vi n VJ and 
(Vi, n VJ such that no remaining edge of G connects vertices in different 
subsets. The ring sum of C1 and Ca consists of those edges in C1 and those 
in Ca but not those in both C1 and C2• Those edges common to both C1 

and Ca can only connect vertices in (V1 n VJ to vertices in (Yi n VJ or vertices 
in (Yin VJ to vertices in (V1 n VJ. Thus if the edges of C1 EB C2 are removed 
from G then there is a partitioning of the vertices into (Yi n VJ U (Yi_ n VJ and 
(V1 n ~) U (V1 n VJ. If each of these subsets induces a connected subgraph 
then C1 EB C2 is a cut-set. Otherwise it is an edge disjoint union of cut-sets. 
Figure 2.11 illustrates this. ■ 

Fig. 2.11 . Illustrating, with referenoo to figure 2.10, that the ring-sum 
of two arbitrary cut-sets is either a cut-set or the edge-disjoint union of 
cut-sets. 

{e1, e,, eJ EB {e2, ea, e,, ea} = {e1, e2, ea} 
{e1, e2, e7, eJ EB {e8, e6, e6, e7} = {e1, ea, e,, e6, ea, eJ 

= {ei, e,, eJ u {ea, e5, e8} 

We have the following corollary. 

Corollary 2.2. The cut-set space for a graph with n vertices has dimension 
(n-1). 

As for the case of fundamental circuits, it is easy to construct a poly­
nomial time algorithm to find a set of fundamental cut-sets. See, for 
example, exercise 2.8. 
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2.2.3. Connectivity 
Circuits and cut-sets are aspects of the connectedness of a graph. 

It is natural therefore that we should generalise here those two basic 
definitions of separability, cut-edge and articulation point, which were 
introduced in chapter 1. This leads naturally to consideration of the 
number of edge disjoint paths between any two distinct vertices. 

It is clear that removing any vertex from a tree will disconnect it. On 
the other hand, the removal of any vertex or subset of vertices from a 

complete graph will not disconnect it. Trees and complete graphs represent 
the two extreme cases of vertex-connectivity, or simply connectivity of a 
graph. For an arbitrary graph G, we define its connectivity, written.K,,(G)or 

simply K", to be the minimum number of vertices whose removal will 
disconnect G. Also we say that G is h-connected for any positive integer h 
satisfying h ~ K.,( G). Any subset of vertices whose removal will discon­
nect G is called a vertex-cut. 

Similarly we define the edge-connectivity, K,,(G) or K.,,, for the connected 
graph G to be the size of the smallest cut-set of G. G is said to be h-edge­
connected for any positive integer h satisfying h ~ K,,(G). 

We denote the smallest degree of any vertex in a graph by 8. Since the 
set of edges incident with any vertex forms a cut-set, we have that 8 ~ K,,( G). 
Also K,,(G) cannot exceed K.,,(G). We can see this informally by recognising 
that a vertex-cut is obtainable by removing an end-point from each edge 
of a minimum cut-set. For convenience we define K,,(KJ to be (n-1). We 
then have the following theorem: 

Theorem 2.9. For any connected graph G: 

Kv(G) ~ Ke(G) ~ 8 

We now describe a theorem for 2-connected graphs before stating its 

generalisation to graphs which are h-connected. 

Theorem 2.10. A graph G with at least three vertices is a block if and only 

if two vertices are connected by at least two edge disjoint paths. 

Proof. If any two vertices of G are connected by at least two edge disjoint 
paths then G is connected and cannot contain an articulation point. 
Therefore G must be a block. 

On the other hand, suppose that G is 2-connected. Let l(u, v) be the 
path length from u to v. We prove, by induction on l(u, v), that there are 
two edge disjoint paths from u to v. If /(u, v) = l, then (u, v) cannot be a 
cut-edge if G is a block. Then G-(u, v) is connected and so G contains a 
path from u to v which does not utilise (u, v). We thus have a basis for our 
induction. Let us assume then that there are two edge disjoint paths 
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between u and v for l(u, v) < L. Now suppose that l(u, v) = Land let P be 
a path of length L from u to v and let w be the vertex adjacent to u on P. 
By the induction hypothesis v and w are connected by two edge disjoint 
paths. Without loss of generality, we can take one to be P-(u, w) and we 
denote the other by Q. Since G is a block, G-w must be connected. Let R 

be the path from u to v not including w, and let x be the first vertex common 

to R and Q which is encountered by following R from u. It is possible that 
x = u. Clearly, there are two edge disjoint paths from u to v. One is 

Q 
X ••.--••~ 

R -,;;<.:. • (.. . . . 
• " V u L __ _j__.,..,,j 

w p ' _ __.., 

P and the other is that portion of R from u to x plus that portion of Q from 

x~~ ■ 

We have two corollaries: 

Corollary 2.3. In a block with at least three vertices any two vertices lie 
on a common cycle. 

Corollary 2.4. In a block with at least three vertices any two edges lie on a 
common cycle. 

Proof. Let G be a block with at least three vertices. Let any two of its 

edges by (ui, vJ and (Zlt, vJ. From G we construct G', a block with at least 
five vertices by adding two vertices, w1 and w1, both of degree 2. This is 

done by replacing (ui, vJ with the edg111 (u1, wJ and (w1, vJ and by 
replacing (u8, vJ with (u8, wJ and (w8, vJ. From corollary 2.3, w1 and w8 

of G' lie on a common cycle. It follows that (u1, vJ and (Zlt, vJ of G lie 
on a common cycle. ■ 

In chapter 4 we prove a well-known theorem, due to Menger,l7J which 
is a generalisation of theorem 2.10. This is that a graph with at least (h + l) 
vertices is h-connected if and only if two distinct vertices are connected by 
at least h edge disjoint paths. There are, of course, also generalisations of 
the above corollaries. 

We shall delay until chapter 4 presentation of algorithms to determine 
K.,(G) and Ke(G) for an arbitrary graph G. 
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2.3 Summary and references 
Our concern in this chapter has been with subgraphs that are trees. 

We described Prim'snJ algorithm which finds optimal weight trees for 
undirected graphs and Edmond'sl81 algorithm. for optimal branchings. For 
alternative insight into theorem 2.2 see Karp.181 Edmond's algorithm may 
also be used to find optimal weight spanning out-trees (or in-trees) if they 
exist. See, for example, exercise 2.10. We shall utilise both the idea of a 
spanning-tree and the enumeration of spanning-trees in chapter 3. 
KirchoffllJ first described, amongst other material, a matricial method for 
counting spanning-trees. Excercise 2.13 describes another interesting, 
although inefficient, method to count the spanning-trees of an undirected 
graph. 

In the second half of the chapter we showed how spanning-trees give 
particular insight into the structure of a graph as viewed from its circuit 
and cut-set spaces. The intimate connection between cut-sets and circuits 
will be further pursued in chapter 4. 

Theorem 2.10 is due to WhitneyllOl and its generalisations due to 
Mengerl71 will be proved in chapter 4. We shall also in that chapter describe 
algorithms to determine the edge- and vertex-connectivities of a graph. 

Those readers interested in pursuing the specific application areas of 
trees mentioned in the first paragraph of the chapter might refer to Hop­
croft & Ullman,nll Knuth!Sl and Belln,1. For general reading on trees the 
following are recommended. Chapters 2, 3 and 12 of Bondy & Murty,llBI 
chapters 2-4 of Deo,IUI chapters 1 and 2 of Busacker & Saaty,nai chapters 
4 and 15 of HararyC171 and chapters 12, 13 and 16 of Berge.OJI 
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EXERCISES 
2.1. Given a specific edge e of an undirected graph G, how would you 

construct a spanning-tree of G which contains e? How can a graph be 
constructed given the set of all its spanning-trees? 

2.2. Use theorem 2.5 to derive Cayley's theorem that the number of 
spanning-trees of K,. is n11-1. 

2.3. Theorem 2.5 provides a method to count the number of spanning out­
trees rooted at a particular vertex of a digraph. Contrive a similar 
method to count the number of spanning in-trees. 

2.4. The following algorithm due to Kruskal111 finds a minimum-weight 
spanning-tree, MWT, of a weighted undirected graph G = (V, E). Show 
that it operates in polynomial time. 
1. Relabel the elements of E so that 

if w(eJ > w(e1) then i > J 
2. MWT+- flJ 
3. for i = 1 to IEI do 

if MWT u {eJ is acyclic then 
MWT+-MWTU {e,} 

(Also see exercise 2.6.) 
2.5. Given a weighted undirected graph G = (V, E), let V' be a proper 

subset of its vertices. Also let e denote the edge of smallest weight with 
one end in V' and the other in (V- V'). Show that there exists a 
minimum-weight spanning-tree of G which contains e. 
(Let T be a minimum-weight spanning-tree of G. If T does not contain 
e, then (T+e) contains a circuit, C. Let e' =I:- e be an edge of C. T' then 
defines a tree: 
T' = T+e-e' 
aearly, 
w(T') < w(T)) 
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2.6. Prove that Kruskal's algorithm (exercise 2.4) finds a minimum-weight 
spanning-tree. 
(Let T K be a spanning-tree constructed according to Kruskal's algorithm 
and let T x be a minimum-weight spanning-tree. We assume that the 
edges are ordered, as in exercise 2.4, according to non-decreasing weight. 
Change T x into T K by a series of edge replacements each as follows. Ifs 
be the smallest value of i such that e, e TK but e, ii T x, construct 
r;, = Tx+e,-e; such that e; I/ TK and e; is an edge of th~circuit in 
(Tx+e,). Show that r;, must also be a minimum-weight spanning-tree 
of the graph.) 

2. 7. Let T be a particular spanning-tree of an undirected graph G. By c we 
denote a chord and by e an edge of T. Justify the following statements: 
(a) If S is a fundamental circuit defined by T and c, then c appears in 

each fundamental cut-set defined by an edge in (S-{c}) and in no 
others. 

(b) If K is a fundamental cut-set defined by T and e, then e appears in 
each fundamental circuit defined by a chord in Kand in no others. 

2.8. Construct a polynomial time algorithm to find a set of fundamental 
cut-sets for some un<ftrected graph G = (V, E). 
(An O(n8)-algorithm may be constructed as follows. First find a 
spanning-tree Tof G. Then for each edge e e T determine the two blocks 
B1 and B1 of (T-{e}). The fundamental cut-set associated with e, FCS(e} 
is then given by: 

FCS(e) +- fiJ 
for all v, e B1 do 

for all v, e B1 do 
if (v1, v,) e Ethen FCS(e) +- FCS(e) U {(v,, v1)}) 

2.9. Construct a counterexample to show that the following 'algorithm' 
does not always construct a maximum branching, MB, of a weighted· 
digraph G :;: ( V, E). 

1. Relabel the elements of E so that 
if w(e1} > w(e1) then i > j. 

2. MB+- fiJ 
3. for i = 1 to !El do 

if w(eJ > 0 and MB u {e,} is acyclic then 
MB +- MB U {e,}. 

2.10. Given a weighted directed graph, modify Edmond's algorithm to find 
a maximum-weight spanning out-tree if one exists. 
(Consider the effect of adding a constant positive weight to the existing 
weight of each edge of the graph.) 

2.11. Justify the following statements: 
(a) If G is a simple graph then 

K.(G) ,,;;; 2· IEI. 
n 



Exercises 

(b) If G is simple and 3-regular then 

KJ.G) = KJ.G). 

(Note theorem 2.9.) 

6S 

2.12. The connector problem may be modified by insisting that certain pairs of 
locations be directly linked. Modify Prim's algorithm to accommodate 
this. 
(From the original weighted graph G of the problem, construct a new 
graph a•, by contracting every edge that must appear in the solution. 
Consider applying Prim's algorithm to a•.) 

2.13. N(G) denotes the number of spanning-trees of the undirected graph 
G = ( Y, E). Show that the following recursive formula holds: 

N(G) = N(G-e)+N(G o e) 

where e e G and Go e means the graph obtained from G by contracting 
the edge e. 

Show that the implied algorithm for calculating N(G) has exponential 
time-complexity. 
(N(G-e) is the number of spanning-trees of G not using e. To every 
spanning-tree of G o e, there corresponds exactly one spanning-tree of 
G that uses e.) 

2.14. Consider again Kruskal's algorithm of exercise 2.4. We provide an 
outline of it once more but in the following form: 

1. Construct a priority queue based on the edge-weights 
2. MWT+- 0 

3. Assign a 'component' number L(v) to each vertex v 
4. for i = 1 to IEI do 

begin 
S. Remove the edge (u, v) of minimum weight from the 

priority queue 
6. If L(u) '# L(v) then 

begin 
7. Unite (C(u). C(v)) 
8. MWT +- MWT U {(11, v)} 

end 
end 

We described priority queues in exercise 1.16. In the course of con­
structing MWT, the set of edges which eventually becomes the minimum­
weight spanning-tree, MWT contains a set of connected components 
each of which is a tree (initially just a single vertex). Each vertex in the 
same component has the same 'component' number L(v) which is 
different for vertices in different components. The purpose of line 7 is 
to make the vertices in the component C(u) which contains u and the 
vertices in the component C(v) which contains v, have the same 
component number. This could be the component number of v or of u. 
Notice the condition of line 6. L(u) '# L(v) shows that u is not in the 
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same component as v. H U.u) = U.v) then MWT U {(u, v)} would 
contain a circuit. 

Fill in the implementation details which are missing from the 
algorithm outline and which will ensure that it runs in O(IEI log IEl)­
time. Notice that the use of a priority queue (exercise 1.16(a)) ensures 
that, for all iterations. line S requires only O(IEI log IEl)-time. The 
remaining difficulty concerns line 7. We can see. in principle. that the 
total time spent executing all iterations of this instruction can be con­
tained within the specified limit as follows. Two components C(u) and 
C(v) are united into a single component by changing the component 
number of the vertices in the smaller component to the component 
number of the larger component. Consider the total number of vertex 

component number changes there will be. Each vertex, after changing 
its component number will belong to a component which is at least twice 
as big as its component before the change. Hence. if a vertex has its 
component number changed I times. it belongs to a component con­
taining at least 2' vertices. This cannot exceed n, so that the maximum 
value of i is log n. For all vertices, the total number of component 
number changes is therefore O(n log n). Your implementation details 
should ensure that this is the case. 

Obviously an O(IEI log IEl)-algorithm will be preferable to an 
O(nl)-algorithm (described in the text) for graphs with relatively few 
edges. 



3 

Planar graphs 

Our primary interest in this chapter is to determine what graphs can be 
arranged on a plane surface such that no two edges cross and such that no 
two end-points coincide. Further, we describe one algorithm to show that 
for an arbitrary graph efficient algorithms exist to determine whether or 
not it falls within this category. 

This question of the planarity of a graph, apart from its theoretical 
interest, has a number of practical applications. For example, in the 
layout of electronic circuits, does a planar representation of a given circuit 
exist? If not what is the minimum number of planar graphs whose union 
is a representation of the circuit? 

3.1 Basic properties of planar graphs 
In this first section we outline some basic properties of planar 

graphs. As has already been stated, a graph is planar if it can be drawn on 
a plane surface with no two edges intersteting. More precisely, a graph 
G is planar if it is isomorphic to a graph G' such that the vertices and edges 
of G' are contained in the same plane and such that at most one vertex 
occupies or at most one edge passes through any point of the plane. G' is 
said to be embedded in the plane and to be a planar representation of G. In 
general,(} will denote an embedding of G. 

We can extend the idea of embedding to other surfaces. Figure 3.l(a) 
shows the complete graph with five vertices which, as we shall prove later, 
cannot be embedded in the plane. Figure 3.l(b) shows that K6 can in fact 
be embedded on a toroidal surface. A torus is a solid figure obtained by 
rotating a circle (or in fact any closed curve) about a line in its plane but 
not intersecting it. 

A basic property of planar graphs is embodied in the following 
theorem: 
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Fig.3.1 

(a) 

@ 
(b) 

K, 

11teorem 3.1. A graph G is embeddable in the plane if and only if it is 
embeddable on the sphere. 

Proof. We show this by using a mapping known as stereographic projection. 
Consider a spherical surface S, touching a plane P at the point x. The point 
y (called the point of projection) is on Sand diametrically opposite x. Any 
point z on P can be projected uniquely onto Satz' by makingy, z and z' 
collinear. In this way any graph embedded in P can be projected onto S. 
Conversely, we can project any graph embedded in S onto P, choosing y so 
as not to lie on any vertex or edge of the graph. ■ 

A planar representation of a graph divides the plane into a number of 
connected regions, called faces, each bounded by edges of the ,graph. 
Figure 3.2(a) indicates the faces of a particular embedding of the graph 
shown there. Of course, any planar representation of a (finite) graph always 
contains one face enclosing the graph. This face, called the exterior/ace, is 
/ 1 in figure 3.2(a). Theorem 3.2 will be of particular use later on. 

Fig.3.2 

(a) (b) 

Theorem 3.2. A planar embedding of a graph can be transformed into a 
different planar embedding such that any specified face becomes the 
exterior face. 

Proof. Any face of (J is defined by the path which forms its boundary. 
Any such path, T, identified in a particular planar representation P of G, 
may be made to define the exterior face of a different planar representation 
P' as follows. We form, as we can according to theorem 3.1, a spherical 
embedding P" of P. P' is then formed by projecting p• onto the plane in 
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such a way that the point of projection lies in the face defined by the image 
of Ton the sphere. ■ 

Figure 3.2(b) shows a mapping of the graph of figure 3.2(a) according 
to theorem 3.2 so thatfe becomes the exterior face. 

There is a simple formula connecting the number of faces, edges and 
vertices in a connected planar graph. Euler's formula, as it is known, will 
be of particular use to us in establishing the non-planarity of two im­
portant graphs. We derive the formula in theorem 3.3 in which the following 
notation is used. For a graph 0, n(G) denotes the number of vertices, 
e(G) the number of edges andf(G) the number of faces. Where there is no 
ambiguity we respectively write n, IEI or f. 

Theorem 3.3. If G is a connected planar graph, then, for any 0: 

f= IEl-n+2 
Proof. By induction on f. For f = l, G is a tree and by theorem 1.2, 
IEI = n-1, and so the formula holds. Suppose it holds for all planar 
graphs with less than f faces and suppose that (J has f ;;i: 2 faces. Let 
(u, v) be an edge of G which is not a cut-edge. Such an edge must exist 
because (J has more than one face. The removal of (u, v) from (J will cause 
the two faces separated by (u, v) to combine, forming a single face. Hence ,.___, 
(G-(u, v)) is a planar embedding of a connected graph with one less face 
than 0, hence: 

f(G-(u, v)) = f(G)-1 

also 

and 
n(G-(u, v)) = n(G) 

e(G-(u, v)) = e(G)-1 

But by the induction hypothesis: 

f(G-(u, v)) = e(G-(u, v))-n(G-(u, v))+2 

and so, by substitution: 

f(G) = e(G)-n(G)+2 

Hence, by induction, Euler's formula holds for all connected planar 
graphs. ■ 

We shall require three corollaries to theorem 3.3. Before presenting 
them, we define the degree of a face, d(f), to be the number of edges 
bounding the face f and we denote the number of vertices of degree i by 
n(i). 
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Lemma 3.1. For a simple planar graph G, we have for any fJ: 
2e( G) = ~ d(h) = ~jn(i) 

' J 

because each edge contributes one to the degree of each of two vertices. 

Corollary 3.1. For any simple connected planar graph G, with IEI > 2, 
the following holds: 

IEI ~ 3n-6 

Proof. Each face of (J is bounded by at least three edges and so: 

"£,d(JJ ~ 3/ 
i 

The result then follows by substitution into Euler's formula and using 
lemma 3.1. ■ 

Corollary 3.2. For any simple connected bipartite planar graph G, with 
IEI > 2, the following holds: 

IEI ~ 2n-4 

Proof. Each face of (J is bounded by at least four edges. The result then 
follows as for corollary 3.1. ■ 

The third corollary will be of particular use in chapter 7. 

Corollary 3.3. In a simple connected planar graph there exists at least one 
vertex of degree at most 5. 

Proof. From corollary 3.1 : 

IEI ~ 3n-6 

also n = "£,,n(i) and from Lemma 3.1, 2IEI = "£,,i n(i). Therefore, by 
substitution: 

"£,(6-i) n(i) ~ 12 

' The left-hand side of this inequality must clearly be positive. Since i and 
n(i) are always non-negative it follows that there must exist some non­
zero n(i) for at least one i less than six. ■ 

As examples of the 11se of corollaries 3.1 and 3.2 we now establish the 
non-planarity of the two graphs Ki; and Ka,a• These graphs play a funda­
mental r6le in one characterisation of planarity, embodied in Kuratowski's 
theorem which is presented in section 3.3. Now K5 has five vertices and 
ten edges and so cannot be planar because the inequality of corollary 3.1 
is violated. Similarly, Ka.a cannot be planar because with six vertices and 
nine edges the inequality of corollary 3.2 is not satisfied. 
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Corollaries 3.1 and 3.2 are necessary but not sufficient to characterise 
planar graphs and therefore have limited applicability. In section 3.3 we 
describe ways to more precisely characterise planar graphs. 

3.2 Genus, crossing-number and thickness 
We have seen that bothK6 andKa,8cannot be embedded in the plane. 

Both, in fact, are toroidal graphs; that is to say that they can be embedded in 
the surface of a torus. For K6 this embedding is illustrated in figure 3.1 (b). 
It is instructive to understand the topological difference between a spherical 
surface and a toroidal surface. Any single closed line (or curve) embedded 
in a spherical surface will divide the surface into two regions. On the other 
hand, a closed curve embedded in a toroidal surface will not necessarily 
divide it into two regions, although any two non-intersecting closed curves 
are guaranteed to. Figure 3.3 shows a closed curve C drawn first on a 

Fig.3.3 

spherical surface and then on a toroidal surface. In the first case two regions 
result but in the second case the surface remains connected. For any non­
negative integer g, we can construct a suilace in which it is possible to 
embed g non-intersecting closed curves without separating the surface into 
two regions. If for the same surface (g+ 1) closed curves always cause a 
separation, then the surface is said to have a genus equal to g. For a 
spherical surface g = 0, while for a toroidal surface g = 1. 

The genus is a topological property of a surface and remains the same 
if the surface is deformed. The toroidal surface is topologically like a 
spherical surface but with the addition of a 'handle', as shown in figure 3.4. 
In that diagram Ka,a has been embedded on the toroidal surface. Any 
surface of genus g is topologically equivalent to a spherical surface with 
g handles. A graph that can be embedded in a surface of geaus g, but not 
on a surface of genus (g-1) is called a graph of genus g. Notice that the 
so-called crossing-number of a graph (that is, the minimum number of 
crossings of edges for the graph drawn on the plane) is not the same as its 
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Fig.3.4 

genus. More than one edge may pass over or under a handle on the sphere 
and so the genus of a graph will not exceed its crossing-number. 

11teorem 3.4. If G is a connected graph with genus g, n vertices, IEI edges 
and if (1 has/ faces, then: 

f= IEl-n+2-2g 
Proof. By induction on g. For g = 0 the theorem coincides with theorem 
3.3. As our induction hypothesis we assume that the theorem is true for all 
graphs with genus (g- 1). These graphs may be drawn on a spherical 
surface with (g-1) handles and include all those graphs obtained by 
deleting those edges passing over a single handle in any graph of genus g. 
We construct G with genus g on a surface of genus g by adding a single 
edge requiring an additional handle. Using primed letters for G', we have 
by the induction hypothesis: 

but 
f' = IE'l-n'+2-2g' 
IEI = IE'I + l, g = g' + l and n = n' 

Also f = f' -1 because the handle connects two distinct faces in G' making 
a single face in G. Hence by substitution: 

f = IEl-n+2-.2g 
and so by induction the theorem is proved. Notice that adding more (non­
crossing) edges over the handle does not change the genus of the graph, 
although each edge added in this way also adds another face to the graph 
so that the formula continues to hold true. ■ 

Genus and crossing-number have obvious implications for the manu­
facture of electrical circuits on planar sheets. A fact of recent interest for 
the large scale integrated circuits of silicon chips is that there is (Lipton & 
Tarjannl) a planar equivalent for any boolean electrical circuit, obtained 
by replacing each pair of crossing wires by a fixed size planar subcircuit 
which simulates the behaviour of the original crossing. Figure 3.5 shows 
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such a simulation using, in this case, exclusive- or gates. The cross-over of 
wires(X, X') and ( Y, Y') of(a) is replaced by three exclusive- or gates in (b). 
It is easy to check that whatever boolean values are input at X and Y they 
will be reproduced respectively at X' and Y'. In a planar circuit with straight 
wire connections and n vertices (gates), there can be at most O(n8) cross­
overs. Hence a planar equivalent of a boolean circuit can be obtained at the 
expense of at most an O(n8) increase in the number of gates (the so-called 
circuit size). 

Fig.3.5 

(a) y (b) X y 

y X Y' X' 

A convenient practice is to make connections between parallel planar 
subcircuits separated by insulating sheets at vertices of the corresponding 
graph. The problem is then equivalent to decomposing the graph into 
planar subgraphs and, in particular, we become interested in the so-called 
thickness of a graph. The thickness T(G} of a graph G is the minimum 
number of planar subgraphs of G whose t111ion is G. If G1 = (V, EJ and 
G1 = (V, EJ, then their union, G1 u Ga, is t1lt graph (V, Ei U EJ. Figure 3.6 
shows three graphs G1, Ga and G8 whose union is K9• Hence T(KJ ~ 3. 
We shortly present an expression for the thickness of a complete graph on 
n vertices and this provides an upper bound for any graph with the same 
number of vertices. 

Before completing this section we note two corollaries arising from 
theorem 3.3 and from theorem 3.4. 

Corollary 3.4. The thickness T of a simple graph with n vertices and IE I 
edges satisfies: 

T~ r 3~61 

Proof. Each planar subgraph will contain, according to corollary 3.1, at 
most, (3n-6) edges and so the result follows. ■ 



14 Planar graphs 

Fig.3.6 

Corollary 3,S, The genus g of a simple graph with n (;;,, 4) vertices and IEI 
edges satisfies: 

g;;,, f!(IEl-3n)+ll 

Proof. Every face of an embedding of the graph is bound by at least 
three edges each of which separates two faces, therefore 3/ t;;,. 2. IEI. 
From theorem 3.4, g = ½<IEl-n-/)+1) and so the result follows by 
substitution. ■ 

Specific results for thickness and genµs are known for special cases (e.g., 
complete graphs, complete bipartite graplts (see exercise 3.11)) and involve 
lengthy proofs. In the case of complete graphs IEI = ½n(n-1) and the 
above corollaries then give: 

g ;;,, rn(n-3) (n-4)1 
and 

T ~ rn(n-1)1 = ln(n-1)+(6n-14)J = L!Cn+ 7)j 
"" 6(n-2) 6(n-2) 

It is known that in the result for g equality holds. Similarly, equality holds 
in the expression for T except for n = 9 and for n = 10, in both cases 
T = 3. These refinements required the considerable efforts of mathe­
maticians over many years. Beineke & Wilson1'11 provides a reference list 
of primary sources. 

Filotti et a/.llBI have described an O(,,OC11>)-algorithm which takes as input 
a graph G and a positive integer g and which then finds an embedding of 
G on a surface of genus g if such an embedding exists. 
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3.3 Characterisations of planarity 
In section 3.1 we proved that K11 and Ka.a are non-planar. These 

two graphs play a fundamental r6le in the classical characterisation of 
planarity due to Kuratowski and which is embodied in theorem 3.5. We 
use Kuratowski's theorem to establish two other descriptions of planarity 
which more precisely fit the requirements of this text. Before proceeding 
we need some definitions. 

By G1 = (Yi, EJ we denote a subgraph of G = (V, E). A piece of G 
relative to G1 is then: 

either 
(a) an edge (u, v) e E where (u, v) it E1 and u, v e V, 

or 
(b) a connected component of (G-GJ plus any edges incident with 

this component. 

In figure 3.7 the graph G has a subgraph G1 which is a circuit (v1, v1, Va, 
v,, v11, vJ. B1, Ba and Ba are the pieces of G relative to G1• For any piece B, 
the vertices which B has in common with G1 are called the points of 
contact of B. Thus in figure 3.7 B1 has the points of contact Va and v11, 

while Ba has the points of contact v1, va and v6• If a piece has two or more 
points of contact then it is called a bridge. Thus B1 and Ba are bridges but B1 

is not a bridge. 

Fig. 3.7 

Obviously a graph is planar if and only if each of its blocks is planar. 
Thus in questions of planarity we can always assume that we are dealing 
with blocks. Any piece of a block with respect to any proper subgraph is 
clearly a bridge. 

Let C be any circuit which is a subgraph of G. C then divides the plane 
into two faces, an interior face and an exterior face. For every pair of 
vertices of a given bridge of C, there is a path from one vertex to the 
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other which does not use an edge of C. Of course, if G is planar, and if 
there exists a single bridge relative to C, then C is a boundary of some face 
because the bridge can belong to one and only one (namely, the other) 
face of C. Two bridges B1 and B,. are said to be incompatible (B1 r; BJ if, 
when placed in the same face of the plane defined by C, at least two of 
their edges cross. See figure 3.8(a). To establish incompatibilities, each 
bridge is conveniently reduced to a single vertex connected to the points 
of contact with C. 

Fig.3.8 

(a) (b) 
8'r-----JJ. 

G+(C) I 

An auxiliary graph G+( C) relative to a circuit Chas a vertex-set consisting 
of a vertex for each bridge relative to C and an edge between any two 
such vertices B, and B:1 if and only if B, * B1. See, for example, figure 3.8 (b ). 
Suppose that G+( C) is a bipartite graph with bipartition (B, B). Then the 
bridges in B may be embedded in one face of C and the bridges in j may 
be embedded in the other face. In this way no incompatible bridges occur 
in the same face. 

Before presenting Kuratowski's theorem we need just one more defi­
nition. Whether or not a graph is planar is obviously unaffected either by 
dividing an edge into two edges in series by the insertion of a vertex of 
degree 2, or by the reverse of this process. Two graphs are said to be 
homeomorphic if one can be made isomorphic to the other by the addition 
or the deletion of vertices of degree two in this manner. Figure 3.9 (a) shows 
a graph which is homeomorphic to Ka,a, while (b) shows a graph which 

Fig. 3.9 

(a) (b) 



Characterisations of planarity 77 

contains a subgraph homeomorphic to Ka.a• In this second case the sub­
graph is obtained by deleting the edge (A, B), by replacing the connected 
subgraph G1 by the path it contains from E to F and by similarly replacing 
the connected subgraph G8 by a path from D to C. 

Theorem [Kuntowski) 3.5. A graph is planar if and only if it has no sub­
graph homeomorphic to K5 or to Ka,a• 

Proof. In section 3.1 we proved that .Ki and Ka.a are non-planar. It follows 
that any graph containing a subgraph homeomorphic to either cannot be 
planar. 

It remains to be shown that a graph is planar if it does not contain a 
subgraph homeomorphic to K5 or to Ka.a• We shall prove this by induction 
on the number of edges. It is clearly true for graphs with one or two edges. 
As the induction hypothesis we assume it to be true for all graphs with 
less than N edges. We now show that it is true for the graph G with N edges 
by demonstrating that the following statement leads to a contradiction: 
G is non-planar and does not contain a subgraph homeomorphic to K5 

or to Ka.a• 
If G is non-planar, the following consequences apply: 

(a) G must be connected. Otherwise G would consist of a number of 
components each with less than N edges, and each not having a 
subgraph homeomorphic to K5 or Ka,a (because G does not). By 
the induction hypothesis each component would be planar and 
hence so would G. 

(b) G must not contain a point of articulation. If it did then G could be 
separated at this point of articulation, x. Each resulting com­
ponent would be planar as in (a). For each component x could 
be mapped into the exterior face ofa planar embedding according 
to theorem 3.2. The components could then clearly be rejoined 
at x without loss of planarity. Hence G would be planar. 

(c) If any edge of G is removed, say (x, y), then the remaining graph 
G' contains a simple circuit passing through x and y. Notice that 
G' is connected because G contains no point of articulation. If no 
such simple circuit exists then every path from x to y would have 
to pass through a common vertex, say z. In other words, z would 
be an articulation point of G'. G' could then be separated at z into 
two components, Gi_ (containing x) and G~ (containing y). We add 
the edge (x, z) to Gi_ so forming Gi, and we add the ~ge (y, zJ to 
G~, so forming G;. Now neither Gi nor G8 could contain sub­
graphs homeomorphic to K5 or to Ka.a otherwise G would. This 
is because G contains asubgraphhomeomorphicto Gi, for example, 
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where the path (x, y, ... , z) in G takes the part of (x, z) in G~. By 
the induction hypothesis G~ and G8 would be planar. According 
to theorem 3.2 we could map (x, z) of~ into the boundary of the 
exterior face of Di, similarly, we could take (y, z) of Ga to the 
exterior face of 08. Without loss of planarity, the two graphs G~ 
and G8 could then be joined at z and the edges (x, z) and (y, z) 
replaced by (x, y). This planar reconstruction of G thus yields a 
contradiction and so G' cannot contain an articulation point. G' 
is thus a block and so by theorem 2.10 contains a simple circuit 
passing through x and y. 

Thus, summarising, G' = G-(x, y) is connected and contains a simple 
circuit C passing through x and y. In fact C could be one of a number of 
such circuits. G' contains no subgraph homeomorphic to Ki; or to K8,8, 

has one less edge than G and so, by the induction hypothesis, is planar. 
Let 0' be a planar embedding of G'. We then choose C to be the circuit 
passing through x and y which contains the largest number of faces of 0' 
in its interior. Any bridge of G' with respect to C is called an interior or an 
exterior bridge depending upon whether it lies in the interior or exterior 
of Cforthe embedding 0'. For convenience we assign a direction to Cwhich 
we take to be clockwise. If p and q are vertices on C, then S[p, q] denotes 
the set of vertices from p to q (includingp and q) on S going in a clockwise 
direction. SJp, q[ denotes S[p, q]-{p, q}. Note that no exterior bridge can 
have more than one point of contact in S[x, y] or in S[y, z]. Otherwise C 
could be expanded to enclose at least one more face of 0'. 

G is constructed from the planar graph G' by adding the edge (x, y). 
Consider the requirements of exterior and interior bridges of 0' with 
respect to C in order that G be non-planar. There must exist at least one 
exterior bridge E and one interior bridge J. As fas as E is concerned there 
will be just two points of con ta~ i and j with C such that: 

i e SJx, y( and j e S]y, x[ 

I may have any number of points of contact with C. We certainly require 
that there are points of contact: 

a e S]x, y[ and b e S]y, x[ 

otherwise (x, y) may be added to the interior of C. We also require points 
of contact: 

c e S]i,j[ and de S]j, i[ 

in order that I * E. In other words, I must be incompatible with E so 
that it cannot be taken into the exterior of C without loss of planarity. 
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Figure 3.10 schematically illustrates this. In this diagram a coincides with 
c and b coincides with d. There are however other possible configurations. 
Figure 3.11 illustrates all of those that are essentially different. For reasons of 

Fig. 3.10 

Fig. 3.11 

(a) 

(d) 

clarity whenever any of a, b, c or d coincide, a single label is used. Notice 
that the configurations (d) and (e) differ only according to the internal 
paths in / linking a, b, c and d. Each of the configurations illustrated in 
(a), (b), (c) and (d) exhibit subgraphs which are homeomorphic to K8,8• 

Open and closed circles are used to indicate the vertices of each partition. 
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The rather exceptional case indicated in (e) exhibits a subgraph homeo­
morphic to K5• We have thus found the contradiction we were seeking and 
so the theorem is proved. ■ 

The following theorem provides a more appropriate insight into the 
nature of planarity as far as the planarity algorithm of section 3.4 is 
concerned. 

Theorem 3.6. A necessary and sufficient condition for a graph G to be 
planar is that for every circuit C of G the auxiliary graph G+( C) is bipartite. 

Proof The condition is necessary because for any circuit C of a planar 
graph G, we can form a bipartition (B, B) of the bridge vertices of G relative 
to C, such that bridges in B lie in one face of C for (J, and the bridges of ii 
lie in the other face. Clearly, G+(C) is bipartite because no edge of G+(C) 
connects two vertices in B or connects two vertices in B. 

That the condition is sufficient can be seen as follows. If G is not planar 
then according to Kuratowski's theorem G contains a subgraph homeo­
morphic to K5 or to Ka.a· We suppose that G contains K5 or Ka,a as a 
subgraph, the generalisation to G containing proper homeomorphisms is 
obvious. In either case (see figure 3.12, in which the chosen circuits are 

Fig. 3.12 

C 

Ks,a 

indicated by heavily scored edges), we can choose C of the subgraph such 
that G+(C) is not bipartite. For Ka,a there are three bridges B1, B2 and Ba, 
each of which is a single edge and any two of which are incompatible. In 
the case of K5 there are again three bridges B1, B2 and Ba. B1 and B2 are 
single edges while Ba is a vertex of K6 plus its edges of attachment to C. 
Again any two of the bridges are incompatible. Thus for both K5 and 
Ka.a, for the circuits chosen, G+(C) = Ka which is not bipartite. ■ 

The second characterisation of planarity of particular use in this text 
concerns dual graphs to which we devote the following section. 
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3.3.1. Dual graphs 
The main purpose of this section is to provide an alternative way to 

characterise planar graphs. In particular we shall see that a graph is planar 
if and only if it has a dual. However, as we shall see, there is an important 
connection between circuits of a graph and the cut-sets of its dual. This 
connection provides an additional stimulus for our interest in dual graphs. 

Given a particular planar representation (J of a graph, we informally 
introduce the idea of its dual G* by providing construction rules for it. 
A vertex of G* is associated with each face of a. For each edge e, of (J 

there is an associated edge et of G*. If e, separates the faces f, and fk in 0, 
then et connects the two vertices of G* associated with!, and/k• Excep­
tionally, e, may not separate two faces of (J, namely, when e, is incident 
with a vertex of degree one. In this case et forms a self-loop on the vertex 
of G* associated with the face of (J surrounding e,. An example con­
struction is shown in figure 3.13. We do specify which of the two overlain 
graphs is the dual. In fact either one is the dual of the other as can be easily 
verified by inspection. This is a consequence of the construction process 
and not of the example. Notice that that G* must also be planar. 

Fig. 3.13 

We have carefully referred to the dual of a planar representation (J of a 
graph G and not to the dual of that graph. Figure 3.14 contains a different 
planar representation of a graph first shown in figure 3.13. We can see that 
the dual of the second representation is not isomorphic to the dual oflhe 
first representation. In particular the vertex X in figure 3.14 has degree six 
unlike any vertex in figure 3.13. In fact, there is a rather simple con­
structional relationship between the duals of different planar representations 
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Fig. 3.14 

of the same graph. We illustrate this in fisure 3.15, where (a) illustrates a 
graph isomorphic to the unlabelled graph in figure 3.13. In (b) this has been 
separated into two components by division of the vertices A and B. 
Figure 3.lS(c) shows a graph isomorphic to the graph containing the 
vertex X in figure 3.14. This has been constructed by identifying vertex A1 

with .Bw and vertex A1 with B1 in figure 3.lS(b). 

Fig. 3.15 

(a) 

The graphs, figure 3.lS(a) and (c), are said to be 2-isomorphic. Any two 
graphs G1 and Ga are 2-isomorphic if they become isomorphic under 
repeated application of either or both of the following operations: 

(a) separation of G1 or Ga into two or more components at articu­
lation points, 

(b) if G1 and Ga can be divided into two disjoint subgraphs with two 
vertices in common, then separate at these vertices, A and B, and 
reconnect so that A1 coincides with .Bw and Aa coincides with B1 

as in figure 3.15. 
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As a further example, the two graphs of figure 3.16 are 2-isomorphic. 

Fig. 3.16 

We state the following theorem without proof (see excercise 3.10). 

Theorem 3.7. All the duals of a planar graph G are 2-isomorphic and any 
graph 2-isomorphic to a dual of G is also a dual of G. 

We require a (combinatorial) definition of a dual graph which will suit 
our purposes in a better way than the (geometric) definition outlined 
earlier. This is provided as follows: 

Deftnltion of a dual of a graph. Let G1 and G1 denote graphs with a 
one-to-one correspondence between their edges and let C denote the set of 
edges forming any simple circuit in G1• G1 is a dual of G1 if and only if the 
corresponding set of edges C* in G1 is a cut-set. 

Notice that this definition makes no allusion to G1 or G1 being planar. 
We shall however prove that if G1 is planar then the above combinatorial 
definition coincides with the geometric definition: 

Theorem 3.8. Every planar graph has a (planar, combinatorial) dual. 

Proof. It is clear that every planar graph has a (planar, geometric) dual. 
Given a planar graph we construct its geometric dual G* overlaying fJ in 
the manner described earlier. Any simple circuit C of (J divides the plane 
into two regions and so the vertices of G* are divided into two (non-empty) 
subsets. Removal of the set of edges C* of G* (which cross C in G) clearly 
separates G* into two components. Hence C* is a cut-set of G*. 

Similarly any cut-set C* of G* defines a corresponding set of edges in 
C in 0. We shall show that if C is not a simple circuit then c• cannot be 
a cut-set. By construction only one vertex of G* sits in each face oiO. 
Consider the set of edges radiating from a single vertex of C. Each such 
edge separates two faces of fJ each containing a vertex of G*. The end­
points of the corresponding edges of G* have no choice of which vertex to 
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be attached to, and these edges are thus constrained to form the boundary 
of a face of G*. Hence every vertex of (J sits in one face ofG*. If Cis not a 
circuit in (J then there are at least two edges of C with end-points not 
connected to others in C. If C* is a cut-set then these end-points of C must 
lie in the same face of G*. But this is a contradiction because each face of 
G* contains only one vertex of fJ. Notice that C must be a simple circuit 
otherwise it would separate G* into more than two components and so 
C* would be the union of more than one cut-set. ■ 

Corollary 3.6. If G* is a dual of (} then (J is a dual of G*. The proof is 
straightforward and similar to that for theorem 3.8. 

From now on, when we refer to the dual of a graph, we shall have in 
mind the definition of a combinatorial dual. We remember that this 
definition makes no reference to planarity. The following theorem is the 
main result of this section. 

Theorem 3.9. A graph has a dual if and only if it is planar. 

Proof. From theorem 3.8 we know that every planar graph has a dual. We 
need, therefore, only to prove that a non-planar graph has no dual. From 
the definition of dual it is clear that a graph G can only have a dual if every 
subgraph of G has a dual. Also if a graph has a dual then any graph homeo­
morphic to it must have a dual. Since every non-planar graph contains, 
according to theorem 3.5, a subgraph homeomorphic to K1 and/or to 
Ka,a we need only show that these graphs have no dual. We do this in (i) 
and (ii) below: 

(i) We suppose that K5 has a dual, q, and show that this leads to a 
contradiction. We observe that K5 has ten edges, no circuit of length 2, 
no cut-set with two edges and cut-sets with only four and six edges. These, 
respectively, have the following consequences. ~ has ten edges, no vertex 
with degree less than 3, no circuit of length 2 and circuits of length 4 and 
6 only. It is easy to see that these are mutually incompatible and so we 
have the desired contradiction. 

(ii) We now suppose that Ka,8 has a dual, Kt, 8 and shall similarly show 
that this leads to a contradiction. K8,a has no cut-set consisting of two 
edges and so Kt_a has no circuits of length 2. Also Ka,a has circuits of 
length 4 and 6 only, therefore K:, 8 has no cut-set with less than four edges. 
It follows that the degree of every vertex in Kf.a is at least 4. That is, there 
are at least five vertices in K:, 8, each of at least degree 4, requiring 
½(5 x 4) = 10 edges. However, Kf.8 must have the same number of edges 

as Ka,a, that is, nine. Thus we have found the required contradition. ■ 

We conclude this section by anticipating an interest in dual graphs that 
arises in chapter 7. In that chapter we tum our attention to the problem of 
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colouring areas of a map using the minimum number of colours such that 
no two adjacent regions are similarly coloured. It is now known that the 
famous 'four-colour' conjecture is true, namely, that four colours are 
sufficient. All we wish to note here is that the map colouring problem is 
precisely equivalent to the problem of colouring the vertices of the dual 
( of the graph corresponding to the map) such that no two adjacent vertices 
are similarly coloured. The dual graph provides a more convenient vehicle 
for reasoning about the problem. 

3.4 A planarity testing algorithm 
Before subjecting a particular graph to an algorithm which deter­

mines whether or not it is planar, some preprocessing may considerably 
simplify the task. In this connection we note the following points: 

(a) If the graph is not connected then we subject each component to 
the test separately. 

(b) If the graph is separable (that is, has one or more articulation 
points) then it is clearly planar if and only if each of its blocks is 
planar. We therefore disconnect the graph and subject each block 
separately to the test. 

(c) Self-loops may obviously be removed without affecting planarity. 
(d) Each vertex of degree 2 plus its incident edges can be replaced by 

a single edge. In other words, we construct the homeomorphic 
graph with the smallest number of vertices. This graph is clearly 
planar if and only if the original graph is planar. 

(e) Parallel edges can clearly be removed without affecting planarity. 

The last two simplifying steps ought oo be applied repeatedly and 
alternately until neither can be applied fudher. Following these simplifi­
cations two elementary tests can be applied: 

(/) If IEI < 9 or n < 5 then the graph must be planar. 
(g) If IEI > 3n-6 then the graph, by corollary 3.1, must be non­

planar. 

If these two tests fail to resolve the question of planarity then the pre­
processed graph is subjected to a more elaborate test. We pursue that 
shortly. First it is worth demonstrating what simplification can result from 
this preprocessing, particularly the repeated applications of (d) and (e). 
Figure 3.17 shows a graph with three blocks subjected to this processing 
which resolves that the graph is planar. 

Many algorithms have been published which test for planarity. Planarity 
testing can be done in O(n) time as Hopcroft & TarjanlBl first showed. 
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Fig. 3.17 
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Lempel, Even & CederbaumC31 published an algorithm which, through the 
work of Even & Tarjan141 and Leuker & Boothl51 was also shown to be 
realisable in O(n)-time. These two algorithms require lengthy explanations 
and verification. We therefore describe a much simpler but nevertheless 
fairly efficient algorithm due to Demoucron, Malgrange & Pertuiset.161 Of 
course, what is subjected to the algorithm, following any preprocessing, 
is a block. Before describing the algorithm we need one further definition. 

Let ii be a planar embedding of the subgraph H of G. If there exists 
a planar embedding 0, such that ii s; 0, then ii is said to be G-admissible. 
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For example consider figure 3.18. In (a) a graph is shown while (b) and (c) 
showtwodifferentplanarembeddingsofthesamesubgrapbH = G-(1, 5). 
In (b) I/ is G-admissible whilst (c) shows an embedding of H which is not 
6-admissible. 

Fig. 3.18 

(a) 

1
~

3
(6) 1@ 

4 4 
G G-admissible 

(c) 2 

·@ 
4 

G-inadmissible 

Let B be any bridge of G relative to H. Now, B can be drawn in a face of 
R if all the points of contact of B are in the boundary of f. By F(B, H) we 
denote the set of faces of R in which B is drawable. 

The planarity testing algorithm is outlined in figure 3.19. The algorithm 
finds a sequence of graphs G1, G8, ••• , such that G, c GH1 and finds their 
planar embeddings (Ji, 08, • • •• If G is planar then, as we shall see, each 
a, found by the algorithm is G-admissible and the algorithm terminates 
with a planar embedding of G, (JIBl-+i · If G is non-planar then the 
algorithm stops with the discovery of some bridge B (with respect to the 
current GJ for which F(B, (JJ = fl1. Obviously a necessary condition that 
a, is G-admissible is that for every bridge B relative to G,, F(B, (JJ ,/, fl1 • 

The first of the sequence of graphs found by the algorithm, Gi, is a 
circuit (lines 1-3). Since G is a block it m'IS't contain such a circuit. Clearly, 
G1 will be planar. The boolean variable EMBEDDABLE (lines 5, 6, 10 
and 12) has the value true so long as the algorithm has not detected a 
bridge B relative to the current (J, for which F(B, (J,) = 0. If it acquires 
the value false then the algorithm terminates (line 6) with the message 'G is 
non-planar' (line 11). The variable/is used to record the number of faces 
of the current a,. It is initialised to the value 2 in line 4 and is incremented 
by one for each execution of the while body (lines 7-19). Each execution 
of the while body constructs a new (JHl from the current a,. This is 
achieved as follows. Lines 7 and 8, respectively, find the set of bridges of G 
relative to G, and for each such bridge B, the set F(B, (JJ. If there now 
exists a bridge B which can be drawn in only one face F of a, (i.e., 
IF(B, G,)I = 1, line 13), then (JH1 is constructed by drawing a path ~ 
between two points of contact of B in the face F. If no such bridge exists 
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Fig. 3.19. A planarity testing algorithm. 

1. Find a circuit C of G 
2. i +-1 
3. G1 +- C, <Ji +- C 
4. /+-2 
S. EMBEDDABLE-+- true 
6. whlle/:;,!: IEl-n+2andEMBEDDABLEdo 

begin 
7. find each bridge B of G relative to G, 
8. for each B find F(B, GJ 
9. if for some B, F(B, GJ = flJ then 

begin 
10. EMBEDDABLE-+- fa1Be 
11. output the message 'G is non-planar' 

md 
12. If EMBEDDABLE then 

begin ~ ~ 
13. If for some B, IF(B, GJI = 1 th• F-+- F(B, G,) 

eJse let B be any bridge and F be any face such 
that Fe F(B, GJ 

14. find a path P, s B connecting two points of contact 
of Bto G, 

15. G1+i-+- G,+P, 
16. Obtain a planar embedding G1+1 of G1+1 by drawing P, 

in the face F of G, 
17. i-+-i+l 
18. /-+-/+1 
19. if/= IEl-n+ 2 then output the message 'G is planar' 

end 
end. 

then ~ is a path between two points of contact for any bridge. In either case, 
~ divides some face Finto two faces and/is incremented by one (line 18). 
Notice that if G is planar then (J will have, according to theorem 3.3, 
(IEl-n+2) faces and this fact is used to terminate the algorithm (lines 
6 and 19). In a more detailed encoding of the algorithm, each a, may be 
represented by its set of faces {}J. Here each~ can be described by the 
ordered set of vertices which mark its boundary in, say, a clockwise 
direction about an axis passing through the face. In ~s sense of course, 
each axis ought to be viewed from the same side of the plane. 

Of course, if the graph is planar, then the algorithm obtains a planar 
embedding, GIEl-+1• and this could be output in the form of a set of faces 
by a modification of the conditional statement 19. 

Theorem 3.10. The algorithm of Demoucron et al. is valid. 
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Proof. We have to show that each term of the sequence t:1, a., ... , (JIBl-n+l• 

if G is planar, is G-admissible. The proof is by induction. If G is planar then 
(Ji is clearly G-admissible. We assume that t:, is G-admissible for 
1 ~ i ~ k < IE I -n + 1. We now show that (Jk+l will be G-admissible. Let 
B and F be as defined in statement 13 of the algorithm. Let (J be a planar 
embedding of G where (Jk c 0. If IF(B, 0,JI = 1 then, clearly, Ok+1> as 
constructed by the algorithm satisfies 01c+i s; G. We therefore suppose 
that IF(B, 0,J > 1 and imagine that Bis not drawn in Fin (J but in some 
other face F'. Now G is a block so that every bridge of G with respect to 
Gk has at least two points of contact and can therefore be drawn in just 
two faces. Thus each bridge with points of contact on the boundary between 
the faces F and F' may be drawn individually in either For in F'. Now 
there clearly exists another planar embedding of G in which each such 
bridge is drawn in F if it appears in F' in O and is drawn in F' if it appears 
in F in 0. The Ok+i constructed by the algorithm is clearly G-admissible, 
since Ok+l is contained in this new 0. ■ 

It is easy to see that the planarity testing algorithm can be implemented 
in polynomial time although it is less sophisticated than the linear-time 
algorithms mentioned earlier. We leave the details to the reader (exercise 
3.14). However we note the following. The body of the while statement 
(lines 7-19) is executed at most (IEl-n+ 1) times. In order to find each 
bridge B of G = (V, E) relative to G, = (~, EJ in line 7, we define 
G' = ( G-~. and then need to find: 

(a) each (u, v) e E such that (u, v) ; E,, but u e ~ and v e Ji, 
and 

(b) each component of G' and add to each component any edges that 
connect it to vertices in Yt, 

For each bridge we need to record its points of contact with G,. If bis the 
set of points of contact of B, then in line 8, a face Fis in F(B, OJ if and 
only if every element of b is in F. Here we presume that F denotes an 
( ordered) set of vertices as described earlier. If each face is described in 
this manner, then in line 16 (JH1 is easily obtained from O, by simply 
replacing one Fe OH1 by two new faces in an obvious manner. Returning 
to the determination of bridges in line 7, notice that all but one of the 
bridges relative to G, are bridges relative to 0,+1' This exceptional bridge 
is replaced by none or more other bridges. All other steps of the algorithm 
are easily implemented in an efficient manner. 

Figure 3.20 shows an application of the algorithm to the graph G shown 
there. For each successive G,, the diagram contains a tabulation of the set 
of bridges relative to G, the value off, F(B, OJ, Band Fas defined in 
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Fig. 3.20. An application of the planarity testing algorithm. 

G, f Bridges F(B, G,) B F P, 

{Jl 2 B1 {F1, F.} 
Ba {F1, F.} 
Ba {F1, F.} 
B, {F1, F.} 
B1 {F1, F1} B1 F1 (I, 3) 

a, 3 Ba {Fa, F.} 
B1 {Fa, F.} 
B, {F1, F.} 
B, {F.} B, F, (2, 7, 5) 

a. 4 Ba {Fa} 
Ba {F8,F8} 

B, {Fa} 
Be {F.} 
B, {F1, F8} B, Fa (I, 4) 

G, 5 Ba {F.} 
B, {f,} 
B, {F,} 
B, {F1, F8} Ba F, (3, 5) 

G, 6 B, {F,} 
Ba {F,} 
B, {F.,F,} B, F, (4, 6) 

Ga 7 Ba {F,} 
B, {F1, F,} Ba F, (6, 7) 

G, 8 B, {F,} B, F, (2, 8, 5) 

(J, 9 Ba {F15} Ba FH (7, 8) 

G, 10 I _ _ /· algorithm ( El-n+2) - 10 - · terminates 

Bridge definitions 

B1 = [(I, 3)), B1 = [(I, 4)), B8 = [(3, 5)) 
B, = [(4, 6)) 
B6 = [(7, 8), (7, 2), (7, 5), (7, 6), (8, 2), (8, 5)) 
Ba = [(6, 7)), B7 = [(8, 2), (8, 5), (8, 7)) 
B8 = [(7, 8)) 

7 

s 
2 F,a• 0 2 Fa S 

3 01 4 
3 a. 4 

6 

5 

a.= a 

s 
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statement 13 of the algorithm and P, as defined in statement 14. There is a 
separate table defining each bridge by its edge-set. As can be seen, in this 
case the algorithm terminates when/= (IEl-n+2) with a planar embed­
ding of G, Ci8 and the message 'G is planar' would be output. The ad­
ditional sketch labelled Ci' represents a planar embedding of G which could 
have resulted ifin going from Ci1 to Ci1 the path (1, 3) had been placed in F1 

rather than in F1. This illustrates a point in the verification of theorem 3.10. 
Because G is planar, the bridges relative to Ci1 that are finally placed in F1 

could all have been placed in F2 and vice versa. This is rather a special 
example because Ci' is not distinctly different from Ci8• In fact, Ci' can be 
obtained from Ci8 merely by causing (see theorem 3.2) the face (2, 8, 5, 3) 
to become the exterior face. In general, however, given a choice of B and F 
as defined in statement 13 of the algorithm, distinctly different embeddings 
can be obtained. 

Fig. 3.21. An application of the planarity testing algorithm. 
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Finally, Figure 3.21 shows an application of the algorithm to the non­
planar graph Ke, For each O, there is one bridge denoted by B,, F(B,, OJ 
and P, also indicated in each case. The algorithm terminates when 
F(B3, Ca)= JtJwith the message 'G is non-planar'. 

3.5 Summary and references 
Euler's formula provides a simple basis for deriving many 

immediate results relating to planar graphs. Some of the problems that 
follow provide further illustration of this. We also provided the extension 
to non-planar surfaces in section 3.2. The treatment of non-planar surfaces 
was informal, being illustrative rather than rigorous. Results in this area 
are highly specific and not of much practical benefit. Chapter 2 of Beineke 
& Wilsonl71 provides a good commentary and selection of results. 
Chapter 11 of Hararyl81 is also worthy of a reference. 

The main characterisations of planarity we described were those of 
KuratowskiC91 and of Whitney0-01 who used the idea of combinatorial dual. 
Our proofs of the relevant theorems are not based upon the original papers 
but on simpler expositions. The proof of theorem 3.5 is largely based on 
one given by Berge,[UJ whilst the proof of theorem 3.8 is based on 
Parsons' .nBJ Another well-known characterisation of planarity not covered 
in the text is that due to McLanel131: a graph is planar if and only if it has 
a circuit basis (see section 2.2.1), together with one additional circuit 
such that this collection of circuits contains each edge of the graph twice. 
Finally, theorem 3.6 is essentially taken'from Demoucron et a/.C«J 

A survey of early planarity testing algorithms is provided by Shirey.n41 
As was stated earlier, linear time algorithms have been described by 
Hopcroft & TarjanCBI and by Lempel et al.C31 Both of these algorithms 
receive detailed description in Even.lli1 Our validification in theorem 3.10 
of the planarity testing algorithm of Demoucron et a/.,181 which is rather 
simpler than that to be found in the original text, was influenced by 
the presentation of Bondy & Murty in [16). 
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EXERCISES 
3.1. Given an arbitrary simple planar graph with nvertices and IEI edges, 

show that the maximum number of edges, M, that can be added to the 
graph, subject to it remaining planar 1a given by 

M= 3n-lEl-6 

(Use Euler's formula. When no more edges can be added every face of 
an embedding is triangular. Every simple planar graph is thus a sub­
graph of such a planar triangulation.) 

3.2. Demonstrate that every simple graph with IEI < 9 or with n < S is 
planar. 

3.3. (a) Three houses have to be connected individually to the sources of 
three amenities (electricity, gas and water). Show that this cannot 
be done without at least two of the lines of supply crossing. 
(Because of this old problem, Ka.a is sometimes known as the 
amenities graph.) 

(b) Show that the Petersen graph (figure 6.14) contains a subgraph 
homeomorphic to Ka.a and is therefore, according to Kuratowski's 
theorem, non-planar. 
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3.4. In a completely regular (simple planar) graph every vertex has the same 
degree d(v), and every face has the same degree d(f). Draw every 
completelyregular(finite) graph. (Forthesegraphs2IEI =nd(v) = fd(f). 
Euler's formula then gives: 

n = 4d(f) 
'1.d(v)-d(f) (d(v)-2) 

For a fixed d(v) we can find the allowable d(f) consistent with a finite 
positive integer n. There are only five such graphs with d(v) > 2 and 
d(f) > 2.) 

3.5. In the previous exercise we presumed that n was finite. Suppose, 
however, that n = oo, then show that if G is completely regular and 
d(v) > 2 then d(f) can only be 3, 4 or 6. This is a well-known fact in 
crystallography. 

3.6. A self-dual is a simple planar graph which is isomorphic to its dual. 
Show, using Euler's formula, that if G is a self-dual then 2n = IEI +2. 
How might a self dual be constructed for n ,;, 4? 
(Not every simple planar graph with 2n = IEI +2 is a self-dual. Take 
care with vertices of degree 2.) 

3. 7. The complement G of a graph G = ( V, E) with n vertices is given by 
G = (K.-E). Show that if n,;, 11, then at least one of G and G is 
non-planar. 
(Use corollary 3.1. This result is also true for n = 9 and n = 10, but 
the proof is more difficult.) 

3.8. Draw a planar embedding of the following graph in which every edge 
is a straight line. 

(Every simple planar graph has an embedding in which each edge is 
a straight line, Faryl171.) 

3.9. Show that the average degree of the vertices in a simple planar graph is 
less than 6 (in fact less than or equal to [6-(12/n)D. Thus provide a 
different proof from that in the text that any simple planar graph must 
have at least one vertex of degree at most 5. 
(Use corollary 3.1 and that the average degree of the vertices is 
2IEl/n,) 



Exercises 95 

3.10. Show that if G1 is a dual of G1 and that if G1 is 2-isomorphic to Gi, 
then G1 is also a dual of G1• 

(Establish first that there is a one-to-one correspondence between edges 
of G1 and edges of G1 and that a circuit in G1 is a circuit in G1 and 
vice-versa. This cxen:ise proves one-half of theorem 3.7, proof of the 
other half is quite lengthy- see Whitney11t1.) 

3.11. An electrical circuit consists of connections between two sets of 
terminals A and B. Set A has six and set B has five terminals. Bach 
member of A is connected to every member of B. Show by construction 
that such a circuit can be printed on two sides of an insulating sheet 
with terminals extending through the sheet. 
[In general the thickness of a complete bipartite graph K,,, is given by 
(sec the chapter by White & Lowell in I'll): 

T = Lic,::)-4J 
There may be some rare exceptions to this formula, but none has less 
than 48 vertices.] 

3.12. Find three planar graphs such that their union is the complete graph 
on ten vertices, K10• 

3.13. Embed the complete graph on seven vertices, K,, on a torus. 
3.14. Describe the details of an implementation of the planarity testing 

algorithm of figure 3.17 which is as efficient as you can make it. 
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Networks and flows 

A useful standpoint in solving a variety of problems is to model them in 
terms of some flow along the edges of a digraph. In some cases this flow 
may bear an obvious and direct analogy to the original problem. For 
others, flow may have been contrived to provide a novel or unexpected 
mode of solution. 

This chapter provides an introduction to classical network flow theory. 
We describe an algorithm to maximise the flow across a suitably para­
meterised network and an algorithm to produce minimum-cost flows. 
Novel applications of this material may be found in the section on 
connectivity in this chapter, in the description of bipartite matching in 
chapter 5 and in the section on postman's tours in chapter 6. 

4.1 Networks and flows 
We start with some definitions. A (transport) network is a finite 

connected digraph in which: 
(a) one vertex x, with d+(x) > 0 is called the source of the network, 

and 
(b) one vertex y, with d-(y) > 0, is called the sink of the network. 

A flow for the network N, associates a non-negative integer f(u, v) with 
each edge (u, v) of N, such that for all vertices v, other than x or y: 

~f(u, v) = ~f(v, u) 
" 1' 

Clearly, a network is a model for the flow of material leaving a single 
departure point (the source) and arriving at a single destination (the sink). 
Within the model/(u, v) quantifies the flow along (u, v). The last equation 
ensures a conservation of flow at each vertex. In practice it is likely that 
there will be an upper bound on the possible flow along any edge. For each 
edge (u, v) this maximum, denoted by c(u, v) and called the capacity of the 
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edge, is a positive integer. For our purposes (although, see exercise 4.4) 
we take the minimum allowable flow along any edge to be zero. We now 
add to our definition ofa flow by requiring that for each edge (u, v): 

0 ~ f(u, v) ~ c(u, v) 

A cut of a network N = (V, E) is a cut-set of the underlying graph. The 
cut partitions V into two subsets P and P such that P contains x and P 
containsy. Wedenotethecutby(P, P).Clearly,P n P = f21 andP u P = V. 
The capacity of a cut (P, P), denoted by K(P, P) is defined to be the sum of 
the capacities of those edges incident from vertices in P and incident to 
vertices in P: 

K(P, P) = :I: c(u, v) 
tlE.Z, 
t1eP 

The value of the flow F(N) for a network N = (V, E) is defined to be the 
net flow leaving the source x: 

F(N) = l:f(x, v)-l:f(v, x) 
tl tl 

We can now prove the following intuitively obvious theorem: 

11aeorem 4.1. For an arbitrary cut (P, P) of the network N, the value of the 
flow is given by: 

F(N) = :I: f(u, v)- ~ f(u, v) 
1'EP .err, 
t1eP t1eP 

= (flow from P to P)-(flow from P to P) 

Proof. By definition 

F(N) = l:f(x, v)-1:f(v, x) 
tl tl 

Also, for any vertex u e P other than x: 

0 = l:f(u, v)-l:f(v, u) 
tl tl 

Summing these equations over all u e P, including x, we obtain: 

F(N) = :I: (l:f(u, v)-l:f(v, u)) 
1'EP tl tl 

Now: 
l: l:f(u, v) = l:' f(u, v)+ :I: f(u, v) 

1'EP tl ••P 1'El" 
t1&P t1eP 

and 
l: l:f(v, u) = l: f(v, u)+ :I: f(v, u) ••P tl 1'EP 1'E,l> 

tleP t1eP 
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Clearly, ~e p f(v, u) is the same as :Eue p f(u, v) and so the theorem follows 
1lEP 1lEP 

by substitution into the expression for F(N). ■ 

Corollary 4.1. The value of the flow for any network cannot exceed the 
capacity of any cut (P, P): 

F(N) ~ min (K(P, P)) 

Proof This follows directly from the previous theorem, since for any cut 
(P,P): 

F(N) = ~ f(u, v)- ~ f(u, v) 
ue,E ueP 
11eP 11eP 

~ ~ c(u, v)- ~ f(u, v) 
ueP uefi 
veP 11eP 

= K(P, P)- ~ f(u, v) 
ueP 
1lEP 

~ K(P,P) 

4.2 Maximising the flow in a network 

■ 

Corollary 4.1 provides an upper bound for the maximum-flow 
problem which we now consider. The problem is simply to find a flow of 
maximum value in any given network. 

A path Q from the source x to the sink y of a network N = (V, E) is 
defined to be a sequence of distinct vertices Q = (v0, v1, ••• , v,J, where 
v0 = x and vk = y such that Q is a path from x to y in the underlying 
graph of N. Clearly, for any two consecutive vertices v, and vH1 of Q, 
either (v,, vi+J e E or (vH1, vi) e E. In the former case (v", vi+J is called a 
forward-edge whilst in the latter case it is called a reverse-edge. 

For a given flow F(N) of N, a (flow) augmenting path is a path Q of N 
such that for each (v,, vi+J e Q: 

(a) if (v,, vi+J is a forward-edge then: 

and 
(b) if (v,, vi+J is a reverse-edge then: 

~ = f(vi+l> vi) > 0 

If Q is an augmenting path then we define !J. as follows: 

ll=minll,>0 

Each (v,, vi+J of Q for which ~ = !J. is called a bottleneck-edge relative 
to F(N) and Q. 

For a given N and F(N), if an augmenting path Q exists, then we can 
construct a new flow F'(N) such that the value of F'(N) is equal to the value 
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of F(N) plus ll. We do this by changing the flow for each (v,, vm) of Q as 
follows: 

(a) if (v,, vHJ is a forward-edge then 

and 
(b) if (v,, vHJ is a reverse edge then 

f(vH1• vJ ~ f(v,i+1, vJ-ll 

Clearly, these changes preserve the conservation of flow requirement at 
each vertex excluding x and y so that F'(N) is indeed a feasible flow. 
Moreover, the net flow from x is increased by the addition of ll to the flow 
along (x, vJ. 

Figure 4.1 shows a network in which each edge (u, v) is labelled with the 
pair f(u, v), c(u, v). Q is an augmenting path for which (x, vJ and (v8, y) 
are forward-edges, while (v1, vJ and (v1, va) are reverse-edges. Each edge 
of the path except (Va, y) is a bottleneck-edge and ll = 1. We can therefore 
augment the flow by making the following assignments: 

f(x, vJ ~ 2, f(Vi, vJ ~ 0, f(v,., va) ~ 0, f(v8, y) ~ 2 

Fig. 4.1 

X 

The idea of an augmenting path forms the basis of an algorithm, 
originally due to Ford & Fulkerson, for solving the maximum-flow 
problem. Starting from some initial flow F0(N), which could be the zero 
flow (i.e., f(u, v) = 0 for all (u, v),e E), we construct a sequence of flows 
F1(N), Fa(N), F8(N) .... ~+1CN) is constructed from ~(N) by finding a 
flow augmenting path along which ~(N) is augmented. Ignoring for the 
moment the question of finding augmenting paths, we can see that such an 
algorithm would work because: 

(a) termination is guaranteed by observing that for all i the value 
of P.+1(N) is greater than the value of ~(N) and corollary 4.1 
provides an upper bound on the maximum flow, 
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and 
(b) theorem 4.2 guarantees that if no augmenting path exists for ,&(N), 

then ,&(N) has a maximum value. 

Theorem 4.2. If no augmenting path exists for some F(N), then the value 
of F(N) is a maximum. 

Proof. We fint describe a labelling process for the vertices of N. Initially 
no vertex is labelled and the labelling proceeds as follows: 

(a) x is labelled. 
{b) If for (u, v) e E, u is labelled and v is unlabelled, then, provided 

f(u, v) < c(u, v), v is labelled. 
(c) If for (u, v) e E, vis labelled and u is unlabelled, then, provided 

f(u, v) > 0, u is labelled. 

By a repetition of(b) and (c) as many vertices of N as possible are labelled. 
It is easy to see that the above process cannot cause y to be labelled if no 
augmenting path exists. The labelling process defines a cut {P, P) of N such 
that any labelled vertex is a member of P and any unlabelled vertex is a 
member of P. From the labelling rules we deduce that: 

f(u, v) = c(u, v) if u e P and v e P 

f(u, v) = 0 

Thus, using theorem 4.1: 

if uePandveP 

F(N) = ~ f(u, v)- ~ f(u, v) = ~ c(u, v) = K(P, P) 
ueE uelf' ueE 
eeP eeP 11eP 

and so, by corollary 4.1, F(N) must be a maximum. Notice that (P, P) 
must be a cut of minimum capacity because if a cut of smaller capacity 
existed then the value of F(N) would exceed that capacity and corollary 4.1 
would be violated. ■ 

The algorithm we have outlined for the maximum-flow problem shows 
that it is always possible to attain a flow value F(N) equal to min (K(P, JS)). 
This proves, along with corollary 4.1, the well-known max-jlow, min-cut 
theorem originally stated by Ford & FulkersonCll; 

Theorem 4.3 (max-flow, min-cut). For a given network the maximum 
possible value of the flow is equal to the minimum capacity of all cuts: 

max F(N) = min K(P, P). 

Until now we have deliberately put to one side the question of how best 
to find an augmenting path at each step of the maximum-flow algorithm 
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This is because the question bears significantly upon the efficiency of the 
algorithm. If each augmentation only increases the overall flow from x to y 
by one unit, then the number of augmentations required for maximisation 
could be equal to min K(P, P). This can be arbitrarily large and bear no 
relationship to the size of the network. For example, consider the network 
of figure 4.2. The edge (v1, vJ has a unit capacity whilst every other edge 
has a capacity of I. Starting with the zero flow, we could carry out a 

Fig.4.2 

X y 

'• 

succession of augmentations alternately using the paths P1 = (x, v1, v1, y) 
and P 1 = (x, v8, Vi, y). Each augmentation enhances the flow by only one 
unit so that, overall, 21 augmentations will be required. We shall describe 
an algorithm of Edmonds & Karp1ll which chooses augmentation paths 
in such a way that the complete algorithm for flow maximisation operates 
in O(nlEl8)-time. In fact more efficient algorithms are known (see, for 
example, Karzanovl:81 and Malhotra et af.141 for O(n8)-algorithms), but they 
require considerably more explanation. We content ourselves with a 
demonstration that the maximum-flow problem can be solved in a time 
which is polynomially dependent upon tl:le network size only. In other 
words, the complexity is independent of the edge capacities. We closely 
follow the work of Edmonds & Karp. 

In fact, the following method of choosing augmentation paths due to 
Edmonds & Karp is so natural that it is likely to be included unwittingly 
in any implementation of the maximum-flow algorithm. Given a network 
N = (V, E) with a flow F, we first construct an associated network 
NF = (V, E') such that there is a one-to-one correspondence between 
augmentation paths in N for F and directed paths from x toy in N F. This 
is clearly the case if N and N F have the same vertex set and if, for any two 
vertices u and v, (u, v) is an edge of NF if and only if either: 

(u, v) e E and c(u, v)-f(u, v) > 0 
or 

(v, u) e E and f(v, u) > 0 
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Thus the question of finding an augmentation path for N and Fis reduced 
to finding a directed path from x toy in NF. We denote a directed path in 
N F by pF and its corresponding path for F(N) by P. Any edge of pF 
corresponding to a bottleneck-edge of F(N) is also called a bottleneck­
edge. We now have to describe the precise method by which pF is found. 

In determining pF each vertex v of NF is first labelled L(v), where L(v) 
is equal to the minimum distance (in edges) from x to v. If no such path 
exists then L(v) = 0. This can be done using the breadth-first search for 
shortest paths algorithms which is detailed in exercise 1.15. If a path exists 
from x toy, then pF is chosen to be a path of minimum length. This can be 
traced backwards fromy by next visiting a vertex u such that L(u) = L(v)-1, 
where v is the current vertex being visited. 

Fig. 4.3. The breadth-first search for PK procedure, BFSPK. 

1. begin 
Carry out a breadth-first ,search for the shortest distances in N' 

from x to each vertex v. (L(v) > 0, if v '# x, denotes 
this path length and if L(v) = 0 then no path exists.) 

2. If L(y) = 0 then PATH +-false 
else 
begin 

3. for all v e V construct B'(v) 
4. P' +-(y) 
s. u +-y 
6. whlle u '# x do 

begin 
7. find a vertex v such that v e B'(u) and L(u) = L(v)+ 1 
8. add v to the head of P1 

9. U +-V 
encl 

encl 
encl 

Figure 4.3 encapsulates this breadth-first search procedure for pK within 
a procedure called BFSPK. Line 1 represents the labelling process detailed 
in exercise 1.15, which we recall operates in O(IEl)-time. Line 2 simply 
determines whether or not a path pF exists. If not, a boolean variable 
PATH is assigned the value false and the procedure terminates. If a path 
pF does exist then the rest of the procedure is designed to construct the 
list of vertices defining it. We can do this efficiently by making available 
for each vertex v, a list B'(v). This contains those vertices u1, "2, ... , such 
that (u1, v), (u2, v), ... are edges of NF. In other words, B'(v) specifies all 
the edges incident to v, as opposed to the adjacency list B(v) which specifies 
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all those edges incident from v. We imagine that the adjacency lists are 
available globally, then it is easy to see that line 3 can construct all the 
B'(v) in O(IEl)-time. The benefit afforded by the B'(v) can be seen within 
the while statement beginning at line 6. This constructs pF by adding the 
current vertex being visited to the head of the list of vertices defining that 
portion of pF that has been traced so far from y. In line 7, the use of the 
B'(u) means that the search for v need only inspect d-(u) vertices. Thus for 
all iterations of the body of the while statement, these searches require at 
worst :Eud-(u) = O(IEI) inspections. We conclude that the breadth-first 
search for pK procedure executes in O(IEl)-time. In order to establish the 
overall complexity of the maximum-flow algorithm., using shortest 
augmentation paths, we require the following theorem. 

Theorem 4.4. If in the maximum-flow algorithm each augmentation is 
carried out along a shortest path then a maximum flow will be obtained 
after no more than ½IEl ·n augmentations. 

Proof. Let F8, F1, F1, ••• be a sequence of flows in N such that _Fk+1 is 
obtained from Fk by an augmentation corresponding to a shortest path 
pk in NF". We shall write Nk for NF" and denote by dk(u, v) the shortest 
distance from u to v in N". If no path exists from u to v then we take 
dk(u, v) = oo. 

In order to proceed with the proof we need two lemmas: 

Lemma 4.1. If k < m and (u, v) is a bottleneck-edge relative to pk and Fk, 
and also relative to pm and Fm, then for some I such that k < I < m, 
(v, u) eP1• 

Clearly, if (u, v) is a bottleneck-edge relative to pk and Fk, then it will 
not be an edge of Nk+i. It can only be reintroduced as an edge for some 
subsequent Nm if the flow from u to v along-Cu, v) is reduced in some inter­
mediate augmentation, say for N'. This is only possible if (v, u) e P. 

Lemma4.2.Ifk < I, (u, v) eP"and(v, u) eP1, thend'(x, y) ~ dk(x, y)+2. 
In order to prove this lemma we first need to show that for all k and u: 

dk(x, u) " dk+l(x, u) 
and 

dk(u, y) " dk+l(u, y) 

We shall first prove the first statement, proof of the second being very 
similar. If cfk+l(x, u) = oo then the result is trivial. If dk+l(x, u) is finite 
then we denote a shortest path from x to u in N"+1 by 

(u0 = x, u1, Uz, ••. , u,. = u) 

Now cfk(x, uo) = 1 and 

dk(x, Uc+J " 1 +d"(x, u.J, i = 0, 1, ... , (h-1) 
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because since(~. ~+J e Nlr.+1 then either (u,, ~+J e Nlr. or C~+i• ~) e p1r._ 
In the former case dlr.(x, ~+J , 1 +dk(x, ~)since(~, ~+J enables us to 
get a directed path from x to uH1 in Nlr. having no more than 1 +dk(x, aj 
edges. In the latter case 

d"(x, ~) = 1 +dk(x, ~+J 
so 

dk(x, ~+1) = - 1 +dk(x, aj < 1 +dk(x, uJ 

Summing the set of inequalities over all i, we obtain: 

h-1 h-1 
~ dk(x, ~+J , h + ~ dk(x, aj 

i-O i=O 
so that 

dk(x, u) , h+dk(x, x) = dk+l(x, u) 

which is the inequality we set out to prove. 
We can now complete the proof oflemma 4.2. Since (u, v) ePk: 

and 
dk(x, y) = tflr.(x, u)+ 1 +dk(v, y) 

tflr.(x, v) = I +dk(x, u) 

dk(u, y) = I +dk(v, y) 

Also (v, u) e p1 so that 

c/l(x, y) = c/l(x, v)+ 1 +c/l(u, y) 

and using the inequalities previously obtained it follows that: 

dl(x, y) ;;i, tflr.(x, v)+ 1 +dk(u, y) 

= (I +tJlr.(x, u))+ 1 +(I +d"(v, y)) 

= 2+(d"(x, u)+ 1 +d"(v, y)) 

= 2+tJlr.(x,y) 

Hence lemma 4.2 is proved. 
Given these two lemmas the proof of theorem 4.4 is easily obtained. Let 

u and v be two vertices such that either (u, v) or (v, u) is an edge of N. The 
sequence {K,} consists of those indices K, such that either (u, v) or (v, u) is 
a bottleneck-edge relative to pK, and pK,. Utilising lemma 4.1 we can find a 
sequence {11}, with {KJ as a subsequence such that: 

(u, v) e P1J, j odd and (v, u) e PIJ, j even 
or 

(u, v) e P1J, j even and (v, u) e P1J, j odd 

Hence, by lemma 4.2: 

d'1+1(x, y) ;;i, d1J(x, y)+2 
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so that in consecutive appearances of (u, v) or (v, u) as a bottleneck, the 
length of the augmentation path increases by at least two edges. Since an 
augmentation path cannot be less than one edge or more than (n- 1) edges 
in length, it follows that any edge of the network cannot provide a bottle­
neck more than ½n times. Every augmentation path contains at least one 
bottleneck and there are IEI edges in the network. It follows that in the 
maximum-flow algorithm no more than ½IE I· n shortest path augmentations 
will be required. ■ 

The breadth-first search for pK procedure BFSPK of figure 4.3 is called 
in line 5 of the maximum-flow algorithm outlined in figure 4.4. Using 
theorem 4.4, we can now see that the complexity of this maximum-flow 

Fig. 4.4. The maximum-flow algorithm. 

1. Input the adjacency lists A(v), edge capacities and initial edge 
flows for the network N = ( Y, E) 

2. PATH +-true 
3. wblle PATH = true do 

begin 
4. Construct the adjacency lists B{v) for NK, for each edge 

(u, v) recording /J.(u, v) and whether (u, v) is a forward 
or reverse edge. 

S. BFSPK 
6. if PATH = true then 

begin 
7. find /J. = min /J.(u, v), (u, v) e PK 
8. for all (u, v) e PK do 
9. if (u, v) is a forward edge of r 

10. then/(u, v)+A 
11. else/(v, u) +i'(v, u)-/J. 

end 
end 

algorithm is O(nlEIB), Line 1 of the algorithm merely inputs the network N 
in adjacency list description and so requires O(I E I)-time. One convenience 
that might be adopted here is to append to each appearance of a vertex 
u e A(v) a record of c(u, v) andf(u, v). Line 2 initialises the boolean global 
PATH, which records whether or not an augmentation path exists for the 
current N'K. Each iteration of the while statement corresponds to one 
augmentation of the flow in N. In line 4 the adjacency lists B(v) for the 
current NK are constructed. This requires O(IEl)-time. For each (u, v) e E 
we add v to B(u) if c(u, v) > f(u, v), recording within appended locations 
that (u, v) is a forward-edge and that a(u, v) = c(u, v)-f(u, v), and if 
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f(u, v) > 0 then u is added to B(v) noting that (v, u) is then a reverse-edge 
and that ti(v, u) = f(v, u). Line 5 then determines the augmentation path 
pK within O(IEI) steps as previously described. If no path exists then, 
within the call of BFSP K, there is an assignment of false to PATH and the 
computation stops. If an augmentation path does exist then the conditional 
statement starting at line 6 augments the flow in N as previously described. 
Since there are at most (n-1) edges in pK, this requires O(n) steps. 
Altogether, the body of the while statement therefore requires O(IEI) 
operations. According to theorem 4.4 at most ½IE I· n iterations will be 
required. It follows that the complete algorithm of figure 4.4 has 
O(n I EI I)-complexity. 

4.3 Manger's theorems and connectivity 
As anticipated in section 2.2.3 we prove here some well-known 

theorems of Menger. In doing so we make use of the max-flow, min-cut 
theorem. In a natural way these theorems furnish us with algorithms to 
determine the vertex- and edge-connectivities of a graph. We shall be 
describing these also. First we require some definitions. 

By pe(v,, v1) we denote the maximum number of edge disjoint paths 
between v, and v1• Similarly, by p,,,(v,, v1) we denote the maximum number 
of vertex (other than v, and v1) disjoint paths from v, to v1. By ce(v,, v1) we 
denote the smallest cardinality of those cut-sets which partition the graph 
so that v, is in one component and v, is in the other. Also, we define 
c.,(v,, v,) to be the smallest cardinality of those vertex-cuts which separate 
G into two components, one containing·v, and the other containing v1• 

Clearly, no such vertex-cut exists if (v,, v1) is an edge of the graph. 
The following is a variation of one of Menger's theorems. 

Theorem 4.5. Let G = (V, E) be an undirected graph with v,, v1 e V, then 
ce(v,, v1) = pe(v,, v1). 

Proof From G we construct a network N as follows. N contains the same 
vertex-set as G and for each edge (u, v) of G, N contains the directed edges 
(u, v) and (v, u). For each edge e of N, we assign a capacity c(e) = 1. Thus 
for any flow in N,f(e) = 0 or 1. We denote the maximum value of a flow 
from a source x to a sink y of N by F. 

We first show that F = pe(x, y). If there are pe(x, y) edge disjoint paths 
from x to y in G, then there are pe(x, y) edge disjoint paths from x to y 
in N. Each such path can be used to transport one unit of flow from x toy. 
Thus F ~ pe(x, y). For a maximal flow from x toy in N we can, without 
loss of generality, assume that for each edge (u, v) not both of f(u, v) and 
f(v, u) are unity. If they were, then we could replace each flow by zero 
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without affecting F. Flow can then be considered to consist of unit flows 
from x toy in N, corresponding to edge disjoint paths in G. ThusF E. pr,(x,y), 
and using our first result this yields F = pe(x, y). 

According to the max-flow, min-cut theorem Fis equal to the capacity 
of a cut-set C = (P',P") of N, x eP' andyeP'. Every pathfromxtoyin 
N uses at least one edge of C. The corresponding set of paths in G each uses 
at least one edge (u, v) such that (u, v) of N is in C. This set of edges will 
disconnect G and so we have a cut-set with cardinality F. Thus 

CJ...x, y) E. F = pe(x, y) 

We can easily see that C8(x, y) ~ p.(x, y), because every path from x toy 
uses at least one edge of a set which disconnects G, and no two paths use 
the same edge. Thus cJ..x, y) = pJ.x, y). ■ 

The following corollary is the more usual statement of Menger's edge­
connectivity theorem. 

Corollary 4.2. A graph is k-edge connected if and only if any two distinct 
vertices are connected by at least k-edge disjoint paths. 

Proof. This follows directly from theorem 4.5 and the definition of a k-edge­
connected graph (see section 2.2.3). ■ 

We are now in a position to describe a polynomial time algorithm to 
find the edge-connectivity K8(G) of an arbitrary graph G = (V, E). From 
the definitions of both K.(G) and c8(v,, v:1) it is evident that: 

K.(G) = min c8(v,, v:1) 
9',"JeY 

We can therefore find K.(G) by solving the maximum-flow problem 
(perhaps using the algorithm of figure 4.4,J for a series of networks each 
derived from G as in the proof of theorem 4.5. An immediate reaction 
might be that O(nl) maximisations are required because there are n(n-1) 
different pairs of vertices. However, O(n) maximisations will suffice. Notice 
that if for some network, (P, P) is a cut-set of minimum cardinality, with 
v, and v:1 any two vertices such that v, e P and v, e P, then K. = c8(v,, v:1>· 
It follows that K8 will be found by solving only those maximum-flow 
problems for which a particular vertex, say u, is the source. The remaining 
vertices are then taken as the sink in tum. Thus only (n- l) maximisations 
are required. 

Figure 4.5 outlines the algorithm for K.(G) which results from the above 
considerations. G denotes the digraph obtained by replacing each edge of 
G by two antiparallel edges, each of unit capacity. Line 3 simply assigns 
a convenient and suitably large initial value to K_. The major and time 
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consuming part of the algorithm is embodied in the for statement starting 
at line 4. Each application of line 5 finds the value of a maximum flow F 
for the network consisting of G with a source x and a sink y. If the algorithm 
of figure 4.4 is utilised then line 5 requires O(nlEIB)-time. With O(n) repe­
titions of this, we see that, overall, the algorithm of figure 4.5 would have 
O(n81Et8)-complexity. This can, of course, be improved by using one of 
the more efficient maximum-flow algorithms referred to earlier. 

Fig. 4.5. Algorithm to find the edge-connectivity K.(G) of an 
undirected graph G. 

1. Input G and construct 0 
2. Specify u 
3. K. +-IEI 
4. for all v e V-{u} do 

begin 
S. find Ffor (0 with x = u and y = v) 
6. ifF<K.tbenK.+-F 

end 
7. Output X. 

We turn to the problem of evaluating the vertex-connectivity K,,(G) of 
a graph G. Our treatment is very similar to that for ~(G) but with minor 
complications. First we require a theorem analogous to theorem 4.5. 

Theorem 4.6. If (x, y) it Ethen c,,,(x, y) = p,,,(x, y). 

Proof. Given G = (V, E), we construct a digraph Gas follows. For every 
vertex v e V, G contains two vertices v' and v" and an edge (v', v") called 
an internal edge. In addition, for every edge (v,, v1) e E, G contains two 
edges (°', v1) and (vj, v~ which we call external edges. We now define a 
network N consisting of the digraph G in which the source is x" and the 
sink is y'. The capacity of each internal edge is one, and each external edge 
has an infinite capacity. Figure 4.6 shows N for the graph G illustrated. 
If we now denote the value of a maximum flow from x" to y' by F, our 
proof proceeds like that for theorem 4.5. 

We first show that F = p,,,(x, y). If there are p,,,(x, y) vertex disjoint paths 
in G, then we can identify pJ..x, y) vertex disjoint paths from x" toy' in G. 
For this we simply associate with the path (x, v1, v2, ••• , y) in G, the path 
(x", v1, tfi, v~, v;, ... , y) in G. In G these p,,,(x, y) paths can be used to carry 
unit flows from x" to y' so that p,,,(x, y) E. F. Now consider a flow in N. 
For each edge e,f(e) is either zero or one. This is easily seen by noting that 
the flow through each vertex v is effectively bound by unity because either 



Menger's theorems and connectivity 109 

a single edge which has unit capacity is incident to v or a single edge which 
has unit capacity is incident from v. Thus any flow from x" to y' can be 
decomposed into unit flows carried along vertex disjoint paths. These 
correspond to a set of vertex disjoint paths in G. Hence p.,(x, y) ~ F and 
so we have completed the proof that F = p.,(x, y). 

Fig. 4.6 

G 

N 

According to the max-flow, min-cut theorem, Fis equal to the capacity 
of a cut-set C = (P',P") such that x" eP' and y' eP". Moreover, every 
edge from P' to P" must be an internal edge because the capacity of the cut, 
equal to F, is finite. Every path from the source to the sink in N uses at 
least one of these internal edges of C. Hence every path from x to y in G 
passes through a corresponding vertex. This set of vertices is therefore 
a vertex-cut of G, has cardinality F and is such that its removal from G 
produces two components one containing x and the other containing y. 
Hence c.,(x, y) is at most F: c.,(x, y) ~ F = pJ...x, y). Also p.,(x, y) cannot 
exceed c.,(x, y) because every one of the patbe-from x toy uses at least one 
vertex of a vertex-cut of size cJ...x, y) and no two paths use the same vertex. 
Thus c.,(x, y) = pJ...x, y). ■ 

The following corollary is Menger's vertex-connectivity theorem. 

Corollary 4.3. A graph is k-vertex-connected if and only if any two distinct 
vertices are connected by at least k-(intemally) vertex disjoint paths. 

Proof. This follows directly from theorem 4.6 and the definition of a 
k-vertex-connected graph (see section 2.2.3). ■ 

From section 2.2.3, if G is complete then K.,( G) = (n-1) and otherwise: 

K,,(G) = min c.,(v,, v1) 
C"i, flj) -E 
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In view of theorem 4.6 and the definition of Ke(KJ we may therefore 
write, whether G is complete or otherwise: 

K.,,(G) = min p.,,(v,, v1) 
('111,flJ)IE 

and we can find K.,,(G) by solving the maximum-flow problem for a series 
of networks each derived from Gas in the proof of theorem 4.6. Incidentally 
(see exercise 4. 7), we can drop the requirement in the last equation that v, 
and v1 have to be non-adjacent. If minp.,,(v,, v1) occurs for two adjacent 
vertices, then it also occurs for two non-adjacent vertices. 

If we base an algorithm to find KJG) on the last equation, how many 
maximum-flow problems need to be solved? We can see that O(IEI) are 
always sufficient. If a vertex-cut of minimum cardinality produces one 
component with a vertex-set V' andanothercomponentwitha vertex-set V", 
with v, and v1 any two vertices such that v, e V' and v1 e V", then 
K.,, = p.,,(v,, v1). It follows that K.,, will be found by solving a maximum-flow 
problem for which the source is in V' and the sink is in V". Such a problem 
is guaranteed to be solved in the following process. First solve all those 
maximum-flow problems with v1 as the source (taking in turn each of 
v1,j = 2, 3, ... , n as the sink, provided (v1, v1) I/ E), then those with v11 as the 
source (taking in turn v1, j = 3, 4, ... , n, as the sink, provided (v1, v1H E) 
and so on until v,e has taken a turn as the source where k = K.,,(G)+ 1. In 
this way one of v1, v11, ••• , V,e, say v,, is guaranteed not to be contained in a 
vertex-cut of size K.,,(G). The process solves all maximisation problems 
with v, as source and so K.,,(G) will lie found. For a given vertex as the 
source there are O(n) possible sinks. Thus in all there are O(K.,,(G)·n) 
maximum-flow problems to be solved. Using the following theorem we see 
that this is bound by O(IEI) because, according to theorem 2.9, 
K.,,(G) ~ X.(G). 

Theorem 4.7. For G = (V, E), KJ..G) ~ 21Elfn. 

Proof. From theorem 2.9, K,(G) ~ 8,,however: 

n.8 ~ ~ d(vJ = 2IEI 
fliEJ' 

and so the result follows. ■ 

Figure 4. 7 outlines the algorithm for K.,,( G) based on the preceding 
considerations. Line 1 inputs G and tonstructs G defined in the proof of 
theorem 4.6 and exemplified in figure 4.6. Ghas 2n vertices and (n+2IEI) 
edges. It can therefore be constructed (IEI ;;.i, n) in O(IEl)-time. Line 2 
initialises K.,, to n and each subsequent assignment to K.,, (in line 8) records 
the smallest value of pJv,, v1) found so far. Each execution of the body of 
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the wblle statement corresponds to solving all those maximum-flow 
problems with a given vertex v, as the source x. F denotes the value of a 
maximum flow and y denotes the sink. Notice that on termination of the 
while statement, i > Kv- This means that the currently held value of the 
vertex-connectivity is less than the number of vertices which have been 
used as a source in the maximum-flow problems solved in line 7. This is 

Fig. 4.7. Algorithm to find the vertex connectivity of G = (Y, E). 

1. Input G and construct fJ 
2. K. +-n 
3. i +-0 
4. wblle i =I- K,, do 

begin 
s. i +-i+1 
6. forJ=i+ltondo 

begin 
7. If (v1, v1) f E find F for (0 with x = v, and y = v1) 

8. If F < K,, then K,, +- F 
end 

end 
9. Output K,, 

in accord with the previous discussion concerning the number of maxi­
misations required to be solved. Line 7 is dominant as far as the complexity 
of the algorithm is concerned. If the algorithm of figure 4.4 is used to 
determine F, each maximisation takes O(nlElll)-time, so that, overall, K., 
can be found in O(nlEl3)-time. Of course it is easy to construct faster 
algorithms by utilising the faster algorithms to find F which we referred 
to earlier. 

4.4 A minimum-cost flow algorithm 
In section 4.1 we solved the problem of maximising the flow in a net­

work in which each edge (u, v) had a maximum allowed flow of c(u, v). In 
this section we wish to associate a further parameter a(u, v) with each edge, 
where a(u, v) is the cost of sending a unit of flow along (u, v). This has an 
obvious interpretation in any real transport network where the unit cost 
of transportation may vary from edge to edge depending upon the nature 
of that transport. This extra consideration of costs obviously poses new 
problems. In this section we consider just one, called the minimum-cost 
flow problem. This is the problem of how to transport Yunits of flow across 
a network such that a minimum cost is incurred. We describe here one 
method of solution, due to Ford & Fulkerson,181 which is called the 
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minimum-cost flow algorithm. The algorithm is in fact an interesting 
generalisation of the maximum-flow algorithm described earlier. 

Each edge (u, v) of our network N has a maximum capacity c(u, v) and 
an integer non-negative cost parameter a(u, v). As before, we denote the 
source by x and the sink by y. The problem is to construct a minimum­
cost feasible flow of Vunits. We can formulate this as a linear programming 
problem (see the appendix on linear programming) as follows: 

minimise :E a(u, v)f(u, v) 
(u,v) 

subject to the constraints: 

:E (f(u, v)-f(v, u)) = 0, for all u ::/= x or y ., 
(:E(f(x, v)-f(v, x))- V) = 0 ., 
(:E(f(y, v)-f(v, y))+ V) = 0 ., 
f(u, v) E; c(u, v), for all (u, v) 

and the non-negativity conditions: 

f(u, v) ;;i: 0, for all (u, v) 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

These statements have the following interpretation, (i) is the total cost of 
the flow, (ii) ensures that there is conservation of flow at all vertices other 
than x or y, (iii) and (iv) require that the flow from the source and into the 
sink is V while (v) and (vi) ensure that the edge flows are feasible. 

Ford & Fulkerson solved the problem in a slightly different form, 
replacing (i) by the following: 

maximise (pV- :E a(u, v)f(u, v)) (vii) 
(u,v) 

The idea is to solve a sequence of linear programs, one for each consecutive 
value of the parameter p = 0, 1, 2, .... V, the value of the network flow, is 
explicitly treated as a variable. For each linear program,p is the maximum 
cost that any unit of flow incurs in getting from x toy. Given a maximum 
flow at minimum cost for p, a maximum flow at minimum cost is then 
found for (p+ 1). This is achieved by incrementing the flow along all 

possible paths which incur a total cost of (p+ 1) in sending a unit of flow 
from x to y. The cost along such an augmenting path is calculated by 
summing the edge costs of forward-edges and subtracting the edge costs of 
reverse-edges. 

Given our definition of p we can see that the value of expression (vii) can 
never be negative. This is because p V would be the cost of sending all units 
of flow from x toy, each unit at maximum cost p, while I:a(u, v)f(u, v) 
is the actual cost. Hence, maximising (vii) is equivalent to'minimising (i). 
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Verification of the algorithm is possible through a consideration of the 
dual (see the appendix) of the pth problem described in (ii)-(vii). The 
dual is: 

minimise ~ c(u, v)y(u, v) 
(u,1.1) 

subject to the constraints: 

-1T(x)+1T(y) = P 

1T(u)-1T(v)+y(u, v) ;>-, -a(u, v), for all (u, v) 

and the non-negativity conditions: 

y(u, v) ;>-, 0, for all (u, v) 

(i') 

(ii') 

(iii') 

(iv') 

while 1T(u) is unconstrained in sign for all u. Here the dual variables 1T(u) 
correspond to equations (ii), (iii) and (iv) while the dual variables y(u, v) 
correspond to the constraints (v). We call y(u, v) edge numbers and 1T(u) 
vertex numbers. The equality sign in (ii') appears because we have not 
explicitly restricted the sign of V, although it would be a trivial matter to 
do so. The complementary slackness conditions (see the appendix) are, 
for all (u, v): 

(1T(u)-1T(v)+y(u, v)) > -a(u, v) => f(u, v) = 0 
and: 

y(u, v) > 0 => f(u, v) = c(u, v) 

Hence, if we let 

1T(x) = 0, 1T(y) = p 
and 

y(u, v) = max {O, 1T(v)-1T(u)-a(u, v)} 

for all (u, v), then the slackness conditions become: 

and 
1T(v)-1T(u) < a(u, v) => f(u, v) = 0 

1T(v)-1T(u) > a(u, v) => f(u, 1J) = c(u, v) 

(a) 

(b) 

(c) 

(d) 

Therefore, if we can find values for the vertex numbers and edge flows 
which satisfy (a), (c) and (d), and if the edge numbers are defined by (b), 
then we have found optimal solutions for the primal and dual problems 

for the current value of p. 
As for the maximum-flow problem, the present algorithm uses a labelling 

process. This is as follows. Initially every vertex except the source is 
unlabelled. New vertices v are labelled if they are adjacent to one, u, that 
has already been labelled if either: 

f(u, v) < c(u, v) and (1T(v)-1T(u)) = a(u, v) 
or if: 

f(u, v) > 0 and (1T(v)-1T(u)) = a(u, v) 
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Notice that if within this process the sink becomes labelled, then a flow 
augmenting path has been found. This is precisely as was the case for the 
maximum-fl'ow algorithm but here we have the additional fact that the 
path cost is p. We can see this as follows. We define F to be the set of 
forward-edges of the path P and R to be the set of reverse-edges. Then we 
let P' be the set such that if (u, v) e F then (u, v) e P' and if (v, u) e R, then 
(u, v) e P'. It follows that: 

path cost = l: a(u, v)- l: a(v, u) 
(u, e)eF (11, U)eB 

= l: (1r(u)-1r(v)) 
(u,1')eP' 

= 1r(x)+1r(y) = P 

We can now provide a description of the minimum-cost flow algorithm 
outlined in figure 4.8. Lines 1 and 2 initialise the flows f(u, v) and the 
vertex numbers 11'{u) to the value of zero. The algorithm proceeds essentially 
by repetition of the labelling process described earlier. Each repetition 
takes place at line 4. What happens after each application of this labelling 
process depends upon whether or not the sink becomes labelled. If it 
becomes labelled then the edge flows along the resultant augmenting path 
are incremented in line 6, exactly as in the maximum-flow algorithm. If the 
required final value of the network flow, say V', is attained in this process 
then the algorithm terminates. If in the labelling process the sink does not 
become labelled, then two actions take place. 

Fig. 4.8. Minimum-cost flow algorithm. 

1. for all u e Y do ,r(u) -+- 0 
2. for all (u, v) e E do f(u, v) +- 0 
3. TEST+- true 
4. Carry out the labelling process 
S. if the sink is labelled then 

begin 
6. Modify the edge flows, stopping if Y = Y' 
7. TEST-+- true 
8. goto 4 

end 
9. if the sink is not labelled then 

begin 
10. if TEST then stop if Y saturates the network 
11. Modify the vertex numbers, ,r(u) 
12. TEST+- false 
13. goto 4 

end 
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First, if in the previous labelling process a flow incrementation resulted, 
then a check is made to see if the current flow is a maximum for the net­
work. This is most easily achieved by noting whether or not the cut pro­
duced by the last labelling process is saturated. Of course, if a maximum 
flow for the network has been achieved then the algorithm terminates. The 
boolean variable TEST, used in line 10 and which is assigned to in lines 3, 
7 and 12, is simply a device which, for complexity reasons, ensures that the 
test for saturation is only carried out if the previous labelling process 
caused a flow incrementation whilst the present labelling process does not. 
The other action that takes place if the sink does not become labelled is a 
modification of the vertex numbers in line 11. For the present we take this 
modification to be: 

1T(u) ~ 1T(u)+ 1 

if, and only if, u is not labelled in the last application of the labelling 
process. Notice that this modification always increments n(y) and that 
this implies, through (a), that p is incremented. 

With the above description of the algorithm we can present the following 
theorem: 

Theorem 4.8. The minimum-cost flow algorithm finds a minimum-cost 
flow. 

Proof. Initial values of zero for the vertex numbers and for the edge flows 
ensure that at the outset, when p = 0, the complementary slackness 
conditions are satisfied. We now show that these conditions stay satisfied 
throughout the course of the algorithm. 

The algorithm consists of a sequence of applications of the labelling 
procedure, each application is followed either by a flow change or by a 
vertex number change. Flow changes cannot affect the complementary 
slackness conditions because edge flows are only changed on edges (u, v) 
for which 1r(u)-11(v) = a(u, v), whereas the slackness conditions (b) and 
(c) only apply to edges for which 11(u)-11(v) + a(u, v). Now consider vertex 
number changes. Primed quantities will denote values after an update of 
vertex numbers. For the complementary slackness conditions to hold we 
must show that: 

11'(x) = 0, 1r'(y) = p+ 1 

11'(v)-11'(u) < a(u, v) => f'(u, v) = 0 

11'(v)-1r'(u) > a(u, v) => f'(u, v) = c(u, v) 

(i) 

(ii) 

(iii) 

In the application of the labelling process just prior to a vertex number 
update no augmenting path is found, so that, whilst the source is labelled, 
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the sink is not. Thus (i) follows from the relabelling rule. We now prove (ii), 
the proof of (iii) being similar. If 11"(v)-11'(u) < a(u, v) then, since the 
vertex numbers are integer, it must be the case that 1T(v)-1T(u) ~ a(u, v). 
In the case of strict inequality (u, v) was not a candidate for flow change 
so thatf'(u, v) = f(u, v) = 0 and (ii) holds. In the case of equality we ~ve 
that 11'(v) = 11(v) and that 11'(u) = 11(u)+ I. Thus (u, v) bas v labelled and 
u unlabelled. But since 1T(v)-1i(u) = a(u, v) it follows that f'(u, v) = 0, 
otherwise u would have been labelled from v. Hence (ii) again holds. 

So the minimum-cost flow algorithm ensures that the complementary 
slackness conditions are satisfied throughout its operation. Therefore, for 
each value of p = 0, 1, 2, ... , the value of the expression 

(pV- ~ a(u, v)J(u, v)) 
(u, tl) 

is maximised. As we observed earlier, each new addition to the flow has a 
unit cost of transportation from x toy equal to the latest value of p. Thus 
it is always the case that maximisation of the expression 

(pV- ~ a(u, v)f(u, v)) 
(u,11) 

is equivalent to minimising ~<u, 11)a(u, v)J(u, v). The algorithm terminates 
either when a desired overall flow is achieved in line 6, or when a flow is 
detected in line 10 which will be a maximum possible for the network. In 
the latter case we obtain a maximum flow at minimum cost. ■ 

Let us now consider the complexity of the algorithm. As we remarked 
earlier, the algorithm can be viewed as a sequence of flow maximisations 
over subgraphs of the network (containing edges for which 

(1T(v)-11(u)) = a(u, v) 

only), one for each of the values p = 0, l, 2, .... As we saw when describing 
the maximum-flow algorithm, each maximisation has an execution time 
which is polynomial in the size of the subgraph and, therefore, in the size 
of the network. Of course, many of the maximisations are likely to be 
trivial, contributing nothing to the overall network flow. In each such 
maximisation, the labelling process fails to label the sink even once for 
the current value of p. It is an easy matter to speed up the algorithm, 
causing it to by-pass many of these situations. This may be achieved (see 
exercise 4.9) by incrementing the vertex numbers by an amount which 
guatantees that at least one more vertex gets labelled in the next application 
of the labelling process. In this way there can never be more than n con­
secutive applications of the labelling process which result in no flow 
augmentation. Each flow augmentation adds at least one to the network 



Fig. 4.9. An application of the minimum-cost flow algorithm. 

a 

X 

y 

b 

N: each edge (u, v) is labelled a(u, v), c(u, v) 

Iteration ~(x) 1r(a) 1r(b) 1r(c) 1r(y Edges effective Labelled f(x,a, f(x,b) f(a,c) 'J(a,b) f(b,c 'J(b,y) f(c,y 
=l in labelling vertices 

0 0 0 0 0 Q none X 0 0 0 0 0 0 0 

I 0 I I I I (x, a) x,a 0 0 0 0 0 0 0 

2 0 I 2 2 2 (x, a), (a, b), (a, c) x, a,b,c 0 0 0 0 0 0 0 

3 0 I 2 2 3 (x, a), (a, b), (a, c), (b, y) x,a,b,c,y 2 0 0 2 0 2 0 

4 0 1 2 2 3 none X 2 0 0 2 0 2 0 

5 0 2 3 3 4 (x, b), (b, a), (a, c) x,b,a,c 2 0 0 2 0 2 0 

6 0 2 3 3 5 (x, b), (b, a), (a, c) x, b, a, c 2 0 0 2 0 2 0 

7 0 2 3 3 6 (x, b), (b, a), (a, c), (c, y) x,b,a,c,y 2 2 2 0 0 2 2 

8 0 2 3 3 6 (x, b) x,b 2 2 2 0 0 2 2 

9 0 3 3 4 7 (x, b) x,b 2 2 2 0 0 2 2 
JO 0 4 3 5 8 (x, b), (b, c), (c, y) x,b, c,y 2 3 2 0 1 2 3 

11 0 4 3 5 8 none X Networksaturated F(N) = 5 
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flow. Thus there can never be more than V' flow augmenting maximisations 
interspersed between at most n V' maximisations which are not flow aug­
menting. Thus the complexity of the minimum-cost flow algorithm is 
polynomial inn, IEI and the required network flow V'. 

In figure 4.9 we can see an application of the minimum-cost flow 
algorithm. The table shows the vertex numbers and edge flows which 
follow successive applications of the labelling procedure. Finally, a maxi­
mum flow for the network is obtained. Of course, the flows obtained at 
each earlier stage of execution are minimum-cost flows for the current 
values of F(N). 

The minimum-cost flow algorithm, like several others which solve the 
same problem (see, for example, Busacker & Gowerl'11 and IriC81), works 
on the principle of incrementing the network flow along augmenting paths 
of minimum cost. This works because of an underlying theorem (proof of 
which is -implicit in our verification of the present algorithm) that such an 
incrementation to a minimum-cost flow results also in a minimum-cost 
flow. 

The algorithm described in this section is not as general as it might be. 
For example it cannot cope directly with non-zero minimum edge capacities, 
nor can it handle non-positive edge costs. These-particular drawbacks can 
be avoided by employing another algorithm, also due to Ford & 
Fulkerson,c•1 and which is known as the out-of-Kilter algorithm. For our 
purposes, we shall be satisfied with the minimum-cost flow algorithm 
described here. 

4.5 Summary and references 
Amongst others, the problems of maximising the flow and finding 

minimum-cost flows in networks, for which algorithms were described in 
this chapter, have long been of interest in operations research. The 
question of finding efficient algorithms has more recently been the interest 
of computer scientists as the references that follow make clear. Networks 
have been the subject of many variations and generalisations as their 
applications have warranted. Two variations not mentioned in the chapter 
or hinted at in the exercise section are as follows. The first is that traversal 
times may be associated with the edges; one problem might then be to send 
all the flow units across the network within a specified tjme. The second 
is to regard each edge as an amplifier so that the volume offlow is enhanced 
(or perhaps diminished) according to some parameter as any edge is 
traversed; one problem might then be to maximise the flow arriving at the 
sink for a given flow leaving the source. Chapter 4 of Miniekalllll provides 
an introduction to these generalisations. Chapter 4 of Lawlerll31 and chap-
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ters S and 6 of Even!Ul also provide general background for the material 
of this chapter. A third important generalisation (Lawler, for example, 
provides an introduction) concerns multicommodity flows. Several types of 
goods simultaneously traverse the network using the same edges but leave 
and arrive at their own sources and sinks. From the analysis point of view 
this creates much greater difficulty than is the case for single commodity 
flow and much work still needs to be done. For example, there is no result 
like the max-flow, min-cut theorem for general networks given multi­
commodity flow. 

As was implied in the introductory paragraphs of this chapter, flow 
techniques have interesting applications in combinatorial problems. Apart 
from the instances mentioned there, others may be found amongst the 
exercises that follow. In dealing with the particular problem of con­
nectivity in section 4.3 we drew upon Dantzig & Fulkerson.e&l 
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EXERCISES 
4.1. A generalisation of (transport) networks as defined in section 4.1 is to 

have several sources and several sinks. Let {xi, x1, ••• } and {y11 y1, ••• }, 

respectively, be the set of sources and the set of sinks of such a 
generalised network. If we wish to maximise the overall flow from 
{xi, x,, ... } to {y1, y1, ••• } then we can still use the maximum-flow 
algorithm to do this. Before applying the algorithm, however, we need 
to modify the network. This is done by adding a new source X and a 
new sink Y. Edges (X, xJ, (X, x1), ••• are then added from X to each 
original source and the edges (yi, Y), (y1, Y), .•• are added from each 
original sink to Y. Each additional edge is given an infinite capacity. 

Briefly justify the following statement. If the maximum-flow al­
gorithm is used to maximise the flow from X to Y, then the flow 
obtained is also a maximum for the original network. 

4.2. A manufacturer has two despatch points D1 and D1 for his goods which 
he sends to three market points Mi, M1 and M8 across the network 
shown below. Each edge is labelled according to the maximum flow of 
goods it can sustain. There is a market demand tf,(M) at each of the 
market points as follows: 

tf,(MJ = 10, tf,(M1) = 8, tf,(M8) = 8 

Can the network meet the demand? If a factory is sited at D1 and 
another at D1, determine (non-unique) separate outputs in order to 
meet the situation. 
(Use the construction of exercise 4.1 and maximise the network flow.) 

4.3. (a) We wish to construct, if it exists, a directed simple (not necessarily 
connected) graph with n vertices {v,}, where each vertex v, has a specified 
out-degree d+(v,) and a specified in-degree d-(vi). Show that the 
following procedure achieves this objective. 

First construct a network N With the vertex-set {X, Y, ai, a1, ••• , a,., 
bi, b1, ••• , b,.} and edges 

(X, a,) for all i, where c(X, a,) = d+(v,) 
(b,, Y) for all i, where c(b,, Y) = d-(v,) 
(a,, b1) for all i #: j, where c(a,, b1) = 1 
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Now maximise the flow from X to Y. If the maximum flow saturates all 
edges from X and all edges to Y then a digraph satisfying the require­
ments exists. It is obtained from N by removing X and Y, and each 11, 

is formed by coalescing a, with b,. 
(b) A question related to (a) concerns the excursion problem. R families 
go on an excursion in S vehicles. There are fi people in the Ith family 
and 111 seats in thejth vehicle. Is it possible to arrange the seating so that 
no two members of the same family are in the same vehicle? Describe 
how this question may be answered. 

4.4. A generalisation of (transport) networks as defined in section 4.1 is to 
associate a minimum edge capacity c(u, 11) with each edge (u, 11), so that 
a feasible flow must satisfy: 

c(u, 11) =s. /(u, 11) E; c(u, 11) for all (u, 11) e E 

and 

'T.f(u, 11) = 'T./(11, u) for all 11e Y, 11 ,f:. x,y 
u u 

(a) If for all (u, 11), c(u, 11) = 0 as in section 4.1, then some feasible flow 
exists. However, for the present generalisation a feasible flow need 
not exist. Construct a simple example to show this. 

(b) Suppose that a feasible flow F does exist for the network N. 
Starting from F show, as was done for the proof of theorem 4.3, that 
we can augment to a maximum value given by: 

max F(N) = min(K(P, JS)- T. .. c(u, 11)). 
ue.r 
11eP 

(c) Show that flow F described in (b) can be reduced to a minimum 
value given by: 

min F(N) = max ( "E. c(u, 11)- "E.,., c(u, 11)) 
ue,e ue.r 
11eP t1eP 

The reduction from Fis achie\lld by 'increasing' the flow along a 
path from the sink to the source. Such paths may be found using a 
labelling process, similar to that described in theorem 4.2, which 
starts with a labelling of the sink. 

4.5. One of the most popular uses of networks is in the scheduling of large, 
complicated tasks. Each edge of a PERT (Propm Evaluation and 
Review Technique) digraph represents a subtask and its weight is the 
time required to complete that subtask. Each edge (u, 11) represents a 
subtask which can only be started when those subtasks represented by 
edges incident to u have been completed. The digraph has one vertex 
with zero in-degree (the start vertex), and one vertex with :zero out­
degree (the termination vertex) and every vertex is on some path from 
the start vertex to the termination vertex. 
(a) A properly constructed PERT digraph contains no directed circuits. 
Moreover (see (b)), it is useful to numerically label the vertices such 
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that for every edge (u, v), u < v. This labelling is called a topological 
sorting. Verify that the following algorithm creates a topological sorting 
and checks that the digraph is acyclic, Initially every vertex of the 
digraph N is unlabelled. 

1. i+-1 
2. look for a vertex v e N with zero in-degree 

If no such vertex exists then goto S 
If such a vertex exists then 

3. i+-i+l 
4. goto 2 

begin 
label v with i 
redefine N: N +-(N-v) 
end 

S. if N contains no vertices 
then stop (the acyclic graph has a topological sorting) 
else stop (the graph contains a directed circuit) 

(b) An important parameter in any PERT digraph is the length of the 
longest path from the start to the termination vertex. Such a path is 
called a critical path, and its length represents the shortest time within 
which the overall task can be completed. For this reason the analysis is 
sometimes called CPM (Critical Path Method). Verify that, if the 
vertices of N are topologically sorted, then the following algorithm 
finds a critical path length. In fact it finds the longest path length L(i) 
from the start vertex to each vertex i of the network. Task U, i) takes a 
time w(j,i) to complete. 

1. for i = 1 to n do L(i) +- 0 
2. Cori= 2tondo 

for all J such that U, i) e E do 
LV) +- max (L(i), (L(j) + w(j, i)) 

4.6. One version of the well-known knapsack problem is as follows. There 
are N items, the jth is denoted by I, and it has an integer weight w, 
and an integer value v,. The problem is to place a number of these items 
into a knapsack which can take a maximum total weight of Wand to do 
this so that the items in the knapsack have a maximum combined value. 
This problem can be transformed into one of finding a maximum-length 
path in a weighted acyclic network N (see the previous exercise) by the 
following construction. 

Ncontains N.(W+l) vertices each denoted by v(i,j). The range oft 
is from 1 to N while/ ranges from 0 to W. Every vertex v(i, j) has two 
edges incident to it, one from v((i-1),j) with zero weight and one from 
v((i-1), U-w,)) with weight v,, provided these vertices exist. We now 
add a source X and the edges (X, v(l, 0)) with zero weight and 
(X, v(l, w1)) with weight v1• Finally we add a sink Y and the edges 
(v(N,j), Y) for j = 0, 1, ... , W, all with zero weight. 
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Prove that the set of paths from X to v(_i,j) represents all possible 
subsets of {/1, / 1, ••• , IJ which have a total weight of j. Notice that one 
of the two edges incident to v(_i,j) represents the absence of I, and the 
other represents the presence of I, in a subset. Notice also that each path 
length is the combined value of the represented subset. It follows that 
the longest path from X to Y solves this knapsack problem. 

4.7. Given the definition ofpJ..v,, v1) in section 4.3 show that ifminp.(v,, v1) 

occurs for two adjacent vertices u and v in an incomplete graph G, 
then it also occurs for two non-adjacent vertices. 
(Define G' = G-(u, v) and let p;(u, v) be the maximum number of 
vertex disjoint paths between u and v in G', then: 

p.(u, v) = p;(u, v) + 1 
Since (u, v) ,t G' there exists, by theorem 4.6, a vertex-cut YC separating 
u from v in G', which has cardinality C = p;(u, v). Now C < (n-2) 
because if C = n-2 thenp.(u, v) = n-1. This is not possible because 
G is incomplete: for any two non-adjacent vertices a and bit must be 
thatpJ..a, b) ~ n-2 andpJ..u, v) is supposed to be a minimum over all 
pairs of vertices. It follows that there exists a vertex w ~ u or v and 
which is not a member of YC. Suppose, without loss of generality, that 
YC separates w from u (as opposed tow from v) in G'. The result then 
follows by observing that (YC U {v}) must separate u from w in G.) 

4.8. An employer wishes to hire, at a minimum retraining cost, n employees 
for different skilled work. He may choose from m candidates where 
m ;;;,, n. The cost of retraining candidate C, for job a1 is b11• Briefly justify 
the following minimum-cost flow formulation of the problem. 

Construct a network N with the vertex-set {X, Y, ci, c1, ... , c,., 
ai, a1, ••• , a.} and the edges: 

(X, C,) for i = 1, 2, ... , m, where c(X, CJ = 1, a(X, C,) = 0 

(a1, Y) for J = 1, 2, .•• , n, where c(a'f, Y) = 1, a(a1, Y) = 0 

(C1, a1) for all i,J where c(C,, a1) = 1, a(C,, a1) = b11 

where for any edge (u, v), c(u, v) is the capacity and a(u, v) is the cost. 
Produce a maximum flow at minimum cost from X to Y. Employ each 
candidate C, for which the flow f(X, C,) = 1, and assign him for 
retraining to job a1 if/( c,, a1) = 1. 

4.9. Suppose that in the minimum-cost flow algorithm the vertex numbers 
are not incremented by one but by /J,. defined as follows: 

ll. = min (81, 81) > O 

where 

81 = min {(a(u, v)+11(u)-11(v))l(u, v) e EJ 
88 = min {(11(v)-11(u)-a(u, v))l(u, v) e E.} 

E1 = {(u, v)lueP, veJS, 11(v)-11(u) < a(u, v)} 

Ei = {(u, v)lu e P, v e P, 11(v)-11(u) > a(u, v)} 



124 Networks and.flows 

and (P, P) is the vertex-cut induced by the last application of the 
labelling process. Show that this modification ensures that the labelling 
process will label one more vertex in the next application than in the last. 
Thus show that there could not be more than n consecutive applications 
of the labelling process which result in no flow augmentation. 

4.10. The question: 'Does the network N contain a cut of capacity less than 
K?' can be answered in polynomial time by an application of the maxi­
mum-flow algorithm and because of the max-flow, min-cut theorem. 
Suppose that N is planar. Construct a polynomial time algorithm to 
answer the question: • Does the network N contain a cut of capacity 
greater than K?' 
(See Hadlock.U01 However, if N is non-planar the problem is NP­
complete, see Karp. 1111) 



5 

Matchings 

A matching of a graph is any subset of its edges such that no two members 
of the subset are adjacent. Interest in matchings arises in a direct and 
natural way as described in some of the exercises at the end of this chapter. 
Also the search for certain matchings can be an important subtask for some 
larger problems such as the problem of the Chinese postman described in 
chapter 6. Central to the content of this chapter is the description of a 
maximum-cardinality matching algorithm in section 5.2, and the descrip­
tion of a maximum-weight matching algorithm in section 5.3. 

5.1 Definitions 
A matching of a graph G = (V, E) is any subset of edges M s; E 

such that no two elements of Mare adjacent. For example, some matchings 
of the graph of figure 5.1 are {eJ, {e1, e11, e1c,}, {e1, e7, e1c,} and {e,, e8, ea}. 
Clearly, any subset of a matching is also a matching. 

Fig. 5.1 

A maximum-cardinality matching is a matching which contains a 
maximum number of edges. A perfect matching is a matching in which 
every vertex of the graph is an end-point of some element of the matching. 
Not every graph contains a perfect matching. In section 5.2.1 we provide a 
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necessary and sufficient condition for a graph to contain a perfect matching. 
Clearly, if a graph does contain a perfect matching M, then M will be a 
maximum-cardinality matching and any maximum-cardinality matching 
will be a perfect matching. 

In a bipartite graph G with bipartition (V', V"), a complete matching of 
V' onto V", is a matching Min which every element of V' is an end-point 
of an element of M. In exercise 5.3 we describe a sufficient and necessary 
condition for a bipartite graph to contain a complete matching. If a bi­
partite graph contains a complete matching M, then M is clearly a 
maximum-cardinality matching, and a maximum-cardinality matching is 
of course complete. 

In a weighted graph, a maximum-weight matching is a matching for 
which the sum of the edge-weights is a maximum. 

5.2 Maximum-cardinality matchings 
Consider first the special case of bipartite graphs. For these we 

can use a simple method, utilising flow techniques (see chapter 4), to find 
a maximum-cardinality matching. Let G = (V, E) be a bipartite graph 
with the bipartition (Yi, VJ. We construct a network G' from Gas follows: 

(I) Direct all edges from Yi to Va-
(2) Add a source x and a directed edge from x to each element of V1• 

(3) Add a sink y and a directed edge from each element of Va to y. 
(4) Let each edge (u, v) have a capacity c(u, v) = 1. 

Fig. 5.2 

X y 

G G' 

Given such a construction, which is illustrated in figure 5.2, we can find a 
maximum-cardinality matching M by maximising the flow from x to y. 
M then consists of those edges linking Yi to Va which carry a flow of one 
unit. If some matching M' exists such that IM'I > IMI then we could 
construct a flow of value IM'I, which is greater than the value of the flow 
found, by sending one unit offlow along each path ((x, u), (u, v), (v, y)) for 
all (u, v) e M'. 
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We now consider general graphs. In the case of bipartite graphs the 
algorithm we shall describe is just another view of the algorithm just 
outlined. We need the following definitions. If Ms;; Eis a matching for 
G = (V, E), then any vertex v e V is called a free vertex if it is not an 
end-point of any element of M. An alternating path is a simple path in G 
whose edges alternately belong to Mand to (E-M). An augmenting path 
with respect to M is an alternating path between two free vertices. 
Denoting the cardinality of M by IMI, notice that if G contains an 
augmenting path P, then a matching M' can be found such that 

IM'I = IMl+l 

simply by reversing the r6les of those edges in P. Those edges not in Mare 
placed in M, whilst those in Mare removed from M. Thus in figure 5.1, 
if M = {ea, ea}, then an augmenting path can be traced along the sequence 
of edges (ei, ea, e.). Reversing edge r6les we obtain M' = {e1, e5, ea}. The 
following theorem underlines the importance of augmenting paths with 
respect to maximum-cardinality matchings. 

Theorem 5.1. There is an M-augmenting path if and only if M is not a 
maximum-cardinality matching. 

Proof. Clearly, if G = (V, E) contains an M-augmenting path then we can 
construct M' such that IM'I = IMI + l. Hence M cannot be a maximum­
cardinality matching. 

Conversely, suppose that M is not a maximum-cardinality matching. 
We shall show that G contains an M-augmenting path. Let M' be a 
maximum-cardinality matching so that IM'I > IMI. Also let 

G' = (V, M$ M') 

In other words, G' contains those edges which are either in M or in M' 
but not in both. Notice that: 

(a) G' has more edges from M' than from M, 
and 

(b) each vertex of G' is incident to at most one edge from M' and at 
most one edge from M. 

It follows that each component of G' is either an isolated vertex or an 
alternating path. Moreover, at least one component (because of (a)) 
must have more edges from M' than from M. Such a component is an 
M-augmenting path. ■ 

The last theorem naturally suggests an algorithm to find a maximum­
cardinality matching. Starting from an arbitrary matching (the null 
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matching for want of another) we repeatedly carry out augmentations 
along M-augmenting paths until no such path exists. This process is bound 
to terminate because a maximum matching has finite cardinality and 
each augmentation increases the cardinality of the current matching by 
one. The only practical problem is to specify a systematic search for 
M-augmentations. Before we do this it is interesting to emphasise the 
relationship between this algorithm applied to bipartite graphs and the 
flow method described earlier. 

Consider the flow F obtained at some intermediate stage of maximi­
sation in the flow method to find a maximum-cardinality matching in a 
bipartite graph. This flow corresponds to a matching Min G. M consists 
of those edges with a non-zero flow. Any flow augmenting path with 
respect to Fcoincides with some M-augmenting path in G. Moreover, ifwe 
separately carry out a flow augmentation in the flow algorithm and an 
M-augmentation in the second algorithm (with respect to corresponding 
augmentation paths), then there is still a one-to-one coincidence between 
flow- and M-augmenting paths. Moreover, a flow augmenting path exists 
if and only if an M-augmenting path does. Clearly, both algorithms are 
different aspects of essentially the same process. The flow point of view as 
described here cannot be used for non-bipartite graphs although the 
idea of M-augmentations has quite general applicability. Incidentally, 
Edmondsr11 has shown that non-bipartite matching can be handled 
through so-called bidirected network flow theory. We do not, however, 
detail that approach here. 

We return now to maximum-cardinality matching in general graphs 
broadly described earlier. The crux of the algorithm is the means by which 
augmenting paths are found. The following procedure by which such 
paths may be found is inspired by Edmonds.lll The procedure constructs a 
search tree T rooted at some free vertex v. Any path in T starting at v is an 
alternating path in which the vertices are alternately labelled outer and 
inner. The root v is labelled outer. The procedure, which we call the 
M-augmenting path search procedure, MAPS(G), is shown in figure 5.3. 
T is externally initialised to be v, at which time v is labelled outer. There are, 
in fact, three possible exits from the procedure. These are to labels A, B 
and H. Only the exit to A indicates that an augmenting path has been 
found. In other words, that some leaf ofTis found to be a free vertex. Let us 
describe each exit in turn. 

Notice that MAPS(G) constructs a tree unless y is found to be labelled 
outer in which case an odd-length circuit has been found and this causes a 
jump to B. If y is inner, an even-length circuit bas been detected. In this 
case (x, y) is not added to T and the procedure seeks to extend the tree from 
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Fig. 5.3. The M-augmenting path search procedure MAPS(G). 

1. Choose an outer vertex x e T and some edge (x, y) not previously 
explored. Deem (x, y) to have been explored. H no such edge 
exists goto H. 

2. If y is free and unlabelled, add (x, y) to T. 
goto A. 

3. Hy is outer add (x, y) to T. goto B. 
4. Hy is inner goto 1 
S. Let (y, z) be the edge in M with the end-pointy. Add (x, y) and 

(y, z) to T. Label y inner and z outer. goto 1. 

some other outer vertex. Why does the procedure terminate on detecting 
an odd-length circuit? Consider the graph G of figure 5.4(a) in which the 
edge labelled M constitutes a matching. Clearly, G contains an M­
augmenting path, namely, P = (vi, v11, Va, vJ. If we now call MAPS(G) 
with T initialised to v1 and if line 2 is first executed with y = va, then the 
procedure terminates with a jump to B. Twill then be as shown in figure 
5.4(b). Now P cannot be found because v1 is labelled inner. The presence 
of odd-length cycles introduces ambiguities in alternating path searches. 

Fig.5.4 

(a) (b) 

6 .... ~ 
v1 inner 

This is because any vertex v1 on such a circuit may be labelled either 
outer or inner depending upon which direction around the circuit v1 is 
approached from when tracing a path in T from the root to v1• If v1 is 
labelled inner, then T cannot be extended from v1 and possible augmenting 
paths can go undetected. In fact the maximum-cardinality matching algo­
rithm which uses MAPS(G) keeps all options open regarding any odd­
length cycle C. A new graph is constructed by shrinking C to form a 
single vertex which is labelled outer. The algorithm then continues with 
another call of the procedure MAPS(G). All previous labels of outer and 
inner, except those on C, are carried forward. If subsequently a leaf 
of T is found that is a free vertex, then the augmenting path found might 
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pass through one or more of these artificially created pseudo-vertices. 
Indeed, notice that an odd-length circuit may itself contain pseudo-vertices 
and so on. We return to this when describing the exit to label A. Edmonds 
gave the name blossom to an odd-length circuit found by the procedure. A 
bipartite graph contains only even-length circuits. Without the need 
to handle blossoms, the algorithm could be considerably simplified for 
bipartite graphs. 

Now consider the exit to H. In this situation T cannot be extended. Each 
alternating path traced from the root of T is stopped at some outer vertex. 
The only free vertex is the root of T. T is now called a Hungarian tree. 
Some vertices labelled outer may be pseudo-vertices, but each vertex 
labelled inner is an ordinary vertex. It is crucial to notice that edges 
connecting vertices in T to vertices not in T can only be attached to inner 
vertices of T. Otherwise some outer vertex must be connected to a free 
vertex or Tmust be extendable from the vertex. We can see that no vertex 
in a Hungarian tree can possibly occur in an augmenting path. T only 
contains one free vertex, so that if some vertex of T is on an augmenting 
path, then this path must enter T along an edge (not in M) at an inner 
vertex. Thereafter the path must alternately visit outer and inner vertices, 
entering the former along edges of Mand the latter along edges not in M. 
Such a path can neither reach the root of T nor can it leave T. Thus on 
exiting to H, the maximum-cardinality algorithm can remove T from the 
graph in the current search for an M-augmenting path. Of course, if Mis 
eventually augmented then T must be restored to G before the next 
augmenting path is sought. 

Finally consider the exit to A. 'J' contains an alternating path from the 
root of T to some other free vertex. However, this may pass through one 
or more shrunken blossoms. These can be expanded and one side of each 
odd-length circuit (the side of even-length) can be interpolated into the 
path. This continues until no blossoms exist on the augmenting path. Of 
course, each expansion may expose other pseudo-vertices which were 
created earlier than the one just expanded. However, eventually no 
blossoms remain and an augmentation of M becomes possible. 

In describing the exits from MAPS we have more or less described the 
maximum-cardinality matching algorithms. Before describing an appli­
cation of this algorithm we have some comments to make. The algorithm 
is outlined in figure 5.5. The bulk of the algorithm consists of the while 
statement, lines 3-17 inclusive, which iterates once for each augmentation 
of the matching. Line 1 initialises M to be the null matching. In line 6 a 
stack is initialised. This stack is used to store blossoms and Hungarian 
trees in the order in which they are found through lines 10 and 11. In this 
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way the graph can be properly reconstructed within line 15. Each iteration 
of the while statement starts by determining the free vertices with respect 
to the current matching Min line 4. Then the for statement commencing at 
line 5 attempts to find an augmenting patJ:t utilising the procedure MAPS. 
The labels B, Hand A denote the exits from MAPS, as described earlier. 

Line 12 is only reached if either no free vertices exist with respect to the 

Fig. 5.5. A maximum-cardinality matching algorithm. 

1. M+- fl1 

2. an augmenting path exists +- true 
3. wblle an augmenting path exists do 

4. 
s. 

6. 
7. 
8. 

L: 9. 
B: 10. 

H:11. 

12. 
13. 
14. 

A: 1S. 

16. 
S: 17. 

begin 
determine the free vertices {v,} with respect to M 
for each v, do 

begin 
empty the stack 
deem each edge of G to be unexplored 
T +- v,, label v, outer 
MAPS(G) 
Place the Blossom found on the stack, shrink it in G 

and label the resultant vertex outer and if it 
contains the root label it free. goto L. 

Place the Hungarian tree found on the stack and 
remove it from G. 

end 
Output M. 
an augmenting path exists +- false 
gotoS 
Identify the M-augmenting path P e T. Empty the stack, 

expanding G with each popped item. If the item is 
a blossom corresponding to a pseudo-vertex on P, 
interpolate into P the appropriate even-length 
section of the blossom. 

Augment M by interchanging the edge r61es in P 
end 

current matching, or if no augmenting path is found from any of the 
existing free vertices. The matching then has maximum cardinality and 
the algorithm terminates. 

Figure 5.6 illustrates an example application of the maximum-cardi­
nality matching algorithm. For G shown there, we detail the three 
iterations required to maximise the matching. The vertices of G are 
identified by the numerals 1-5. In choosing a next edge (u, v) to explore 
from u in the construction of each T, first u and then v are conveniently 
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chosen to be the first (numerically) available vertex. The first iteration 
naturally discovers that the first edge explored is a path between free 
vertices. Augmentation adds this edge to M. The second iteration discovers, 
with the addition of edge (2, 3) that T contains a blossom with vertices 
1, 2 and 3. This is shrunk to form a pseudo-vertex, 6. Exploration of the 
edge from 6 to 4 discovers that 4 is a free vertex. Hence an augmenting 
path P has been found. Expansion of 6 interpolates the even-length 
portion ((3, 1), (1, 2)) of the blossom into P. Augmentation gives 

M = ((3, 1), (2, 4)) 

Of course, this must be a maximum matching because only vertex 5 is free. 
However, the algorithm, as described in figure 5.5, only terminates when it 
fails to find an augmenting path. This is what happens in the final iteration. 
In generating T from the root, vertex 5, a pseudo-vertex 7 containing 
vertices 3, 2 and 4 is created. Then finally, with the addition of the edge 
(5, 7), T becomes a single pseudo-vertex 8 containing vertices 1, 5 and 7. 
At the same time the contractions in G, associated with the shrinking of 
blossoms, have reduced G to the single vertex 8. Thus T must now be 
a Hungarian tree (albeit a single vertex) and the algorithm terminates. 

The maximum-cardinality matching algorithm, as is easily seen, is a 
polynomial time algorithm. Its complexity is dominated by the accumu­
lated costs of finding augmenting paths. There can be no more than O(n) 
augmentations. To find an augmenting path at most O(n) free vertices 
have to be considered. In considering each free vertex we construct a search 
tree T. This construction, including handling blossoms, requires no more 
than O(IE I) steps. Thus even a cursory inspection shows that at most 
O(n2IEl)-time is required. In fact we can easily improve this estimate to 
O(nlEI). Notice that if a free vertex fails to yield an augmentation path, 
then a Hungarian tree is found. As we have seen, no edge incident to a 
vertex of such a tree can be on an augmentation path. As indicated in 
line 11 of the algorithm, we remove these edges from G as the search for 
an augmentation path proceeds to the next free vertex. Thus only O(IEl)­
time is required to find an augmentation path. Micali & Vazirani131 have 
described how maximum-cardinality matchings may be found in O(.JnlEl)­
time. 

Verification of Edmond's maximum-cardinality matching algorithm is 
embedded in our description of it. It· works by successively reducing the 
number of M-augmenting paths. Such a path, if it exists, will be found 
through the MAPS procedure. Eventually, no further paths can be found 
and by theorem 5.1 the final matching must be of maximum cardinality. 
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Fig. 5.6. An application of the maximum-cardinality matching 
algorithm. 

First iteration 

Free vertices: 1 2 3 4 S 

M = fl 

1 (root) outer 

T: 

2 (free) 

P = (1, 2) Augmentation gives M = ((1, 2)) 

Second iteration 

Free vertices: 3 4 S 

M = ((1, 2)) 

ri,(::w 
~2outer 

T: 
~outer 

14 (free) 

133 

P = (@:D, 4) ➔ ((3, 1), (1, 2) (2, 4)) Augmentation gives M = ((3, 1), (2, 4)) 

Final iteration 
Free vertices: S 
M = ((3, 1) (2, 4)) 

T: 

S (root) outer 

1 inner 

3 outer 

2 inner 

4 outer 

8 @ .. ,,, 
Hungarian 

Matching is a maximum 
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5.2.1. Perfect matchings 
If every vertex of a graph is the end-point of an edge in a matching 

M, then Mis said to be a perfect matching. Clearly, if a perfect matching 
exists for some graph G, then the result of applying the maximum­
cardinality matching algorithm of the previous section to G will be to find 
a perfect matching. Obviously, a necessary but not sufficient condition for 
a graph G to have a perfect matching is that G has an even number of 
vertices. The following theorem is due to Tutte,1'1 although our proof 
follows Lovasz.161 It provides a necessary and a sufficient condition for G 
to have a perfect matching. Within the theorem cl>(G-V') denotes the 
number of components of the graph (G- V') containing an odd number of 
vertices. Such a component is called an odd component and, naturally, if a 
component of ( G- V') contains an even number of vertices then it is an 
even component. V' is any subset of V where G = (V, E). 

11aeorem 5.2. G = (V, E) has a perfect matching if and only if: 

4>(G- V') E; I V'I for all V' c V 

Proof. Let us first suppose that G has a perfect matching M. We denote 
by G, the ith odd component of(G-V') where;= 1, 2, ... , k. Because G, 
contains an odd number of vertices, some vertex of G, (say vJ must be 
matched by an edge of M to some vertex (say u,) of V'. Now, because 
{ui, u1, ••• , u,J s; V', it follows that: 

4>(G- V') = k = l{ui, u11, ••• , u,Jj E; IV'I 
To complete the proof we need to show that if G satisfies 

cl>(G-V') " IV'I 
for all V' then G contains a perfect matching. We shall show that the 
supposition that G contains no perfect matching leads to a contradiction. 
By adding edges to G we construct a maximal graph G* with no perfect 
matching. That is the addition of any further edge to G* will make a 
perfect matching possible. Now (G-V') is a spanning subgraph of 
(G*-V') so that 4>(G-V');;;:: 4>(G*-V'). It follows that G* satisfies 
cl>(G* - V') E; IV'I for all V'. 

Let us denote by Yo the set of vertices of degree (I Vl-1) in G*. If 
Yo = V then G* is complete and so, contrary to our assumption, has a 
perfect matching. Notice in this respect that G* has an even number of 
vertices, because if we let V' be the empty set in 4>(G*-V') E; I V'I then 
cl>(G*) = 0. We assume from now on then that Yo,/:, V. 

We now show that each component of (G*-VJ is a complete graph. Let 
Gf be such a component which we initially presume is not complete. It is 
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a simple matter to show that any incomplete graph has three vertices v1, v2 

and v3 such that (vi, vJ and (v2, va) are in the edge-set but that (vi, va') is 
not. Also, because v2 ,j Vi,, there exists a vertex v, in (G*-Vo) such that 
(v8, v,) is not in theedge-setofG*. This situation isillustratedinfigure5.7(a) 
where absent edges are indicated by dashed lines. G* is maximal so that 
(G*+(vi, va')) has a perfect matching, say Mi, and (G*+(v1, vJ) has a 
perfect matching, say M8• Consider the component Hi of the subgraph 

(a) 

Fig.5.7 

,,, 
I 

I 
I 
I 
I 

L\ 
M1 denoted by heavy edges 
M1 denoted by wavy edges 

(Mi E9 MJ of (G* U {(Vi, va), (v8, vJ}) which contains (vi, va). Now 
(vi, va) e Mi but (vi, va) I/ Ma, so that Hi consists of an even-length circuit 
of edges alternately in Mi and in Ma. If Hi does not contain (v8, vJ, which 
is in Ma but not in Mi, then (va, vJ belongs to a different alternating cycle 
Ha. Clearly, Hi and H1 would be edge disjoint. This situation is shown in 
figure 5.7(b). The situation that both (vi, va) and (v8, vJ are in Hi is shown 
in figure 5.7(c). 

We first consider the case of figure 5. 7 (b ). G*, which does not contain 
(vi, va) or (v8, vJ, clearly has a perfect matching containing the edges Mi 
of Hi and the edges M1 of H8• This contradicts the definition of G*. Now 
consider the case of figure 5.7(c). Because of the symmetry of Vi and v3 

we can assume that vi, v1, v, and v3 occur in that order along the circuit 
Hi, as shown in the diagram. Again, G* has a perfect matching which 
contains the edges of Mi in the section v1, v,, ... , Va of Hi, the edge (v1, va) 
and the edges of M2 not in the section v1, v,, ... , va of Hi. So again we have 
a contradiction of the definition of G*. 

Both cases provide contradictions so that it must be the case that each 
component of (G*-Vo) is a complete graph. Now cI>(G*-Vo) E;; IV.,I so 
that (G* -Vo) has at most IV.,I odd components. We can again construct a 
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perfect matching in this case for G* as follows. Each vertex of an even 
component of (G*-Vo) can be matched by an edge of the component 
because the component is complete. Each vertex of an odd component of 
(G*-Vo), except one, can be matched by an edge of the component 
because it is complete. The remaining vertex is then matched to a vertex 
in Vo- We then just need to match the remaining vertices of Vo- Now G* 
has an even number of vertices, so that the remaining unmatched vertices 
of Vo are even in number. The vertices can therefore be matched by edges 
of the complete subgraph induced by Vo- The perfect matching in this case 
is shown schematically in figure 5.8. 

Fig. 5.8 

Odd 
components 
of(G*- V0) 

Even 
components 
of(G*-Vo) 

Thus contrary to our assumption G* has a perfect matching and hence 

~~a ■ 

The necessary and sufficient condition provided by theorem 5.2 does not 
lead to an efficient algorithm to determine whether or not a graph contains 
a perfect matching. This is because the number of subsets V' c V is 
exponentially large. In contrast, the maximum-cardinality matching 
algorithm described earlier will of course answer the question 'does G 
contain a perfect matching' in polynomial time. For certain classes of 
highly symmetric graphs, theorem 5.2 can provide short proofs of the 
existence of perfect matching. See, for example, exercises 5.5 and 5.6. 

5.3 Maximum-weight matchings 
Just as is the case for maximum-cardinality matching, there are a 

number of specific and relatively simple algorithms to solve the maximum­
weight matching problem in bipartite graphs. See, for example, Kuhn.t•1 
The algorithm we describe here which is due to Edmonds & Johnsont71 
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has a considerably simplified form for bipartite graphs. This simplification 
is left as an exercise for the reader. 

Edmonds & Johnson's algorithm is a generalisation. of the algorithm 
described in section 5.2 and our description proceeds along parallel lines. 

A weighted M-augmenting path is an alternating path in which the sum 
of the weights of the edges not in the matching M is greater than the sum 
of the weights of the edges in M. Also, if either the first or the last edge of 
the path is not in M, then the edge has a free vertex as an end-point. 
Clearly, by interchanging the roles of the edges of a weighted M­
augmenting path (that is, those in Mare removed from M and those not 
in Mare placed in M), then a new matching of greater weight is obtained. 
Unlike the M-augmenting paths of the previous section, a weighted M­
augmenting path may have edges in Mas first and/or final edges. This 
induces the following definitions. A weighted M-augmenting path which 
contains: 

(a) more edges not in M than in M is called a strong augmenting 
path, 

(b) the same number of edges not in Mas in Mis called a neutral 
augmenting path, 

(c) more edges in M than not in Mis called a weak augmenting path. 

Theorem 5.1 has the following counterpart: 

Theorem 5.3. There is a weighted M-augmenting path if and only if M is 
not a maximum-weight matching. 

Proof. Qearly, if a weighted M-augmenting path P exists in G = (V, E) 
then we can interchange the r6les of the edges in P to obtain a matching of 
greater weight. Hence M cannot be a maximum-weight matching. 

Conversely suppose that Mis not a maxhnum-weight matching. We shall 
show that G contains a weighted M-augmenting path. Let M' be a 
maximum-weight matching, so that w(M') > w(M). Let G' = (V, Me M'). 
That is, G' contains those edges which are either in M or M' but not in 
both. Within G' each vertex is the end-point of at most one edge from M 
and at most one edge from M'. Thus each component of G' is a path 
(perhaps an even-length circuit) of edges alternately from Mand M'. Since 
w(M') > w(M) there must be at least one component of G' in which the 
sum of the edge-weights for edges in M' exceeds the sum of the edge­
weights for edges in M. Such a component will be a weighted M-augmenting 
path. ■ 

Before describing Edmonds & Johnson's maximum-weight matching 
algorithm, we need to describe a linear programming (see the appendix) 
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formulation of the problem. In the following formulation x(u, v) = 1 if 
(u, v) e M otherwise x(u, v) = 0. 

Maximise ~ x(u, v) w(u, v) 
(u, e) 

subject to the constraints 

~ x(u, v) ~ 1 for all u e V 
e 

~ x(u, v) ~ rk for 1 ~ k ~ z 
(u, e)eR.t 

and the non-negativity conditions: 

x(u, v) ;;;:: 0 for all (u, v) 

Each edge has a weight w(u, v), so that the objective function is simply the 
weight of the matching. The first set of constraints states that no more than 
one edge in Mis incident with any vertex u. In the second set of constraints 
Rk denotes the subgraph induced by any set of (2rk+ 1) vertices. We 
denote by z the number of these subgraphs. Clearly, there can be no more 
than rk edges of Rk in M. As we shall demonstrate, this particular formu­
lation provides a set of complementary slackness conditions which can be 
satisfied by an assignment of zero or one to each value x(u, v). 

The dual linear programming problem is expressed by the following. 
The dual variables Ye and zk are, respectively, associated with the primal 
constraints for the vertex v and the subgraph Rk. 

Minimise~ Ye+~ rkzk 
e k 

subject to the constraints 

Yu+Ye+ ~ zk;;;:: w(u, v) for all (u, v) 
k: (u, e)eR.t 

and the non-negativity conditions: 

Ye ;;;:: 0 for all v 

zk ;;;:: 0 for 1 ~ k ~ z 

Notice that within the constraint for (u, v), the summation is over all k 
such that Rk contains (u, v). 

The following complementary slackness conditions are provided by the 
primal-dual pair: 

x(u, v) > 0 => Yu+Ye+ ~ Z7c = w(u, v) for all (u, v) 
k: (u, e)eR,t 

y(u) > 0 => ~ x(u, v) = 1, for all u e V 
e 

z1c > 0 => ~ x(u, v) = '" for all 1 ~ k ~ z 
(u, e)eR.t 
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We shall refer to these three sets of conditions as respectively the edge, 
vertex and odd-cardinality subset slackness conditions. 

The algorithm we describe starts with the null matching (that is, 
x(u, v) = 0 for all (u, v) e E) and with dual variables: 

Ya = W = ½ max (w(u, v)), for all s e V 
(u, 11) 

zk = 0, for 1 E; k E; z 

Thus at the outset, the constraints and non-negativity conditions for both 
primal and dual problems are satisfied and, in fact, they remain satisfied 
throughout the course of the algorithm. With the exception of the vertex 
slackness conditions, the complementary slackness conditions are also 
satisfied at the outset. During the course of the algorithm, those comple­
mentary slackness conditions which are or which become satisfied remain 
thereafter satisfied. Moreover, each of the vertex conditions is eventually 
satisfied. When this happens the algorithm terminates and because all 
complementary slackness conditions are satisfied, the final matching is of 
maximum weight. Notice that if some vertex v does not satisfy its vertex 
slackness condition then Yv > 0 and v is a free vertex (throughout 
:E11 x(u, v) is zero or one). 

The algorithm essentially consists of a reiterated step. Within each 
iteration there is an attempt to find an augmenting path (using the pro­
cedure MAPS described for the maximum-cardinality matching algorithm 
in section 5.2) in the subgraph G' s G which consists of the edges 
(u, v) e E* where: 

E* = {(u, v)ly11+y11 + L zk = w(u, v)} 
k:(u,11)e.Rt 

If an augmenting path is foWid, then it et.tends between two free vertices 
r and s for which: 

Yr= Ya= W> 0 

If we now augment along this strong augmenting path, interchanging edge 
roles, then r and s are made to satisfy their vertex slackness conditions. 
Notice that we conveniently retain the term strong augmenting path (as 
we shall the term neutral augmenting path), even though it is not clear that 
the weight of the matching is increased. What is important is that this 
•augmentation' causes two more vertices to satisfy their vertex slackness 
conditions. Because each edge (u, v) on the path belongs to the subgraph 
G', the edge slackness conditions also remain satisfied. Suppose that 
instead of finding a strong augmenting path in G' the search ends with a 
Hungarian tree. At this point changes are made to the dual variables. 
These changes can allow another edge or edges to be added to E*, a 
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pseudo-vertex to be expanded or cause the dual variable for some outer 
vertex to become zero. In the last case if the vertex in question is the root 
of the search tree then it now satisfies its vertex slackness condition; if it is 
not the root then the path from the root to the vertex is a neutral aug­
menting path and after augmentation along the path the root satisfies its 
vertex slackness condition. Notice that this augmentation frees the vertex 
v for which y., = 0; however v still satisfies its vertex slackness condition 
simply because y., = 0. If either of the first two cases occur (that is, edges 
are added to E* or a pseudo-vertex is expanded) then the search for an 
augmenting path can continue from the same root. Eventually, this search 
will result in the root being made to satisfy its vertex slackness condition. 

Fig. 5.9. The dual-variable changes procedure, DYC. 

1. for all outermost vertices u labelled outer and all vertices u 
contained in an outermost blossom whose pseudo-vertex is 
labelled outer do 

Yu +-y.-8 

2. for all outermost vertices u labelled inner and all vertices u 
contained in an outermost blossom whose pseudo-vertex is 
labelled inner do 

y. +-y.+8 

3. for all outermost blossoms R,. whose pseudo-vertices are 
labelled outer do 

Zr, +·z1:+28 

4. for all outermost blossoms R,. whose pseudo-vertices are labelled 
inner do 
Z1: +-Z1:-28 

Changes to the dual variables involve a quantity 8 as described in the 
dual variable changes procedure, DVC, of figure 5.9. Within lines 1 and 2 
changes are made to Yu for vertices u either not contained in a blossom 
(outermost vertices) or to vertices u contained in an outermost blossom 
(but not contained in a more deeply nested blossom). We define 8 to be a 
maximum such that the dual variables continue to provide a feasible 
solution to the dual problem. The dual constraints and non-negativity 
conditions continue to hold true if 8 is determined by the 8-evaluation 
procedure, DEY, of figure 5.10. Notice that in statement 4 of that diagram, 
u and v are not contained in the same outermost blossom. If they were, 
then any changes to the dual variables would not affect the constraint: 

Yu+y.,+l:z,. ~ w(u, v) 
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because the changes of 8 in each of Yu and y.,, are offset by the change of 
28 in zk for the outermost blossom containing both u and v. 

Fig. 5~ 1 O. The 8-evaluation procedure, DEY. 

1. 81 +-½ min {z1,} 
B.t 

where Rt is an outermost blossom whose pseudo-vertex is 
labelled inner. 

2. rt1 +- min {y.J 
u 

where u is any outermost vertex labelled outer or any vertex 
contained in an outermost blossom whose pseudo-vertex is 
labelled outer. 

3. 81 +-min{y,.+y.,-w(u, v)} 
(U,1') 

where u is any outermost vertex labelled outer or any vertex in 
an outermost blossom whose pseudo-vertex is labelled outer and 
v is an unlabelled vertex or is contained in an outermost blossom 
whose pseudo-vertex is unlabelled. 

4. rt, +-½ min {y,.+ y.,-w(u, v)} 
(U.'11) 

where both u and v are each either outermost vertices labelled 
outer or vertices qontained in different outermost blossoms whose 
pseudo-vertices are labelled outer. 

s. 8 +- min {81, a •• 8a, 8J 

Consider the effect of the dual variable changes just described: 

(a) If 8 = 81 then some dual variable z1c Decomes zero. We expand the 
associated pseudo-vertex back to i1B. original odd-length circuit. 
The pseudo-vertex was labelled inner and so must have been the 
end-point of some edge in M. This edge therefore matches some 
vertex in the associated odd-length circuit. The other 2r1c vertices 
of the circuit can then be matched by adding circuit edges to M. 
Also when the pseudo-vertex is expanded, we can retain the 
existing labelling of vertices which defines T and (if the pseudo­
vertex was of degree 2 in T) we can add to T the unique path 
around one side of the blossom which will keep T connected and 
alternating. In this case we label the vertices of the path outer and 
inner as appropriate. 

(b) If 8 = 82, then some dual variable Yu becomes zero. The path in the 
search tree from the root to u (if u is not the root) is an alternating 
path with the same number of edges in M as are not in M. If we 
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interchange the edge rOles along this path then the root becomes 
matched (so satisfying the vertex slackness condition) and since 
y .. = 0, u also continues to satisfy the vertex slackness condition. 
If the y-variable for the root is zero then it has been made to 
satisfy the vertex slackness condition. In either case, we can now 
continue by growing a new search tree from another vertex v which 
is free and for which y 11 > 0. If no such vertex exists then the 
algorithm stops. 

(c) If 8 = 83, then the associated edge can be added to E* and the 
search for an augmenting path can be extended. 

(d) If 8 = 84, then the associated edge can be added to E*. When the 
search for an augmenting path continues, this will result in the 
discovery of an odd cycle. 

With the above explanation we can now present the Hungarian tree 
procedure HUT outlined in figure 5.11. When the procedure MAPS exits 
to H, H labels a call of HUT. Exits from HUT are either back to MAPS, 

Fig. 5.11. The Hungarian tree procedure, HUT. 

1. DEV 
2. DVC 
3. if 8 = 81 then expand each outermost pseudo-vertex labelled 

inner which has a 7.el'O z-variable. 
4. if 8 = 81 and (the y-variable of the root T #: O) then 

begin 
5. Identify the alternating path P from the root to some 

vertex whose y-variable is zero. 
6. Interchange edge r6les along P 

encl 
7. if 8 = 88 or 8 = 8, then augment E* 
8. if 8 = 88 then begin 
9. remove all inner and outer labels 

10. goto C 
end 

11. if 8 = 81 or 8 = 88 or 8 = 8, then goto M. 

labelled M, or to a statement labelled C. This precedes MAPS and chooses 
the root of a new alternating tree. Notice that HUT subsumes the pro­
cedures DEV and D VC in lines 1 and 2. Line 3 expands pseudo-vertices as 
described in (a) above. The conditional statement of lines 4-,6 deals with a 
(neutral) augmenting path as described in (b). Line 7 adds appropriate 
edges to E* according to the prescriptions (c) and (d).If 8 = 82 then the 
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root of T is made to satisfy its vertex slackness condition so that a new 
root must be chosen for a new T. This is achieved through lines 8-10. In 
the other cases, 6 = 61, 68 or 6,, the current search tree can be confinued 
with and so MAPS is recalled through line 11. 

We are now in a position to present the maximum-weight matching 
algorithm which is outlined in figure 5.12. Line 1 initialises M to be the 
null matching. In line 2 the dual variables y,, are initialised, whilst the 
z-variable of each blossom is initialised in line 5 when the blossom is 

Fig. 5.12. Maximum-weight matching algorithm. 

1. M+-121 
2. forallveVdo 

Ye +-½max {w(v,, v,)l(v,, v,) e E} 
C: 3. Choose a vertex v such that v is free and y. > 0. 

If no such vertex exists goto L. Label v outer. 
M: 4. MAPS(G') 
B: S. Identify the blossom and shrink it. Label the resultant 

pseudo-vertex outer and assign zero to its z-variable. 
gotoM. 

H: 6. HUT 
A: 1. Identify the (strong) augmenting path. Carry out 

augmentation by interchanging edge r61es. Remove 
all outer and inner labels. 
gotoC. 

L: 8. Expand all remaining pseudo-vertices in the final graph. Do 
this in the reverse order of their being found, inducing 
a maximum matching in each expanded blossom. 

discovered. The general step of the algorithm is initiated in line 3 with the 
identification of a vertex whose vertex complementary slackness condition 
is not satisfied. Within line 4 the M-augmenting path search procedure 
grows an alternating tree rooted at this vertex and only using the edges E* 
which define G'. As described earlier, exits from the procedure MAPS are to 
B if a blossom is found, to H if a Hungarian tree is discovered and to A on 
the discovery of a (strong) augmenting path. The statements of lines 5, 6 
and 7 then result in a return to line 3 if the vertex complementary slack­
ness condition of the root of the tree becomes satisfied or in a return to 
line 4 when the tree can be further developed. Eventually, all vertices 
satisfy their complementary slackness conditions and the algorithm termi­
nates with line 8. 

Our description of the maximum-weight algorithm very nearly amounts 
to its verification. As we indicated, growing an alternating tree from some 
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root v will eventually result in its vertex complementary slackness con­
dition becoming satisfied. As we have seen, this is always done so that M 
remains a feasible solution to the primal problem and so that the values 
y,, and z1 continue to provide feasible solutions to the dual problem. To 
complete verification of the algorithm we therefore only have to show that 
on termination, both the edge and odd-cardinality subset slackness 
conditions are satisfied. Notice that if an edge (u, v) is in Mand not in a 
pseudo-vertex then (u, v) e E*. Also if (u, v) is contained within some 
pseudo-vertex then the value of (yu + y,, + ~,,J is unchanged by changes to 
the dual variables. Thus the edge slackness conditions are satisfied. 
Consider the z-variables. Any z1 can become positive only if it is contained 
within some pseudo-vertex. Whenever a pseudo-vertex is expanded a 
maximum matching is induced on the edges of the odd-circuit, so that on 
completion of the algorithm (when no pseudo-vertices remain) the odd­
cardinality subset slackness conditions are satisfied. 

It is easy to see that the maximum-weight matching algorithm is a 
polynomial time algorithm. We have, in our description, omitted details 
of the management of blossoms. Of course, a record of the nesting of 
blossoms has to be kept and continuously updated. Gabow181 has detailed 
an O(n3) implementation of Edmonds' algorithm. 

Fig. 5.13 

I 
4 

e 

d 

We now briefly describe an application of the algorithm to the graph of 
figure 5.13. Figure 5.14(a) shows additions to E*, additions and deletions 
to M and variations in the variable zB as the algorithm proceeds. In 
figure 5.14(b) we plot changes to they-variables. In fact the vertices a, c, 
d, e and f, respectively, are taken in tum as the root of a new search tree at 
each iteration of the algorithm starting at line 3 of figure 5.12. 
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Fig. 5.14 

(a) 

(a) (c) (d) (e) 

Variations Remove (a, c) 
toM 

Add (a, b) Remove (a, b) Add (d,b) 
Add (f, a) and (c, e) 

Additions 
(b, c) 

(d, b) 
toE* (c, e) 

z. 

(b) 

(a) 
(c) 

(d) 
(e) 

y. y, y. 

3 3 3 

4 2 2 
2 0 0 

4 2 2 
3 1 1 

0 4 0 

Y• y, Yt 
3 3 3 

3 3 3 
3 3 3 

1 1 3 
0 0 3 

The following cryptic notes indicate what happens within each iteration: 

choice of a (a is labelled outer) 
MAPS(G'): (a, b) is explored.bis free and unlabelled so that: 

T+-a--b 
(outer) 

and there is an exit to A 
A: (a, b) is the (strong) augmenting path so that (a, b) is added to M, 

the label outer is removed from a. 
Exit to C. 

choice of c ( c is labelled outer) 
MAPS(G'): (c, a) is explored: ,_, 

T +- c --a 'VVVV\, b 
outer outer 

(edges in Mare denoted by wavy line). 
No edge is explorable from b or c. 
Exit to H. 

HUT: DEV: 81 = co, 81 = 3 (vertices b and c) 
88 = 3 (edges (b, d) and (c, e)), 8, = 1 (edge (b, c)) 
Hence 8 = 8, = 1. 

DVC: y11 +-3-1 = 2,yr,+-3-1 = 2 
(b, c) joins E*. Exit to M. 
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MAPS(G'): (b, c) is explored; since c is labelled outer a blossom has 
been found consisting of the edges (c, a), (a, b) and (b, c). 
Exit to B. 

B: The blossom is shrunk and the pseudo-vertex, which we 
denote by Bis labelled outer. (a, b) is removed from M. 
ZB +- 0. Exit to M. 

MAPS(G'): No edge is explorable from B. Exit to H. 
HUT: DEV: 81 = oo, 82 = 2 (vertices band c) 

83 = 2 (edges (d, b) and (c, e)), 8 = oo 
Hence 8 = 82 = 83 = 2. 

DVC: Ya+-4-2 = 2,yb+-2-2 = 0 
Ye+- 2-2 = 0 (they-variable of the root is zero) 
ZB+-0+2.2 = 4 

(d, b) and (c, e) join E* 
All outer and inner labels are removed. 
Exit to C. 

choice of d (dis labelled outer) 
MAPS(G'): (d, b) is explored.bis free and unlabelled so that: 

T+-d--B 
outer 

Exit to A. 
A: (d, b) is the augmenting path so that (d, b) is added to M. The 

label outer is removed from d. Exit to C. 

choice of e (e is labelled outer) 
MAPS(G'): (e, c) is explored so that: 

,,,,..,, 
T+- e-- .'VVVV\,d 

outer B outer 

No edges are explorable from d or e. 
Exit to H. 

HUT: DEV: 81 = 2 (vertex B), 82 = 3 (vertices d and e) 
83 = oo, 8, = 00 

Hence= 81 = 2 
DVC: Ya+-2+2 = 4,yb+-0+2 = 2,yc+-0+2 = 2 

Y11+-3-2= l,y8 +-3-2= l,ZB+-4-2.2=0 

The blossom associated with the pseudo-vertex B is expanded. The 
even-length side of the blossom i11 interpolated into Twith appropriate 
labelling of vertices. (a, c) is added to M: 

Inner outer In Mr 

T +- e --c 'VVVV\, a --b 'VVVV\, d 
outer outer 

Exit to M. 
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M.APS(G'): No explorable edges exist from e, a or d. 
Exit to H. 

HUT: DEV: 81 = oo, 88 = 1 (vertices d and e) 
88 = 3 (edge (a,f)), a, = oo 
Hence 8 = 81 = 1. 

DVC: Ya+-4-1 = 3,Y11+-2-1 = 1,y0 +-2-1 = 1 
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Yd+- 1-1 = 0, y., +- 1-1 = 0 (The y-variable of the 
root of T becomes zero.) 

All inner and outer labels are removed. 
Exit to C. 

choice off(fis labelled outer) 
M.APS(G'): (f, a) is explored: 

,,,,,., 
T +-J--a~c 

outer outer 

(c, e) is explored: 
IIIIWr Olllff' 

T +-J--a -.,vvv,,c--e 
out• 

e is free and unlabelled. Exit to A. 
A: The augmenting path is ((f, a), (a, c), (c, e)) hence (a, c) 

is removed from M while (f, a) and (c, e) are added to M. 
All inner and outer labels are removed. Exit to C. 

No free vertices exist, jump to L. No unexpanded pseudo-vertices and so 
the algorithm stops with: 

M = ((a,f), (b, d), (c, e)) 

5.4. Summary and references 
The maximum-cardinality matchins and maximum-weight match­

ing algorithms for general graphs, which form the central content of this 
chapter, are essentially due to the pioneering work of Edmonds. Whilst 
Edmonds' work provides the guiding principles for these algorithms, we 
have exercised considerable licence in the rather particular presentations 
of this chapter. As we have seen, efficient algorithms exist for the maximum­
cardinality and for the maximum-weight matching problems and also for 
the question of determining whether or not a graph contains a perfect 
matching. 

Edge coverings, which we define in exercise 5.10, provide problems 
which are similar to those provided by matchings. In exercise 5.10, we 
indicate how the problem of finding a minimum-cardinality covering can be 
solved in polynomial time using the maximum-cardinality matching 
algorithm. There is not, unfortunately, a similar relationship between the 
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maximum-weight matching problem and the problem offindinga minimum­
weight covering. WhiteD-31 has, however, described a polynomial time 

minimum-weight covering algorithm which is in the same spirit as the 
maximum-weight matching algorithm of section 5.3. 

Chapter 5 of Minieka1141 and chapters 5 and 6 of Lawlerfllll are recom­

mended reading for the material presented in this chapter. 

The exercises that follow provide some illustrations of how matching 
problems can arise naturally in a variety of guises. 
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[2] Edmonds, J. 'Paths, trees and flowers', Can. J. Math., 17, 449-67 (1965). 
[3] Micali, S. & Vazirani, V. V. 'An 0(,.,/n· IEI) algorithm for finding maximum 

matchings in general graphs', 21st Annual Symposium on Folllldations of 
Computer Science, Syracuse, NY, pp. 17-27 (NY, USA, IEEE 1980). 

(4] Tutte, W. T. 'The factorisation of linear graphs', J. London Math. Soc., 22, 
107-11 (1947). 

[5] Lov4sz, L. 'Three short proofs in graph theory', J. Combinatorial11,eory, B, 
19, 111-13 (197S). 

[6] Kuhn, H. W. 'Variants of the Hungarian method for assignment 
problems', Naval Ra. Logist. Quart., 3, 2S3-8 (19S6). 

[7] Edmonds, 1. & Johnson, E. • Matching: A well-solved class of integer linear 
programs•, Combinatorial Structures and Their Applications, Gordon & 
Breach, NY, pp. 89-92 (1970). 

[8] Oabow, H. • An efficient implementation of Edmonds' maximum matching 
algorithm', Technical Report 31, Stanford University Computer.Science 
Dept (June 1972). 

[9] Hall, P. 'On representatives ofsubsets', J. London Math. Soc., 10, 26-30 
(1935). 

(10] Fajii, M. et al. 'Optimal sequencing of two Equivalent Processors', SIAM 
J. Appl. Math., 17, 784-9 (1969). 

[11] Coftinan, E. G. & Graham, R. L. 'Optimal scheduling for two-processor 
systems', Acta I,iformatica, l, 200-13 (1972). 

(12] Gale, D. & Shapley, L. S. 'College admissions and the stability of marriage', 
Amer. Math. Monthly, 69, 9-14 (1962). 

(13] White, L. J. A parametric study of matchings and coverings in weighted 
graphs, PhD Thesis, University of Michigan (1967). 

[14] Minieka, E. Optimisation Algorithms for Networks and Graphs, Marcel 
Dekker, NY (1978). 

[15] Lawler, E. Combinatorial Optimisation: Networks and Matroids, Holt, 
Rinehart and Winston (1976). 

EXERCISES 
S.1. A multinational army has a tank corps. Each tank requires a crew of 

two who speak a common language. Each possible crew member 
generally speaks more than one language. How might the problem of 
maximising the number of crews be reduced to the problem of finding a 
maximum-cardinality matching for a graph in which each vertex 
represents a possible crew member? 
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5.2. A theatrical agent receives offers of employment for some of his actors 
from a number of theatrical impresarios. Each impresario wishes to 
employ just one actor and, in an attempt to best meet his requirements, 
he offers different rates of pay for the actors he is offered. 

How might the problem of maximising the agent's income (if he 
receives a fixed percentage of his actors' incomes) be reduced to the 
problem of finding a maximum-weight matching for a graph in which 
each vertex represents either an actor or an impresario? 

5.3. The following is a statement of Hall's191 theorem. If G = (V, E) is a 
bipartite graph with bipartition (V', V"'), then G has a complete 

matching of V' onto V* if and only if: 

jN(Vi)I ;;i. I v:1, for all v: s; V' 

where N(VD is the set of vertices adjacent to v:. 
Obtain Hall's theorem from theorem 5.2. 

(Suppose that I VI is even. We can construct G* by adding to Gan edge 
joining every pair of vertices in V ... Show that G has a matching, with 
every vertex of V' an end-point of an element of the matching, if and 
only if G* has a perfect matching. Hall's theorem then follows naturally. 
For I VI odd, a simple modification to the proof is required.) 

5.4. Job assignments 
An employer wishes to fill i vacancies with pretrained skilled labour. 

An employment agency provides a list of j potential employees, each 
having been trained for one or more of the vacancies. Using Hall's 
theorem (exercise 5.3) how might the prospects of: 
(a) filling all the vacancies, 
and 
(b) employing all the candidates, 
be judged? 

Does Hall's theorem provide an efficient way to answer these 
questions? How might a maximum number of vacancies be filled in 
polynomial time? 

5.5. The marriage problem 
In a certain community every boy knows exactly k girls and every girl 

knows exactly k boys. Show that every boy can marry a girl he knows 
and vice versa. 
(Construct a k-regular bipartite graph in which each edge signifies that a 
boy (represented by one end-point) knows a girl (represented by the 
other end-point). The problem then reduces to showing that any k­
regular bipartite graph, k > 0, has a perfect matching. Show that the 
number of boys must equal the number of girls and that the graph 
satisfies Hall's theorem (exercise 5.3). The result then follows.) 

5.6. G = (V, E) is any 3-regular graph without cut-edges. Let 

G, = (Vi, E,), i = 1, 2, ... , k 
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be the odd components (see theorem 5.2) of (G- V'), V' c: V. If m, is 
the number of edges with one end-point in G, and the other in V', show 
that m, is odd and that~ ;;;,, 3. Justify the following: 

1 k 
ib(G- V') = k " -3 l: m, " ¼ l: d(v) = I V'I 

i-1 1'EY' 

thus proving, by theorem 5.2, that G has a perfect matching. 
5.1. Shortest time scheduling for two processors 

A complicated task can be broken down into a number of subtasks, 
s" i = 1, 2, ... , n, each requiring a unit of processing time. Two 
processors are available and can operate simultaneously. There exists a 
partial ordering • < ' for the s,, such that s, < s1 means that s, must be 
completed before s1• G is a digraph in which each vertex represents some 
s, and there is an edge (s,, s1) for each relation s, < s1• An undirected 
graph G* = (V, E*) is constructed as follows. G* has the same vertex 
set as G and (s,, s1) e E* if and only if there is no directed path from 
s, to s1 or from s1 to s, in G. Such a construction is shown below. Justify 
the statement that if Mis a maximum-cardinality matching in G*, then 
a lower bound in the computation time for the overall task is given by 
(n-lMI). 

(Such a matching for the problem is said to be feasible if it describes a 
possible scheduling sequence. For example, matching {(si. sJ, (s1, sa)} 
describes a feasible schedule: (s1 and sJ being executed simultaneously, 
followed by (s1 and s,), and finally s1 is executed. However, the matching 
{(si, sJ, (s1, s8)} is not feasible. Fujii et al.1101 have shown that a feasible 
matching always exists which is of maximum cardinality and that this 
can be found in O(n8)-time. See also Coffman & Graham.(111) 

5.8. The stable marriages problem 
In a community of n men and n women each person ranks those of 

the opposite sex according to his or her preference for a marriage 
partner. The problem is to marry off all members of the community in 
such a way that the set of marriages is stable. The set is unstable if a 
man and a woman exist who are not married to each other but prefer 
each other to their actual mates. 
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Gale & Shapley1111 have described the following algorithm to solve the 
problem: 

To start, let each boy propose to his favourite girl. Each girl who 
receives more than one proposal rejects all but her favourite from 
amongst those who have proposed to her. However, she does not 
accept him yet, but keeps him on a string to allow for the possibility 
that someone better may come along later. 

We are now ready for the second stage. Those boys who were 
rejected now propose to their second choices. Each girl receiving 
proposals chooses her favourite from the group consisting of the new 
proposers and the boy on her string, if any. She rejects all the rest and 
again keeps the favourite in suspense. 

We proceed in the same manner. Those who are rejected at the 
second stage propose to their next choices, and the girls again reject 
all but the best proposal they have had so far. 

Eventually ... every girl will have received a proposal, for as long as 
any girl has not been proposed to there will be rejections and new 
proposals, but since no boy can propose to the same girl more than 
once, every girl is sure to get a proposal in due time. As soon as the 
last girl gets her proposal the 'courtship' is declared over, and each 
girl is now required to accept the boy on her string. 
Provide brief justification for the following claims: 

(a) The algorithm provides a stable set of marriages. 
(b) The algorithm also works if the number of males does not equal the 

number of females. 
(c) The algorithm has complexity O(n1). 

(d) The algorithm rejects men only from women that they could not 
possibly be married to under any stable matching. That is, that any 
man is at least as well-off as he would be under any other stable 
marriage. The algorithm is calla!. man-optimal for this reason. 
A woman-optimal set of marriages is, of course, obtained by getting 
the women to propose to the men. 

S.9. By simplifying the algorithm described in section 5.3, produce a 
maximum-weight matching algorithm specifically for bipartite graphs. 

S.10. A covering C is any set of edges such that any vertex of the graph is an 
end-point of (at least) one edge of C. A minimum-cardinality covering is 
a covering with the smallest possible number of edges. 
(a) A salesman in educational toys has a selection of ~metrical shapes 
(cubes, pyramids and so on), each of which is manufactured in a range 

of colours. He wishes to carry with him a minimum number of objects so 
that each colour and each shape is represented at least QDCe. Justify the 
following statement. The number of objects he must carry is equal to the 
number of elements in a minimum-cardinality covering in the graph 
where each shape and each colour are individually represented by a 
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single vertex and there is an edge joining a shape vertex to a colour 
vertex if that shape is manufactured in that colour. 
(b) Let M be a maximum cardinality matching and C be a minimum 
cardinality covering of G = (V, E).Now construct: 
(i) a covering C' from M by adding to M, for every unmatched vertex 

v, one edge incident with v, 
and 
(ii) a matching M' from C by removing from C, for every overcovered 

vertex v (that is, v is the end-point of more than one edge of C) all 
but one edge incident with C. 

Show that: 

IC'I = IVI-IMI 
and that 

IM'I = IVI-ICI 
Hence deduce that C' is a minimum-cardinality covering and that M' is 
a maximum-cardinality matching. Thus the problem of finding a 
minimum-cardinality covering can be solved essentially by the 
maximum-cardinality matching algorithm of section 5.2. 



6 

Eulerian and Hamiltonian tours 

In this chapter we concentrate on two fundamental ways of traversing a 
graph. In historical terms these represent perhaps the oldest areas of 
inquiry in graph theory. The first concerns paths or circuits in which every 
edge is used precisely once. These are called Eulerian after the Swiss 
mathematician L. Euler. He published in 1736 (see exercise 6.2) what is 
often referred to as the first paper in graph theory. The second way of 
traversing a graph of interest to us involves visiting each vertex precisely 
once. These paths or circuits are called Hamiltonian after the English 
mathematician W.R. Hamilton who studied them (circa 1856) in con­
nection with a game of his invention (see exercise 6.3). 

In connection with Eulerian and Hamiltonian paths and circuits, the 
word tour will mean either a path or a circuit. We shall be interested in 
characterising graphs that contain either Eulerian or Hamiltonian tours. 
Also, we shall be investigating the well-known and related problems of the 
Chinese postman and of the travelling sa:lesman. 

6.1 Eulerian paths and circuits 
A postman delivers mail every day in a network of streets. In order 

to minimise his journey he wishes to know whether or not he can traverse 
this network and return to his depot without walking the length of any 
street more than once. This problem concerns the existence or otherwise of 
an Eulerian circuit of the corresponding graph. If one exists then he may 
wish to know how many others do in order to vary the otherwise tedious 
routine. We shall see in this section just how questions of this type may be 
answered. 
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Fig. 6.1. (a) An Eulerian circuit of G1• (b) An Eulerian path of G1• 

(a) {b) 
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An Eulerian circuit of G1 An Eulerian path of G1 

Fig. 6.2 

(b) (c) 
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6.1.1. Eulerian graphs 
An Eulerian graph is an undirected graph, or a digraph, which 

contains an Eulerian circuit. Of course, for a digraph each edge of the circuit 
can only be traversed as it is directed. The following theorem determines 
whether or not an undirected graph is Eulerian or contains an Eulerian 
path. 

Theorem 6.1. An undirected multi-graph G, has an Eulerian circuit (or 
path) if and only if it is connected and the number of vertices with odd­
degree is O (or 2). 

Proof. The conditions are clearly necessary because if an Eulerian tour 
exists then G must be connected and only the vertices at the ends of an 
Eulerian path can be of odd-degree. 

To show sufficiency we use induction on the number of edges IEI. The 
theorem is trivially true for IEI = 2. Let G have IEI > 2 edges, and let it 
satisfy the conditions of the theorem. If G contains two vertices of odd­
degree, we denote them by v1 and v8• Consider tracing a tour T from a 
vertex v, ( = v1 if there are vertices of odd-degree). We trace Tleaving each 
new vertex encountered by an unused edge until a vertex v1 is encountered 
for which every incident edge has been used. If G contains no vertices of 
odd-degree then it must be the case that v, = v1, otherwise it must be the 
case that v1 = v1• Suppose that T does not use every edge of G. If we 
remove from G all those edges that have been used, then we are left with a, 
not necessarily connected, subgraph G'. G' only contains vertices of even­
degree. By the induction hypothesis each component of G' contains an 
Eulerian circuit. Since G is connected, T must pass through at least one 
vertex in each component of G'. An Euleiian tour can then be constructed 
for G by inserting into T, at one such vtrtex for each component of G', 
an Eulerian circuit for that component. ■ 

Figure 6.1 illustrates the construction of an Eulerian circuit for G1 in 
(a) and the construction of an Eulerian path for G8 in (b) both according to 
the prescription of the above proof. In both cases the original graph, less 
the edges of T, forms a graph.with two components, C1 and C2• The vertices 
u1 and "s indicate the points where the Eulerian circuits of these com­
ponents are inserted into T. 

The following corollary applies to digraphs. Its proof exactly parallels 
that for theorem 6. I. 

Corollary 6.1. A digraph is Eulerian if and only if it is connected and is 
balanced. A digraph has an Eulerian path if and only if it is connected and 
the degrees of its vertices satisfy: 
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d+(v) = d-(v) for all v t, v1 or v2 

d+(vJ = d-(vJ+ 1 

d-(vJ = d+(vJ+ 1 

Given theorem 6.1 and its corollary check that in figure 6.2, graphs (a) 
and (b) have Eulerian circuits while (c) and (d) have Eulerian paths but 
not circuits. 

6.1.2. Finding Eulerian circuits 
Theorem 6.1 and its corollary describe algorithms to find Eulerian 

circuits in graphs and digraphs. We describe here algorithms which 
construct Eulerian circuits directly in the sense that they do not proceed by 
the repeated addition of subcircuits. 

We first describe an algorithm which is applicable to undirected graphs. 
It will become evident that the same algorithm may be utilised for digraphs. 
However, in the case of digraphs, it will be useful for other purposes to 
describe a second algorithm. The first algorithm then is outlined in 
figure 6.3. Given an undirected Eulerian graph G = (V, E), the algorithm 
traces an Eulerian circuit during which CV denotes the current vertex 
being visited, E' denotes the set of edges already traced and EC is a list of 
vertices ordered according to the sequence in which they have been visited. 
Also A(v) denotes the adjacency list of the vertex v within the graph 
(G-E').·The first vertex visited is w. When the circuit has been traced as 
far as CV, the conditional statement starting at line 5 chooses the next 
vertex v that shall be visited. This is done so that if (CV, v) is not the only 
edge incident with CV in (G-E'), then (CV, v) is not a cut-edge of(G-E'). 
Such a choice is always possible because, as we shall see in the next 
theorem, there can only ever be at most one cut-edge of(G-E') incident 
with CV. This important fact also means that the search for v in line 6 
will be restricted to checking whether or not (CV, v'), where v' is the first 
vertex in A(CV), is a cut-edge of(G-E'). Ifit is not, then v' becomes v, 
otherwise the second vertex in A( CV) becomes v. Before validifying the 
algorithm we establish its complexity according to the implementation of 
figure 6.3. 

The body of the while statement, lines 5-11, is executed I E I times, once 
for each successive edge traced in the Eulerian circuit. Within each 
execution we need, in line 6, to determine whether or not a particular edge 
of(G-E') is a cut-edge. It is easy to do this in O(IE-E' I)-time by searching 
for a path in G-(E' u (v., v1)). We simply tag neighbours of ~. then 
repeatedly tag untagged neighbours of tagged vertices until the process 
cannot proceed further. If, finally, v1 remains untagged then (v,, v1) must 
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be a cut-edge of (G- E'). Thus overall we have an O(IEI ll) implementation. 
We can in fact with little trouble find Eulerian circuits in O(IEl)-time. 
See, for example, exercise 6.5. 

Fig. 6.3 

1. EC+-[w] 
2. CY+-w 
3. E' +- f21 

4. while IA(w)I > 0 do 
begin 

S. If IA(CY)I > 1 then 
6. find a vertex r, e A(C) such that (CV, 11) is not a 

a cut-edge of (G-E') 
7. else let the vertex in A(CY) be denoted by v 
8. delete v in A(CY) and CV in A(r,) 
9. E' +- E' U {(CY, v)} 

10. CV+-v 
11. add CV to the tail of EC 

end 
12. Output EC 

Theorem 6.2. The algorithm of figure 6.3 finds an Eulerian circuit EC of 
an undirected graph G = (V, E). 

Proof. We first show that the choice of the next vertex v, within the 
conditional statement starting at line 5, is always possible. Having arrived 
at CV ( =I- w) it must be that IA{ CV)I > 0 and that IA( CV)I is odd because 
d(CV) is even. If IA(CV)I = I then the next vertex is uniquely determined 
by the else clause at line 7. However, if IA( CY)I > I then at most one edge 
incident to CV can be a cut-edge. We can d this by noting that any com­
ponent of the graph (G-E') attached to CV by a cut-edge must contain 
a vertex of odd-degree in (G-E'). Suppose this were not so. Then every 
vertex of the component will be of even-degree so that the sum of these 
degrees will be even. However, the sum of these degrees is odd because 
each edge of the component adds two to the sum except for the single 
cut-edge attaching it to CV. Now there are precisely two vertices of odd­
degree in (G-E'), namely, w and CV. Hence, there can only be at 
most one cut-edge of (G- E') adjacent to CV ( =I- w). Suppose now that 
CV= w. If A(w) > 0, as required by line 4, then no edge incident to CV 
is a cut-edge of (G-E'). This follows by noting that when the Euleiian 
circuit revisits w, then every vertex of (G-E') is of even-degree. But by a 
previous argument if a cut-edge attaches a component of (G-E') tow, 
then this component would contain at least one vertex of odd-degree. 
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Thus a next vertex can always be chosen as the algorithm requires 
within line 6. According to line 4 the process stops when IA(w)I = 0. At 
this stage an Eulerian circuit will have been traced. Otherwise, before 
reaching w, some other vertex u with IA(u)I > 1 must have been left along 
a cut-edge of (G-E'). ■ 

We now describe an algorithm specifically appropriate for digraphs. It 
constructs an Eulerian circuit starting with a spanning out-tree of the 
digraph. This construction will be of interest to us again when we come to 
count the Eulerian circuits of a graph in section 6.2.1. 

Before describing the algorithm we show that the reverse construction is 
possible. That is, given an Eulerian circuit of a digraph we can construct a 
spanning out-tree. Starting at an arbitrary vertex u, we trace the Eulerian 
circuit and, for each vertex except u, we identify the first edge incident to 
the vertex. According to theorem 6.3 this set of (n-1) edges constitutes a 
spanning out-tree of the digraph. 

Theorem 6.3. The subgraph of an Eulerian digraph G constructed according 
to the above rule is a spanning out-tree of G rooted at u. 

Proof. We denote the subgraph by T. By the construction rule we see that 
within T d-(u) = 0, while for every vertex v #a u d-(v) = 1. Then since T 
has (n -1) edges we need just show that T is acyclic. 

Suppose that T contains a cycle. As edges are added to T according to 
the construction rule, let (v,, v1) be the first edge that completes a circuit 
in T. Qearly, v1 ,/, u. Since (v,, v1) conipletes a circuit, v1 has been visited 
previously in tracing the Eulerian path, Thus (v,, v1) cannot be an initial 
entry to v1 and so would not be included in T. This is a contradiction and 
so T is acyclic. ■ 

Figure 6.4 shows a digraph G and an Eulerian circuit C. It also shows a 
spanning out-tree T constructed according to the rule described for the 
previous theorem. 

Fig.6.4 

C = (u, Iii, 11., u, 11., ,., 111, 111, 111, 11., u) T 
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By a proof similar to that for theorem 6.3 it is easy to see that a spanning 
in-tree T, rooted at u, for an Eulerian digraph G can be constructed as 
follows. Starting at u trace an Eulerian circuit adding to T those edges 
which correspond to final exits from each of the (n-1) vertices other than 
u. It is also clear that we can construct a spanning-tree for an undirected 
graph by these methods by temporarily regarding the edges to be directed 
in the same sense as an Eulerian circuit is traced. 

We now return to the algorithm which finds an Eulerian circuit of a 
digraph given a spanning out-tree T. This is embodied in theorem 6.4 
which is clearly the converse of theorem 6.3. 

'Theorem 6.4. If G is a connected, balanced digraph with a spanning out­
tree Trooted at u, then an Eulerian circuit can be traced in reverse direction 
as follows: 

(a) The initial edge is any edge incident to u. 
(b) Subsequent edges are chosen so as to be incident to the current 

vertex and such that: 
(i) no edge is traversed more than once, 
(ii) no edge of T is chosen if another edge is still available. 

(c) The process stops when a vertex is reached which has no unused 
edges incident to it. 

Proof. Since G is balanced, the path traced by the above rules can only 
terminate at u. Howev(:r, suppose that this circuit does not contain an edge 
(v,, v1) of G. Now, G is balanced and so v, must be the final vertex of some 
other unused edge (v,., vJ. We can take (v1c, vJ to be an edge of T since 
such an edge incident to v, will not have been used because of rule (b(ii)). 
We can now by a sequence of similar edges f»llow a directed path back­
wards to u. Because G is balanced we should then find an edge incident to 
u which has not been used in the circuit. But this contradicts rule (c). 
Hence the circuit must be Eulerian. ■ 

The algorithm of theorem 6.4 can be executed in O(IE I)-time as can be 
readily seen by an inspection of figure 6.5. Within that diagram the first 
statement indicates the initial task of finding a spanning out-tree. This tree 
is represented by the set of boolean variables {T(e)le e E}. It is easy to see 
that if an Eulerian digraph is subjected to the DFS algorithm offigure 1.15, 
then it will find a spanning out-tree. Since that algorithm operates in 
O(max (n, IEl))-time and since for an Eulerian digraph IE I ;:i: n, the first 
task of figure 6.5 required O(IEl)-time. For each vertex v, the for state­
ment at line 5 constructs A,,, which is a list of the vertices v, such that 
(v,, v) e E. Moreover, that edge incident to v ( -I= u) and which is an edge 
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Fig. 6.5. An O(IEl)-algorithm to find an Eulerian circuit of a 
digraph G = ( Y, E). 

1. Find a spanning out-tree T of G = (Y, E) rooted at u, 
representing it by the assignments: 
T((v,, v1)) +- if (v,, v1) e T then true else false 

2. for every vertex " e Y do 
begin 

3. A.+- 121 
4. l(v)+-0 

encl 
5. for every edge (u,, v1) e E do 

if T((v,, v,)) then add v, to the tail of A.1 

else add v, to the head of A.1 
6. EC+- 121 
1. CV+-u 
8. while l(CY) ~ d-(CY) do 

begin 
9. add CV to the head of EC 

10. l(CY) +-l(CY)+ 1 
11. CV+- Ao.,(l(CY)) 

end 
12. Output EC 

of the spanning out-tree is arranged to be the last edge in the list A". 
Clearly, all the A" are constructed within O(IEl)-time. The for statement 
beginning at line 2 provides an initial assignment of the empty list to each 
A" and zero to each /(v) and does this within O(n)-steps. /(v) is used as an 
index to the list A" and CV denotes the current vertex being visited. Thus 
in line 11 Aw(I(CV)) means the /(CV)th element in the list Aw. EC 
eventually lists the vertices of the Eulerian circuit in the order in which 
they are visited. The circuit is traced within the while statement starting 
at line 8. Rule (b) of theorem 6.3 is ensured by the construction of the A" 
and the incrementation of the /(v) in line 10. Rule (c) is taken care ofby 
the condition of line 8 and rule (a) is ensured by the assignment of line 7. 
Since the while body, lines 9-11, is executed once for each edge in the 
Eulerian circuit, the while statement requires O(IEl)-time. Thus overall 
we have an O(IEl)-algorithm. 

Figure 6.6 illustrates an application of the algorithm of figure 6.5. The 
spanning out-tree produced by the"first stage of the algorithm consists of 
those edges e for which it is shown that T(e) = true. For each v e V, the 
lists A" are also shown. The table then shows for each iteration of the 
while loop, lines 9-11 of figure 6.5, the values of CV and each /(v). The 
final state of EC which is shown indicates which Eulerian circuit is found. 
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Fig. &.&. An application of the algorithm in figure 6.5. 

111 A.,-= [11., u] 7'((111, Ila)) = lne 

A .. = [Ila, 111) T((u, 11J) = true 

A.,= [11., u] T((u, 111)) - true 

A .. = [•u 11,J T((11., 11,)) = tne 

Ila A.= [111, 11J forall11,r(11)=2 

Iteration CV 1(u) 1(111) 1(11.) 1(v.) 1(vJ 

0 " 0 0 0 0 0 
1 '• 0 0 0 0 
2 Va 0 1 0 0 
3 11, 0 1 0 
4 111 0 1 
5 '• 
6 111 2 

7 " I 2 2 

8 11, 2 2 2 I 

9 '• 2 2 2 2 
10 " 2 2 2 2 2 
II 3 2 2 2 2 

EC = [u, ,,, ,,, u, •u ••• , 1, ,,, ••• v1, u] 

6.2 Postman problems 
We now consider problems of the type posed by the postman in the 

opening paragraph of section 6.1. The question of whether or not the post­
man can traverse his network of streets, starting and finishing at the 
depot and traversing each street exactly onee, can now be easily answered. 
If the streets can be traversed in either direction then the Eulerian test of 
theorem 6.1 provides the answer, whilst if the streets are one-way travers­
able then we can refer to corollary 6.1. If the network of streets is not 
Eulerian then we can naturally ask a further question. How can we find a 
shortest circuit for the postman which visits each street at least once? 
Here we associate a length with each street so that the associated graph is 
weighted. Because of the origin of an early paperl11 describing it, this 
problem is called the Chinese postman problem. We shall devote most of 
this section to solving this problem both for undirected and for directed 
graphs. Before coming to that, however, we deal with the problem of 
counting the number of distinct Eulerian circuits in an Eulerian graph. 



162 Eulerian and Hamiltonian tours 

6.2.1. Counting Eulerian circuits 
For digraphs, on the basis of theorem 6.4, we can count the 

number of distinct Eulerian circuits associated with a given spanning out­
tree by considering the choice of edges available at each vertex as the 
circuit is traced. Let the out-tree be rooted at u. In counting circuits we 
must fix the final edge that is to be traced backwards from u in order to 
avoid multiple counting. Otherwise each circuit would be counted d-(u) 
times, any two counts differing only by a cyclic permutation of the edges. 
Also, the choice of edge to be traced backwards from any other vertex is 
restricted in that the edge associated with the spanning out-tree must be 
traced last. An Eulerian circuit encounters any vertex v, d-(v) times. On 
the first occasion the circuit has a choice of(d-(v)- 1) exits, on the second 
occasion (d-(v)-2), and so on. Since the choices at each vertex are 
independent, there are in all: 

" II (d-(vJ-1)! 
(=1 

different Eulerian circuits that can be constructed according to the method 
of theorem 6.4 for a given spanning out-tree. Theorem 6.3 tells us that every 
Eulerian circuit may be associated with a particular spanning out-tree 
rooted at u. We therefore have the following theorem: 

Theorem 6.5. The number of distinct Eulerian circuits in a connected, 
balanced digraph is given by: 

" T(G)· II (cr(v,)-1)1 
(-1 

where T(G) is the number of spanning out-trees rooted at a given vertex. 

We have already seen how to calculate T(G) for an arbitrary graph in 
theorem 2.5. For an Eulerian digraph we can draw an immediate con­
clusion concerning T(G). Since the number of Eulerian circuits cannot 
depend upon which vertex is taken to be the root in theorem 6.5, it follows 
that T( G) must also be vertex independent. In other words, in an Eulerian 
digraph the same number of distinct spanning out-trees are rooted at each 
vertex. 

Figure 6.7 shows an example of counting Eulerian circuits of the 
digraph G. The diagram shows the Kirchoff matrix K(G). For any r, 
1 E;; r E;; n, we haveT(G) = det (K,,.(G)) = 2, whilst IIf_1 (d-(vJ- I)!= 4. 
Hence the number of distinct Eulerian circuits for G is 8. We leave it as a 
short exercise for the reader to list them. 

For a given undirected Eulerian graph G, we could count its Eulerian 
circuits by noting that it will be the underlying graph of each of a number 
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Fig.6.7 

s 

G 

K(G)= 

2 

163 

0 0 0 -1 
-1 l 0 0 0 

0 -1 2 0 -1 
0 0 -1 1 0 
0 0 -1 -1 2 

of determinable Eulerian digraphs. To each Eulerian circuit C of G there 
will be precisely two corresponding Eulerian circuits in the digraphs, one 
in, say, G1 and one in G8• One of this pair of circuits will correspond to 
tracing C in one direction in G and the other will correspond to tracing C 
in the opposite direction. In fact, G1 will be precisely G8 with all edge 
directions reversed. 

6.2.2. The Chinese postman problem for undirected 
graphs 
We describe here how to find a shortest (non-simple) circuit in a 

weighted, undirected; non-Eulerian graph such that each edge is traversed 
at least once. Any postman's circuit, shortest or otherwise, in a non­
Eulerian circuit must repeat one or more edges. This is because every 
vertex is entered the same number of times that it is left, so that any vertex 
of odd-degree (there must be at least two such vertices) has at least one 
incident edge that is traversed at least twice. We therefore define r(u, v) 
to be the number of times that edge (u, v~ is repeated in the course of a 
postman's circuit. In all, (u, v) is traversed (1 + r(u, v)) times. If we trace a 
path of repeated edges then we see that it can only end on vertices of odd­
degree, perhaps passing through any number of vertices of even-degree (and 
maybe some of odd-degree) before termination. In any event, the edge 
repetitions can clearly be partitioned into a set of paths, each path having 
odd-degree vertices as end-points. Each repetition of an edge belongs to 
exactly one such path and every vertex of odd-degree is the end-point of 
just one path. Of course, if we add to the original graph G, r(u, v) repe­
titions of each edge (u, v) then the resultant graph, which we denote by 
G", is Eulerian. 

The postman's problem is therefore ta find a set of paths such as we 
have described and such that their edge weight sum is a minimum. The 
required circuit is then equivalent to an Eulerian circuit of the associated 
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graph a•. A suitable algorithm is described in figure 6.8 and it essentially 
consists of a series of applications of previously described algorithms. In 
line 1, the shortest distances between each pair of vertices of odd-degree, 
in the graph of interest G, are found. A suitable algorithm for this (in fact, 
it would find the shortest distance between every pair of vertices) was 
described in chapter 1 and verified in theorem 1.5. In line 2, G' is the com­
plete graph whose vertex-set is the set of vertices of odd-degree in G and 

Fig. 6.8. Algorithm to solve the Chinese postman problem in an 
undirected, non-Eulerian graph. 

1. Fmd the set of shortest paths between all pairs of vertices of 
odd-degree in G. 

2. Construct G' 
3. Find a minimum-weight perfect matching of G' 
4. Construct G" 
5. Find an Eulerian circuit of G" and thus a minimum-weight 

postman's circuit of G. 

whose edge-weights for each edge (u, v) is d(u, v), the shortest distance from 
u to v in G. Notice that G' must have an even number of vertices because 
there are, by theorem 1.1, an even number of vertices of odd-degree in G. 
The purpose of line 3 is to identify such a matching which has minimum 
weight. This minimum-weight perfect matching allows us to identify a 
set of paths of repeated edges ( one path from each edge of the matching) 
needed to solve the Chinese postman prqblem for G. An efficient minimum­
weight perfect matching algorithm is easily contrived from the maximum­
weight matching algorithm described in chapter 5. We replace each 
edge-weight d(u, v) in G' by (M-d(u~ v)), where Mis a constant such that 
M > d(u, v) for all (u, v). It is then easy to see that a maximum-weight 
matching in this graph with modified edge-weights is equivalent to a re­
quired minimum-weight perfect matching in G'. Line 4 constructs G" 
which was defined earlier. Finally, an Eulerian circuit of G" is found in 
line 5 (perhaps using the algorithm described in section 6.1.2) which is 
then easily used to identify a minimum-weight postman's tour of G. 

Our description of the algorithm amounts also to its verification. More­
over, notice that the algorithm is efficient because each of its constituent 
algorithms runs in polynomial time. Figure 6.9 shows an application of the 
algorithm. The graph G of that diagram is sufficiently simple to identify 
the d(u, v) by inspection; moreover, we can similarly identify a minimum­
weight perfect matching of G' and an Eulerian circuit of G". The paths of 
repeated edges in G required for the solution to the Chinese postman 
problem are (111, u, vJ and (v1, u4, va). 
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Fig. 6.9. An example solution to the Chinese postman problem for 
undirected graphs. 

3 

d( Vi, Va) = 4 along ( Vi, Uz, Ua, Va) 
d( Vi, Va) = 5 along ( Vi, u 2, u 5, Va) 
d(vi, v,) = 2 along (vi, u1, v.) 
d( v1, v8) = 3 along ( Va, u,, v8) 

-----':+--,---=---'1 d(va, v,) = 5 along (v2, Us, u1, u8, v,) 
d(v8, v,) = 3 along (v8, v,) 

A minimum-weight perfect matching 
consists of the edges (v1, v.) and 
(v8, Va). 

An Eulerian circuit of G" and 
a solution to the Chinese postman 

~__..__-~--=--=---v, problem for G is (v1, Ui, v,, Va, 
U4, v,, Vi, Us, Ua, V2, u,, Ua, U5, Va, 
u,, U1, v ,, Us, U5, U2, Ue, Ui, V1). 

2 

6.2.3. The Chinese postman problem for digraphs 
We consider here directed, weighted graphs. If the graph in 

question is connected and balanced, then the solution to the Chinese 
postman problem will be, by corollary 6.1, an Eulerian circuit. Such a 
circuit may be found by the algorithm of figure 6.5. The remainder of this 
section describes how to proceed with non-Eulerian digraphs. 

In the case of undirected graphs, any connected graph clearly contains a 
solution to the Chinese postman problem. This is not the case for all 
connected digraphs. For example, in figure 6.10 no circuit exists which 
traverses every edge at least once. This is because there is no path from 
the subset of vertices {u1, u2, us} to the subset {v1, v2, v3}. The following 
theorem provides a necessary and sufficient condition for a digraph to 
contain a postman's circuit. 
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Fig. 6.10 

Theorem 6,6. A digraph has a postman's circuit if and only if it is strongly 
connected. 

Proof. Clearly, if the digraph G has a postman's circuit then it must be 
strongly connected. This is because, for any two vertices u and v part of 
the circuit provides a path from u to v whilst the remainder of the circuit 
provides a path from v to u. We therefore only have to show that if G is 
strongly connected then it contains a postman's circuit. Such a circuit 
(perhaps a long one) is constructed as follows. Starting from some vertex u 
we add successive loops (from u and back to u) to that part of the post­
man's circuit already traced. Suppose at some stage of this process the 
edge (v,, v1) has not been traversed. Since G is strongly connected there will 
be a path P(u, vJ from u to v, and a path P(v1, u) from v1 to u. To include 
(v-t, v1) in the postman's circuit, the next loop from u will be 

(P(u, vJ, (v,, v1), P(v1, u)) 

We continue until every edge is included. ■ 

As in the case for undirected graphs, a postman's circuit for a non­
Eulerian digraph necessarily involves repeated edges. We again denote the 
number of times that the edge (u, v) is repeated by r(u, v). Let a• denote 
the digraph obtained by adding r(u, v) copies of each edge (u, v) to the 
original digraph G. Any postman's circuit in G will correspond to an 
Eulerian circuit of a•. In the case for undirected graphs, the repeated edges 
formed paths between vertices of odd-degree. In the present case repeated 
edges must form paths between vertices whose in-degree is not equal to 
their out-degree. In particular, for any such path from u to v, we must 

have that: 

d-(u)-d+(u) = D(u) < 0 
and 

d-(v)-d+(v) = D(v) > 0 

Moreover, if D(u) < 0, then -D(u) paths of repeated edges must start 
from u. Similarly, if D(v) > 0, then D(v) paths must end at v. The problem 
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then reduces to choosing a set of paths such that G' is balanced and we 
must do this so as to minimise I:1u, •>d(u, v) r(u, v) where d(u, v) is the 
weight of (u, v). 

The above description suggests the following solution to the Chinese 
postman problem. It is based upon the flow methodology of chapter 4. 
Each vertex u, D(u) > 0, can be thought of as a source and each vertex v, 
D(v) < 0, can be thought of as a sink. A path of repeated edges from u 
to v may be thought of as a unit flow with a cost equal to the sum of the 
edge-weights on the path. In terms of a flow problem, we wish to send 
(for all u such that D(u) > 0), + D(u) units of flow from u and (for all v 
such that D(v) < 0), - D(u) units of flow to v, and we wish to do this at 
minimum cost. As described in exercise 4.1, we convert this problem of 
multiple sinks and sources to one of a single source and a single sink. Let 
the single source be X, then every edge from X to a source u of the original 
problem is given a capacity equal to + D(u) and is given a cost of zero. 
Similarly, denoting the single sink by Y, each edge to Y from a sink v of 
the original problem has a capacity equal to -D(v) and a zero cost. The 
capacity of all other edges is set to infinity. Since for any digraph: 

I: D(u) = - I: D(v) 
u, .D(u) < 0 •• .D(e) > 0 

a maximum flow (at minimum cost) from X to Y will saturate all edges 
from X and all edges to Y. Given such a flow we can construct a balanced 
digraph G". Any Eulerian circuit in G" will correspond to a minimum-cost 
postman's circuit in G. 

Fig. 6.11. Algorithm to solve the Chinese postman problem in a 
non-Eulerian digraph. 

1. Construct G' 
2. Find a maximum flow at minimum cost in G' 
3. Construct G". 
4. Find an Eulerian circuit of G" and thus a minimum-weight 

postman's ciraiit of G. 

Given the above description figure 6.11 outlines a suitable algorithm. 
G' is the network obtained from G by adding the source X and the sink Y, 
as previously described. Line 2 finds a maximum flow at minimum cost in G'. 
This can be done by using the minimum-cost flow algorithm of chapter 4. 
Line 4 might utilise the algorithm of figure 6.5. 

As far as the complexity of the algorithm is concerned, notice that the 
execution time of lines 1, 3 and 4 is bounded by a polynomial inn and IEI, 
In fact, so is the execution time of line 2, but less obviously so. In the 
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previous chapter we saw that the complexity of the minimum-cost flow 
algorithm is polynomial inn, IEI and the value V of the required flow. 
The required flow in the present case is given by: 

V = :E D(v) E.; IEI 
tl, .D(t,) >0 

since each edge contributes at most one to the summation. Thus overall, 
the execution time of this algorithm for the Chinese postman problem for 
digraphs, is bounded by a polynomial inn and IEI only. 

Figure 6.12 shows an application of the algorithm to the graph G of 
that diagram. G is such that the minimum-cost flow can be found by 
inspection in G', as can the Eulerian circuit in G'. 

G 

G' 

G" 

Fig. 6.12. An example solution to the Chinese postman problem for 
digraphs. 

X 

Va 

5 

v. 

v. v, 

D(v) 

Vi -I 
v. v. 0 

Va 2 
v. 1 

Va -2 

c(X, v.) = c(va, Y) = 2 

y c(X, v.) = c(v1, Y) = 1 

for all other edges (u, v) 
c(u, v) = oo and each edge 
is labelled a(_u, v) 

Maximum flow at minimum cost in G' is two units of flow along 
(X, v8, v1, v,, Y) plus one unit along (X, v4, v., Vi, Y). 

4 

An Eulerian circuit of G" 
and a minimum cost 
postman's circuit of G is 
(v1, v8, v8, v1, v,, v1, v1, Va, 
Va, v1, v1, Yi, Va, V4, V5, V1) 
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6.3 Hamiltonian tours 
We have already defined a Hamiltonian tour to be a path or a 

circuit which visits every vertex precisely once. A graph is Hamiltonian if 
it contains a Hamiltonian circuit. Theorem 6.1 provides a quick and 
simple test for determining whether or not a graph is Eulerian. No such 
test is known and none is thought to exist to determine whether or not a 
graph is Hamiltonian. Indeed, the question of whether or not an arbitrary 
graph is Hamiltonian is a classic NP-complete problem. Notice the obvious 
connection with the problem of finding a longest simple path which we 
discussed in chapter 1. There are many results which provide either 
sufficient or necessary conditions for a graph to be Hamiltonian. Section 
6.3.1 presents some well-known results in this area. 

A well-known problem related to the Hamiltonian circuit problem is 
that of the traveliing salesman. The problem is as follows. A salesman, 
starting in his own city, has to visit each of (n -1) other cities and return 
home by the shortest route. We shall see that a solution can be provided 
by finding a Hamiltonian circuit of shortest length in a complete weighted 
graph. We shall prove in chapter 8 that the question of the existence of a 
Hamiltonian tour of less than some specified length is NP-complete. In 
section 6.3.2 we describe an inefficient algorithm to find Hamiltonian tours 
and we also describe some well-known approximation algorithms. These 
have the advantage of operating in polynomial time but produce results 
which only approximate, within some known tolerance, to an exact 
solution. 

Many other scheduling problems, see, for example, exercise 6.12, involve 
consideration of Hamiltonian tours. The origin of interest in these tours is 
to be found in game theory ( exercise 6._3). Puzzles and board games in 
particular often involve Hamiltonian cireuits. For example, the question 
of finding a knight's tour of a chessboard (that is, a sequence of knight's 
moves which visit every square of a chessboard precisely once and returns 
to the initial square) is precisely that of finding a Hamiltonian circuit of an 
associated graph. 

6.3.1. Some elementary existence theorems 
As we stated earlier, given an arbitrary graph, there is no quick 

test to determine whether or not it is Hamiltonian. There are, however, 
many partial results in this area. This section presents some elementary 
ones. 

An immediate observation is that the more edges a graph contains, then 
the greater is the chance that a Hamiltonian circuit exists. The extreme case 
is that of complete graphs. Since. there is an edge between every pair of 
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vertices and this edge may be traversed in either direction, it follows that 
any permutation of the vertices is a Hamiltonian path. Moreover, a 
Hamiltonian circuit is obtained by including the edge from the final to the 
initial vertex of such a path. We therefore have the following theorem. 

1beorem 6. 7. Every complete graph is Hamiltonian. 
Suppose now that we assign a direction to each edge of a complete 

graph. The following theorem shows that the resulting digraph still 
contains a Hamiltonian path. 

1beorem 6.8. A digraph, whose underlying graph is complete, contains a 
Hamiltonian path. 

Proof. Let G = (V, E) be a digraph with a complete underlying graph and 
let P = (vi, v1, ... , vJ be a (directed) path in G. Suppose that v e Vis not 
contained in P. Now, for all i 1 ~ i ~ n, we have that: 

and 
(v, vJ, E implies that (v,, v) e E 

(v,, v), E implies that (v, v,) e E 

Thus v and P may be used to construct a path with (n + 1) vertices by the 
following argument: 

If (v, vJ e Ethen the path (v, Vi, v1, ••• , vJ exists, 
otherwise (v1, v) e E. Then 

if (v, vJ e Ethen the path (vi, v, v2, ... , vJ exists, 
otherwise ( v1, v) e E. Then 

if(v, va)eE ... 
otherwise (v._1, v) e E. Then 

if (v, vJ e Ethen the path (Vi, .•. , v.-1, v, vJ exists, 
otherwise (v., v) e E and 

the path (v1, v1, ••• , v., v) exists. 

Hence, starting with any path (a single edge would do) we can repeatedly 
extend it by the addition of vertices until every vertex is included. ■ 

It is easy to construct examples to show that a digraph satisfying the last 
theorem need not be Hamiltonian. However, the next theorem provides a 
narrower definition which guarantees the presence of a Hamiltonian circuit. 

Theorem 6.9. A strongly connected digraph whose underlying graph is 
complete is Hamiltonian. 

Proof. If G = (V, E) satisfies the theorem then being strongly connected 
it contains at least one simple circuit. Let C = (v1, v1, ••• , v., vJ be such 
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a circuit of maximum length. Suppose that C does not include some 
vertex v. We first show that either there is an edge incident from v to every 
vertex v, of C or there is an edge incident from every vertext of C to v. 
Since C is maximal, then, for all i, modular n: 

and 
(v, vJ e E implies that (v,_1, v) ~ E 

(v,, v) e E implies that (v, vHJ f E 

otherwise, in either case a circuit longer than C could be constructed. 
Now since G has an underlying complete graph: 

and 
(v,_1, v) f E implies that (v, v,_J e E 

(v, vHJ f E implies that (vHl• v) e E 

Hence for all i: 

and 
(v, v") e E implies that (v, v,_J e E 

(v,, v) e E implies that (vH1, v) e E 

We can therefore partition those vertices not on C into two classes, V' 
and V". There is an edge incident from each vertex in V' to every vertex 
of C, and there is an edge incident from each vertex in C to every vertex 
in V". 

Now, since our hypothesis is that C is not a Hamiltonian circuit, we 
have that V' U V" ,/, fl1. Moreover, G is strongly connected so that 
V' ,/, 0 and V" ,/, 0, and there exists an edge from V" to V'. Denoting 
this edge by (v", v'), we then have a circuit C' = (v1, v11, ••• , V5 , v", v', vJ 
such that IC' I > I Cl. Therefore our hypothesis is contradicted and C must 
be a Hamiltonian circuit of G. ■ 

Let us return to undirected graphs. Theorem 6. 7 is hardly a powerful 
theorem. The degree of any vertex in a complete graph is (n-1) and this 
is also the minimum degree 8, of any vertex in that graph. Theorem 6.10 
provides a rather stronger result in the sense of guaranteeing a Hamiltonian 
circuit for a smaller value of 8. 

Theorem 6.10. If G is a graph such that n > 3 and 8 > ½n then G is 
Hamiltonian. 

Proof Suppose that G satisfies the conditions of the theorem but that it is 
not Hamiltonian. G cannot therefore be complete because of theorem 6. 7. 
We can add edges to G without violating the conditions of the theorem 
until the addition of any one extra edge will create a Hamiltonian circuit. 
Let v1 and v5 now be any two non-adjacent vertices of G. Now G+(v1, V5 ) 
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is Hamiltonian so that G contains a Hamiltonian path, (v1, v8, v8, ••• , v,J, 
from v1 to v,.. We now define two subsets of vertices: 

and 
V' = {v,l(v1, vHJ e E} 

V" = {v,l(v,, v,J e E} 

Now IV' n V"I = 0. If this were not the case then V' and V" would 
contain a common vertex v, and G would contain the Hamiltonian circuit 
(v1, v8, ••• , v,, v,., v,._1, ••• , vH1, vJ. Also, IV' U V"I < n because v,. is in 
neither V' nor V". We therefore see that: 

d(vJ +d(v.) = IV'I + IV"I = IV' u V"I + IV' n V"I < n 

so that even with the additional edges added to G we have that 

d(vJ or d(v,) < ½n 

This contradicts the original assumption so that G must be Hamiltonian. ■ 

The above theorems provide sufficient conditions for the existence of 
Hamiltonian tours. It is a trivial matter to construct examples showing 
that these conditions are not necessary. Our final theorem provides a 
necessary condition for a graph, or indeed a digraph, to be Hamiltonian. 

Theorem 6.11. If G = (V, E) is Hamiltonian, then for every non-empty 
proper subset of vertices V' c V: 

C(G- V') ~ I V'I 

where C(G- V') is the number of components of the graph (G- V'). 

Proof. If His a Hamiltonian cycle of G and therefore a spanning subgraph 
of G, we have for every V': 

C(H- V') ~ I V'I . 

But (H-V') is a spanning subgraph of(G-V') and so: 

C(G-V') ~ C(H-V') 

and so the theorem follows. ■ 

As an example of the use of theorem 6.11 consider the graph of 
figure 6.13(a). The removal of the vertices v1 and v2 leaves the three 
components shown in figure 6.13(b). Hence for this graph G, we have that 
C(G-{v1, vs}) > l{v1, vs}I, and so by theorem 6.11 G cannot be Hamil~ 
tonian. 

The condition of theorem 6.11 is not sufficient for a graph to be 
Hamiltonian. For example, the Petersen graph shown in figure 6.14 is not 
Hamiltonian (see exercise 6.8) and yet every non-empty proper subset of 
its vertices, V', satisfies I V'I ~ C(G- V'). 
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Fig. 6.13 

(a) 

Fig. 6.14. The Petersen graph. 

We have described here just a few of the most elementary theorems 
concerning the existence of Hamiltonian tours. There are many other 
results in this area. See, for example, chapter 10 of Bergelll. 

6.3.2. Finding all Hamiltonian tours by matricia/ 
products 
We describe here, by example, a straightforward technique for 

generating all the Hamiltonian tours of a graph or digraph. It can easily 
be adapted to find a shortest Hamiltonian circuit. Like all known, and 
probably unknown, methods for this problem, it provides an inefficient 
solution. 

In chapter 1 we saw how the (i,j)th element of the kth power of the 
adjacency matrix of a graph gives the number of paths of length k from 
vertex I to vertex}. That is, the number of complex paths. We now see a 
variation of this theme where an element of a related matricial product 
individually identifies each simple path of length k from I-to j. Such a 
path of length (n-1), where n is the number of vertices, is necessarily a 
Hamiltonian path. Given all the Hamiltonian paths it is a trivial matter 
to identify all the Hamiltonian circuits. 



174 Eulerian and Hamiltonian tours 

Fig. 6.15 

A 

We illustrate the method with reference to the digraph of figure 6.15. 
Application to an undirected graph should be obvious. First we construct 
a matrix M1, formed from the adjacency matrix by replacing any (i,j)th 
non-zero entry with the string ij, and any non-zero diagonal element is 
replaced by zero. For our example: 

0 AB 
0 0 
0 0 
0 0 

EA EB 

0 
BC 
0 
0 
0 

0 0 
0 0 

CD CE 
0 DE 

ED 0 

We now define a second matrix, M, derived from M1 by deleting the initial 
letter in each element that is a string, for our example: 

0 B O O 0 
0 0 C O 0 

M= 0 0 0 D E 
0 0 0 0 E 
A B O D 0 

Finally, we define a matricial product from which we can generate M1, for 
allj where n > j > 1. M1 displays all the simple paths of lengthj: 

M1 = M1_1 * M 

where the (r, s)th element of M1 is defined as follows: 

{ 
1 " t " n, M1_i(r, t) e M1_1(r, t):} 

M,(r, s) = M1_i(r, t) M(t, s) neither M1_1(r, t) nor M(t, s) are 
zero or have a common vertex 

Here M,(r, t)M(t, s) denotes the concatenation of M,(r, t) and M(t, s). 
Clearly, M,(r, s) is the set of simple paths (since by construction no vertex 
appears more than once in any path) from r to s consisting of j edges. 
Using this definition in our example we obtain: 
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0 0 ABC 0 0 
0 0 0 BCD BCE 

M1= CEA CEB 0 CED CDE 
DEA DEB 0 0 0 

0 EAB EBC 0 0 

0 0 0 A.BCD A.BCE 
BCEA 0 0 BCED BCDE 

Ma= CDEA (CEAaj CDEB 0 0 0 

0 DEAB DEBC 0 0 
0 0 EABC EABD 0 

0 0 0 ABCED ABCDE 
BCDEA 0 0 0 0 

M,= 0 CDEAB 0 0 0 
0 0 DEABC 0 0 
0 0 0 EABCD 0 

Generally each matricial element is a set of paths, although the only entry 
in our example which consists of more than one path is M8(C, B).Since 
our example has n = 5, M, displays all the Hamiltonian path of the 
graph of figure 6.15. In order to establish the Hamiltonian cycles we need 
only check whether or not the end-points of these six paths are appro­
priately connected by an edge. This establishes a single Hamiltonian 
circuit, namely (A, B, C, D, E, A). Alternatively, we could carry out a final 
mqltiplication, M,., = M n-l • M, for which the requirement that no vertex 
appears more than once is dropped. The diagonal entries in M,., would 
describe any Hamiltonian circuits. 

There are many ways of finding Hamiltonian tours of a graph (if they 
exist). The one described here is particularly straightforward which is in 
contrast to other methods, for example the branch and bound algorithm, 
more commonly encountered. All of these methods are inefficient in­
volving unacceptable volumes of computation. This is because, as we 
indicate in the next section, the number of potential circuits grows 
factorially with n. 

6.3.3. The travelling salesman problem 
There are several extant definitions of the travelling salesman 

problem. One definition requires us to find the minimum-length circuit 
which visits every vertex of a weighted graph precisely once. Another 
definition requires us to find a minimum-length circuit of a weighted graph 
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which visits every vertex at least once. For the following discussion we 
take the second definition. Figure 6.16 illustrates that a solution to this 
travelling salesman problem (in our example the circuit (a, b, a, c, a) with 
length 4) is not necessarily a simple circuit. This is generally true for any 

Fig. 6.16 

a 

C 

b 

graph in which the triangle inequality does not hold. If for every pair of 
vertices u and v of a graph G, the weight w(u, v) satisfies 

w(u, v) ~ w(u, x)+w(x, v) 

for all vertices x =/:- u, x =/:- v, then the triangle inequality is said to be 
satisfied in G. Notice that if G is, say, a representation of a road network 
and the edge-weights are actual distances, then the triangle inequality will 
almost certainly hold in G. However, if the edge-weights represent some 
other quantity, say, for example, the cost of transportation, then it could 
well be that the triangle inequality is not satisfied. It is useful for such cases 
to notice that there is a simple technique for converting the travelling 
salesman problem for any graph G = (V, E) into the problem of finding a 
minimum-weight Hamiltonian circuit for another graph G' = (V', E'). 
G' is a complete graph with V = V' and each edge (u, v) e E' has a weight 
w(u, v) equal to the minimum distance from u to v in G. Notice that each 
edge of G' corresponds to a path of one or more edges in G. In con­
structing G' it is useful to label any edge with the path it represents in d 
if this path is longer than one edge. Figure 6.17 shows G' for G of figure 6.16. 
Given G and G' as just defined we have the following theorem. We re­
emphasise that if triangle inequality does not hold, then the travelling 
salesman problem means a shortest circuit visiting each vertex at least 
once and not precisely once. If triangle inequality is satisfied, then either 
definition will do. 

Theorem 6.12. A solution to the travelling salesman problem in G corre­
sponds to and is the same length as a minimum-weight Hamiltonian circuit 
in the complete graph G'. 
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Fig. 6.17 

b 

Proof. Suppose that C is a solution to the travelling salesman problem for 
G which is not equivalent to a minimum-weight Hamiltonian circuit of G'. 
Let C' be the equivalent circuit in G'. Notice that C' must follow the same 
sequence of edges in G' as C does in G and that these edges have the same 
weight in G' as in G. This is because if any one of these edges, say (u, v), 
had a smaller weight in G', then a shorter solution to the travelling sales­
man problem could be found by replacing (u, v) in C by the sequence of 
edges that labels (u, v) in G'. C' is a circuit in G' which visits every vertex 
at least once. 

Suppose that C' visits some vertex s a second time. Let r be the vertex 
visited just before this happens and let t be the vertex visited just after it 
happens. Wecanreplacethesubpath(r, s, t)in C'by(r, t)withoutaffecting 
the fact that C' is equivalent to a solution to the travelling salesman 
problem in G. This is because, by construction w(s, t) in G' is equal to the 
length of the shortest path from s to tin G. In this way we can eliminate 
any multiple visitations to any vertex in G' and, contrary to our hypothesis, 
C' eventually becomes a Hamiltonian circllit. Notice that it must be a 
Hamiltonian circuit of minimum length; a Hamiltonian circuit of minimum 
length in G' would be equivalent to a shorter solution to the travelling 
salesman problem in G. ■ 

In view of the previous theorem we can assume from now on that we 
wish, in solving the travelling salesman problem, to find a minimum­
weight Hamiltonian circuit in a complete graph. This is unless, of course, 
we mean, by the travelling salesman problem, a circuit of shortest length 
which visits every vertex precisely once in a graph for which triangle 
inequality does not hold. An immediately obvious method of solution is 
to enumerate all the Hamiltonian circuits and then by comparison to find 
the shortest. This approach, although straightforward, presents us with an 
unacceptably large amount of computation. For a complete undirected 
graph with n vertices, there are ½(n-1)1 essentially different Hamiltonian 
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circuits. The number of addition operations then required to find the 
lengths of all these circuits is O(n I). Given a computer that can perform 
these additions at the rate of 108/second, the following approximate 
computation times follow: 

n 

12 
1S 
20 
so 

~n! 

4.8x 108 
1.3x lOU 
2.4 X 1018 
3.0x 10" 

Tune 

s seconds 
3 hours 
800 years 
10" years 

The importance of this model calculation is that it demonstrates the 
phenomenal rate of growth of the computation time as n increases. For n 
of quite moderate value, nl is too large to make the computation feasible. 
In fact, no known efficient algorithm exists for the travelling salesman 
problem. In chapter 8, we prove that the problem of determining whether 
or not a Hamiltonian circuit exists, which is shorter than a specified length, 
is NP-complete. 

For the travelling salesman problem, as indeed for any other intractable 
problem, it is useful to have a polynomial time algorithm which will 
produce, within known bounds, an approximation to the required result. 
Such algorithms are called approximation algorithms. Let L be the value 
obtained (for example, this might be the length of a travelling salesman's 
circuit) by an approximation algorithm and let Lo be an exact value. We 
require a performance guarantee for the approximation algorithm which 
could, for a minimisation problem, be stated in the form: 

1 ~ L/L0 ~ ii 

For a maximisation problem we invert the ratio L/L0• Of course, we would 
like ii to be as close to one as possible. 

Unfortunately, not every heuristic produces a useful approximation 
algorithm. Consider the following approach which is perhaps the most 
immediately obvious for the travelling salesman. Starting at vertex v1, we 
trace C, an approximation to a minimum-weight Hamiltonian circuit, 
along (v1, vJ which is the shortest edge from v1• We then leave v8 along 
(v1, va), the shortest edge from v8 which keeps C acyclic. We continue in this 
way until every vertex has been visited. The Hamiltonian circuit is then 
completed by the edge (v,., vJ. It can be shown (see LiulUJ) that for this 
algorithm: 

ii= ½([lnnl+l) 
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Thus, for this so-called nearest-neighbour method, the possible error in the 
approximation is a function of the problem size. For arbitrarily large 
graphs, the resulting error may be arbitrarily large. Fortunately, we can 
do better- than this. 

Consider the approximation algorithm presented in figure 6.18. G, 
which is subjected to the algorithm, is a complete weighted graph within 
which the triangle inequality holds. The algorithm first finds a minimum­
weight spanning-tree T of G using, perhaps, Prim's algorithm described in 
chapter 2. The next step associates a depth-first index to each vertex with 
respect to a depth-first search of T. For this, the depth-first algorithm 
described in chapter 1 could be used. Finally, the algorithm outputs a 
Hamiltonian circuit which visits the vertices of G in the order of the 
depth-first indices. 

Fig. 6.18. An approximation algorithm for the travelling salesman 
problem. 

1. Find a minimum-weight spanning-tree T of G. 
2. Conduct a depth-first search of T associating a depth-first index 

L(v) with each vertex v. 
3. Output the following approximate minimum-weight Hamiltonian 

circuit: 

where L(v,1) = J 

The component steps of this algorithm, as described in previous chapters, 
have low order polynomial time complexi1' and so the algorithm is an 
efficient one. 

Figure 6.19 shows an application of this algorithm to the graph G. 
A minimum-weight spanning-tree T consists of the heavily scored edges. 
C is the Hamiltonian circuit output by the algorithm. The subscript on 
each vertex denotes its depth-first index with respect to the particular 
traversal of T undertaken. C0 indicated in the diagram is a circuit which, 
in a depth-first traversal of T, travels twice around the spanning-tree T. 
Here, C0, closely related to C, gives the algorithm its name of the twice­
around-the-minimum-weight-spanning-tree algorithm. 

11aeorem 6.13. For any travelling salesman problem within which the 
triangle inequality is satisfied, the twice-around-the-minimum-weight­
spanning-tree algorithm gives ei < 2. 
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Proof. Let W be the weight of a minimum-weight spanning-tree of G and 
let W., be the weight of a minimum-weight Hamiltonian circuit of G. We 
first note that: 

W<W., 

because a spanning-tree shorter than a minimum-length Hamiltonian circuit 
can be obtained by deleting any edge from this circuit. We next observe 
that a depth-first search of a spanning-tree traces a circuit C0 which 
traverses each edge of the tree twice. For a minimum-weight tree this 
circuit has length 2W which is strictly less than 2JiJ'o. Now the circuit C 
generated by the algorithim follows C0 except that C proceeds directly to 
the next unvisited vertex on C0 rather than revisiting any vertices. Because 
the triangle inequality holds within G, C is no longer than C0 and so the 
theorem follows. ■ 

Fig. 6.19. An application of the twice-around-the-minimum-weight­
spanning-tree algorithm. 

The heuristics used to obtain a circuit from a minimum-weight spanning­
tree in the above algorithm can be improved upon as we describe in 
figure 6.20. Here steps 2, 3 and 4 essentially replace step 2 of the previous 
algorithm. Notice that in step 2 of figure 6.20, V' must contain an even 
number of vertices by theorem 1. 1. Thus a perfect matching of V' exists 
and one of minimum weight can be found in polynomial time in just the 
same way as was described for step 3 of the algorithm of figure 6.8. In 
step 3 of figure 6.20, G' must be Eulerian because the construction ensures 
that every vertex is of even-degree. Step 4 may be efficiently carried out 
incorporating one of the Eulerian circuit algorithms described elsewhere 
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in this chapter. For convenience we shall call the algorithm of figure 6.20, 
the minimum-weight matching algorithm for the travelling salesman 
problem. 

Fig. 6.20. An improved approximation algorithm for the travelling 
salesman problem. 

1. Find a minimum-weight spanning-tree T of G. 
2. Construct the set V' of vertices of odd-degree in T and find a 

minimum-weight perfect matching M for V'. 
3. Construqt the Eulerian graph G' obtained by adding the edges 

of MtoT. 
4. Find an Eulerian circuit C0 of G' and index each vertex 

according to the order, L(v), in which vis first visited in a 
trace of C0• 

S. Output the following approximate minimum-weight Hamiltonian 
circuit: 

C = (v,1, 11,1, v,_, ... , "'-• v1i) 

where L(v,1) = J 

Figure 6.21 shows an application of this algorithm to the graph G of 
figure 6.19. In figure 6.21 a minimum-weight tree T of G is indicated by 
heavily scored edges. In this case every vertex of T has odd-degree and so 
belongs to V'. A minimum-weight perfect matching of V' is, by inspection, 
M = {(v1, vi;), (v8, va), (v,, v.)}. G', constructed from the edges of Mand T, 
is shown in the diagram. C0 is the Eulerian circuit from which the tabu­
lated indices L(v) are derived. From these the approximate minimum­
length Hamiltonian circuit C is obtained. 

Fig. 6.21. An application of the mimbtum-weight matching 
algorithm for the travelling salesman problem. 

V L(v) 

V1 1 

'• '• 3 

'• 4 

"• s 
"• v, 2 

C = (v1, v1, 111, 111, v1, v1, v1) '• 6 
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The following theorem shows that the present heuristics are an improve­
ment on those used in the algorithm of figure 6.18. 

Theorem 6.14. For any travelling salesman problem within which the 
triangle inequality is satisfied, the minimum-weight matching algorithm 
for the travelling salesman problem gives ct < ½-
Proof. Because the triangle inequality holds, the circuit C is no longer than 
the circuit C0• As in the previous algorithm C follows C0 except that C 
proceeds directly to the next unvisited vertex of C0 rather than revisiting 
any vertices. The weight of C0 is obtained by adding the weight of T, which 
we denote by W, to the weight of the matching M, which we denote by 
Jit7i. By Wo we denote the weight of a minimum-weight Hamiltonian circuit 
of G. As in theorem 6.13: 

W< Wo 
and we just need to show that JiJ7i ~ ½Wo in order to complete the proof. 

Given a Hamiltonian circuit H of weight Wo, we can construct a circuit 
of no greater weight which passes only through the vertices in V'. We do 
this by tracing H and by-passing those vertices not in V'. Because the 
triangle inequality holds, the new circuit cannot be longer than H. Because 
V' contains an even number of vertices we can construct two matchings 
from this new circuit, each obtained by taking alternate edges. Consider 
that matching of this pair which has smallest weight. This matching has a 
weight which is not less than W1 but which is not greater than half the 
weight of the circuit through the vertices of V'. The result follows. ■ 

At present no polynomial time algorithm is known which gives a better 
approximation guarantee than that provided by theorem 6.14. 

6.3.4. 2-factors of a graph 
We define a k-factor of a graph G to be a k-regular spanning 

subgraph of G. Our interest here concerns 2-factors because a Hamiltonian 
circuit is a 2-factor, although, of course, not every 2-factor is a Hamiltonian 
circuit. For example, the graph of figure 6.22 has several 2-factors including 
a Hamiltonian circuit (1, 2, 3, 4, 7, 8, 6, 5, 1) and the 2-factor with com­
ponent circuits (1, 2, 6, 5, 1) and (3, 4, 8, 7, 3). 

We can determine whether or not a graph contains a 2-factor, and find 
an example if one exists, in polynomial time as follows. If G = ( V, E) then 
we first construct a bipartite graph G' = {VW, E'). Here V' = VU V', 
I VI = I V'I and G' has the bipartition (V, V'). We shall denote the vertices 
in V by v1, v2, ••• , v,. and those in V' by vi_, v~, ... , v~. There is an edge 
(v-1, v1) e E' if and only if (vi, v1) e E. The construction is illustrated for 
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Fig. 6.22 

G = K, in figure 6.23. The second step of the algorithm is to find a 
maximum matching in the graph G'. This can be done in polynomial time, 
as described at the beginning of section 5.2. Such a matching is indicated 
by heavily scored edges in figure 6.23. We now need the following theorem. 

Fig. 6.23 

1 I' 

2 2' 
G I G' 

3 3' 

4 4' 

1beorem 6.15. G contains a 2-factor if and only if G' contains a perfect 
matching. 

Proof. Suppose that G' contains a perfect matching M. It is easy to see that 
G then contains a 2-factor which consists of every edge (v,, v1) such that 
(v,, v,> e M. Conversely, suppose that G contains a 2-factor. We can then 
construct a perfect matching in G' as follows. For each component of the 
2-factor, which must be a circuit, we define a direction. Thus every edge in 
the 2-factor becomes a directed edge. If (v,, v1) is such an edge, then 
(v,, v1) is an edge of a matching in G'. It is easy to see that this matching 
must be perfect. ■ 

If the maximum matching phase of our 2-factor algorithm finds a 
matching M, such that IMI = n, then M will be perfect. In this case, 
according to theorem 6.15, G contains a 2-factor which consists of every 
edge (v-t, v1) such that (v,, v1) e M. 
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6.4 Summary and references 
We can determine the existence of and find an Eulerian circuit of 

a graph or digraph in linear-time. This is in marked contrast to the 
situation for Hamiltonian circuits. As we shall prove in chapter 8, the 
question of whether or not a graph is Hamiltonian is NP-complete. Of the 
existence theorems of section 6.3.1, theorem 6.10 is due to Dirac.l31 Many 
others can be found in the expository accounts in chapter 10 of Berge!lll 
and chapter 6 of Beineke & Wilson/41 

Scheduling problems often involve Eulerian and Hamiltonian circuits. 
Edmonds & Johnson[IIJ provide a comprehensive treatment of postman 
problems and methods of Eulerian circuit generation. There is a great 
volume of literature associated with the travelling salesman problem. See, 
for example, the survey of Bellmore & Nemhauser.C&J The minimum­
weight matching approximation algorithm described in the text is due to 
Christofides.l'11 Although we were able to prove the effectiveness of such 
an algorithm for one class of travelling salesman problems, Sahni & 
00117.alezCBl have shown that the problem is non-approximable (unless the 
NP-complete problems have polynomial time solutions) ifwe require both 
that the salesman must visit each city precisely once and that triangle 
inequality is not satisfied. 

For general reading, Chapters 6 and 7 of Mineaka1111 are recommended. 

[l] Kuan, M-K. 'Graphic programming using odd or even points', Chinese 
Math., 1, 273-7 (1962). 

[2] Berge, C. Graphs and Hypergraphs. North-Holland (1973). 
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salesman problem', Technical kport, Graduate School of Industrial 
Administration, Carnegie-Melon University, Pittsburgh, PA (1976). 

[8] Sahni, S. & Gonzalez, T. 'P-complete approximation problems', JA.CM, 23, 
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[10) Even, S. Graph Algorithms. Computer Science Press (1979). 
[11) Liu, C. L. Elements of Discrete Mathematics, chapter 4. McGraw-Hill, 

Computer Science Series (1977). 
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EXERCISES 
6.1. In what graphs is an Eulcrian circuit also a Hamiltonian circuit? 
6.2. In 1736 (theorem 6.1) Euler solved a recreational puzzle of interest to 

the inhabitants of K6nipberg (now Kaliningrad). Kaliningrad sits 
across the river Pregel with seven bridges connecting the various banks 
and islands of the river as shown. The problem is whether or not it is 
possible to follow a circular walk starting and finishing at the same river 
bank and crossing each bridge precisely once. What is the answer? 

6.3. In 18S9 Sir William Hamilton sold. for 25 guineas, a puzzle to a Dublin 
games manufacturer. The puzzle consisted of a dodecahedron (a 
regular solid figure with 12 pentagonal faces and hence 20 corners) and 
on each corner was marked the name of some capital city. One game 
that could be played was to construct a world tour. This consisted of a 
circuit, following the edges of the dodecahedron, which visited every 
capital city exactly once. Trace such a Hamiltonian circuit on the 
projection of the dodecahedron below. 

6.4. A tournament is a digraph in which there is precisely one directed edge 
between any pair of vertices. Suppose that n people play in a singles 
tennis competition, each player meeting each of the other (n-1) 
competitors just once. Clearly, a tournament is a representation of the 
competition results in which the edge (i,/) implies that competitor i 
beat competitor;. Show that the competitors can always be ordered so 
that any competitor is immediately above a competitor he has beaten 
{see theorem 6.8). In general how quickly can such an ordering be 
found? 
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Suppose that for an edge (i,j) there also exists a path from j to i. 
Comment upon the sensibility of ranking the players now in the way 
described. 

6.5. Using the proof of theorem 6.1 as a basis, carefully describe the details 
of an algorithm of O(IE I) complexity which finds an Eulerian circuit of 
an undirected Eulerian graph. 

6.6. Determine the complexity of the algorithm described in section 6.3.2 
to find all the Hamiltonian tours of a graph. Hence justify the claim that 
it is inefficient. 

6.1. G = (V, E) is a bipartite graph with bipartition (Y', Y1, where 
I Y'I '# I Y"I• Show that there always exists a proper subset of vertices W 
such that: 

C(G-W)> W 

where C(G-W) is the number of components of (G-W). Therefore, 
in view of theorem 6.11, G cannot be Hamiltonian. 

6.8. (a) Show that the Petersen graph offigure 6.14 is not Hamiltonian. The 
amount of computation required to find all the Hamiltonian circuits 
of a graph with ten vertices using the usual algorithms will be large, 
so use ad hoe arguments. 

(b) Demonstrate that the removal of any vertex from the Petersen 
graph yields a Hamiltonian graph. (The Petersen grapl:). is the only 
non-Hamiltonian graph with ten or less vertices with this property.) 

6.9. Show that every 3-regular graph without cut-edges, contains a 2-factor 
(see exercise 5.6). Notice (exercise 6.8(a)) that not every such graph is 
Hamiltonian. 

6.10. The Chinese postman problem for both non-Eulerian graphs and non­
Eulerian digraphs has, as indicated in the text, an efficient solution. 
Obtain polynomial bounds, which are as tight as you can make them, for 
the execution times of the algorithms described. 

6.11. The following problem may appear in a number of guises. In essence it 
amounts to finding a longest circular sequence of characters (from an 
alphabet of m characters I,., /1, ••• , /,,.) that can be formed without 
repeating a subsequence of n characters. Such a sequence is called a 
de Bruijn sequence and for m = 2 the problem is called the teleprinters 
problem. Since there are m" distinct subsequences, then the required 
sequence cannot be more than m" characters long. Does a sequence of 
this length exist and if so, how can it be constructed? The problem can 
be solved using a graph in which each edge is labelled with one of the 
n-character subsequences; if one edge follows another on some path of 
the graph then the construction is such that their labels are of possible 
contiguous subsequences in the required circular sequence. For 
example, if we denote a particular (n-1) sequence of characters by a; 

and if l,a. labels an edge into some vertex, then those edges labelled 
a;/,., a;I., •.• ,a.I.will leave that vertex. In the diagram below, (a) shows 
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the general attachment of edges to any vertex which is naturally 
labelled ex; (b) shows the whole graph for n = m = 3. 

(a) Show that for all n and m the graph constructed according to the 
above rules is Eulerian. Moreover, show that an Eulerian circuit can 
be used to construct a circular sequence of length m" in which no 
subsequence of length n is repeated by taking in turn the first letter of 
each edge label on the circuit. (Such a sequence for (b) in the above 
diagram is 201200011122202212110100210.) 
(b) A metal disc, mounted on an axle, has its circumference divided 
into 256 equal segments. An electric current supplied via the axle will 
conduct radially through the disc to a contact which touches one of the 
circumferential segments. Some ofthC!Segments are, however, insulated. 
If a contact is fixed and the disc rahltes then in some positions the 
contact will detect a current whilst in others it will not. Show that a set 
of eight contacts set adjacently along the circumference of the disc can 
just provide sufficient information to determine the orientation of the 
disc. This of course presupposes a suitable ordering of insulated and 
conducting segments. This problem has been of practical interest in 
telecommunications. 
(c) In terms of m and n, how quickly can you find a de Bruijn sequence? 

6.12. A major computer complex has a number of operational modes for 
different production work. The cost in machine down time in converting 
from one mode of operation i to another/ is denoted by T(i,1). In 
general we note that T(i,J) ,:/:- TU, i). In planning a week's work schedule 
the operations manager notes that his installation needs to operate in 
each of N modes once only. He also notes that in order to minimise the 
total machine down time he needs to find a quickest Hamiltonian path 
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in a digraph G whose vertices are the operational modes and whose 
edges have execution times T(i,J). In order to find an approximation to 
such a path he adopts the following sequence of heuristics: 
(a) He removes from G, for each pair of modes i and}, the most time­
costly edge of either (i,J) or U, i). The resultant graph G' still contains a 
Hamiltonian path. Why? Show by example that a quickest Hamiltonian 
path in G' may be slower than a quickest Hamiltonian path in G. 
(b) He determines the strongly connected components of G': Ci.C1, ••• , 

C1• Show thatthereisanorderingofthesecomponents: c,1, c,., ... , c,,, 
such that there is an edge directed from every vertex of c,. to every 
vertex of C1c provided that s > t. These are the only edges connecting the 
components. 
(c) He notes that each Hamiltonian path of G' must consist of a 
Hamiltonian path of c,1 followed by a Hamiltonian path of C", and so 
on. Justify his claim that if G' contains a number of strongly connected 
components then the number of Hamiltonian paths in G' will in general 
be considerably smaller than the number in G. Hence a quickest path 
in G' can then be determined in much shorter time than a quickest 
path in G. 

In terms of both complexity and approximation, would you generally 
recommend employing these heuristics? 
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Colouring graphs 

Our concern in this chapter is to partition or colour the vertices, edges or 
faces of a graph in a way dependent upon their various adjacencies. Many 
problems motivate these considerations, not the least of which concern 
scheduling and timetabling. Historically, the four-colour problem of planar 
maps also led to many inquiries in this area. We take a look at this 
problem at the end of the chapter. As we shall see, questions of par­
titioning and colouring are frequently intractable. 

7.1 Dominating sets, independence and cliques 
Board games provide ready illustrations of domination and of 

independence. For example an 8 x 8 chessboard can be represented by a 
graph with 64 vertices. An edge (u, v) might imply that similar chess pieces 
placed at the squares corresponding to u and to v would challenge one 
another. Any vertex adjacent to the vertex v is said to be dominated by v 
whilst any other vertex is independent of t1 _ 

For any graph a subset of its vertices is an independent set if no two 
vertices in the subset are adjacent. An independent set is maximal if any 
vertex not in the set is dominated by at least one vertex in it. The 
independence number, l(G), of a graph G is the cardinality of the largest 
independent set. 

A subset of the vertices of a graph is a dominating set if every vertex not 
in the subset is adjacent to at least one vertex in the subset. A minimal 
dominating set contains no proper subset that is also a dominating set. 
The domination number, D( G), of a graph G is the cardinality of the smallest 
dominating set. 

Consider again the graphical representation of a chessboard. The 
problem of placing eight queens on the board so that no queen challenges 
another, is precisely the problem of finding a maximal independent set for 
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the graph which contains the edges (u, v) where u and v are vertices corre­
sponding to squares in the same row or the same column or the same 
diagonal. There are, in fact, 92 such maximal independent sets ( one is 
shown in figure 7.1 (a)) and, of course, l(G) = 8. Another problem asks 
what is the minimum number of queens that can be placed on a standard 
chessboard such that each square is dominated by at least one queen. This 
problem is equivalent to finding D(G) for the graph of the first problem. 
Figure 7.l(b) shows a minimal dominating set of smallest cardinality and 
so D(G) = 5. 

Fig. 7.1 

(a) • (b) 
• 

• • 
• • 

• • 
• • 

• • 
• 

The following elementary theorem provides a relationship between 
I(G) and D(G): 

1beorem 7.1. An independent set is alS'O a dominating set if and only if 
it is maximal. Thus I(G) ~ D(G). 

Proof. This follows directly from the definitions. Any vertex that is not in 
a maximal independent set is dominated by at least one vertex in the set, 
hence a maximal independent set is also a dominating set. Conversely, an 
independent set that is also a dominating set has to be maximal because 
any vertex not in the set is dominated by at least one vertex in the set. ■ 

In connection with this theorem consider the following problem. A 
community wishes to establish the smallest committee to decide an issue 
which is of concern to a number of interested minority groups. Any 
individual may belong to more than one interest group and every group 
has to be represented. The community can be represented by a graph in 
which the vertices are individuals and each edge connects two individuals 
in the same interest group. What is required is an independent set (no 
interest group should be represented more than once in a smallest com­
mittee) which is also a dominating set (each group must be represented). 
The above theorem shows that such a choice is always possible. 



Dominating sets, independence and cliques 191 

We cannot present efficient algorithms to find /(G) or to find D(G) for 
an arbitrary graph G. In fact, for a positive integer K, the following 
questions are NP-complete: 

(a) does G contain an independent set of size greater than K? 
and 

(b) does G contain a dominating set of size less than K? 

This claim is specifically justified for (a) in chapter 8. Justification for (b), 
like that for (a), is easily obtained by showing that (b) is transformable 
from the problem of vertex cover which is described in chapter 8. We now 
describe algorithms to find D( G) and to find /( G). 

In order that a vertex v, is dominated we must include either v, in a 
dominating set or any of the vertices v}, v~, ... , vf<11,> which are adjacent to 
vi. We can therefore (treating addition as logical or and multiplication as 
logical and) seek a minimal sum of products for the boolean expression: 

.. 
A= IT (v,+v¼+vl+ ... +vt<"1>) 

i=l 

in order to find the minimal dominating sets. Here, of course, if any vertex 
has the value true then it is included in the dominating set, whilst if it has 
the value false then it is excluded. For example, in connection with the 
graph of figure 7.2 we have that: 

A= (a+b+d+e)(a+b+c+d)(b+c+d)(a+b+c+d+e) 

x(a+d+e+f) (e+f) 

Fig. 7.2 

1·-lSi>' 
d 

and using the identity (u+v)v = v we obtain: 

A= (a+b+d+e)(b+c+d)(e+f) 

= be+de+ec+fb+fd+fac+ace 

The seven terms in this expression respectively represent the minimal 
dominating sets {b, e}, {d, e}, {e, c}, ... , {a, c, e}. Five of these have the 
minimum cardinality of 2, so that in this case D( G) = 2. In general, the 



192 Colouring grapha 

expression (v,+vl+vi+ ... +v1<11,>) contains at least two terms, so that the 
number of' multiplications' involved in the evaluation of A exceeds 2~. 

Rather than directly enumerating the maximal independent sets of a 
graph, it is easier to enumerate the complement sets. In other words, for 
each maximal independent set I of the graph G = ( V, E), we more easily 
find its complement 1 = V-1. For every edge (u, v) of the graph, 1 must 
contain u or v or both. In order to find J(G) we must find the smallest sets 
J satisfying this condition for each edge. If we obtain a minimum sum of 
products for B, where: 

B = IT (u+v) 
(u,v)eE 

then each term will represent a minimal set /which is guaranteed to contain 
at least one end-point from each edge (u, v) e E. For example, for the 
graph of figure 7.2, we have that: 

B = (a+b) (a+d) (a+e) (b+c) (b+d) (c+d) (d+e) (e+f) 

= abce+abdf +aced+acdf + bed 
So that the graph has the maximal dominating sets: 

V-{a, b, c, e} = {d,/} 

V-{a, b, d,f} = {c, e} 

V-{a, c, e, d} = {b,/} 

V-{a, c, d,f} = {b, e} 

V-{b, e, d} = {a, c,f} 

The last set has the largest cardinality so that in this case D(G) = 3. In 
general, notice that evaluation of B requires 21E1 'multiplications'. 

We consider now the rate of cliques in relation to independence and 
dominance. A clique is any subgraph of G = (V, E) which is isomorphic 
to the complete graph~. where 1 ~ i ~ n and n = IVI• We can always 
partition the vertices of a graph into cliques. Let C(G) denote the number 
of cliques in a partition which has the smallest possible number of cliques. 

Theorem 7.2. For any graph G, l(G) ~ C(G). Also if J is an independent 
set and Pisa partition into cliques such that III = IPI then I= J(G) and 
IPI = C(G). 

Proof. By definition, no independent set I can have more than one vertex 
in any clique of a partition P, hence: 

111 ~ IPI 
Therefore: 

l(G) = max Ill ~ min IPI = C(G) 

If I II = IPI then the second result follows. ■ 
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The presence or absence of large cliques is clearly significant to the 
values of D(G) and l(G) because all the vertices in a clique are dominated 
by any one of its vertices. Intuitively there is a limit to the number of edges 
that a graph may have in order that no subgraph be a clique of specified 
size. We shall present a well-known theorem due to Turanc11 which 
provides such an upper bound. The next theorem, from which we derive 
Turan's, is a result due to Erdos.121 We first need, however, to define the 
term degree-majorised. A graph G1 is degree-majorisedby another graph G2 

if there is a one-to-one correspondence between the vertices in G1 and G2 

such that the degree of a vertex in G2 is greater than or equal to the degree 
of its corresponding vertex in G1• Also the degree sequence of a graph is 
defined to be the degrees of its vertices arranged in non-decreasing order. 

Theorem 7,3, If G is a simple graph not containing a clique of size (i + 1 ), 
then G is degree-majorised by some complete i-partite graph P. Moreover, 
if G has the same degree sequence as P then G is isomorphic to P. 

Proof. By induction on i. If i = 1 then G contains no edges and is degree­
majorised by the 1-partite graph isomorphic to it. We thus have a basis 
for our induction and now assume that the theorem is true for all i < j. 
Let G be a simple graph which contains no complete subgraph Ks+i• We 
denote by G1 a subgraph whose vertices are adjacent to a vertex u of 
maximum degree in G. Since G contains no K1+1 then G1 contains no K1 

and, therefore, by the induction hypothesis, G1 is degree-majorised by 
some complete(j-1)-partite graph P1• We denote by Vi the set of vertices 
in G1 and by Vii the set of vertices (V-VJ, where Vis the vertex-set of G. 
G2 will denote the graph with no edges but with the vertex-set Vii- Consider 
the join of G1 and G2 (that is, the graph obtained by drawing an edge from 
each vertex of G1 to each vertex of GJ \\ibich we denote by J(G1, GJ. In 
J(G1, GJ the vertices Vii have degree equal to the maximum degree of any 
vertex in G, while the vertices V1 have at least the same degree that they 
have in G. Thus G is degree-majorised by J(G1, GJ. Since G1 is degree­
majorised by some complete(j-1)-partite graph P1, then G is also degree­
majorised by the complete j-partite graph P = J(P1, GJ. This completes the 
proof of the first part of the theorem. 

Suppose that G has the same degree sequence as P. Then G1 has the same 
degree sequence as P1• By the induction hypothesis G1 is then isomorphic 
to P1• Also G must then have the same degree sequence as J(G1, GJ. It 
follows that in G each vertex in Vi must be joined to every vertex tn -r,,;;. 
Thus G is isomorphic to P. ■ 

Figure 7.3 illustrates the proof of theorem 7.3 for the graph G shown 
there. Before presenting Turan's theorem we define ½, n to be the complete 
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j-partite graph with n-vertices in which the parts are as equal in size as 
possible. For example in figure 7.3, H is 7;,, 11• In the following, E(G) 
denotes the edge-set of G. 

Fig. 7.3 

G (with G1 heavily scored) P1 (3-partite) 

C,.B, 
C1 B1 

J(G1, G1) H = J(P1, G.) (4-partite) 

Theorem 7.4 (Turan). If G is a simple graph which does contain KH1 then 
IE(G)I ~ IE(T,,")I. Also, IE(G)I = IE(T,,JI only if G is isomorphic to 

T,,,a• 
Proof. If G is a simple graph not containing KHl• then from theorem 7 .3, G 
is degree-majorised by some complete j-partite graph, P. Hence: 

IE(G)I ~ IE(P)I 

Also, as is easily verified (exercise 7.4): 

IE(P)I ~ IE(T,,JI 

and so the first part of the theorem follows. If now IE(G)I = IE(T,,JI then 
IE(G)I = IE(P)I and from theorem 7.3 G andP are isomorphic. Also, since 
IE(P) = IE(T,,JI it follows (exercise 7.4) that P and T,,,a are isomorphic. 
Hence G is isomorphic to T,,,a• ■ 

The question of determining whether or not an arbitrary graph contains 
a clique greater than a given size is NP-complete. This is not surprising 
because, as we make use of in theorem 8.5, an independent set of a graph 
G = (V, E) give rise to a clique in its complement (that is, in the graph 
(K1v1-E)). 



Colouring graphs 195 

7.2 Colouring graphs 
In this section we first investigate the problem of colouring the 

edges of a graph, G, such that no two adjacent edges are similarly coloured. 
Such a distribution of colours is called a (proper) edge-colouring of G. 
Subsequently we shall be interested in colouring the vertices of G such 
that no two adjacent vertices are similarly coloured. In this case we refer 
to a(proper) vertex-colouring of G. A graph is said to bek-edge (or vertex-) 
colourable if a proper colouring using k colours exists. 

The edge-chromatic index, tfr.(G), is the minimum number of colours 
required for ·a proper edge-colouring of G. Similarly, we define the vertex­
chromatic index, t/r"(G), to be the minimum number of colours required 
for a proper vertex-colouring of G. 

The problem of colouring the faces of (specifically planar) graphs is 
deferred until section 7.3. We conclude this section with a brief look at 
chromatic polynomials which are concerned with the number of ways in 
which a graph may be vertex-coloured. 

We shall from time to time in this section and in the next refer to the 
Kempe-chain argument. Kempe published the first, but ill-fated, proof of 
the four-colour conjecture for plane maps in 1879. The argument concerns the 
recolouring of some vertices (the argument can in fact also be applied to 
edge-recolourings) of a proper colouring so that a different, but neverthe­
less proper, colouring of the graph is produced. Consider a vertex v which 
is coloured A. This vertex plus all the others coloured A or B which are 
reachable from v by paths in the graph passing only through vertices 
coloured A or B, constitute a component of the subgraph of G which is 
induced by those vertices which are coloured A or B. We denote such a 
subgraph by H(A, B) and where appropriate we specify a component of it 
which includes v by H"(A, B). The Kempt-chain argument now proceeds 
as follows. In a proper colouring of G, those vertices in He(A, B) coloured 
A can be recoloured B, and those coloured B can be recoloured A, and 
the result is still a proper colouring. If vertex v' is a vertex in H(A, B) but 
not in H"(A, B), then v can be recoloured in this way without affecting the 
colour of v'. 

7.2.1. Edge-colouring 
An obvious lower bound for tfre(G) is the maximum degree A, of 

any vertex in G. This is, of course, because the edges meeting at any vertex 
must be differently coloured. In fact, we shall see in due course that for 
any simple graph G, the following holds: 

A :e.; tfr.(G) :e.; t:i.+l 
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This result is Vizing's theorem131 which we prove after presenting theorems 
which are specifically concerned with bipartite and with complete graphs. 

Theorem 7.5, If G is a bipartite graph then yJ..G) = A. 

Proof. By induction on the number of edges IEI. The theorem is trivially 
true for IEI = 1. We shall show that if every edge but one has been 
coloured with at most A colours, then there exists a proper colouring of G 
using A colours. 

Let (u, v) be the uncoloured edge. Since there are A colours available, 
it follows that at least one colour is absent from u and that at least one 
colour is absent from v. If the same colour is missing at both vertices, then 
(u, v) can be coloured with it. Otherwise let C1 be missing at u and let C1 

be missing at v. Of course, C1 is present at v and C1 is present at u. We 
denote by H.( Ci, CJ the component of the two-coloured subgraph 
containing u. Now u and v belong to different parts of the bipartition so 
that any path from u to v within H.(C1, CJ must have a final edge coloured 
C2• However, Ca is missing at v and so v cannot be in H.(Ci, CJ. We can 
therefore interchange the colours of the edges in H.(Ci, CJ by a Kempe­
chain argument so that C8 is absent from u as well as from v. Thus (u, v) 
can now be coloured C1• ■ 

Theorem 7.6. If G is a complete graph with n vertices, then 

ye(G) = Ii if n is even 

= li+l ifn is odd 

Fig. 7.4 

Proof. If n is odd we arrange the vertices of G in the form of a regular 
polygon. Figure 7.4 shows the case for n = 5. We colour the edges around 
the perimeter of the polygon using a new colour for each edge. The 
remaining edges are then coloured each with the same colour as the edge 
it is parallel with on the perimeter. Since no two edges are parallel at any 
vertex this must result in a proper colouring using (A+ 1) = n colours. 



Colouring graphs 197 

If G had a A-colouring then, since G has ½n(n-1) edges, there would be at 
least ¼n edges with the same colour. But in a proper colouring the 
maximum number of edges with the same colour cannot exceed the size 
of a maximum-cardinality matching which is ½(n-1). Hence G is not 
A-colourable. 

If n is even, then G can be viewed as a complete graph G' with an odd 
number of vertices plus an additional vertex connected to all the vertices 
of G'. If G' is coloured according to the process described for n odd above, 
then one colour is missing from each vertex. These colours are all different, 
so that the remaining edges of G can be coloured with the missing colours. 
Thus G, even n, can be properly coloured with the same number of colours 
as the complete graph with (n-1) vertices. ■ 

For applications of the previous two theorems see exercises 7.5 and 7.6. 
These theorems show that for specific graphs y,e(G) is equal to A or to 
(A+ 1). Vizing's theorem generalises this result. 

Theorem 7.7 (Vizing). For any simple graph G: 

A~ y,.(G) ~ A+l 

Proof. Since y,.(G);;;:: A we need only show that Y,8(G) ~ A+ 1. We prove 
this by induction on the number of edges. For one edge the theorem is 
trivially true. We therefore suppose that all the edges of G have been 
properly coloured using at most (A+ 1) colours except for the edge (v0, vJ. 
Since (A+ 1) colours are available there will be at least one colour missing 
at v0 and at least one colour missing at v1• If the same colour is missing at 
both v0 and v1 then this can be assigned to (v0, vJ. We therefore assume 
that Co is missing from v0 (but is present at vJ and that C1 is missing from 
v1 (but is present at vo). 

We proceed to construct a sequence of ed-Bes (v0, vJ, (v0, vJ, (v0, va), ... 
and a sequence of colours C1, C8, C3, ••• such that C" is missing at v, and 
such that (v0, vHJ is coloured c,. Let the sequences at some stage of the 
construction be (v0, vJ, (v0, vJ, ... , (v0, vJ and C1, C1, ••• , c,. Notice that 
there is at most one edge (v0, v) of colour c,. If such a v exists and if 
v, {v1, v2, ••• , vJ then we make vH1 be v and let CH1 be a colour missing 
at vH1, otherwise the sequence stops. Any sequence must stop with at 
most A elements. Suppose that on termination the sequences are (v0, vJ, 
(v0, vJ, ... , (v0, v1) and Ci, C8, ••• , c,. There are just two reasons why the 
sequences will have terminated: 

(i) There is no edge (v0, v) coloured c1 .We can then obtain a proper 
colouring as follows. Recolour each edge (v0, v,) for i < j with the colour 
c,. Now every edge is coloured except (v.,. v1). But c, is missing at both 
v0 and v1 and thus (v0, v1) can be coloured c,. 
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(ii) There exists some k < j for which the edge {v0, v,.) is coloured c,. 
We obtain a proper colouring as follows. First colour each edge (v0, vi) 
for i < k with the colour c,, leave {v0, vk) uncoloured so that C1 is absent 
from vk. Each component of the Kempe subgraph H( Co, C;) is either a path 
or a circuit because at any vertex there is at most one edge coloured Co 
and at most one edge coloured C1• Now at least one of C0 and c, are 
missing at each of the vertices v0, v,. and v, and so all three vertices cannot 
belong to the same component of H( C0, c,). One of two circumstances 
must therefore occur: 

(a) Vertex v0 is not in the component HtJ,JC0, C1). We then obtain a 
proper colouring as follows. Interchange the colours C0 and c, in H",.(C0,C1) 

so that C0 is now missing at v,.. Since C0 is missing at v0 we can colour 
(v0, v,.) with C0• 

(b) Vertex v0 is not in the component H,u;(C0, C1). We then obtain a 
proper colouring as follows. Recolour each edge ( v0, vi) for k ~ i < j with 
the colour c, and leave {v0, v1) uncoloured. Notice that neither C0 nor C1 
is involved in this recolouring, and therefore H( Co, C1) remains unaltered. 
Interchange the colours C0 and C1 in H";(C0, C1) making C0 absent from 
v1• But Co is absent from v0 so that {v0, v1) can be coloured C0• ■ 

The proof of Vizing's theorem essentially embodies (see exercise 7.7) 
a polynomial time algorithm to obtain a proper edge-colouring of a graph 
using at most {Ll+ 1) colours. As we shall see in chapter 8, the question of 
whether or not ifre(G) = Ll, for an arbitrary graph G, is NP-complete. Thus 
the algorithm embodied in the proof might be thought of as an approxi­
mation algorithm which derives proper edge-colourings using a minimum, 
or very nearly a minimum, number of colours. Theorem 7.7 applies 
specifically to simple graphs. A more general result (which we shall not 
prove) also due to Vizing applies to graphs without self-loops. If Mis the 
maximum number of edges joining any two vertices (M is called the 
multiplicity of the graph) of a graph, then: 

Ll ~ i/re(G) ~ Ll+M 

In fact, for any M, there exists a multi-graph such that ifre(G) = Ll+M. 

7.2.2. Vertex-colouring 
Vizing's theorem (section 7.2.1) provides tight bounds on i/re(G) 

for an arbitrary simple graph G. Unfortunately, as far as ifrt,(G) is con­
cerned, no theorem exists which gives such tight bounds based on simple 
criteria. Like ifr e( G), there is no known polynomial time algorithm to 
determine ifr t,( G) ; in fact, as we prove in chapter 8, the question of whether 
or not a graph contains a proper vertex-colouring using less than k (a 
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positive integer) colours is NP-complete. It is a simple matter to construct 
an exponential-time algorithm to find i/r,,(G), although it requires rather 
more than a casual approach to get the complexity down to 

O(IE In (1 + t'3)") 

as Lawlerl41 has described. Throughout this section we can assume that G 
is a simple graph because any multi-graph has the same i/r,,(G) as its 
underlying simple graph. The following theorem provides an obvious 
bound on ifr ,,( G). 

Theorem 7.8. Any graph G is (A+ 1)-vertex-colourable. 

Proof. By induction on n, the number of vertices. For n = 1 the theorem is 
trivially true. If we add a vertex to the graph then this additional vertex 
will be attached to at most A other vertices and so can be coloured with the 
one or more colours not used by its neighbours. ■ 

The bound provided by theorem 7.8 can be far greater than the actual 
value ofi/r,,(G). For example, if Gis planarthen(seesection 7.3) i/r,,(G) E.: 4 
whereas G may have a vertex of arbitrarily large degree. The following 
theorem, due to Brooks,1111 provides only a marginally improved bound. 

Theorem 7.9. If G is not a complete graph, is connected and has A ;;i. 3, 
then G is A-vertex-colourable. 

Proof. By induction on the number of vertices. Notice that if any vertex of 
G has degree less than A, then we could colour G with A colours by 
imitating the proof of theorem 7 .8. Without loss of generality we can then 
presume that G is regular, each vertex having degree A. Let G have n 
vertices. We remove a vertex v from G so that the remaining graph has 
(n-1) vertices and by the induction hypollesis is A-vertex-colourable. We 
suppose that all the neighbours of v are differently coloured otherwise v 
could be coloured with a colour missing from its neighbours. Let us 
denote the neighbours of v by v1, v11, ••• , vA and their colours, respectively, 
by Cj_, Ca, ..• , CA. 

We assume that any two neighbours of v, v, and v,, belong to the same 
component of the two-coloured subgraph of G, H(C,, c,). Otherwise v, 
could be coloured c, without affecting the colours of the other neighbours 
of v by a Kempe-chain argument, so freeing the colour c, for v. We now 
show that every vertex of H"'(C,, c,), apart from v, and v,, must be of 
degree 2. Starting at v, in H"'(C,, C1) we follow a path, not leaving any 
vertex by an edge along which it was approached. Suppose that we reach 
a vertex u (of degree A) which has degree greater than 2 in H"'(C,, C1). 

Then there must be at least one colour absent from the neighbours of u 
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in G which is neither c, nor C1• We can recolour u with such a missing 
colour and so cause v, and v1 to be in separate components of H(C,, C1). 

Thus v, could be coloured c, and v could then be coloured c,. 
Notice that two paths such as H"J(c,, C1) and H'rl(Gc, C1) can be pre­

sumed to intersect at v1 only. Any other point of intersection, say u, 
would have four of its neighbours utilising only two colours. Then u 
would have at least one colour absent from its neighbours apart from c,. 
Thus u could be coloured with a colour which is not c,, c1 or Ge so 
breaking the path HJ..C,, C1) from v, to v1• 

We now choose any two neighbours of v, v, and v1, which (if such a 
choice is possible) are not adjacent. Let u be the vertex adjacent to v, and 
coloured C1• We can interchange the colours in HJC,, Ck),j-:/- k, without 
affecting the colouring of the rest of the graph. However, this leads to a 
contradiction because then u would be an intersection of the paths 
H"'(C,, C1) and H"J(C,.,, c,). Therefore we cannot choose two non-adjacent 
neighbours of v. Thus v and its neighbours must be Kt..+1 (and since G is 
connected this must imply that G = K~+J· This case is specifically 
excluded and now all possible cases have been dealt with. ■ 

Given that it js unlikely that the problem of fin.ding if,'t,(G) has a 
polynomial time solution, it is natural to think in terms of approximation 
algorithms. However, this problem, like a number of others (see section 7.4), 
seems to be unapproximable. Consider, for example, the algorithm out­
lined in figure 7.5. This uses the obvious heuristic of colouring the vertices 
in turn using the colours represented by the positive integers and such that 

Fig. 7.5 

1. fori= ltondo 
begin 

2. while N.Jj] do; +-; + 1 
3. for all v e A(v,) do N.[j] +- true 
4. C(v,) +-J 

end 

a vertex is coloured by the integer oflowest value not used by its coloured 
neighbours. Such a scheme is called sequential colouring. The colour of 
vertex v, is C(v,) and the boolean array element N,Jj] is true if a 
neighbour of v, is coloured j. Initially each N,J,1 is false. As usual 
A(v,) is the adjacency list of v,, It is easy to see that the algorithm, including 
any necessary initialisation, has a complexity of O(nll). The behaviour of 
this algorithm is highly sensitive to the order in which the vertices are 



Colouring graphs 201 

coloured. For example, consider the bipartite graph G = (V, E) where V 
is partitioned into the subsets V,. = {u1, u2, ••• , u,J and~ = {v1, v2, ... , vk}, 
and where E = {(ui, v1)li # j}. It is easy to see that if the vertices are 
coloured in the order u1, u2, ••• , uk, v1, v2, ••• , vk then the graph is coloured 
using a minimum number of colours. But if the vertices are coloured in 
the order u1, v1, u2, v2, ••• , uk, vk then the algorithm uses k = ½n colours. 
Thus if, as usual with approximation algorithms, we define a performance 
ratio of C / C0 where C is the number of colours used by the algorithm and 
C0 is the optimal number, then we see that this ratio can be arbitrarily 
large. It is possible to modify the algorithm (see exercise 7.8) to produce 
an enhanced performance for many graphs. However, there are no known 
polynomial time algorithms for which the performance ratio is bound by 
a constant. The best-known performance ratio, due to Johnson161 is 
O(n/log n). In fact, there is little prospect of finding a polynomial time 
algorithm with a good performance ratio because Garey & Johnsonl'll have 
shown that if an approximation a1gorithm existed with a performance ratio 
of two or less, then it would be possible to find an optimal colouring in 
polynomial time. 

We end this section by indicating a practical application of vertex­
colouring. The example is a classic one concerned with timetables. A large 
educational institution finds itself under pressure to schedule classes so 
that they can all fall within acceptable teaching hours. The restricting 
factor is that many classes cannot be scheduled at the same time because 
they have to be attended by the same students. How can the desigpers of 
the timetable be certain that the scheduled lectures have been compressed 
into the shortest possible time? One solution is to represent the lectures as 
the vertices of a graph in which the edges .connect vertices corresponding 
to lectures which cannot be scheduled nt the same time. The vertex­
chromatic index of this graph then represents the smallest timespan 
within which the lectures can be scheduled. 

7.2.3. Chromatic polynomials 
The idea of chromatic polynomials was introduced by Birkhoff.181 

By PiG) we denote the number of ways of properly vertex-colouring the 
graph G with k colours. As we shall see, PiG) is a polynomial ink. PiG) 
is therefore referred to as the chromatic polynomial of G. Two simple 
examples are provided by the graphs of figure 7.6. 

For G1 we can colour the vertex of degree 3 first in k different ways. The 
remaining vertices can then each be coloured in (k - I) ways. It is easy to 
see that for any tree with n vertices, T,., we have PiT.J = k(k- l)n-1• 

Colouring the vertices of G2 in turn provides a choice of k colours for the 
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first, (k-1) for the second and (k-2) for the third. In general, for any 
complete graph K,,,, we have P,ik,J = k!/(k-n)! Note also that the 
graph with n vertices and no edges, ,f,,,,, has P..(,f,J = k"'. Fork < if,,,(G), 
P,lG) = 0 and the reader may check that this condition holds for the 
examples used so far. 

Fig. 7.6 

G1 G, 

P,i.G1) = k(k-1)3 PJ.G1) = k(k-l)(k-2) 

It is not necessarily an easy matter to derive P,i G) for an arbitrary 
graph. A useful device which provides a systematic derivation is the 
recursion formula of the next theorem. 

Theorem 7.10. Let u and v be adjacent vertices in the graph G, then 

P,iG) = Pk(G-(u, v))-PiG o (u, v)) 

where G-(u, v) is derived from G by deleting the edge (u, v) and Go (u, v) 
is obtained from G by contracting the edge (u, v). 

Proof. Because u is adjacent to v, P,iG) consists of a count of colourings 
in which u is differently coloured from v. Thus all the colourings counted 
in P,iG) are also counteo in P,iG-(u, v)). However, PiG-(u, v)) 
includes, in addition, the number of colourings in which u and v are 
identically coloured, this number is specifically PiG o (u, v)) and so the 
result follows. ■ 

Repeated application of the recursion formula of this theorem will 
eventually express Pi G) as a linear combination of chromatic polynomials 
of graphs with no edges. We noted earlier that Pi,f,J = k"' and so P.,(G) 
will be a polynomial in k. What is more, if G has n vertices, then Pk(,f,,J 
only appears once in the afore-mentioned linear combination. Thus 
Pk(G) is of degree n and the coefficient of k"' is one. It is also not difficult 
to see that the coefficient of kn-1 is (-!El). This follows from the obser­
vation that removing an edge from G at each stage of a recursive evaluation 
of Pk(G) spawns a negative term which ultimately leads to a contribution to 
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Pk(G) from 'Pn-i· We also note that the coefficient of k!' in Pt(G) must be 
zero, because if k = 0 then we must have Pt(G) = 0. 

The formula of theorem 7 .10 may also be applied in the following form: 

Pt(G) = Pk(G+(u, v))+Pk((G+(u, v)) o (u, v)) 

Fig. 7.7 

PJ..GJ = □ = LI - ~ 
= (:J - _J) - (_j -1) 

= ( (: I - . I) - (. I - I)) - ( (-1 - I) - ( : - • ) ) 

=(((: :-.-.)-(.·.-:))-((.·.-:)-(:-•))) 
- ( ( (:. - : ) - (: - . ) ) - (: - . ) ) 

= (: :) -4 (. • .) +6 (:) -3 ( ·) 

= PJ..q,J-4P.,.(,>8)+6PJ...r>.i)-3P-J..q,1) 

= k(k-l)(k1-3k+3) 

P,.(GJ=~=-$+w 

=(@+w)+(~+v) 

=@+3~+2v 

= PJ..Ki)+3P,.(~)+2P,.(K1) 

= k(k- l)(k-2)(k1 -4k+S) 

Recursive evaluation of P,iG) using this form will eventually express 
Pk(G) as a linear combination of chromatic polynomials of complete 
graphs. If G has a large number of edges then this mode of solution will 
evaluate Pt(G) more quickly than the former method. In figure 7.7 ·we 
illustrate the two methods of evaluating Pt(G). Obvious convenience is 
made of representing the chromatic polynomial of a graph by the graph 
itself. Also, whenever more than one edge arises between two vertices only 
one edge is retained. Obviously, 1f,'v(G) is the smallest value of k for which 
Pk(G) > 0. Thus v,,,,(Ga) = 2 and v,,,,(GJ = 3. 
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The original motivation for studying chromatic polynomials was to seek 
a solution to the four-colour problem of planar maps. In terms of chro­
matic polynomials the four-colour conjecture (see section 7.3) would be 
proven true if for any planar graph (which is the dual (see section 3.3.1) 
ofany planar map) G: 

-&(G) > 0 

In the event such a method of solution has not been found. 
It is unlikely that Pt( G) can be found in polynomial time because this 

would imply that an efficient determination of tfr ,,,( G) existed. This in tum 
would provide an efficient solution to any other NP-complete problem. 

7.3 Face-colourings of embedded graphs 
This section is largely concerned with planar graphs and the four­

colour conjecture which was eventually proved correct by Appel & Haken. 
The conjecture that four colours are sufficient to colour the regions of a 
plane map (that is, the faces of a graph embedded in the plane) so that 
bordering regions (adjacent faces) are differently coloured became perhaps 
the best-known unsolved problem in mathematics. It became so because it 
withstood the onslaught of many mathematicians for over 120 years. 

Although our concern is specifically with planar embeddings, we note 
in passing that for maps of genus g ;;i: 1 Heawood1101 has shown that the 
following numbers of colours are sufficient: 

Proof of this formula does not unfortunately carry over for g = 0. Also, 
Heawood unwittingly presumed the necessity for this number of colours 
but proof of this was not obtained until Ringel & Y oungsllll published 
their work. For a discussion of this see chapter 3 of Beineke & Wilson.1111 

In section 7.3.2 we indicate the lines along which Appel & Haken 
eventually provided a proof of the four-colour conjecture. Because of the 
complexity of their work it is not possible to provide a detailed description. 
Fortunately, we can easily show that five colours are sufficient to provide 
a proper face-colouring for any planar graph. This we do in the following 
section. 

7.3.1. The five-colour theorem 
Kempel131 published what seems to have been the first attempted 

proof of the four-colour conjecture. Although Kempe's work contained 
a flaw which HeawoodllOJ pointed out, it contained a valuable contribution 
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which formed the basis of many later attempts to solve the problem 
including Appel & Haken's successful attempt. Kempe marshalled the 
following ideas: 

(a) As we described at the end of section 3.3, showing that 1"J..G) ~ 4 
for any simple planar graph is equivalent to proving the four-colour 
conjecture. 

(b) In colouring the vertices of a simple planar graph it is sufficient to 
consider plane triangulations only. A plane triangulation is obtained from 
an embedding of any planar graph G by adding edges so as to divide each 
non-triangular face into triangles. Figure 7.8 shows the addition of 
( dashed) edges to form a plane triangulation. Clearly, any planar em­
bedding G is a subgraph of some plane triangulation T, so that a proper 
vertex-colouring of Twill be a proper vertex-colouring of G. 

Fig. 7.8 

(c) As we proved for corollary 3.3, every planar graph contains at least 
one vertex of degree at most 5. Hence, any plane triangulation contains one 
of the configurations (subgraphs) illustrau.d in figure 7.9. Notice that a 
plane triangulation cannot contain a verta of degree 1. 

Fig. 7.9 

b 

d 
(ii) (iii) (iv) 
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(d) Kempe-chain arguments. This style of reasoning was described at 
the beginning of section 7.2. 

Kempe's attempt at a proof of the four-colour conjecture used induction 
on the number of vertices of a plane triangulation. For n E. 4 the con­
jecture is clearly true. Suppose that n > 4. The plane triangulation will 
contain one of the configurations of figure 7.9. If v is removed from the 
triangulation, T, then the remaining graph is 4-vertex-colourable by the 
induction hypothesis. Given such a colouring then we are required to 
replace and colour V without the use of an additional colour. For con­
figurations (i) and (ii) of figure 7.9 this can be done trivially by assigning 
to v a colour not utilised at a, b or c. We presume then that T does not 
contain the configurations (i) and (ii). Consequently it contains (iii) 
or/and (iv). 

Kempe used the following argument to deal with configuration (iii). We 
presume that the vertices a, b, c and dare all differently coloured, otherwise 
v could be replaced and coloured with an unused colour. Let a, b, c and d 
be then coloured c;, C., Ca and C4• It cannot be the case that vertices a 
and c belong to the same component of H(C1, CJ and at the same time 
vertices band d belong to the same component of H(C,., CJ. Clearly, such 
a supposition would lead to these components of H(C1, CJ and H(C1, CJ 
having at least one vertex, u, in common. The colour of u cannot be 
(C1 or Ca) and (C1 or CJ. Without loss of generality, we may assume that 
a is not in the same component of H(Ci, CJ as c and hence, by a Kempe­
chain argument, vertex a may be coloured Ca without affecting the colours 
of b~ c and d. This makes the colour of C1 available for v. 

Unfortunately, Kempe's treatment of the configuration (iv) offigure 7.9 
contained an error. His argument relied upon two simultaneous colour 
changes which, as Heawood showed, can cause two adjacent vertices to 
become similarly coloured. Nevertheless, Heawood was able to salvage 
the following result as the five-colour theorem. 

Theorem 7.11. Every planar map is 5-face-colourable. 

Proof. This exactly parallels Kempe's attempted proof of the four-colour 
conjecture. For the first three configurations offigure 7.9, v can be replaced 
and coloured with a colour not used at a, b, c or d. As far as configuration 
(iv) is concerned the only non-trivial case occurs when the neighbours of v 
are all differently coloured. In a manner exactly like Kempe's treatment of 
configuration (iii), we can recolour one of these vertices and in the process 
make a colour available for v. ■ 

The proof of theorem 7.11 embodies a polynomial time algorithm to 
five-colour the vertices of a planar graph. It is an <:asy matter ( exercise 7 .11) 
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to describe an O(n8) implementation. However, it is possible (see, for 
example, Chiba et al.r.u.T) to describe a linear-ti;me implementation of 
five-colouring. 

7.3.2. The four-colour theorem 
As we stated earlier, the basis of Appel & Haken's proof of the four­

colour conjecture (which we can now properly call the four-colour 
theorem) can be traced back to Kempe's attempt After Kempe many other 
researchers also contributed in the direction of this successful proof. Of 
course Appel & Haken's achievement was a major one and involved a 
great extension both qualitatively and quantitatively from this simple base. 

In a text of this kind it is not appropriate, let alone possible, to elucidate 
every detail of a proof which in one area made massive use of computer 
time and which in another involved a long period of trial and error and of 
insight gained from the results and performances of computer programs. 
However, what we can do is to outline the deceptively simple concepts 
behind the proof and then hopefully try to give some idea of the technical 
difficulties involved in pursuing them. 

The object of the proof was to show, like Kempe's attempt, that every 
plane triangulation has a 4-vertex-colouring. The two essential concepts 
behind the proof are those of unavoidable sets and reducible configurations. 
Before defining these we need to explain what is meant by a configuration. 
A configuration consists of part of a plane triangulation contained within 
a circuit. This circuit is called the ring bounding the configuration and the 
number of vertices in the circuit is called the ring-size of the configuration. 
Figure 7.9 shows some configurations with respective ring-sizes of 2, 3, 
4 and 5. 

An unavoidable set is a set of configulfltions such that every plane 
triangulation must contain at least one of the configurations in the set. 
Thus figure 7.9 provides one example of an unavoidable set. 

A configuration is said to be reducible if it cannot be contained in a 
triangulation which would be a smallest counterexample to the four­
colour conjecture. For example, we saw in section 7.3.1 that a counter­
example would not include configurations (i), (ii), and (iit) of figure 7.9. 
If Kempe had been able to show that configuration (iv) of that diagram 
was also reducible then his proof would have been complete. 

The starkest description of Appel & Haken's proof is that they were 
able to find an unavoidable set of reducible configurations. This descrip­
tion, however, belies the fact that the proof required a great deal of effort 
and ingenuity in order to avoid intractable computation. It would be 
incorrect to presume that their task was simply divided into two parts, 
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that of finding an unavoidable set and that of proving that every con­
figuration in the set was reducible. In fact, both parts were made to play 
a strongly interdependent r6le in the development of the final set of 
reducible configurations. 

The search for alternative unavoidable sets has a long history. In 1904 
Weinicke published the unavoidable set shown in figure 7.10. Others were 
published by Franklin in 1922 and Lebesque in 1940. Appel & Haken's 

Fig. 7.10 

method for proving that a set of configurations is unavoidable was a 
development of the so-called method of discharging presented by Heesch 
in 1969. The principle behind this method is as follows. Each vertex is 
assigned a number (6- i) where i is the degree of the vertex. This number 
is called the charge on the vertex.. For. any plane triangulation we have 
from corollary 3.3 that: 

~ (6-i) n(i) = 12 
i 

where n(i) is the number of vertices with degree i. Hence the total charge 
for any plane triangulation must be 12. Given a set of configurations, S, 
we suppose that there exists a triangulation, T, not containing any con­
figuration in S. If we can redistribute the charge in T (without creating or 
destroying charge) such that no vertex ends up with a positive charge then 
we have a contradiction. The total charge must be positive and so the 
assumption that Sis not an unavoidable set is proved false. The difficulty, 
in general, is how to redistribute the charge. We can demonstrate the kind 
of technique with a rather simple example. 

We shall show that Wernicke's set of configurations shown in figure 7 .10 
in unavoidable. T is then a plane triangulation with no vertices of degree 2, 
3 or 4 and no vertex of degree 5 adjacent to a vertex of degree 6 or less. 
Notice that only vertices of degree 5 are positively charged (with one unit) 
in the :first instance. We now allow each vertex of degree 5 to discharge 
one-fifth of a unit of charge to each of its neighbours. In this way every 
vertex ends up with a non-positive charge, because any vertex with 
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degree i ( ~ 7) will have at most ~ ½i neighbours of degree 5. Thus we have 
a contradiction of the type described earlier. 

As a result of using a particular discharging procedure Heesch thought 
that the four-colour problem could be reduced to considering a finite set 
of configurations. In fact, he explicitly exhibited a set of ~ 8900 con­
figurations. The ring-size (up to 18) of some of these was too large for 
them to be tested for reducibility in a practical length of time. Heesch also 
observed that in investigating the reducibility of some configurations, 
certain features (so-called reduction obstacles) appeared to prevent 
reduction. Appel & Haken's task was to find a set of configurations with 
manageable ring-size (in the event 14 was the largest) and which avoided 
the reduction obstacles. 

The study of reducibility, like that of unavoidable sets, has a long 
history. Birkhoff wrote an important paper in 1913 in which, amongst 
other things, he proved that the so-called Birkhoff diamond (figure 7.11 (a)) 

Fig. 7.11 
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is reducible. Thousands of reducible configurations are now known 
following the interest of many mathematicians. The sort of method used 
by Heesch (which is a refinement of Birkhoff's) can be briefly described as 
follows. The object is to show that a four-colouring of a plane triangu­
lation T, not containing, a particular configuration, C, can be extended to 
include the configuration. Any colouring of T, for this purpose, can be 
represented by the way it distributes the available four colours amongst 
the vertices in the ring bounding the configuration C. A list of all possible 
permutations of the colours on the ring is constructed. Several of these 
permutations allow a colouring of the configuration immediately and can 
therefore be removed from the list of permutations to be considered. Next, 
Kempe-chain arguments can be applied to the remaining permutations 
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and this converts some of them into permutations that have already 
been discarded and so they can be discarded as well. Configurations that 
can be entirely dealt with in this way are called D-reducible. If the con­
figuration can be dealt with by considering a subset of permutations, in 
fact a subset corresponding to replacing C with a smaller configuration, 
then the original configuration is called C-reducible. An example for the 
Birkhoff diamond is shown in figure 7.11 (b) where, as required, the rest of 
the graph would be left intact. Appel & Haken's computer programs 
utilised these methods, abandoning particular configurations when proof 
of reducibility proved too lengthy, at the expense of introducing one or 
more further configurations. 

Eventually, an unavoidable set of approximately 1500 reducible con­
figurations was constructed. This was achieved after a long period of trial 
and error, involving much empirical adjustment to a complicated dis­
charging algorithm depending on the interplay between the developing 
unavoidable set and the discharging procedure. Appel & Haken developed 
such a strong intuitive sense for what was likely to be successful that they 
were eventually able to enact the discharging process by hand and so 
construct the final unavoidable set without the use of the computer. Appel 
is on record as estimating that it would take about 300 hours on a large 
computer to check all the details of their proof, many of the difficulties of 
which we have skated over in this brief description. The final unavoidable 
set used in the proof is illustrated in [17). 

Appel & Haken's proof of the four-colour theorem could not have been 
achieved without the computer. Unfortunately, the sheer effort and time 
required to check every detail mitigate against wide verification by many 
other mathematicians. No doubt there will be a continuing effort to seek 
alternative and shorter proofs of the theorem. 

7.4 Summary and references 
As we shall confirm in chapter 8, many graph colouring problems 

are NP-complete. The problem of vertex-colouring is particularly in­
transigent because, as we saw in section 7 .2.2, it seems that we cannot even 
find a useful approximation to t/r,,,(G) in polynomial time. The problem of 
finding the independence number of a graph is similarly non-approximable 
(Garey & Johnson,171 see also exercises 7.10 and 8.15). 

Practical applications of the material of this chapter can be found in 
exercises that follow as well as in the chapter. 

For further general reading see chapters 12-15 of Berge,c191 chapter 12 
of Harary,cao1 chapter 4 of Busacker & SaatyC111 and chapters 6-8 of 
Bondy & Murty.ll81 
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The book by Orellll provides a fund of background infortnation on the 
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EXERCISES 
7.1. Show that any graph with n vertices and at least r¼n'l edges contains a 

triangle. 
(Use theorem 7.4.) 

7 .2. In a group of eight people one person knows three others, two know­
four others, three know six others, while the remaining two each 
know two others. Show that there must be a group of three mutual 
acquaintances. 
(Use theorem 7.4.) 

7.3. A national radio service transmits to a population residing in townships 
distributed throughout the country. Each town is within radio trans­
mission distance of at least one other. If radio transmitters are to be 
located in the towns, the problem of economically siting them is one of 
finding a minimal dominating set. For purposes of reliability, however, 
the engineers wish to have two sets of transmitters, each set being 
operated as a unit. If one unit breaks down, then the whole population 
is still to be serviced by the second unit. Show that this can be done 
within the constraint that no two transmitters are located in any one 
township and that it may not be necessary to have a transmitter in 
every town. 
(The problem is equivalent to showing that in every connected graph 
there are two disjoint minimal dominating sets. If V is the vertex-set 
and X is a minimal dominating set, show that ( V - X) is a (not neces­
sarily minimal) dominating set.) 

1.4. Pisa complete m-partite graph with n vertices. r ..... is the complete 
m-partite graph with n vertices in which the numbers of vertices in each 
part are as equal as possible. Show that: 

IE(P)I ~ IE(T.,.,.)I 
and that if equality holds then P and T,.,,. are isomorphic. (The number 
of vertices in any part of T 111, 11 differs by no more than one from the 
number in any other part. This is not true for P if T.,., n and Pare not 
isomorphic. Show then that IE(P)I < IE(T.,.,JI.) 

1.S. A Latin square is an N x N matrix in which the entries are integers in the 
range 1-N. No entry appears more than once in any row or any 
column. Justify the following construction of a Latin square, T. 

Form a complete bipartite graph G, each part having N vertices. 
Properly edge-colour G (note theorem 7.S) using a minimum number of 
colours. In such a colouring associate the edge-colours of G = (V, E) 
with the column indices of T and associate the indices of the vertices in 
one part of G (let these be V1 and let V1 = V- VJ with the row indices 
of T. Then T(i,j) is assigned the index ofthe vertex we arrive at in V1 by 
following the edge coloured j from the ith vertex in V1• 

7.6. There are 2N contestants in a chess tournament. No contestant plays 
more than one match in a day and must, in the course of the tournament, 
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play every other player. Justify the following scheme to complete the 
tournament in (2N-1) days. 

Properly colour the edges (note theorem 7.(i) of the complete graph 
Ku using a minimum number of colours. Label the colours 1-(2N-1). 
Let the vertices of Ku represent the players. On the ith day those 
players connected by edges coloured i are drawn together. 

7.7. Describe. in a style similar to that used for algorithmic description 
throughout this text, a polynomial time algorithm to properly edge­
colour a graph using at most (note the proof of theorem 7.7) a+ 1 
colours, where A is the maximum degree of any vertex of the graph. 
Make the ipplementation as efficient as you can. 

7.8. Modify the sequential colouring algorithm of figure 7.5 so that it 
interchanges two colours C, and C1 in any two-coloured subgraph of the 
coloured portion of the graph if doing so will avoid the use of a new 
colour for the next vertex 111: to be coloured. This will be the case if each 
neighbour of 111: which is coloured C, does not belong to a same com­
ponent of the Kempe subgraph H(C,, C1) as any neighbour of 1111 which 
is coloured C1• 

(a) Show that the modified algorithm will produce a proper two­
colouring for any bipartite graph irrespective of the order in which 
vertices ·are coloured. 
(b) Show that the modified algorithm can utilise, for particular 
colouring sequences, up to k colours for graphs G' = (V', E') where 
V'= {u,,11,,w,ll E. iE; k}, E'= {(u,,111),(u,,w1),(11,, w1)1i#J} and k > 3. 
Notice that tJ.G') = 3 and hence, as for the unmodified algorithm, the 
performance ratio can be arbitrarily large. 

1.9. Pror,e the following lemma due to Isaadll1 

G = ( V, E) is a 3-regular graph with a proper 3-edge-colouring. V' is 
any subset of vertices and E' is the set of edges connecting vertices in V' 
to vertices in ( V- V'). H the number ot ledges coloured i in E' is K,, 
i = 1, 2, 3, then the K, are either all evel'1 or are all odd. 
(Consider the components of H(C,, C1) all of which are circuits.) 

7.10. Show (by example) that the following algorithm to find an approxi­
mation I to a maximum independent set /0 has an arbitrarily large 
performance ratio (llol/lII). 

1. ]+-{21 

2. fori= ltondo 
3. 
4. 

H 11, is not adjacent to any r, e I 
then I +-1 u {11,} 

Demonstrate that the performance of the algorithm is highly sensitive 
to the order in which the vertices arc labelled. 

7.11. Use the proof of the five-colour theorem, theorem 7.11, to construct a 
polynomial time algorithm to properly 5-vertex-colour any planar 
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graph. The complexity of your algorithm will probably be quadratic, 
however note the paper of Chiba et al.P•i 

7.12. (a) Show that a planar graph G has a 2-face-colouring if and only if 
GisEulerian. 

(Show that the dual of G is bipartite and that any bipartite graph has an 
Eulerian dual.) 
(b) Show that every planar Hamiltonian graph has a 4-face-colouring. 

(Any Hamiltonian circuit divides the plane into two regions. 
Consider using two colours for the faces in either region.) 

7.13. N committee members sit at a round table. K different organisations 
have representatives on the committee. How many ways can the 
members be seated subject to the constraint that each organisation has 
a varying membership of at least one representative and when it has 
more than one then no two of them may sit next to each other? 
(The answer is provided by the chromatic polynomial of the circuit of 
length n, C,.: 

Pi(_C,.) = (k-1)"+(-l)"(k-1)) 

7.14. Show that the following two statements are equivalent: 
(a) Every simple planar graph is 4-face-colourable. 
(b) Every simple 3-regular, 2-edge-connected planar graph is 3-edge· 

colourable. 
(Show that (a) implies (b) as follows. I.et G be a simple cubic, 2-edge­
connected planar graph. According to (a) it has a 4-face-colouring, let 
such a colouring use the colours A, B, C and D. Assign the colours a, 
P and 'Y to the edges as follows: 
a if the edge separates faces coloured (A and B) or ( C and D) 
p if the edge separates faces coloured (A and C) or (B and D) 
'Y if the edge separates faces coloured (A and D) or (B and C) 
This is easily seen to be a proper 3-edge-colouring of G. 

Show that (b) implies (a) as follows. An equivalent statement to (a) 
is that any plane triangulation is 4-vertex-colourable. But any simple 
planar graph with triangular faces is the dual of some cubic, 2-edge­
connected graph. We need. therefore, only show that (b) implies that 
any cubic, 2-edge-connected graph is 4-face-colourable. I.et G be such 
a graph with a 3-cdge-colouring using colours a, P and -y. The two­
coloured subgraph H(a, P) of G is 2-regular and so (see 7.12(a)) has a 
2-face-colouring using colours a and b, say. Similarly, H(a., r) has a 
2-face-colouring using colours c and d. Each face of G lies within a face 
of H(a, P) and a face of H(a, r) and can therefore be assigned a pair of 
indices, namely (a orb) and (b or d). In fact, each face of G is an inter­
section of a face of H(a, P)andafaceof H(a, r)sothatanytwoadjacent 
faces of G differ in at least one index. Thus the following assignments 
provide a proper 4-face-colouring using colours 1, 2, 3 and 4. 

1 = (a, c), 2 = (a, d), 3 = (b, c), 4 = (b, d)). 
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A proper 3-edge-colouring of a cubic graph is ca11ed a Tait colouring. 
In 1880 Tait gave a proof of the four-colour conjecture for planar maps 
on the assumption that e:very cubic 2-edge-connected planar graph is 
Hamiltonian. However, in 1946 Tutte showed that this was an invalid 
assumption by constructing the non-Hamiltonian cubic 3-connected 
graph shown below. 

The Tutte graph 
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Graph problems and intractability 

In this chapter we provide a formal framework for the concept of 
algorithmic efficiency used in previous chapters. 

We re-emphasise the difference between those algorithms Whose 
execution times are bounded by a polynomial in the problem size and 
those which are not. Furthermore we introduce a broad class of problems, 
the so-called NP-complete problems, which are widely believed to be 
inherently intractable. This belief is largely based on the circumstantial 
evidence that, despite the expenditure of much effort in the search for 
efficient algorithms, not one is known for any member of this class. 
Moreover, if such an algorithm was known for any one of these problems, 
then such an algorithm would exist for any one of the others. 

We shall see that every problem, for which we were unable to provide 
an efficient solution earlier, is NP-complete: 

8.1 Introduction to NP-completeness 
Previously we have found it unnecessary to have a formal definition 

of the concept of an algorithm. Any algorithm we introduced consisted of 
a set of informally expressed instructions. In every case this description 
could easily be embodied in a computer program. We shall have a need 
later to be more precise, taking the definition of an algorithm to be that 
embodied in Church's thesis that there is an algorithm to solve a particular 
problem if and only if it can be solved by a Turing machine which halts for 
every input. Turing machines provide a model of computation which we 
describe shortly. The usefulness of this model lies within its simplicity 
which greatly facilitates theorising about algorithms. A number of other 
formal models are commonly used to prove complexity theorems, some of 
these (unlike the Turing machine) are random access machines and are 
therefore fairly realistic. All these models are equivalent with respect to 
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polynomial time complexity, each able to simulate a computation on the 
other at (low order) polynomial time cost. See, for example, chapter 1 of 
Aho, Hopcroft & Ullman.181 This allows the viewpoint that those problems 
which we have •shown' to have efficient algorithms in earlier chapters 
retain their efficiency in terms of the Turing machine model. By the same 
token, we can continue to use informal arguments to demonstrate efficiency, 
using our previous method to describe algorithms, when it suits our purpose. 

Conveniently, polynomials bring an algebraic advantage in what theory 
follows because as a class of functions they are closed under the operations 
of addition, multiplication and composition. In other words, a polynomial 
results from the addition or the multiplication of two polynomials and 
from taking a polynomial of a polynomial. This can be useful from two 
points of view. First, a complex algorithm can often be subdivided into a 
number of smaller polynomial time components. If the complexity of the 
original algorithm is bounded by the addition, multiplication and compo­
sition of the complexities of its components, then it will itself be of 
polynomial time complexity. Secondly, it is often the case that one 
problem may be solved by transforming it into another. If we have 
efficient algorithms both for the transformation process and for the second 
algorithm, then it follows that we have an efficient algorithm for the initial 
problem. This idea will be of particular interest in section 8.1.2 where we 
describe the notion of NP-completeness. 

8.1.1. The classes P and NP 
In order to define the classes of problems P and NP we need first 

to complete our formal definition of algorithm by a description of Turing 
machines. 

A Turing machine (TM) carries out its computation on an infinite tape 
which is divided into cells along its length. At any one time a cell contains 
a single symbol or is blank. At the outset of a computation a finite set of 
contiguous cells contains an encoding of the input to the computation and 
all other cells are blank. The computation then proceeds by the repetition 
of a cycle of actions involving the tape head. This device has a finite number 
of internal states. The actions within a cycle are as follows: the tape head 
reads the contents of a single tape cell, then depending upon what it has 
read and which state it is in it replaces the contents of that cell with a new 
symbol (this may in fact be identical to the old symbol), enters a new state 
(which might be its old state) and moves one cell to the right or to the left 
before starting on the next cycle. The specific changes occurring in any one 
cycle are determined by a quintuple, or instruction, written as follows: 

(q,, t,, qt, It, m) 
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where q, is the current state, q1 the new state, t, is the current tape symbol 
and t1 the new tape symbol. Whether or not the tape head moves to the 
right or to the left depends upon whether, respectively, m has the value + 1 
or the value (-1). Since the set of states, Q, and the set of tape symbols 
(called the tape alphabet), T, are finite, any computation can be completely 
specified by a finite set of quintuples. Such a set constitutes a (non­
sequential) program for the TM. For the moment we presume that a 
computation is deterministic in the sense that for any pair (q,, tJ precisely 
one quintuple exists to determine (q1, t1, m); the computation is then said 
to be performed by a deterministic TM or DTM. At the outset of a compu­
tation a TM is conventionally in its initial state q0, and a specified tape cell 
is being scanned. If the tape cells are labelled ... , C(-2), C(-1), C(O), 
C{l), C(2), ... , we shall presume that C(O) is always this initially scanned 
cell. The computation halts when the TM enters one of a set of final states, 
F c Q. The result of the computation is then either encoded within the 
symbols that remain on the tape or is indicated by the particular halt state 
that the TM is in. The latter case is especially suitable for decision problems 
which simply require a 'yes' or 'no' answer. As an example of a TM we 
now make use of just such a problem. 

Fig.8.1 

-M- ---N---
---IAII!llil---111~111111 ---

Q = {q0, qi, q2, qy, q1}, F = ~q6}, T = {A, B, 0, I, 2} 

(q0, A, q2, A, + I) 
(q0, B, q0, B, - I) 

(q0, 0, q0, 0, -1) 

(q0, I, q1, 2, + I) 
(q., 2, q., 2, -1) 

(qi, A, q., •, *) 

(qi, B, qi, B, + 1) 

(qi, 0, qi, 0, + I) 
(qi, 1, q0, 0, -1) 

(qi, 2, qi, 2, + I) 

(q1, A, qi, • • *) 

(q1, B, q1, B, + 1) 
(q9, 0, q1, 0, + I) 
(q1, I, q., I, -1) 

(q1, 2, q1, I, + I) 

Suppose that we want to know whether an integer M(> 1) exactly 
divides a second integer N. Figure 8.1 shows a DTM which solves this 
decision problem. The upper half of the diagram shows the tape at the 
outset of the computation. Both M and N are required to be in unary 
representation for the algorithm (that is, the TM) to work. The tape 



symbols A and B are simply used as punctuation. We presume cell C(O) 
is that occupied by the symbol B. The final state qy indicates a •yes' 
answer while qN indicates 'no'. The set of 15 quintuples listed in the 
diagram constitute the TM's program, which operates by repeatedly sub­
tracting M from N. H, whilst partially through one of these subtractions, 
none of N remains, then the TM is in state q1 and the right-hand cell 
containing A is scanned. The appropriate quintuple then requires that the 
state f/N is entered. Notice that in this quintuple the character * indicates 
the irrelevance of specifying t1 or m. Similarly, if one of the subtractions of 
M from N has been completed and none of N remains, then the TM is in 
state q8 and the right-hand A is scanned. The appropriate quintuple then 
causes the state qy to be entered. 

For convenience, the theory of NP-completeness has been designed to 
apply only to decision problems. This is not restrictive because we can cast 
any problem into a closely related decision problem. For example, for the 
travelling salesman problem we might utilise the decision problem: does 
the graph G have a tour of length less than k? Here G is said to be an 
instance of the (travelling salesman) problem. 

We are now in a position to define the class of problems called P. The 
class P consists of those decision problems for which there exists a 
polynomial time algorithm. In other words, P contains all those decision 
problems which can be solved, within p(S) computational steps, by a DTM 
which halts for any input. Here p(S) is a polynomial in S, the si:r.e of an 
instance of the problem. Thus P consists of those problems which can be 
efficiently solved. 

Before introducing the class of problems called NP in a formal way, 
we shall t,y to capture the idea in an informal manner. For this purpose 
we refer to the travelling salesman decision problem defined earlier. In 
Chapter 6 we stated that there is no known efficient algorithm for the 
travelling salesman problem. However, consider the claim that the answer 
to an instance of the decision problem was 'yes' and that a particular tour 
was offered as evidence. It would be an easy matter to check this claim by 
determining whether or not the evidence indeed represented a tour and 
was of length less than K. Also, it is a simple matter to construct a poly­
nomial time algorithm for this verification process. Of course, any set of 
edges may be a candidate for such a claim, and if it were possible to apply 
the verification algorithm simultaneously to all these sets then our decision 
problem could be solved in polynomial time. There is an extremely large 
class of decision problems, many of which have great practical importance, 
for which there is no known efficient algorithm, but yet which, like the 
travelling salesman problem, are polynomial time verifiable. It is this idea 



of polynomial time verifiability that the class of problems called NP is 
intended to capture. 

We need to be certain that our terminology is clear. Given a verification 
algorithm (i.e., a TM), its input would consist of an instance of the decision 
problem and a guess for that instance. So, for example, in the case of the 
travelling salesman problem: does G contain a tour oflength less than K?, 
any set of edges might be a guess and G is an instance of the problem. 

We shortly describe a non-deterministic algorithm of the type we shall 
formally use to define the class NP. Such an algorithm will consist of two 
stages. The first stage simply produces a guess, placing this in the tape cells 
C(-1), C(-2), ... , C(-1), and leaves the tape head over C(O) in readiness 
for the second stage. An instance of the problem is already presumed to 
occupy the tape cells C(I), C(2), ... , C(n). Any string of symbols from the 
tape alphabet will suffice for a guess. The guessing stage produces an 
arbitrary string by operating non-deterministically. That is, for any pair 
(q,, tJ there is (possibly) more than one triplet (q1, t1, m) and an arbitrary 
choice is made as to which one to apply when (q,, tJ arises. Q might 
contain two special guessing states q"' and qll. The state 'la is a left moving 
state in that if the tape head is scanning a blank cell, then an arbitrary 
symbol from the tape alphabet is printed and if the new state is q"' then 
the tape head moves to the left. If, however, the new state is 'lll then right 
moving results and thereafter the TM remains in this state, causing the 
tape head to move rightwards (leaving the content of tape cells unchanged) 
until C(O) is encountered (which might be distinguished by containing a 
particular type symbol). Then the TM is made to enter state q0 in readiness 
for the second state of the computation. This stage operates deterministic­
ally and attempts to verify the guess for the instance of the problem 
encoded within the tape cells C(l) to C(n). 

As an example of such a non-deterministic algorithm or TM (NDTM) 
consider the decision problem: is N divisible by some M(> l)? For the 
second stage of operation we can make use of our previous example of a 
TM illustrated in figure 8.1. However, for the guessing stage we need some 
further quintuples and we also need to respecify the initial tape layout. 
This is illustrated in figure 8.2 The non-determinism here is provided by 
the first two of the additional quintuples listed in that diagram. This 
example is particularly simple because the guess is only constructed from 
one symbol, M being in unary representation. If a different encoding 
scheme were used, much more non-determinism would have to be built in. 

For the example NDTM and indeed for any NDTM of the generic type 
we are describing there are several possible outcomes. The NDTM might 
bait in state (Jy, it might halt in state tJN or might Ifot stop at all. We say 



Fig.8.2 

The program consists of the quintuples of figure 8.1 plus the following 

(q., blank, q., 1, -1) 

(q .. blank, q1, A, + 1) 

(q., 1, q., 1, + 1) 

(q., B,q., B, -1) 

(q0, blank, q., 1, -1) 

(q., blank,q., 1, -1) 

Q = {qo, qi, q9, qill qll, q., q., qJ 

F and Tare as shown in figure 8.1. 

that an NDTM solves a decision problem D, if the following two conditions 
hold for all instances I of D: 

(a) If D is true for I then there exists some guess for I which will 
lead to the NDTM to stop in state (Jy. 

(b) If Dis false for I then no guess exists for I which will lead to the 
NDTM to stop in state t/r• 

We have described an NDTM without reference to time-complexity. The 
informal preamble, however, made it clear that we are interested in poly­
nomially bounded verification. Let us then define a polynomial time 
NDTM. The NDTM for the decision problem D is said to operate in 
polynomial time if for every instance I of D that is true, there is a guess 
that leads to the checking (or verification) stage of the NDTM to stop in 
state q11 within p(S) computational steps. Here p(S) is a polynomial in S, 
the length of/. An NDTM which operates in polynomial time is naturally 
called a polynomial time NDTM. 

We are now in a position to define the class NP. NP is the class of all 
decision problems that can be solved by a polynomial time NDTM. NP is 
an acronym for non-deterministically polynomially bounded. 

Clearly, any problem De P is also contained in NP, because we can 
obtain a polynomial time NDTM for D by using the polynomial time 
DTM for D as the checking stage, and this machine will respond with 'yes• 
whilst ignoring guesses. It is an outstanding and important question in 
complexity theory as to whether or not P = NP. There is a widespread 



belief, based on a great deal of circumstantial evidence, but not on a proof, 
that NP is a much larger class than P. 

We finish this section by noting that a polynomial time algorithm is not 
precisely defined unless the definition includes the format of its input 
(exercise 8.7 illustrates the importance of this). We also note that for the 
execution of a polynomial time verification algorithm we can disregard 
any guess longer than p(n) - the polynomial bounding the computation. 

8.1.2. NP-completeness and Cook's theorem 
The unresolved question as to whether or not P = NP is im­

portant because if P -+ NP then whilst the problems in P can be efficiently 
solved, those in (NP-P) would be intractable. It seems that a resolution of 
this fundamental question will be difficult to obtain so that the theory of 
NP-completeness, which we introduce in this section, concentrates on the 
weaker question: if P -+ NP then does the problem in hand belong to 
(NP-P)'l 

A basic idea in the theory of NP-completeness is that of a polynomial 
transformation. I.et D1 and D1 denote two decision problems. We say that 
there is a polynomial transformation from D1 to D1, written D1 oc D1, if 
the following two conditions hold: 

(a) There exists a function F(l) transforming any instance I of D1 to 
an instance of D1 such that the answer to I with respect to D1 is 
'yes' if and only if tlle answer to F(l) is 'yes' with respect to D8• 

(b) There exists an efficient algorithm to compute F(I). 

Notice that the TM implied by(b) would nofsupplya 'yes' 01 'no' answer 
but would print F(/) on the tape given I as input. 

If D1 cc D1 and if tllere is a polynomial time algorithm for D1, tllen tllere 
is a polynomial time algoritllm for D1• We denote tlle polynomial bounding 
the computation of F(IJ by p1(SJ where S1 is the length of 11, and the 
polynomial bounding tlle computation of D1 is denoted by p.(S.) where S. 
is the length of /1 = F(IJ. Clearly, S1 :E;; p1(SJ and so the computation 
time for JJ1, consisting of a transformation to D1 followed by the compu­
tation of D1, is bounded by p1(SJ + p.J.P:i(SJ) which is clearly a polynomial 
in S1• It is easy to see that if D1 oc D1 and D1 et D8 tllen D1 oc D8• 

We are now in a position to define NP-complete problems. A decision 
problem, D, is said to be NP-complete, written NPC, if De NP and if for 
every problem D' e NP, D' et D. The importance of this definition can be 
seen from the following two observations: 

(a) If D is NPC and if De P then NP =; P. 
(b) If D is NPC, Doc D' and D' e NP tllen D' is NPC. 



Thus the set of problems which are NPC form an equivalence class of what 
might be considered the most difficult problems in NP. The next theorem, 
a celebrated one due to Cook, provides us with the first problem that was 
known to be NPC. Using this basis along with the fact that the relation of 
polynomial transformation is transitive, hundreds of problems have been 
shown to be NPC. Many of these have important applications and many 
are to be found in graph theory. 

Before describing Cook's theorem we need to define the problem of the 
satisfiability of conjunctive normal forms, or SAT for short. Given a finite 
set Y = {v1, v1, ••• , vJ of logical variables, we define a literal to be a 
variable v, or its complement, ii,. If v, = true then ii, = false and vice-versa. 
We define a cl(llJSe, c,, to be a set of literals. An instance, /, of SAT, 
consists of a set of clauses (any literal may appear in any number of these 
clauses). The problem of SAT is whether or not there exists a truth assign­
ment (i.e., an assignment of the values true or false to each member of Y) 
such that at least one member of each clause of/ has the value true. If the 
answer is 'yes', then we say that I has been satisfied. Let us restate the 
problem in a format which from now on we take to be a standard means 
to describe decision problems. 

SAT: 
Instance: A set of clauses, { CJ, over the set of logical variables, Y. 
Question: Is there a truth assignment to V such that { CJ is 
satisfied'/ 

Theorem 8.1 (Cook). SAT is NPC. 

Proof. A non-deterministic algorithm for SAT has simply to check that any 
truth assignment satisfies each clause in an instance of the problem. It is 
a simple matter to construct a polynomial time NDTM to do this. Thus 
SATeNP. 

The more complex part of this proof is to show that every problem in 
NP is polynomially transformable to SAT. In order to do this we shall 
construct a mapping from any instance / of an arbitrary polynomial time 
NDTM, M, to instances F(/) of SAT. This will be done in such a way that 
F(/) is satisfiable if and only if M responds with 'yes' for some guess 
applied to /. As we shall see, the idea behind F(I) is a simulation of M for 
the instance /. 

Let us define the set of states Q of M, and the set of tape symbols T, 
as follows: 

Q = {qo, q1, ••. , qr} where q1 = qy and q1 = qN 

T = {t0, t1, ••• , t.} where t0 = blank 



an<l we take I, contained in the tape cells C(l) to C(n) to be: 

I = t,.,_, t,,_, ••• , tkt& 

In order to construct F(I) we need to define a set of logical variables. 
This set will be a union of three subsets: 

{Q(i, k)} U {H(i,j)} U {S(i,j, /)} 

The interpretation to be placed on each variable is as follows: at time i, 
Q(i, k) specifies as true or false that M is in state q,., H(i,j) specifies that 
the tape head of Mis scanning C(j) while S(i,J, /) specifies that the content 
of C(j) is t1• Mis a polynomial time NDTM so that i and j are bounded as 
follows: 

0 < i < p(n), -p(n) < J < p(n)+ 1 

where p(n) is a polynomial in the length n of/. Of course, both Q and T 
are finite: 

0 < k < r, 0 < I < s 

where r and s depend on M. It follows that the number of H-variables and 
the number of S-variables are of order (p(n))1 while the number of Q­
variables is of order p(n). 

Clearly, a truth assignment to the logical variables we have defined 
might correspond to a computation of M, although an arbitrary assign­
ment will probably not. Indeed such an assignment may imply that M is 
simultaneously in several states and that several tape cells are being 
scanned. The construction of F(I) which we now describe, builds a set of 
clauses, each of which is designed to ensure one requirement that F(/) 
models a computation on M. F(I) contains six groups of clauses as follows: 
(how many clauses are in each group is determined by i, j, k and /, where 
they occur, taking on all possible permutations of values consistent with 
the ranges shown above): 

(a) At the outset of a computation,M is in state tJo, cell C(0) is being 
scanned and /is contained in the cells C(l) to C(n). We shall also assume 
the convention that when i = 0, C(0) and C(n+ 1) to C(p(n)+ I) are blank. 
(This convention was not used in our earlier example when / was delimited 
with the punctuation symbols .A. and B. The use of punctuation symbols 
can greatly reduce the number of states required by a TM, but they can 
be avoided. See for example exercise 8.5(b).) These observations result in 
the following clauses for F(l): 

(a) {Q(0, 0)}, {H(0, l)}, {S(0, 0, 0)} 
{S(0, 1, kJ}, {S(0, 2, k.)}- - -{S(0, )I, k.)} 
{S(0, n+ l)}, {S(0, n+2, 0)}- - -{S(0,p{n)+ 1, 0)} 



(b) At any time Mis in at least one state: 
{Q(i, 0), Q(i, 1)- - - Q(i, r)} 
but in not more than one state: 

{Q(i,J), Q(i,j')}, 0 E; J < j' E; r 
(c) At any time exactly one tape cell is being scanned (cf. (b)) 

{H(i, -p(_n)), H(i, -p(_n)+ 1), - - -H(i,p(_n)+ l)} 

{H(i,j), H(i,j')}, -p(_n) E; j < j' E; p(_n)+ 1 
(d) At any time each tape cell contains exactly one symbol (cf. (b)): 

{S(i,j, 0), S(i,j, 1), - - - S(i,j, s)} 

{S(i,j, I) S(i,j, I')}, 0 E; I < I' E; s 

(e) By the time i = p(_n), M has entered state qy: 
{Q(p(_n), l)} 

(/) The changes in M from one computational step to the next are 
dictated by a quintuple of Mand so F(J) includes: 

{H(i,j), Q(i, k), S(i,J, I), H(i+ l,J+m)} 

{H(i,J), Q(i, k), S(i,j, I), Q(i+ 1, k')} 

{H(i,J), Q(i, k), S(i,J, I), S(i+ 1, I')} 
where if q,. e Q-{qy, qN} then the values of/', k' and mare 
provided by thequintuple(q,., ti,q,.., ti-,m) whilst if qy e{qy,qN} 
then k' = k, I' = I and m = 0. 

The set of clauses which is a union of those described in (a) to (/) 
constitutes an instance of SAT. As we have carefully explained, the 
construction ensures that F(J) is satisfied if and only if the truth assignment 
describes a computation of M which halts in state qy. 

It is easy to see that F(J) can be constructed in polynomial time. As we 
explained earlier, the fact that Mis polynomially bounded means that the 
number of variables of F(J) is polynomially b&unded. This in turn leads 
to a polynomial bound on the number of claUSl!S constructed in (a) to(/). 
For example, from (/) we obtain 6p(_n)(p(n)+ l)[(r+ l)(s+ 1)) clauses, 
where , and s are fixed by M. 

Thus SAT, by all requirements, is NPC. ■ 

For the purposes of proving that other problems are NPC it is often 
simpler to transform to a subproblem of SAT, namely 3SAT, which we 
now define and prove to be NPC. 

3SAT 
Instance: A set of clauses {CJ each clause containing precisely 
three literals, over the set of logical variables, Y. 
Question: Is there a truth assignment to V such that {CJ is 
satisfied? 



'lbeorem 8.2. 3SAT is NPC. 

Proof. Clearly, 3SAT e NP just as SAT is. In order to complete the proof 
we show that SAToc. 3SAT. Let C"" {a,_, a1, ••• , a,} be any one of the 
clauses in an instance of SAT. We shall show that C can be replaced by a 
number of clauses, each containing three literals, in such a way that these 
clauses are satisfied if and only if C is. We denote by C' the set of clauses 
replacing C. C' will utilise a number, depending on /, of dummy variables. 
We denote by Ye this set of introduced variables. There are a number of 
cases depending upon 1: 

(a) 1 = 1, Yo= {x1,x.} 
C' = {{a,_, X1, x.}, {a,_, X1, .f.}, {a,_, X1, x.}, {a,_, Xi, .f.}} 

(b) 1 = 2, Ya= {xJ 
C' = {{a,_, a., xJ, {a,_, a., xJ} 

(c) 1 = 3, Yo ... flJ 

C' = {C} 
(d) 1 > 3, Ya= {~II ~ i ~ 1-3} 

C' = {{tJi, a., xJ} U {{~. ~+•• Xf+ill ~ i ~ 1-4}} 
u Hxi-a, OJ-1, a,}} 

Let us consider these cases in turn. A truth assignment satisfying C under 
the cases (a) and (b) will clearly satisfy each clause in C' whatever assign­
ment is made to the dummy variable(s). Moreover, if C' is satisfied then 
so is C. In these cases we could arbitrarily assign the value true to each 
member of v,;. Case (c) is trivially alright, 

The outstanding case, (d), is a little more involved. If there is a satisfying 
truth assignment for C then at least one literal in C is true. Let ap be such 
a literal. If p = 1 or 2, then we let x, = false for 1 ~ I ~ 1-3, if p = 1 
or (1-1) then we let x, = true for 1 ~ i ~ 1- 3, otherwise \Ve let x, = true 
for 1 ~ i ~ p-2 and x, = false for p-1 ~ i ~ 1-3. It is easy to see that 
these assignments will cause C' to be satisfied if and only if C is. 

Hence any instance of SAT is transformable to an instance of 3SAT. 
Moreover, this transformation can be achieved in polynomial time. In 
order to see this we just need observe that if an instance of SAT has m 
clauses of maximum length 1, then the corresponding instance of 3SAT 
has at most Im clauses. Thus 3SAT is NPC. ■ 

We are now in a position to apply this introduction to the theory of 
NP-completeness to some of the problems of graph theory. The remaining 
part of this chapter is devoted to that end. 



8.2 NP-complete graph problems 
In this section we show that several important problems in graph 

theory are NPC. A great number of problems in graph theory are NPC so 
that our selection is a relatively small one. The interested reader might 
consult the long list of NPC graph problems in Garey & Johnson.DJ 

The proof that a decision problem D is NPC would normally consist of 
two steps: 

(a) that D e NP, 
and 

(b) that D' oc D for some problem D' that is NPC. 

In all the proofs that follow (a) is relatively trivial so that we often adopt 
the practice of omitting that step. The proofs shall therefore concentrate 
on the more difficult step, (b).At present the only candidates for D' are 
SAT or 3SAT. As we proceed we expand our choice in this respect, 
building up transformation chains of NPC problems. 

We divide this section into a number of subsections each consisting of a 
selection of closely related problems. Throughout G is a simple graph with 
a vertex set V, where I VI = n. 

8.2.1. Problems of vertex-cover, independent set and 
clique 
A vertex-cover of G consists of a subset Y' ~ Y such that for every 

edge (u, v) of G, at least one of u and v is in V'. The size of a vertex-cover 
is given by I Y'I. We show that the following problem is NPC: 

Vertex cover (VC): 
Instance: A graph G and an integer Jc, I :E;; k < n. 
Question: Does G have a vertex-coBr V' such that I Y'I :!lo k? 

Theorem 8.3. VC is NPC. 

Proof. We show that 3SAToc VC. Given an instance of 3SAT consisting 
of a set of clauses C = { c1, c1, ••• , cJ over the set of variables 

U = {u1, Us, •.. , u1} 

we construct an instance of VC consisting of the graph G and an integer k 
as follows. For every variable u,. e U, G contains two vertices vr and iir, 
representing ur and its complement, and the edge (v,., iir)- For every clavse 
c. = {/1, t_, /a} e C, G contains the vertices vf, v; and v;, 1111.d the edges 
(vf, v;), (tfa, r'8) and M, v;). The construction is completed by adding, for 
each clause c., the edges M, !J, cv;, l.J and (V:, ls); finally we set k = j+2i. 



Figure 8.3 shows an instance of VC obtained by this construction from 
this set of clauses: 

{{u1, Ua, ua}, {iii, lls, uJ, {Ua, Ua, OJ} 

In this case, k = 10. Since G has (2j+3i) vertices and (j+6i) edges it 
follows that our construction can be achieved in polynomial time. In 
order to complete the proof we just need show that C is satisfiable if and 
only if G has a vertex-cover of size k or less. 

Fig.8.3 

We first notice that any subset of vertices of G that is a vertex-cover, 
must include at least one of the vertices vr and Vr for each r, I ~ r ~ j, 
and at least two of the vertices !If, v; and v; for each s, 1 ~ s ~ i. In other 
words, a vertex-cover contains at least j + 2i vertices. Thus the instance of 
VC constructed according to our rules can only be true if V' contains 
exactly one vertex from each pair, (vr, iir) and exactly two vertices from 
each triple M, v;, v;), because k = j+2i. Suppose V' is a vertex-cover of 
G. A satisfactory truth assignment for C can then be obtained by setting 
um = true if the vertex labelled Vm is in V', otherwise we set um = false. 
That C is satisfied can be seen as follows. Consider the three edges from 
the vertex-set {11, v;, v"J to those vertices representing the literals of 3SAT. 
Precisely two of these edges will be covered by vertices in {!If, rfz, v;} n V', 
this means that the third must be covered by a vertex representing a literal 
in c, = {/1, /2, /J. According to our truth assignment this literal is true and 
so c, is satisfied. We can apply the same argument to every clause in C 
and so it follows that if a vertex-cover of size k exists for G then there is 
a satisfying truth assignment for C. 

Conversely, let T be a truth assignment satisfying C. We can construct 
a vertex-cover V' for G, of size k, as follows. For each pair of vertices label­
led vm and iim, V' includes Vm if T assigns the value true to u,,., otherwise 



Y' includes iim. This ensures that at least one of the three edges from 
each vertex-set {fli, v;, v:} to those vertices representing the literals of 3SAT 
are covered. We can cover the other two by including their end-points 
in Y' which are in {vl, v;, v:}. This clearly provides a vertex-cover. ■ 

The following two problems are very strongly related to YC so that 
proofs of their NP-completeness easily follows. 

lnclependent set (IS}: 
Instance: A graph G and an integer k, 1 :s;; k ~ n. 
Question: Does G contain an independent set of size greater than 
or equal to k? 

'l)eorem 8.4. IS is NPC. 

Proof. We show that YC a: IS. Given an instance of YC consisting of G 
and the integer k', we can construct an instance of IS within polynomial 
time which consists of G and k = n-k'. Clearly, Y' is a vertex-cover of G 
if and only if (V- Y'} is an independent set of G. It immediately follows 
that YC a: IS and that IS is NPC. ■ 

CLIQUE: 
Instance: A graph G and an integer k, 1 :s;; k ~ n. 
Question: Does G contain a clique of size greater than or equal 
to k? 

Theorem 8.5. CLIQUE is NPC. 

Proof. We show that IS a: CLIQUE. Given an instance of IS consisting 
of G and k, we can construct an instance of CLIQUE consisting of G', 
the complement of G with respect to the complete graph on n vertices, 
and k. Clearly, G' can be constructed within polynomial time. Now 
V' E Y, is an independent set of G if and onlY if the vertices of V' form 
a clique in G'. Thus IS a: CLIQUE and so CLIQUE is NPC. ■ 

8.2.2. Problems of Hamiltonian paths and circuits and 
the travelling salesman problem 
The following set of problems, like the previous set, are strongly 

related, so that having proved the first to be NPC, proofs for the others 
follow easily. Our first relatively difficult proof concerns the existence of a 
Hamiltonian path in a directed graph: 

Directed Hamiltonian path (DHP) 
Instance: A directed graph G with two distinguished vertices, 
uand v. 
Question: Does G contain a directed Hamiltonian path from 
u to v? 
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Theorem 8.6. DHP is NPC. 

Proof. We show that VC cc DHP. We first describe the construction of a 
specific instance of DHP from a specific instance of VC with the use of 
figure 8.4. AB we shall see, this construction is easily generalised. Figure 
8.4(a) shows an instance of VC comprised of the graph G and the integer 
k = 2. Each edge (u, v) of G has two identifiers, e(u, I) and e(v, m) signi­
fying that (u, v) is the Ith edge incident with u and the mth edge incident 
with v. We now construct the instance of DHP consisting of the directed 
graph G' and two distinguished vertices u0 and U1c- This is done in three 
stages as follows. 

Fig.8.4 

(a) V1 (b) 
111's subpath 

··· l • lie l ~·· •• subpath • U1 subpath 
. "• 

111's subpath 

(c) (d) 

For each vertex v of G, G' contains 2 x d(v) vertices where d(v) is the 
degree of v. These vertices are linked by a directed path, called v's subpath. 
To complete the first stage of our construction, which is shown in figure 
8.4(b) we add to G', (k+ 1) vertices: u0, "1 and "t· The second stage of the 
construction consists of adding edges from u0 and "1 (that is, from u0, u1, 

... , "1c-J to the tail of each v's subpath arid adding arcs from the head of 
each v's subpath to u1 and flt (that is, to u1, Uz, ..• , uJ. Af this stage the 



construction of G' is shown in figure 8.4(c). Finally, if e(_u, I) and e(_v, m) 
identify the same edge in G, then the head(tail) of the (2/- I )th arc in u's 
subpath is linked in both directions to the head(tail) of the (2m-l)th 
arc in v's subpath. Figure 8.4(d) shows these additional arcs, where for 
clarity, we have omitted those arcs introduced in the second stage of our 
construction and the vertices uo, u1, ••. , u,.. Again, for clarity, two oppo­
sitely directed arcs between the same pair of vertices have been merged into 
a single line. Using this specific example as a guide we can now describe 
the construction for an arbitrary case. 

Let G and k denote an instance of YC and G' be the graph in an instance 
of DHP constructed from it. For every vertex v of G there are 2 x d(v) 
vertices in G', each denoted by a triple: (v, i, 1) and (v, i, 2) for all i, 
1 ,s;; i ,s;; d(v). There is a directed path through each such set of vertices, 
called v's subpath, consisting of the following edges (directed from the first 
to the second vertex): 

((v, i, 1), (v, i, 2)) and ((v, i, 2), (v, i+ 1, I)) 
for all i, 1 ,s;; i < d(v) 

G' also contains a set of vertices, {u0, u1, ••• , u,.} and the edges: 

(u.,, (v, 1, 1)) for alli, 0 ~ i < k 
((v, d(v), 2), u.,) for all i, 0 < i ,s;; k 

Finally, G' also contains the edges: 

((u, i, 1), (v,j, 1)) and ((u, i, 2), (v,j, 2)) 

for every edge in G which is identified by e(_u, i) and e(_v,j). In order to 
complete the instance of DHP we simply specify u0 to be the initial vertex 
and u,. the final vertex of the proposed Pith- It is easy to see that the 
number of vertices and the number of edges in G' are both bound by a 
polynomial in n, the number of vertices in G. Hence the construction can 
be achieved in polynomial time. 

In order to complete the proof we need to show that G has a vertex­
cover of size k or less, if and only if there is a Hamiltonian path from u0 

to u,. in G'. 
Let us first suppose that G has a vertex-cover of sir.e ,s;; k, then it must 

baveavertex-coverofsizek. WedenotesuchacoverbyC = {Vi, Vz, ••• , v,.}. 
A directed Hamiltonian path from u0 to u,. in G' can then be constructed 
as follows. The first edge in the path is (u0, (Vi, 1, 1)) followed by vt's 
subpath and then the edge ((vi, d(vJ, 2), ui); we then similarly pass from 
u1 to u1 via 11z's subpath and so on until vertex u,. is reached. The path from 
u0 to u,. we have described does not as yet include those vertices on any Vi 



subpath where / > k. Suppose that (u, v) is an edge in G identified by 
e(u, i) and e(v,j), and that u f C. We can include (u, i, 1) and (u, i, 2) in 
the path by making a detour from v's subpath as follows: replace the edge 
((v,J, 1), (v,j, 2)) by the sequence ((v,j, I), (u, i, 1)), ((u, i, 1), (u, i, 2)) and 
((u, i, 2), (v,j, 2)). Every vertex on the unused VJ subpaths can be included 
in this way because our construction of G' ensures that the appropriate 
edges are present given that C is a vertex-cover. 

Fig.8.5 

(a) u V (b) u vu V U V 

u's subpath ,•s subpath 

w X w xw xw X 

Conversely, suppose that G' has a directed Hamiltonian path from u0 

to u,.. Suppose that (u, v) is an edge in G identified by e(u, i) and e(u,j) 

and consider the vertices (u, i, I), (u, i, 2), (v,j, I) and (v,j, 2) in G'. These 
are shown in figure 8.S(a). A Hamiltonian path passing through these 
vertices can only approach them from U and/or V. In order that all these 
vertices are included in such a path only three routes are possible for it, 
these are shown as the heavily scored paths in figure 8.S(b). Thus a 
Hamiltonian path entering from U must exit at W, and one entering from 
Vmust exit at X. This means that if(v, I, I) is approached from some"' 
on a directed Hamiltonian path, then every vertex on v's subpath is visited 
before another ( different) u, is visited by traversing the edge ((v, d(v), 2), "t)). 
In this circumstance the Hamiltonian path is said to use v's subpath. 
Given our supposition that G' contains a Hamiltonian path, H, we 
construct a vertex-cover C, of size k for G, by including in C all those 
vertices whose subpaths are used in H. In order that all the vertices 
(u, i, 1), (u, i, 2), (v,j, 1) and (v,j, 2) are included in Hat least one of the 
subpaths belonging to u and v must be used, and so the edge (u, v) e G 
is covered by this construction of C. This concludes our proof. ■ 

Having proved that DHP is NPC we are now in a position to provide 
quick proofs that the remaining problems in this section are also NPC. 



Directed Hamiltonian Orcult (DHC} 
Instance: A directed graph G. 
Question: Does G contain a directed Hamiltonian circuit? 

Theorem 8.7. DHC is NPC. 

Proof. We can easily see that DHP ex: DHC as follows. Given an instance 
of DHP consisting of a digraph G' and the vertices u and v, we construct 
an instance of DHC, G, by adding the edge (v, u) to G'. Obviously there is 
a directed Hamiltonian circuit in G if and only if there is a directed 
Hamiltonian path in G' from u to v. Thus DHP ex: DHC and hence DHC 
~~~ ■ 

Hamiltonian Path (HP) 
Instance: A graph G with two distinguished vertices u and v. 
Question: Does G contain a Hamiltonian path between u and v? 

Theorem 8.8. HP is NPC. 

Proof. We shall show that DHP ex: HP. Let G' and the two vertices v4 and 
v,. be an instance of DHP. We construct an undirected graph G from G' 
as follows. For every vertex v-1 of G', G contains three vertices vl, vt and r,f, 
and the edges (vl, vD and (vf, vf). For each edge (v-1, v1) of G', G contains 
the edge (~, v}). Our instance of HP then consists of G and the vertices 
~ and rig. Figure 8.6 shows an instance of HP in (b) constructed in this 
way from the instance of DHP shown in (a): 

Fig.8.6 
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We complete the proof by showing that G has a Hamiltonian path 
between ~ and vl if and only if G' has a directed Hamiltonian path from 
v,. to v,,. 

Let G' have such a path, H'. G then has the Hamiltonian path con­
sisting of the edges (~. vl), (vf, vl), for all vk e G', and the edges (vf, v}), 
for all (v,, v1) e H'. Conversely suppose G has a Hamiltonian path, H. 
H must contain the edges (vl, v,> and (v:, vf), otherwise v! could not be 
reached. Moreover, if in following H from v! to vl, we visit the vertices 
vl, v: and vf in the order of writing them, then for any other vertex v1 e G', 
we visit v}, vJ, vJ in G in the order that we have written them. It follows 
that if H = v!, v8,., v!, vl, vJ, of, ... , vl, vl, a,£, then G' contains a directed 
Hamiltonian path, v,., Vi, ••• , v,,. ■ 

The question as to whether or not an undirected graph G contains a 
Hamiltonian circuit (HC) is, of course, easily shown to be NPC. A proof 
would simply show that HP ex: HC rather like theorem 8. 7 shows that 
DHPcx: DHC. 

We come now to the final problem of this section. 

Tnvelllng salesman (TS) 
Instance: A weighted complete graph G and an integer k > 0. 
Question: Does G contain a Hamiltonian circuit of length ~ k 'l 

Theorem 8.9. TS is NPC. 

Proof. We show that HC ex: TS. Let G' be an instance of HC with n 
vertices. We construct an instance of ts consisting of a graph G and 
k = n as follows. G is the complete graph on the vertices of G' with edge­
weights w(e), for each edge e, as follows: 

and 
w((u, 11)) = 1 if (u, v) e G' 

w((u, v)) = 2 if (u, v) f G' 

Clearly, G has a Hamiltonian circuit of length n if and only if G' has a 
Hamiltonian circuit. Thus HC ex: TS and therefore TS is NPC. ■ 

Notice that the proof of theorem 8.9 still holds if we had defined TS 
in such a way that the travelling salesman's tour was not necessarily 
Hamiltonian, but that nevertheless each vertex (i.e., city) had to be visited 
at least once. Of course, the transformation HC ex: TS described does 
ensure that the tour in the constructed instance of TS is Hamiltonian if 
and only if it is of minimum length. 



8.2.3. Problems concerning the colouring of graphs 
The following problem is NPC: 

k-colourlng (XC) 
Instance: A graph G and an integer k, 1 ~ k ~ n. 
Question: Does there exist a (proper, vertex-)colouring of G 
using ~ k colours? 

We shall first show that a restriction of the problem (in which k = 3) 
is NPC. Before doing so we note the following lemma: 

Lemma 8.1. In a 3-colouring of the following graph: 

using the colours 0, 1 and 2, v, must be coloured O if and only if all the 
vertices v1, v1 and Ila are coloured 0. 

Proof. We leave this as an easy exercise for the reader. From now on we 
use th~ following shorthand to specify this graph: 

'Theorem 8,10. 3C is NPC. 

Proof. We show that 3SAT ex: 3C. Given an instance of 3SAT consisting 
of the set of clauses C = {Ci, Cs, ••• , c_p} over the set of variables 

U = {u1, Us, ..• , "i,}, 

we construct an instance G of 3C as follows. G contains vettices labelled 
"i and Mt for each "i e U, and the edges ("i, iiJ. For each clause, 

c, = {/1, /8, /a} e C, 



G contains a subgraph of the type specified in the above lemma: 
Notice that each of 11, 11 and 18 is one of the vertices"' or"' for some i. 
G also contains a vertex labelled a and the edges (a. v1) for all/, l < j < p. 
Finally, G contains a vertex b with incident edges (b, ui), (b, iiJ for all i, 
l < i < q. Figure 8. 7 shows this construction of G from the following 
instance of 3SAT: 

C1 = {(11i, u., ua), (Uv 11a, uJ, (a., 11a, u.)} 

Fig.8.7 
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Suppose that C has a satisfying truth assignment, T. H Ui = true then 
the vertex "' e G is coloured I and "' js coloured 0, otherwise "' is coloured 
0 and "' is coloured l. Since T is a satisfying truth assignment, not all the 
vertices labelled 11, 18 and la for the subgraph g1 of G, l < / < p, are 
coloured 0. Thus by lemma 8.1, the vertices v, of g1 can be labelled with I 
or with 2. Thus vertex a can be coloured 0. The only vertex as yet un­
coloured is b. This is adjacent only to vertices coloured 0 or l, and so we 
complete a 3-colouring by assigning the colour 2 to b. 

Conversely suppose that G has a 3-colouring. Without loss of generality, 
we can assume that b is coloured 2 and that a is coloured 0. This implies 
that the vertices "' and "'• 1 < i < q, are coloured 0 or 1 and that the 
vertices v1, 1 < J < p, are coloured l or 2. By lemma 8.1, for each sub­
graph g1 of G, it cannot be that all of 11, 11 and la are coloured 0. A 
satisfying truth assignment is then obtained by assigning the value true 
to a literal if and only if its corresponding vertex in G is coloured l. 

Thus 3SATa; 3C and hence 3C is NPC. ■ 



A proof that KC is NPC for any K > 3 can be established by a proof 
similar to but generally more tedious than that for theorem 8.10. The 
details include defining a special subgraph analogous to that described in 
lemma 8.1 (notice that this has two complete subgraphs on K = 3 vertices) 
and the replacement of the vertices a and b by a complete subgraph on 
(K-1) vertices. The precise details are left to the interested reader (who 
may wish to note exercise 8.13). 

Thus KC remains NPC even if K is restricted to three. It is interesting 
to note that 3C remains NPC even with the further restriction that G is 
planar. 

3-colouring Planar graphs (3CP) 
Instance: A planar graph G. 
Question: Does G have a (proper, vertex) colouring using three 
colours? 

Before proving that 3CP is NPC we require the following lemma: 

Lemma 8.2. In a 3-colouring of the following graph: 

"• 
we have: 

(a) Vi and v8 are identically coloured as are v1 and v,. 
(b) l'1 and v, may or may not be similarly coloured. 

Proof. As with lemma 8.1, we leave verification to the reader. It will be 
convenient to use the following short-hand for this planar graph in what 
follows. ■ 

"• 
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Theorem 8.11. 3CP is NPC. 

Proof. We show that 3C oc 3CP. Let G' be an instance of 3C, we construct 
an instance of 3CP, G, as follows. G' is drawn on the plane in such a way 
that edges may cross, but not so that any edge touches a vertex other than 
its own end-points, also no more than two edges may cross at any one 
point. In general any edge (u, v) will be crossed by other edges as indicated 
in figure 8.8(a). We add new vertices along (u, v) one between each cross­
over and one between each end-point and the nearest cross-over as shown 

Fig.a.a 
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in (b). The next step is to replace each cross-over by a copy of the graph 
described in lemma 8.2. This is shown in (c).The result is clearly a planar 
graph. The final step in our construction of G is to choose one end-point 
of each original edge (u, v) and to contract the edge between that end-point 
and the nearest vertex along the old (u, v) edge. Thus (c) becomes (d), where 
(u, u') has been contracted. 

Let V be the vertex-set of G and V' c:: V be the vertex set of G'. It is 
easy to see that a 3-colouring of G is a 3-colouring when restricted to V' 
in G'. Conversely, suppose that G' has a 3-colouring. We can extend this to 
a 3-colouring of G as follows. For each original edge (u, v) e G with cross­
overs, let u be the vertex which was coalesced with the nearest new vertex 
on (u, v). Colour every new vertex along (u, v) with the same colour as u. 
The interior vertices of each h-subgraph can then, according to lemma 8.2, 
be coloured using no more than our original three colours. 

Th.us 3C oc 3CP and hence 3CP is NPC. ■ 



Finally, we show that the problem of finding the edge-chromatic index 
of a graph is NPC. In fact, we specifically prove the stronger result that 
it is NP-complete to determine whether or not the edge-chromatic index 
of a 3-regular graph is 3 or 4. Of course, the edge-chromatic index cannot 
be less than 3 and by Vizing's theorem (chapter 7) it cannot exceed 4. 

Cubic graph edg~ouring (CGEC} 
Instance: A 3-regular graph G. 
Question: Does there exist a (proper, edge-)colouring of G using 
three colours? 

Theorem 8.12. CGEC is NPC. 

Proof. Clearly CGEC oc NP. We complete the proof by outlining a trans­
formation: 3SAToc CGEC. In other words, we show how to construct, 
from an instance 1 of 3SAT, a -3-regular graph G which is 3-colourable if 
and only if 1 is satisfiable. 

G is constructed from a number of components each of which is designed 
to perform a specific task. These components are connected by pairs of 
edges such that, in a 3-edge-colouring of G, a pair represents the value true 
if both edges are identically coloured and if they are differently coloured 
then they represent the value false. 

A key component of G is the inverting component shown in figure 8.9 
along with its symbolic representation. 

Fig.8.9 
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Lemma 8,3. In a 3-edge-colouring of an inverting component, the edges 
in one of the pairs of edges (a, b) or (c, d) are similarly coloured, whilst the 
remaining three labelled edges have distinct colours. 

Proof. Like the previous two lemmas we leave this an exercise. However, 
the comment in exercise 8.9 may be of use. ■ 



If for the inverting component we look upon the pair of edges (a, b) as 
input and the pair (c, d) as output, then this component may be regarded 
as turning a representation of true into one of false and vice-versa. 

We next describe a variable-setting component of G. Such a component 
exists for each variable v, of the instance of 3SAT. An example of such a 
component is shown in figure 8.10. This has four pairs of output edges. In 
general, however, there should be as many output pairs as there are 
appearances of v, or its complement ii, in the clauses of the instance of 
3SAT. If there are x such appearances, then we can make, in an obvious 
way, a variable-setting component from 2x inverting components. 

Fig. 8.10. A variable-setting component. 

Lemma 8,4, In any 3-edge-colouring of a variable-setting component, all 
output pairs are forced to represent the same value, true or false. 

Proof Again, this is straightforward and is left as an exercise. ■ 

Finally we describe a satisfaction-testing component of G. Such a 
component is shown in figure 8.11. The required property of this com­
ponent is embodied in the following lemma. 

Fig. 8.11. A satisfaction-testing component. 



Lemma 8.5. A 3-edge-colouring of a satisfaction-testing component is 
possible if and only if at least one of the input pairs of edges represents 
the value true. 

Proof. This is straightforward and is left as an exercise. ■ 

Given an instance I of 3SAT we now show how to construct the 3-
regular graph G which is 3-colourable if and only if I is satisfiable. For 
each v,, we construct a variable-setting component ~ which has an output 
pair of edges for each appearance of the variable v, or its complement ii, 
amongst the clauses of I. For each clause c1 of I we have a satisfaction­
testing component c,. Let 11,,. be the kth literal of c1• If 11,,. is the variable 
v, then identify the kth input pair of c, with one of the output pairs of ~­
Otherwise, if 11,,. is ii, then place an inverting component between the kth 
input pair of C1 and the output pair of ~- Let H be the graph resulting 
from this construction. H will have some unmatched connecting edges 
from the c,. In order to construct the 3-regular graph G, we simply take 
two copies of H and join them together by identifying the unmatched 
edges. 

It is easy to see that G can be constructed in polynomial time. We 
complete the proof by noting that the properties of the components, as 
described in lemmas 8.3, 8.4 and 8.5, ensure that G can be 3-edge-coloured 
if and only if the instance I of 3SAT is satisfiable. ■ 

8.3 Concluding comments 
Figure 8.12 shows the tree of transformations we have developed 

through the theorems of this chapter which, along with Cook's theorem, 
establishes some members of the class of NP-complete problems. If 
P + NP then, of course, no member of this ol.ass has an efficient algorithmic 
solution. On the other hand, if an efficient solution is found for one, then 
there exists an efficient algorithm for any other. A great deal of effort has 
been fruitlessly expended in the search for efficient algorithms so that there 
is widespread belief that P + NP. Graph theory contains a large number 
of problems that are NP-complete and the reader is referred to Garey & 
Johnsonlll for the complete list. 

The number of problems in figure 8.12 is relatively small, although it 
includes perhaps the best-known NP-complete graph problems and 
certainly the most important regarding material in this book. In this 
respect we might also have included problems of multicommodity flow,191 
maximum cutsllOl in networks and the Steiner tree problem.llll 

The establishment of NP-completeness for a problem need not be the 
final point in consideration of its time-complexity. We can proceed in 
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several directions. First of all there might be a significant subclass of the 
problem that can be solved in polynomial time. For example, if we 
restrict the NP-complete problem of finding a maximum cut of a network 
to planar graphs then it becomes a member of the set P.16J On the other 
hand, as we have seen, restricting the 3-colouring problem to planar graphs 
makes no difference to its NP-completeness. The point, however, is that 
such investigations may be fruitful. 

A second line of inquiry that might be followed involves approximation 
algorithms: can we find an efficient (heuristic) algorithm which, within 
known bounds, provides an approximate solution to the problem? In 
chapter 6, for example, we approached the problem of finding feasible 
solutions to the travelling salesman problem in this way. It is an interesting 
fact that the theory of NP-completeness can be used to provide limits for 
the best possible approximations obtainable in this way. If A is the result 
acquired by an approximation algorithm (perhaps, for example, the length 
of a travelling salesman's tour) and if OPT denotes an exact solution, then 
(crudely) these limits are often expressed for all instances of the problem 
in hand, as a bound on the ratio A/OPTand sometimes as a bound on the 
difference IA-OPTI. A simple example of the latter is provided by 
exercise 8.15. Garey & Johnson,111 describe many results in this area. 

Another approach to NP-complete problems which is of growing 
interest concerns probabilistic analysis. This involves, rather than concen­
trating on the worst-case behaviour of algorithms, the study of average­
time performance or the evaluation of the exactness of approximation 
algorithms made under particular probabilistic assumptions. It can often 
be argued that knowledge of worst-case behaviour is of restricted value for 
practical purposes. It then makes sense to analyse the complexity and 
exactness as averaged over some distributicm of instances of the problems. 
There will then be probabilistic guarantees for the results of such analysis. 
Slominski113l provides a bibliography of such work. 

The inefficiency of deterministic algorithms for NP-complete problems 
arises from (see exercise 8.6) the exponentially large number of solution 
'guesses' that have to be handled sequentially. Whilst accepting an 
exponential-time complexity, it is nevertheless possible to minimise this 
expense by making a better definition of the objects to be searched than 
that implied by the entirely free description of an NDTM which was 
described earlier. Such an approach has been used for example for the 
problems of independent set16l and K-colourability.l'll 



8.4 Summary and references 
In this chapter we have shown that a number of important graph 

problems belong to the large equivalence class of NP-complete problems 
which are widely believed to be intractable. Garey & Johnsonlll is an 
excellent general guide to the theory of NP-completeness while chapter 10 
of Even, 1~1 which deals with graph problems, is also recommended reading. 
Aho, Hopcroft & Ullman181 is a good general introduction to algorithmic 
design and complexity. 

Cook laid the foundations for the theory of NP-completeness in a 
seminal paperl31 published in 1971. In that paper he stressed the importance 
of polynomial transformations, theclass NP and proved thateveryproblem 
in NP is polynomially transformable to satisfiability (SAT). Cook also 
showed that CLIQUE shared this property of being a hardest problem in 
NP and anticipated that many other problems would fall into the same 
category. Karp!4l shortly afterwards published such a collection of 
problems. These included 3-satisfiability and K-colourability. Since then 
a very large number of problems have been shown to be NP-complete, 
many of them in graph theory. Theorem 8.12 which establishes the NP­
completeness of edge-colouring, is taken from Holyer.ll2l 
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EXERCISES 
8.1. In order to solve a problem Q, we have one hour of computing time on 

a machine which operates at 210 steps per second. Suppose that two 
algorithms are available for Q: A1 of complexity~ and A1 of com­
plexity 2•, where n is the problem si7.e. Show that for any problem 
size, n (> 1), A1 is more efficient than A1 for problems that can be 
solved within the available time. 

What is the maximum problem si7.e that can be handled by each 
algorithm within an hour? Above what value of n is A1 more efficient 
than A1 ? 
('There are ~ 211 computational steps available in an hour.) 

8.2. Show that the following problems (defined in the text) are in NP: 
vertex-cover (VC) 
directed Hamiltonian path (DHP) 
3-colouring (3C) 
and show that the transformations: 3SAT cc VC (theorem 8.3) 
VC cc DHP (theorem 8.6) and 3SAT cc 3C (theorem 8.10) are indeed 
polynomial. 

8.3. Prove that MDS is NPC: 
Minimum dominating set (MDS) 

Instance: A graph G and an integer k. 
Question: Does G contain a dominating set of size :E;; k? 

(It is easy to show that VC cc MDS. Let G' and k be an instance of VC, 
then an instance of MDS consists of G (constructed from G' by adding, 
for every edge e, = (u, v) e G', a new vertex x, and edges (u, xj), 
(x,, v)) and k.) 

8.4. Show (directly) that 

CLIQUE cc IS cc VC 

where the problems CLIQUE, IS and YC are defined in the text. 
S.S. (a) Show that the DTM of figure 8.1 \1\lllUld verify that M divides N in 

p(N) computational steps (i.e., movements of the tape head) where: 

p(N) = (M;l) NB+((M:2)') N-1 = OC.N•) 
(b) Redesign the quintuple set of figure 8.1 so that the same problem is 
solved but on an input tape which is the same as that shown in the 
diagram except that the tape cells containing A and Bare blank. That is, 
remove A and B from T and model the original computation with the 
introduction of some new states and a modification of the quintuple set. 
This need not affect p(N). 
(c) Show that the NDTM of figure 8.2 solves a problem that is in P. 

8.6. Suppose that no efficient algorithm is known for the decision problem 
Q, but that Q e NP. Show that an exponential-time deterministic 
algorithm exists for Q. 



(Let the NDTM which verifies Q in time p(n) be changed into a DTM 
which checks all possible guesses in series. The time required for this 
DTM is of order p(n)ITl111ttl where T is the set of tape symbols.) 

8.7. Given a polynomial time algorithm to factorise an integer N, in unary 
representation, show that this does not imply that a polynomial time 
algorithm exists to factorise Nin binary representation. 
(Simply show that the length of N in a unary representation is expo­
nential in terms of its length in binary representation.) 

8.8. Let an arbitrary decision problem D, be: Given an instance I of the 
problem, is A true for I? The complementary decision problem, D', is 
then: Given I is A false for I? 

Show that if Dis a member of P then so is D'. In contrast show that if 
D is a member of NP then we cannot necessarily draw the conclusion 
that D•eNP. 
(If D e P then a DTM exists for D which halts within polynomial time 
for all I. D' can then be solved by the same DTM by simply inter­
changing the states q, and qa. On the other hand consider the case 
where D0 is the problem: Is it true that there does not exist a travelling 
salesman's tour of length E. k?) 

8.9. Justify the lemmas 8.1-8.S. For lemma 8.3, exercise 7.9 may be of 
assistance. 

8.10. Show that the following problem is NPC: 
Subgrapb Isomorphism (SI) 

Instance: Two graphs G1 and G1• 

Question: Does G1 contain a subgraph isomorphic to G1? 
(Consider the case that G1 is a complete graph. In other words show 
that CLIQUE cc SI.) 

8.11. Show that the following problem is NPC: 
Bounded degree 11J11111DD11-tr (BDST) 

Instance: A graph G and an integer k. 
Question: Does G contain a spanning-tree for which no vertex 
has degree > k? 

(Consider the case k = 2. In other words show that HP cc BDST.) 
8.12. In chapter 1 we saw that the problem of finding the shortest path 

between two vertices in a graph can be solved in polynomial time. Show, 
in contrast, that the following problem is NPC: 
Longest Path (LP) 

Instance: A graph G with two distinguished vertices u and o, 
and an integer k, 1 oi;. k ~ n. 
Question: Does G contain a simple path from u to o of length 
> k? 
(Show that HP cc LP.) 



8.13. In analogy with lemma 8.1 let 

~ v1 ( be shorthand for 
v, 

Va 

Justify the claim that in a 4-vertex-colouring of g' using the colour set 
{O, 1, 2, 3}, v, must be coloured O if and only if all of vt, v1 and v, are 
coloured O. Use g' in a proof, similar to that for theorem 8.10, that 
4CisNPC. 

Notice that if we restrict 4C to planar graphs then, in view of the 
Appel-Haken proof of the four-colour coajecture, the problem is in P. 

8.14. Consider the following problem: 
Minimum Tardiness Seqaenclng (MTS) 

Instance: A set of tasks T = {ti, t1, ... , t,.} each requiring one 
unit of execution time, a set of deadlines D = {d(ti), d(t;), ... , 
d(t,.)}, a partial order<: on T and an integer K, O < KE;; ITI, 
Question: Is there a schedule (i.e., an order of execution of the 
ti) such that if t, <: t1then t, is executed before t1 and such that 
no more than K tasks are completed after their deadlines? 

Given an instance of CLIQUE, I, we can construct an instance F(I) 
of MTS. Let I consist of G = (V, E) and an integer L. F(I) then con­
sists of: 

T = {11:i, 11■, ... , v., e1, e1, ... , ei}, v, e V and e1 e E 
v, <! r>1 if in G, v, is an end-point of e1 

d(vi) = ½L(L+ 1), d(e,) = I VI+ [El 
K = IEl-(½L(L-1)) 

This construction can clearly be carriei.r out in polynomial time. Show 
that /has a clique of si7.e L if and only if F(J) has no more than K tasks 
completed after their deadlines. This will prove that MTS is NPC. (The 
partial order requires that in every schedule any 'edge' task is com­
pleted after its own 'end-point• tasks. The deadlines are such that only 
'edge' tasks can be late. If the answer to MTS for F(I) is 'yes', then at 
least ½L(L- 2) of these tasks must be completed before their deadline, 
½L(L+2). In order that the schedule does not violate the partial 
ordering, the corresponding 'vertex' tasks must also be executed before 
this deadline. The minimum possible number of these is L (when the 
corresponding vertices in G form a clique) so that the total number-of 
tasks now performed before the time ½L(L+ 1) is 

½L(L-l)+L = ½L(L+l) 

This just exhausts the available time before the • edge •-task deadline.) 



8.lS. Let A(G) denote the number of vertices that an arbitrary approximation 
algorithm A assigns to a maximum independent set for the graph G. We 
denote by OPT(G) the exact number in this set. Show that if NP "' P, 
then the proposition that for all instances G that: 

IA(G)-OPT(G)I "'- K 

for some integer constant K, is false. 
(Suppose that the proposition is true. Given G we can apply A to the 
(disconnected) graph G' which consists of (K + 1) copies of G. Then 

IA(G')-OPT(G')I :!lo K 

and clearly OPT(G') = (K + 1) OPT(G'). This also defines an algorithm 
B which assigns at least f A(G')/ (K + 1)1 vertices to the maximum 
independent set of G - obtained by finding the largest set of vertices 
that A assigns to any of the components of G'. It follows that: 

IB(G)-OPT(G)I E. K/(K+1) 

In other words, B(G) must be equal to OPT(G) so that B would 11e an 
exact algorithm. With theorem 8.4 this provides a contradiction.) 



Appendix 

On linear programming 

Several problems in this text can be formulated as linear programming 
problems. For example, the minimum-cost flow algorithm of chapter 4 was 
described in this way. We present here just enough insight into linear 
programming theory for an understanding of its application within this 
text. Readers who require an extensive treatment should consult one of 
the numerous texts ([l], for example) devoted to the subject. 

A linear programming problem is any problem that can be described as 
follows: 

subject to the constraints: 

.. 
~ "1iX, :!lo b1, k+ 1 :E;; j ~ m 
C=l 

and the non-negativity conditions: 

x,;., 0, l+l < i ~ n 

(i) 

(ii) 

(iii) 

where for 1 :E;; i < I, x, is unrestricted in sign. Within (i), (ii) and (iii) the 
a1,, b1 and c, are given constants while the x, are variables. 

The above definition of a linear programming problem is in one of a 
number of standardised forms in common use. Many linear programming 
problems have a natural description in statements similar to, but not 
immediately identical to (i), (ii) and (iii). Fairly trivial adjustments can cast 
such problems into our standardised form. For example, a problem of 
minimising L c,x, is the same as maximising U -ci)x,, a linear constraint 
of the form 4"1i~ ~ b1 is the same as U-a,Jx, ;., (-b1), and so on. 



In order to provide motivation for the above abstractions we briefly 
describe one of the problems (first published in [2]) which led to the 
development of linear programming theory. This problem, known as the 
dietician's problem, is to determine a week's diet for a hospitalised patient 
who needs a predetermined minimum weight of each of the nutrients 
Ni, N1 , ••• , N,,.. There are n different foods available Fi, F1, ••• , F,. and the 
nutritional content of each is known. The difficulty is that the cost of the 
diet has to be minimised. With the following definitions: 

a,1 is the number of units of N, in one unit of F, 
b1 is the minimum number of units of N1 to be consumed 
~ is the unit cost of F, 

The dietician's problem can then be simply stated as follows: 
,. 

minimise :E c,x, 
(=l 

(a) 

where x, is the number of units of~ consumed, and the weekly consump­
tion of N1 must be at least b, units: 

,. 
E "ii~ > b1, 1 ~ j ~ m (b) ,-1 

while the consumed amount of each food must be non-negative: 

~ ;?; 0, 1 ~ i ~ n (c) 

It is an easy matter to convert (a), (b) and (c) into our standard form by the 
means indicated earlier. What is obtained has k = 0 for (ii) so that all the 
constraints are inequalities, and has I= 0 for (iii) so that every variable 
is restricted in sign. 

In general a linear programming problem has n variables x,, an objective 
function (i), m constraints (ii) and a set of non-negativity conditions (iii). 
For any such problem we can construct a dUQ/ problem with m variables y, 
(one corresponding to each constraint of the original problem) and n 
constraints (one for each variable of the original problem) as follows: 

,,. 
minimise :E b1y1 

i=l 

subject to the constraints: 

,,. 
E al'y1 >~.l+l ~ 1 ~n ,-1 
and non-negativity conditions: 

Y1>0,k+l ~j~m 

(i') 

(ii') 

(iii) 



while for 1 Et j Et k, y1 is unrestricted in sign. Notice that the coefficients a,, in the constraining relations are the transpose of those in (ii). The 
coefficients a1,, b1, c,, I and k are fixed as in (i), (ii) and (iii). The dual 
problem can easily be written in the standard form (i), (ii) and (iii) and so 
is itself a linear programming problem. In order to distinguish it from the 
dual, the original problem is called the primal. If the dual is written in the 
form of the primal and its dual constructed according to the above recipe, 
then it is easy to see that the dual of the dual is the primal. 

Given the meaning of the parameters "'i• b, and ~ afforded by a specific 
primal problem, useful insight can be gained from an interpretation of its 
dual. The dual of the dietician's problem (a), (b) and (c) is: 

"' maximise E b1y1 
1-1 

(a') 

subject to: 

"' E tznY1 E. ~. 1 Et i E. n 
i=l 

(b') 

and 

Ys ;;i. 0, 1 Et j Et m (c') 

which can be interpreted as follows. Knowing of the dietician's problem 
a chemist plans to manufacture pills which can be used as a substitute for 
food in a diet. The chemist can only hope to sell his pills if they provide a 
cheaper alternative to the food, but at the same time he must maximise his 
profit. If y, is the price of one unit of the N, pills, then the price of the pill 
equivalent of a week's minimum nutritional intake, which has to be 
maximised, is precisely expressed by (a'). Moreover (b') is the requirement 
that the pills be cheaper than the food and t') states that the prices of the 
pills must not be negative. 

A set of values for the variables of a linear programming problem which 
satisfies the constraints and non-negativity conditions is called a feasible 
solution. If a feasible solution optimises the objective function then it is 
called an optimal solution. The value of the objective function obtained 
with an optimal solution is called the value of the linear program. 

Given a feasible solution to a linear programming problem, we need to 
know whether or not it is an optimal solution. We shall now see how this 
might be ascertained. If the sets of values {xJ and {yJ are, respectively, 
feasible solutions for a primal and its dual then from (ii) and (ii') wr: see 
that: 

m m 11 n m. • 
E b1y1 ;;i. E Ys E a,,~= E x, E a"y' ;;i. E x,c, (iv) 
i-l i-l (-1 (-1 i-1 ,-1 



where the objective function for the primal is on the right 1Li1d for the dual 
is on the left. From (iv) we see that the value of a maximisation problem 
cannot exceed the value of its dual. For the dietician's problem this means 
that the diet in pill form cannot be more expensive than if the food is used. 
If feasible solutions can be found for both the primal and the dual such 
that equality holds throughout (iv), then, clearly, optimal solutions have 
been found. This is the case if and only if 

(b,- i a,c~)Y, = 0, 1 =E;j =E; m 
(=i 

and 

(v) 

(vi) 

For problems of interest to us we obtain solutions which satisfy (v) and (vi) 
and which must therefore be optimal. The important relations (v) and (vi) 
are often expressed in the following form: 

and 

,. 
y1 + 0 :> b1 = :E a,cx,, 1 =i.; j =i.; m ,-1 

m 
x, + 0 :> c, = :E a,,Y,, 1 =E; i =i.; n ,-1 

and are known as the complementary slackness conditions. 
The standard method of solving linear programming problems is called 

the simplex method (see [l), for example). ~tarting from one feasible solution 
this method generates a sequence of othe15 such that each subsequent 
solution produces a better value for the objective function. Eventually an 
optimal solution is produced. Where we need to apply the theory in this 
text, we describe specific means for generating a sequence of feasible 
solutions and we show that this terminates with an optimal solution. 

Linear Prograniming is a good example of a problem which is more 
effectively. solved by an exponential-time algorithm (in this case the simplex 
method) than by a known polynomial time algorithm (in this case the 
ellipsoid method). Klee & Mintyl31 have shown that the simplex method is 
exponential-time in worst-case performance, yet in practice it has, as 
McCaUl41 shows, exhibited linear-time behaviour. Smale'sl&J goal is to 
provide a theoretical explanation. The ellipsoid method is due to 
Khachian.181 
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