ALAN GIBBONS

Department of Computer Sciences, University of Warwick

Algorithmic graph
theory

Y
The right of the
University of Cambridge
to print and sell
all manner of books
was granted by
Henry VIII in 1534
The University has printed
and published continuously
since 1584.

ph—yd

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle

Melbourne Sydney



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1985

First published 1985

Printed in Great Britain by the University Press, Cambridge
Library of Congress catalogue card number: 84-23835

British Library cataloguing in publication data
Gibbons, Alan

Algorithmic graph theory.

1. Graph theory 2. Algorithms

1. Title

511’5 QA166

ISBN 0 521 24659 8 hard covers
ISBN 0 521 28881 9 paperback



To my children
Gabrielle, Chantal and Rosalind,
with love.



Contents

1.1
1.2
1.3

14

22

2.3

3.1
32
33

34
3.5

Preface (xi)
Introducing graphs and algorithmic complexity 1
Introducing graphs 1
Introducing algorithmic complexity 8
Introducing data structures and depth-first searching 16
1.3.1, Adjacency matrices and adjacency lists 17
1.3.2, Depth-first searching 20
1.3.3. Two linear-time algorithms 24
Summary and references 32
Exercises 33
Spanning-trees, branchings and connectivity 39
Spanning-trees and branchings 39
2.1.1. Optimum weight spanning-trees 40
2.1.2. Optimum branchings 42
2.1.3. Enumeration of spanning-tress 49
Circuits, cut-sets and connectivity 54
2.2.1. Fundamental circuits of a graph 54
2.2.2. Fundamental cut-sets of a graph 57
2.2.3. Connectivity 60
Summary and references 62
Exercises 63
Planar graphs 67
Basic properties of planar graphs 67
Genus, crossing-number and thickness 1
Characterisations of planarity 5
3.3.1. Dual graphs 81
A planarity testing algorithm 85
Summary and references 92

Exercises 93



viii

4.1
42
4.3
44
4.5

5.1
52

53
54

Contents

Networks and flows

Networks and flows

Maximising the flow in a network
Menger’s theorems and connectivity
A minimum-cost flow algorithm
Summary and references
Exercises

Matchings

Definitions

Maximum-cardinality matchings
5.2.1. Perfect matchings
Maximum-weight matchings
Summary and references
Exercises

6 Eulerian and Hamiltonian tours

6.2

6.3

6.4

1.1
12

73

74

Eulerian paths and circuits

6.1.1, Eulerian graphs

6.1.2. Finding Eulerian circuits

Postman problems

6.2.1. Counting Eulerian circuits

6.2.2. The Chinese postman problem for undirected graphs
6.2.3. The Chinese postman problem for digraphs
Hamiltonian tours

6.3.1. Some elementary existence theorems

6.3.2. Finding all Hamiltonian tours by matricial products
6.3.3. The travelling salesman problem

6.3.4. 2-factors of a graph

Summary and references

Exercises

Colouring graphs

Dominating sets, independence and cliques
Colouring graphs

7.2.1. Edge-colouring

7.2.2. Vertex-colouring

7.2.3. Chromatic polynomials
Face-colourings of embedded graphs

7.3.1. The five~colour theorem

7.3.2. The four-colour theorem

Summary and references
Exercises

Graph problems and intractability
Introduction to NP-completeness

96
96
98
106
111
118
120

125
125

126
134

136
147
148

153

153
155
156

161
162
163
165

169
169
173
175
182

184
185

189
189

195
195
198
201

204

210
212

217
217



8.2

8.3
8.4

Contents

8.1.1. The classes P and NP

8.1.2. NP-completeness and Cook’s theorem

NP-complete graph problems

8.2.1, Problems of vertex cover, independent set and clique

8.2.2. Problems of Hamiltonian paths and circuits and the
travelling salesman problem

8.2.3. Problems concerning the colouring of graphs

Concluding comments

Summary and references

Exercises

Appendix: On linear programming
Author index

Subject index

217

227
227

229
235

241
244
245

249
254
256



Preface

In the last decade or so work in graph theory has centred on algorithmic
interests rather than upon existence or characterisation theorems. This
book reflects that change of emphasis and is intended to be an intro-
ductory text for undergraduates or for new postgraduate students.

The book is aimed primarily at computer scientists. For them graph
theory provides a useful analytical tool and algorithmic interests are
bound to be uppermost. The text does, however, contain an element of
traditional material and it is quite likely that the needs of a wider audience,
including perhaps mathematicians and engineers, will be met. Hopefully,
enough of this material has been included to suggest the mathematical
richness of the field.

Prerequisites for an understanding of the text have been kept to a
minimum. It is essential however to have had some exposure to a high-
level, procedural and preferably recursive programming language, to be
familiar with elementary set notation and to be at ease with (for example,
inductive) theorem proving. Where more advanced concepts are required
the text is largely self-contained. This is true, for example, in the use of
linear programming and in the proofs of NP-completeness.

There is rather more material than would be required for a one-semester
course. It is possible to use the text for courses of more or of less difficulty,
or to select material as it appeals. For example an elementary course might
not include, amongst other material, that on branchings (in chapter 2),
minimum-cost flows (in chapter 4), maximum-weight matchings (in
chapter 5), postman problems (in chapter 6) and proofs of NP-completeness
(all of chapter 8). Whatever the choice of material, any course will in-
evitably reflect the main preoccupation of the text. This is to identify those
important problems in graph theory which have an efficient algorithmic
solution (that is, those whose time-complexity is polynomial in the problem
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size) and those which, it is thought, do not. In this endeavour the most
efficient of the known polynomial time algorithms have not necessarily
been described. These algorithms can require explanations that are oo
lengthy and may have difficult proofs of correctness. One such example is
graph planarity testing in /inear-time. It has been thought preferable to go
for breadth of material and, where required, to provide references to more
difficult and stronger results. Nevertheless, a body of material and quite a
few results, which are not easily available elsewhere, have been presented
in elementary fashion.

The exercises which appear at the ends of chapters often extend or
motivate the material of the text. For this reason outlines of solutions are
invariably included. Some benefit can certainly be obtained by reading
these sections even if detailed solutions are not sought.

Thanks are due to Valerie Gladman for her cheerful typing of the manu-
script. Primary and secondary sources of material are referenced at the ends
of chapters. I gratefully acknowledge my debt to the authors of these works.
However, I claim sole responsibility for any obscurities and errors that
the text may contain.

A. M. Gibbons Warwick, January 1984



1

Introducing graphs and algorithmic
complexity

In this chapter we introduce the basic language of graph theory and of
algorithmic complexity. These mainstreams of interest are brought together
in several examples of graph algorithms.

Most problems on graphs require a systematic traversal or search of the
graph. The actual method of traversal used can have advantageous struc-
tural characteristics which make an efficient solution possible. We illustrate
both this and the use of an efficient representation of a graph for compu-
tational purposes.

The definitions and concepts outlined here will serve as a foundation for
the material of later chapters.

11 Introducing graphs
This section introduces the basic vocabulary of graph theory. The
subject contains an excess of non-standardised terminology. In the fol-
lowing paragraphs we introduce a relatively small number of widely used
definitions which will nevertheless meet our needs with very few later
additions.
Geometrically we define a graph to be a set of points (vertices) in space
which are interconnected by a sét of lines (edges). For a graph G we denote

Fig. 1.1

121 v, v,
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Vg




2 Introducing graphs and algorithmic complexity

the vertex-set by V and the edge-set by E and write G = (V, E). Figure 1.1
shows a graph, G = ({vy, v, ..., Uy}, {€y, €, ..., €1}).

We shall denote the number of vertices in a graph by n = |V| and the
number of edges by |E|. If both n and | E| are finite, as we shall normally
presume to be the case, then the graph is said to be finite.

We can specify an edge by the two vertices (called its end-points) that it
connects. If the end-points of e are v; and v; then we write e = (v;, v;) or
e = (v;, v,). Thus an equivalent definition of the graph in figure 1.1 is:

G= (I,’ E), V= {vla Vgy eeey ”o}‘

E= {(”1, va), (% ”a)’ (% ”s)a (va» 05), (8 05), (4> Ve),
(04’ 07)’ (05, v.), (0., 07)’ (07’ vs)a (07, v’)’ (08’ ”o)}

If an edge e has v as an end-point, then we say that e is incident with v.
Also if (u, v) € E then u is said to be adjacent to v. For example, in figure 1.1
the edges e, e; and ¢, are incident with v; which is adjacent to v, v, and vg.
We also say that two edges are adjacent if they have a common end-point.
In figure 1.1, for example, any pair of eg, ey, ;o and e,, are adjacent.

The degree of a vertex v, written d(v), is the number of edges incident
with ». In figure 1.1 we have d(v,) = d(vy) = d(vg) = d(vy) = 2, d(vs) =
d(v) = d(vs) = d(vg) = 3 and d(v;) = 4. A vertex v for which d(v) = 0 is
called an isolated vertex. Our first theorem is a well-known one concerning
the vertex degrees of a graph.

Theorem 1.1. The number of vertices of odd-degree in a finite graph is even.

Proof. If we add up the degrees of all the vertices of a graph then the result
must be twice the number of edges. This is because each edge contributes
once to the sum for each of its ends. Hence:

3 de) = 2-|E|

The right-hand side of this equation is an even number as is the contri-
bution to the left-hand side from vertices of even-degree. Therefore the

sum of the degrees of those vertices of odd-degree is even and the theorem
follows. ]

A self-loop is an edge (u, v) for which u = v. An example is e, in the
graph of figure 1.2(a). A parallel edge cannot be uniquely identified by
specifying its end-points only. In figure 1.2(a), e, is parallel to e;. In this
text we shall normally be concerned with simple graphs, that is, graphs
which contain no self-loops or parallel edges. Of course, every graph has
an underlying simple graph obtained by the removal of self-loops and
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parallel edges. Thus figure 1.2(b) shows the simple graph underlying figure
1.2(a). By the term multi-graph we mean a graph with parallel edges but
with no self-loops. From now on we shall employ the term graph to mean
a simple graph unless we explicitly say otherwise.

Fig. 1.2

(a) e . (b)

eg

A graph for which every pair of distinct vertices defines an edge is called
a complete graph. The complete graph with n vertices is denoted by K,,.
Figure 1.3 shows K and K;. In a regular graph every vertex has the same
degree, if this is k& then the graph is called k-regular. Notice that K, is
(n—1)-regular. Figure 1.4 shows two examples of 3-regular graphs (also
called cubic graphs) which, as a class, are important in colouring planar
maps as we shall see in a later chapter.

Fig. 1.3

K
A




4 Introducing graphs and algorithmic complexity

If it is possible to partition the vertices of a graph G into two subsets, ¥}
and ¥, such that every edge of G connects a vertex in V] to a vertex in ¥ then
G is said to be bipartite. Figure 1.5(a) and (b) shows two bipartite graphs.
If every vertex of ¥ is connected to every vertex of ¥ then G is said tobe a
complete bipartite graph. In this case we denote the graph by K, ; where
Vil =i and |V3| =j. Figure 1.5(b) shows K, ;. There is an obvious
generalisation of these definitions for bipartite graphs to k-partite graphs
where k is an integer greater than two.

Fig.1.5

(a) Ei]%\ (b) ﬁ&;?

Two graphs G; and G, are isomorphic if there is a one-to-one corre-
spondence between the vertices of G, and the vertices of G, such that the
number of edges joining any two vertices in G, is equal to the number of
edges joining the corresponding two vertices in G,. For example, figure
1.6 shows two graphs which are isomorphic, each being a representation
of K3, 5.

Fig. 1.6

® D

A (proper) subgraph of G is a graph obtainable by the removal of a
(non-zero) number of edges and/or vertices of G. The removal of a vertex
necessarily implies the removal of every edge incident with it, whereas the
removal of an edge does not remove a vertex although it may result in one
(or even two) isolated vertices. If we remove an edge e or a vertex v from G,
then the resulting graphs are respectively denoted by (G—e) and (G—v).
If H is a subgraph of G then G is called a supergraph of H and we write
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H < G. A subgraph of G induced by a subset of its vertices, ¥’ < V, is the
graph consisting of ¥’ and those edges of G with both end-points in V”.

A path from v, to v, is a sequence P = vy, &, vy, €, ..., €_4,0; of alter-
nating vertices and edges such that for 1 < j < i, ¢, is incident with v; and
v;41. If v; = v, then P is said to be a cycle or a circuit. In a simple graph a
path or a cycle vy, e,, vy, €, ..., ¢;_1, v; can be more simply specified by the
sequence of vertices v,, v, ..., v;. If in a path each vertex only appears once,
then the sequence is called a simple path. If each vertex appears once except
that v; = v, then P is a simple circuit. The length of a path or a cycle is the
number of edges it contains. T'wo paths are edge-disjoint if they do not have
an edge in common.

Two vertices v; and v; are connected if there is a path from v; to v;. By
convention, every vertex is connected to itself. Connection is an equi-
valence relation (see problem 1.9) on the vertex set of a graph which
partitions it into subsets V;, ¥, ..., ;. A pair of vertices are connected if
and only if they belong to the same subset of the partition. The subgraphs
induced in turn by the subsets ¥, ¥,, ..., ¥;, are called the components of the
graph. A connected graph has only one component, otherwise it is dis-
connected. Thus the graph of figure 1.1 is connected whilst that of figure 1.9
has two components.

A spanning subgraph of a connected graph G is a subgraph of G obtained
by removing edges only and such that any pair of vertices remain connected.

Let H be a connected graph or a component. If the removal of a vertex v
disconnects H, then v is said to be an articulation point. For example, in
figure 1.1 vg, v5 and v, are all articulation points. If H contains no articu-
lation point then H is a block, sometimes called a 2-connected graph or
component. If H contains an edge e, such that its removal will disconnect H,
then e is said to be a cut-edge. Thus in figure 1.1 ¢, is a cut-edge. The end-
points of a cut-edge are usually articulation points.

A graph with one or more articulation points is also called a separable
graph. This refers to the fact that the blocks of a separable graph can be
identified by disconnecting the graph at each articulation point in turn in
such a way that each separated part of the graph retains a copy of the
articulation point. For example, figure 1.7 shows the separated parts (or
.blocks) of the graph depicted in figure 1.1. Clearly, any graph is the union
of its blocks.

In some applications it is natural to assign a direction to each edge of a
graph. Thus in a diagram of the graph each edge is represented by an
arrow. A graph augmented in this way is called a directed graph or a
digraph. An example is shown in figure 1.8. If e = (v;, v;) is an edge of a
digraph then the order of v; and v, becomes significant. The edge e is under-
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Fig. 1.7
V1 Vs 2
Vs Vs
4] Vs v, Vg
vy g vy
Fig. 1.8
Vg €3 Vs
e e Va
v, e
€10 % Vg €1 €1s
e /
® m € e Yy
Ve e, s K a—

stood to be directed from the first vertex v, to the second vertex v;. Thus if
a digraph contains the edge (;, v;) then it may or it may not contain the
edge (v;, v;). The directed edge (v;, vy) is said to be incident from v; and
incident to v;. For the vertex v, the out-degree d+(v) and the in-degree d—(v)
are, respectively, the number of edges incident from v and the number of
edges incident to v. A symmetric digraph is a digraph in which for every
edge (v;, v;) there is an edge (v), ;). A digraph is balanced if for every
vertex v, dH(v) = d—(v).

Of course, every digraph has an underlying (undirected simple) graph
obtained by deleting the edge directions. Thus figure 1.9 shows this graph
for the digraph of figure 1.8. As defined earlier, a path (or circuit) in a
corresponding undirected graph is a sequence S = vy, e, Us, €3, ..., V;_3, €;,
of vertices and edges. In the associated digraph this sequence may be such

Fig. 1.9

<> A

that for all j, 1 < j < i, ¢; is incident from v; and incident to v;,. In this
case S is said to be a directed path (or circuit). Otherwise it is an undirected
path (or circuif). Thus in figure 1.8 (v, €3, 03, €, 05, €4, vy, €3, Vs, €33, V) iS an
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undirected non-simple path, while (v,, €;, v,, €3, g, €y, v;)isa simpledirected
circuit. Because in a digraph we can define two different types of paths we
can also define two different types of connectedness. Two vertices, v, and
vy, are said to be strongly connected if there is a directed path.from v, to v,
and a directed path from v, to v;. If v, and v, are not strongly connected but
are connected in the corresponding undirected graph, then v, and v, are
said to be weakly connected.

Both strong connection and weak connection are equivalence relations
(see problem 1.9) on the vertex set of a digraph. Of course weak connection
partitions the vertices in precisely the same way that connection would
partition the vertices of the corresponding undirected graph. Thus for
the graph in figure 1.8, weak connection partitions the vertices into the
two subsets {v, vy, 3, vy, V5, v} and {v,, vg, vg}. The subgraphs induced by
these subsets are called the weakly connected components of the digraph.
On the other hand strong connection partitions the vertices of this graph
into the subsets {v,, vy, vg}, {vs, vy, V5}, {v;} and {vg, vo}. Each of these subsets
induces a strongly connected component of the digraph. Notice that each
edge of a digraph belongs to some weakly connected component but that
it does not necessarily belong to a strongly connected component.

We now briefly introduce an important class of graphs called trees.
A treeis a connected graph containing no circuits. A forest is a graph whose
components (one or more in number) are trees. An out-tree is a directed
tree in which precisely one vertex has zero in-degree. Similarly, an in-tree
is a directed tree in which precisely one vertex has zero out-degree. A tree
in which one vertex, the root, is distinguished, is called a rooted-tree. In a
rooted-tree any vertex of degree one, unless it is the root, is called a leaf.
As we shall see in theorem 1.2 there is precisely one path between any two
vertices of a tree. The depth or level of a vertex in a rooted-tree is the
number of edges in the path from the root to that vertex. If (¥, v) is an edge
of a rooted-tree such that u lies on the path from the root to v, then u is
said to be the father of v and v is the son of u. An ancestor of u is any vertex
of the path from u to the root of the tree. A proper ancestor of u is any
ancestor of u excluding . Similarly, if » is an ancestor of v, then v is a
descendant of u. A proper descendant of u excludes u. Finally, a binary tree
is a rooted-tree in which every vertex, unless it is a leaf, has iwo sons.

Theorem 1.2. If T is a tree with »n vertices, then

(@) Any two vertices of T are connected by precisely one path.

(b) For any edge e, not in T, but connecting two vertices of T, the
graph (T'+ ) contains exactly one circuit.

(¢) T has (n—1) edges.
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Proof. (a) T is connected and so there exists at least one path between any
two vertices # and v. Suppose that two distinct paths, P, and P, exist
between u and v. Following these paths from u to v, let them first diverge
at ¥’ and first converge at v'. That section of P, from u’ to v’ followed by
that section of P, from v’ to ' must form a circuit. By definition, 7' contains
no circuit and so we have a contradiction.

(b) Let e = (u, v). According to (a) there is precisely one path P from
u to v within 7. The addition of e therefore creates exactly one circuit
(P+e).

(¢) Proof is by induction on the number of vertices nin 7. If n = 1 or 2
then, trivially, the number of edges in T is (n—1). We assume that the
statement is true for all trees with less than n vertices. Let T have n vertices.
There must be a vertex of degree one contained in 7, otherwise we could
trace a circuit by following any path from vertex to vertex entering each
vertex by one edge and leaving by another. If we remove a vertex of degree
one, v, from T we neither disconnect T or create a circuit. Hence (7'—v) is
a tree with (n—1) vertices. By the induction hypothesis (T—v) has (n—2)
edges. Hence replacing v provides T with (n—1) edges. ]

We complete our catalogue of definitions by introducing weighted graphs.
In some applications it is natural to assign a number to each edge of a
graph. For any edge e, this number is written w(e) and is called its weight.
Naturally the graph in question is called a weighted graph. The weight of a
(sub)graph is equal to the sum of the weights of its edges. Often of interest
here is a path (or cycle) in which case it may be appropriate to refer to the
length rather than the weight of the path (or cycle). This should not be
confused with the length of a path (or cycle) in an unweighted graph which
we defined earlier.

In the following section we introduce the other central interest of this
text, namely, that of algorithmic complexity.

1.2 Introducing algorithmic complexity

Although fairly brief, this.introduction to algorithmic efficiency
will provide a sufficient basis for all but the final chapter of this text. That
chapter provides further insight into what is introduced here, and, in
particular, it explores an important class of intractable problems.

Our interest in efficiency is particularly concerned with what is called the
time-complexity of algorithms. Since the analogous concept of space-
complexity will be of little interest to us, we can use the term complexity in
an unambiguous way. The complexity of an algorithm is simply the
number of computational steps that it takes to transform the input data to
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the result of a computation. Generally this is a function of the quantity of
the input data, commonly called the problem size. For graph algorithms
the problem size is determined by one or perhaps both of the variables n
and |E|.

For a probiem size s, we denote the complexity of a graph algorithm
A by C(s), dropping the subscript 4 when no ambiguity will arise. C(s)
may vary significantly if algorithm A is applied to structurally different
graphs but which are nevertheless of the same size. We therefore need to
be more specific in our definition. In this text we take C,(s) to mean the
worst-case complexity. Namely, to be the maximum number, over all input
sizes s, of computational steps required for the execution of algorithm A.
Other definitions can be used. For example, the expected time-complexity
is the average, over all input sizes s, of the number of computational steps
required.

The complexities of two algorithms for the same problem will in general
differ. Let 4, and 4, be two such algorithms and suppose that C, (n) = 4n?
and that C,(n) = 5n. Then 4, is faster than A, for all problem sizes
n > 10. In fact whatever had been the (finite and positive) coefficients of
n? and of n in these expressions, 4, would be faster than A, for all n
greater than some value, n, say. The reason, of course, is that the asymptotic
growth, as the problem size tends to infinity, of n? is greater than that of n.
The complexity of 4, is said to be of lower order than that of 4,. The idea
of the order of a function is important in complexity theory and we now
need to define and to further illustrate it.

Given two functions F and G whose domain is the natural numbers, we
say that the order of F is lower than or equal to the order of G provided
that:

F(n) < K-G(n)

for all n > n,y, where K and n, are two positive constants. If the order of F
is lower than or is equal to the order of G then we write F = O(G) or we
say that Fis O(G). F and G are of the same order provided that F = O(G)
and that G = O(F). It is occasionally convenient to write 8(G) to specify
the set of all functions which are of the same order as G. Although 8(G)
is defined to be a set, we conventionally write F = 6(G) to mean F e 6(G).
Illustrating these definitions, we see that 5n is O(4n2) but that 5n # 0(3n?)
because 4n2 is not O(5n). Note also that low order terms of a function can
be ignored in determining the overall order. Thus the polynomial
(3n3+6n%+n+6) is O(3nd). 1t is obviously convenient when specifying the
order of a function to describe it in terms of the simplest representative
function. Thus (3n3+ 6n?) is O(n®) and 4n2 is O(n?).

‘When comparing two functions in terms of order, it is often convenient
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to take the following alternative definition. Letting lim F(n)/G(n) = L,
we see that: i

(i) If L = a finite positive constant, then F = 6(G).
(ii) If L = O, then F is of lower order than G.
(iii) If L = oo, then G is of lower order than F.

We provide four illustrations:

(@) F(n) = 3n2—4n+2 and G(n) = 4n2. Then L = 6, so that F = 6(G).
(b) F(n) = log, n and G(n) = n. Then:

L= tim 2" 1og,e = fim ("’ie) ~0

n—o NI n—>cw n

Here we have used L’H6pital’s rule which states that if
lim F(n) = lim G(n) =
n—w n—0
and provided the derivatives F’ and G’ and the limits exist, then:

. F@m) _ .. F(n)
am " i )

Since L = 0, we see that log,n is of lower order than n.
(¢) F(n) = x™ and G(n) = n*, where x and k are arbitrary but fixed
constants, both greater than one. We define U(n) = F(n)/G(n), so that:

U(n+1)/Un) = x(n/(n+1))*

Thus for fixed k, we can always find a sufficiently large value of n, n,, say,
such that for n > ny:

Umn+1) ~ x-Umn)
Hence for n > n,

U(n) ~ x™"U(ng)

L=1lim Up) =00

n—>0

and

So that F, which is exponential in n, is of greater order than any polynomial
inn.

(d) If we take F and G to be as defined in (¢), and if H(n) = n!, then
using the same approach as in (¢) the reader may readily verify that H is of
greater order than both F and G. In other words, factorial n is of greater
order than polynomial n. Moreover, it is of greater order than exponential n.

The order of C ,(s) describes the asymptotic behaviour of C 4(s) as s — co.
If C4(s) is O(F), then A is said to be an O(F)-algorithm. The asymptotic
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complexity essentially determines the largest problem size that can be
handled. If two algorithms for the same problem are of the same order,
then roughly speaking, neither performs significantly better than the other.
For sufficiently large s, the difference is negligible compared with what it
would be for two algorithms of different order.

In table 1.1 we have tabulated various commonly occurring complexities
for a range of problem sizes. This table also provides information from
which the tabulated numbers of computational steps might be realistically
related to computation times.

Table 1.1. Computation times for a variety of time-complexities over a
range of problem sizes

Problem size n
Time- 2 8 128 1024
complexities
n 2 28 27 210
nlogyn 2 3x28 Tx2? 10 x 21
n’ 2! 20 21! 2!0
"8 28 2. 2!]. 280
on 28 28 2128 21024
~n! 2 5x 28 5x2m4 7 x 28768

210 steps/second ~0.9 x 21¢ steps/minute
~0.9 x 2% steps/hour
~ 1.3 x 2% steps/day
~ 0.9 x 225 steps/year
~ 0.7 x 22 steps/century

The complexity of an algorithm is impactant to the computer scientist.
One reason for this is that the existence of an algorithm does not guarantee
in practical terms that the problem can be solved. The algorithm may be so
inefficient that, even with computation speeds vastly increased over those
of the present day, it would not be possible to obtain a result within a useful
period of time. We need then to characterise those algorithms which are
efficient enough to make their implementation useful so that they can be
distinguished from those which may have to be disregarded for practical
purposes. Fortunately, computer scientists have been able to make use of
a rather simple characterising distinction which, for most occasions,
satisfies the need. The yardstick is that any O(P)-algorithm, where P is a
polynomial in the problem size, is an efficient algorithm. Many algorithms
have complexities which are exponential, or even factorial, in the problem
size. From our illustrations of determining the relative order of functions,
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we see that these algorithms cannot, at least according to the technical
definition, be regarded as efficient. In table 1.1 we can see, for the
examples shown, that there is a phenomenal difference in the growth of
computation times for these algorithms compared with that for some
polynomial time algorithms. (Note that n log, nis O(n?).) We must, however,
not lose sight of the dictionary definition of efficient. It is quite possible
for a particular algorithm to be inefficient in the technical sense and yet
to be preferable in practice.

The technical distinction, as it has been drawn, between efficient and
inefficient algorithms can be a crude one since it takes no account of the
coefficients or the degree of a specific polynomial in question. For very
small problem sizes, we can see from the table 1.1 that algorithms with
complexity 2" or n! are actually more efficient than an algorithm of com-
plexity n3. The range of this greater efficiency would clearly extend to much
greater problem sizes if the comparison had been made with a complexity
of 1000n® or with a complexity of n1%%, say. However, it is true that, in
practice, these considerations are uncommonly an issue because the
polynomials encountered are usually of low degree and contain modest
coefficients. In a different vein, we must also remember that the complexity
of an algorithm describes its worst case behaviour. Its average behaviour
may be a much more attractive prospect. A well-known example, which
falls outside our technical definition of efficiency, concerns the problem of
linear programming. Here, as we point out at the end of the appendix on
linear programming, there is a commonly used exponential-time algorithm
which is nevertheless efficient in practice and yet there exists a polynomial
time algorithm which is at present hopeless from a practical standpoint.

It might be thought that our specification of efficiency will lose its
usefulness as new generations of computers operate at higher and higher
speeds. It is perhaps remarkable that this is not the case. We can best see
this by tabulating the maximum problem sizes that can be solved with
various time-complexities, over a common time period, as the speed of
computation is increased. This has been done in table 1.2. This demon-
strates that higher computation speeds have a significant multiplicative
effect upon the maximum problem size that can be solved by polynomial
time algorithms but only a marginal additive effect for exponential-time
algorithms. Of course, this only serves to enhance our notion of what
algorithms may be regarded as efficient.

Notwithstanding our earlier caveats, we call any problem for which no
polynomial time algorithm is known, and for which it is conjectured that
no such algorithm exists, an intractable problem.

As illustrations, we now analyse two algorithms. The first is a well-
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Table 1.2. The effect of faster computation speeds on the largest problem
size solvable in a given time by some polynomial and exponential-time
algorithms

Time- At present

complexity speeds 28 x faster 27 x faster 210 x faster
n N, 8N, 128N, 1024N,

n® N] 2.8N3 11.3N’ 32N’

2 N, N;+3 Ny+7 N;+10
8" N, Ny+1 N(+2.3 N,+33

known one due to Dijkstra which finds the shortest path from a specified
vertex in a weighted graph to any other vertex, or indeed to all other
vertices. The second algorithm solves the seemingly similar problem of find-
ing the maximum length simple path between any two specified verticesin a
similar graph. Both algorithms work for directed or for undirected graphs.

For the purpose of communicating algorithms, we assume that the
reader has some experience of computer programming in a high-level
language such as ALGOL or PASCAL. In this text we describe algorithms
in terms of a simple model language which will require no formal definition
for the experienced programmer. Also our programs concentrate on what
is basically algorithmic and avoid any inessential verbosity and unbending
syntax than an actual programming language might force upon us.

Dijkstra’s algorithm is shown in figure 1.10. For an undirected graph,
we replace each edge (1, v) by two directed edges (v, v) and (v, ¥). Each
vertex v of a graph G = (¥, E) which is subjected to the algorithm, has an
associated label L(v). This is initially assigned a value equal to the weight
w((u, v)) of the edge (u, v), where u is the vertex from which path lengths
are to be measured. If ¥ and v are distinct and (u, v) ¢ E then w((u, v)) = oo,
while w((v, v)) = 0. On termination of the algorithm L(v), for all ve E,
is the length of the shortest path from u to v. The algorithm works by
constructing a set T = V in such a way that the current shortest path from
u to any v e T only passes through vertices in T. Figure 1.11 illustrates an
application of Dijkstra’s algorithm. For the graph shown there the table
lists the values of the L(v) and T for each iteration of the while-statement
of line 4 of figure 1.10.

Before establishing the complexity of Dijkstra’s algorithm we prove in
theorem 1.3 that it does indeed do what is claimed for it.

Theorem 1.3. Dijkstra’s algorithm finds the shortest path from u to every
other vertex.
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Proof. We first prove by induction on the size of T that:

(a) for every ve T, L(v) is equal to the length of the shortest path
from u to v, and
(b) for every v ¢ T, L(v) is equal to the length of the shortest path
from u to v which, apart from v, passes only through vertices in T'.
As the basis of our induction notice that when |T| = 1 at line 3 of
figure 1.10, lines 1 and 2 have initialised the labels to satisfy (a) and (b).
The inductive step, embodied in line 6, adds to T the vertex »’ which has
the smallest label of those not yet in T. By the inductive hypothesis, just
before v’ is added to T, L(v") is equal to the shortest path from u to »' which,
apart from v', only utilises vertices in 7. Suppose that when v’ is added to T,
L(v') is not equal to the shortest path from u to v’. Then a shortest path
must contain, apart from v’, at least one other vertex notin 7. Let v” be the
first such vertex in tracing this path from u. Then the distance along this
path to v” (which lies entirely within 7 and which is the shortest from u to
v" — otherwise an even shorter path from u to v’ would exist) is less than
L(v"). By the induction hypothesis L(v") is the distance along this path and
so L(v") > L(v") when v’ was added to T. This contradicts line 5 of the
program and so we conclude that there is in fact no path shorter than
L(v") when ¢’ is added to T. Thus (a) is maintained as T'is added to and so
is (b) through the statement beginning at line 7.
On completion of Dijkstra’s algorithm every vertex is in 7" and so the
theorem follows. u

Fig. 1.10. Dijkstra’s shortest path algorithm.

for all v # u L(v) < w((i, v))
L) <0
T < {u}
while T # V do
begin
find a v’ ¢ T such that for all v ¢ T L(v") < L(v)
T<«Tu {v}
forallv¢ T
L(v) < if L(v) > L")+ w((v', v))
then L(v") + w((v’, 1))

Eali ol adia

Now

end.

It is easy to see that Dijkstra’s algorithm can be implemented so as to
run in O(n2)-time. The determination of the minimum L(v’) in line 5 can be
achieved with O(n) comparisons and line 7 requires not more than n
assignments. Both lines 5 and 7 are contained within the body of the while
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statement beginning at line 4 and this body is executed (n—1) times. The
for statement can therefore be made to run in O(n%)-time. The remainder
of the program, lines 1 to 3, requires only O(n)-time. In exercise 1.16(b) we
show how the algorithm may be implemented using a priority queue and
adjacency lists both of which we define later. In this form we obtain
O((|E] +n) log n) complexity. For large sparse graphs (i.e., with relatively
few edges), this represents a much improved running time.

Fig. 1.11

Iteration | v’ L(u) L(v) L(vy) L(vy) L(v) T
0 - 0 1 3 © 6 {u}
1 12 0 1 2 4 6 {u, v}
2 vy 0 1 2 3 6  {u, vy, vg}
3 Vg 0 1 2 3 5 {u, vy, vy, vs}
4 v, 0 1 2 3 5 v

Dijkstra’s algorithm determines the shortgst path from u to every other
vertex of the graph. If we are simply interested in finding the shortest
distance from u# to another specified vertex 7, then the while-statement
beginning at line 4 could be terminated as soon as 7" includes z. Of course,
this would not affect the order of the complexity of the computation.

We turn our attention now to the second example. As we stated earlier,
this is to find the maximum-length simple path between two specified
vertices, ¥ and ¢, of a graph. Any simple path between u and ¢ consists of a
subset of the edges of the graph. The algorithm outlined in figure 1.12
enumerates all subsets of E in turn and, for those which represent such a
path, a current record of the longest path is kept. It is easy to check that
E' is a simple path from u to ¢ in polynomial time. This check is executed
for every iteration of the for statement in the algorithm. However, there
are 2'El such iterations (because there are 2! subsets of E) and so



16 Introducing graphs and algorithmic complexity

without any further detailing of the algorithm, we can see that it is
inefficient.

Fig. 1.12. A longest simple path algorithm.

1. MAXP <0
2. for all subsets E’ =< Edo
3. if E’ is a simple path from u to ¢

then MAXP < if w(E") > MAXP then w(E')

We have now seen, by the criteria specified earlier, one algorithm which
is efficient and one which is inefficient. As far as the second problem is
concerned, we could marginally improve on the complexity of the algorithm
supplied by the use of a more cunning or direct enumeration of paths.
However, no enumeration for an arbitrary graph is polynomially bounded.
In fact, no algorithm is known for this problem which operates within
polynomial time. In chapter 8, we shall see that a related decision problem
(Given an integer K, does G have a simple path between two specified
vertices of length greater than K ?) belongs to a large class of problems
called non-deterministic polynomial time complete (normally abbreviated to
NP-complete) which are widely held to be intractable.

It is characteristic of the NP-complete problems that known algorithms
require an exponentially large number of executions of a polynomial time
subtask. For example, in the decision problem just mentioned, it is easy to
check the length of a given path in polynomial time, but there are an
exponentially large number of these. By definition, any one NP-complete
problem can be transformed into any other within polynomial time. Thus
the discovery of a polynomial time algorithm for one would guarantee that
such an algorithm exists for any other. So much fruitless effort has been
expended in the search for these algorithms that they are thought now not
to exist. There is, however, no proof of this conjecture.

We now suspend discussion of NP-completeness until chapter 8. There
we provide proof that many of those problems to be met in the intervening
chapters and for which we can provide no efficient algorithms do in fact
belong to this class of NP-complete problems. In the interim we shall rely

upon the small insight provided here and will identify the problems as they
arise.

1.3 Introducing data structures and depth-first
searching
We introduce here elementary representations of graphs for com-
putational purposes. We also describe an efficient method for traversing
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graphs, called depth-first searching. This section then concludes with
detailed descriptions of two algorithms made efficient by utilising this
material. Another commonly used method for traversing a graph, called
breadth-first searching, is described in exercise 1.14 and made use of in
exercise 1.15.

1.3.1. Adjacency matrices and adjacency lists

The data structures introduced here are commonly used to repre-
sent graphs. In particular, as we shall see later, the use of adjacency lists
can make an important contribution to the efficiency of an algorithm.

An adjacency matrix for the graph G = (V, E) is an n x n matrix 4, such

that:

A@G, D=1 if (G,DeE

= 0 otherwise

If G is an undirected graph then A(i,j) = A(j,i), whilst if G is a digraph
then A is generally asymmetric. Figure 1.13 illustrates the two cases.
A specification of A clearly requires O(n?) steps. This eliminates any
possibility of O(|E|)-algorithms if A represents a sparse graph, that is one
for which the ratio | E|/n is low. However, as we shall see, O(| E |)-algorithms
are certainly possible in some cases by making use of adjacency lists.

In an adjacency list representation of a graph, each vertex has an associ-
ated list of its adjacent vertices. Examples are shown in Figure 1.13.
These lists can be embodied in a table T, examples of which are also shown
in the diagram. In order to trace the list for v;, say, in the table, we consult
T(i, 2) which points to T(7'(i, 2), 1) where the first vertex adjacent to v, is
recorded. Then T(T(, 2), 2) points to T(T(T'(i, 2), 2), 1) where the second
vertex adjacent to v, is recorded, and so on. The list for v; terminates when
a zero pointer is found. Notice the conventiof of numerically ordering the
vertices adjacent to v; within »,’s adjacency list; this is relevant to under-
standing some later examples of applying algorithms. Clearly, T has
(n+|E|) rows for a directed graph and (n+2|E|) for an undirected graph.
In some circumstances it is additionally useful to use doubly linked lists
for undirected graphs; we might also link the two occurrences of an edge
(u, v), the first in #’s adjacency list and the second in v’s.

In connection with adjacency matrices we note the following well-known
theorem. This concerns the kth matrical product, 4%, of the adjacency
matrix, defined inductively as follows:

A%G.J) = 5 4G,5) 4G.))

where
AYG, j) = A@, )
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Fig. 1.13. (@) A digraph G,, its adjacency matrix 4, and adjacency
lists with their tabular representation 7). () An undirected graph G,,
its adjacency matrix 4, and adjacency lists with their tabular
representation T,.

(a) 2 01100
0
| s 0010
A=10 00 1 0
00000
s 4 10110
G,
1 6
Adjacency lists 2 8
. Z3— 19 M —
2. [3]0] s 10
3. [4]0] T,= 6 2 7
) 703 0
4. @, the empty list 8| 3 0
s. (313410} oL 4 |0
ol 1 | 1
n{ 3 [ 12
12 4 0
| , 10100
As=|1 101 1
00101
s 4 10110
G,
1 6
2 9
11
1. 2] F+{3T 3570} 3 15
2. [11+{3]0] s 17
3. [(EF-EE-500 S
4. [3[F+s]o] T,= 8} 5 0
NEDEROD o
Adjacency lists 11 1 12
2 2 13
B 4 14
14 5 0
1s| 3 | 16
165 0
17 1 18
18 3 19
19 4 0
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Theorem 1.4. A%(i, j) is the number of (non-simple) paths from i to j,
containing k edges.

Proof. By induction on k. If k = 1 then 4%(i, j) = 1if (i, j) exists and is
zero otherwise. Thus we have a basis for the induction. We assume that the
theorem is true for all powers of A less than the kth. Now, by definition:

A%G)) = F 4G, 9) A6.))

and by the induction hypothesis 4*¥—1(i, 5) is the number of paths from
ito s and of length (k —1). Thus 4*1(i, 5) A(s, j) is the number of paths of
length k from i to j which have (s, j) as a final edge. The sum is over all
possible vertices adjacent to j and so the result follows. ]

Before coming to a description of depth-first searching we describe a
matricial method to find the shortest paths between each pair of vertices
in a weighted graph. This is in contrast to Dijkstra’s algorithm we described
earlier which finds the shortest paths from a specified vertex to all the
others. The algorithm starts with a matrix W for which W(j,j) is the
weight, w((v;, v,), of the edge (v;, v,). If v, and v; are distinct and (v, v)) ¢ E
then w((v;, v;)) = oo, while w((v,v)) = 0. Then a series of matrices,
W, Wy, ..., W, are constructed according to the following inductive rule:

Wi, j) = min (W4, J), (W10, )+ Wy_y(k, /D))
where

WG, ) = WG, J)
W, then provides the desired result according to the following theorem:
Theorem 1.5. W, (i, j) is the length of the shortest path from v; to v,.

Proof. We first show by induction on k, that W, (i, j) is the shortest path
from v; to v; which passes only through vertices in the subset {v,, v, ..., v;}.
If k = 0 then W (i, j) = w((v;, v))), so that W, (i, j) is the length of the path
(if it exists) from v, to v; which passes through no other vertex. We assume
that the statement is true for W,_,(i, /). Now W, (i, j) is the smallest of
Wia(i,j) and (Wi_4(i, k)+W;_4(k,j)). By the induction hypothesis
Wi_1(i, /) is the shortest path from v; to v; passing only through vertices in
the subset V' = {vy, vy, ..., v;_4}. If there is a shorter path which utilises v,
as well as the vertices of ¥’ then its length, by the induction hypothesis
must be (W,,_,(i, k) + W;,_,(k, j). Thus the induction step follows.

When W, has been constructed ¥’ includes every vertex of the graph and
so the theorem follows. [ ]

Figure 1.14 shows that this algorithm can be implemented to run in
O(n?)-time. The complexity is dominated by the nested for statements
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inlines 2 to 5. Notice that the space-complexity of the algorithm as outlined
in figure 1.14 can be considerably improved (without detriment to the
time-complexity) by recognising that W), is only required for the compu-
tation of W, and not for Wy, ..., W,

Fig. 1.14

1. Initialise W,

2. fork =1tondo

3 fori=1tondo

4, forj=1tondo

5. Wi, j) < min (W@, k) + Wik, 1)), WG, 7))
6. Output W,

1.3.2. Depth-first searching

Most graph algorithms require a systematic method of visiting the
vertices of a graph. A depth-first search (DFS) is just such a method which,
as we shall see, has certain characteristics making some especially efficient
algorithms possible.

For the time being we concern ourselves with undirected graphs only.
Suppose then that in a depth-first search of an undirected graph we are
currently visiting vertex v. The general step in the search then requires that
we next visit a vertex adjacent to v which has not yet been visited. If no
such vertex exists then the search returns to the vertex visited just before v
and the general step is repeated until every vertex in that component of the
graph has been visited. Such a search cannot revisit a vertex except by
returning to that vertex via edges that have been used since the previous
visit. Hence the edges traversed in a depth-first search form a spanning-
tree for each separate component of the graph. This set of trees is called a
depth first spanning forest, F. Thus a DFS partitions the edges E into two
sets, Fand B = E—F. The edges in B are called, for reasons which shall
become evident, back-edges.

Before providing an example of a DFS of a graph we describe the method
in terms of our algorithmic language. This is naturally achieved through
the recursive procedure employed in figure 1.15. The input to this program
consists of an adjacency list A(v) for each vertex v of G. The output consists
of the edge-set F. The algorithm uses a label DFI(v) for each vertex v.
Initially DFI(v) = 0, but on termination DFI(v) is the order in which v was
visited in the search. We shall call DFI(v) the depth-first index of v. This
ordering of the vertices is important for later algorithms and is best
thought of as a renaming of the vertices. For a connected undirected graph
line 11 of the algorithm could be omitted.
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Fig. 1.15. A depth-first search of G = {4(v)|v € V'} where A(v) is the
adjacency list for v.

1. procedure DFS(v)
begin
2. DFI(v) <i
3. i<i+l
4. for all v’ € A(v) do
5. if DFI(v") = O then
begin
6. F<Fu{@o)}
7. DFS(")
end
end of DFS
8. i<«1
9. F« g

10. for all ve ¥V do DFI(v) <0

11. while for some u, DFI(u) = 0 do
12.  DFS(u)

13. output F

The particularly efficient algorithms to be described in section 1.3.3 make
use of the efficiency of DFS, which is established below, and the charac-
teristics of the algorithm outlined in theorems 1.6 and 1.7.

Theorem 1.6. Following a depth-first search of an undirected graph each
back-edge (u, v), connects an ancestor to a descendant.

Proof. We can, without loss of generality, presume that in a DFSu is
visited before v. Thus DFS(u) is called before DFS(v) and DFI(v) =0
when u is visited. All those vertices visited during the execution of DFS(u)
become descendants of u. Since u is in v’s adjacency list, DFS(u) will not
terminate before v has been visited and so the theorem follows. |

Figure 1.16 shows an application of the DFS algorithm and an illus-
tration of theorem 1.6.

The complexity of the DFS algorithm is O(max (n, | E|)) as follows. For
each v e V, DFS(v) is called only once because after the first execution
DFI(v) = 0. Apart from recursive calls of DFS, the time spent by DFS(v)
is proportional to d(v), or for directed graphs d+(v). Thus calls of DFS
take a total time proportional to |E|. On the other hand, line 10 requires
O(n) steps as does the search for successive components of the graph in
line 11. Line 13 requires O(|E|) steps. The result therefore follows.

Let us now suppose that a directed graph is subjected to the algorithm.
In this case the edges of F form a spanning out-forest of the graph. Edges
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Fig. 1.16. An example illustrating an application of the DFS
algorithm. In lines 5 and 11 of figure 1.15 it is presumed that within
the adjacency lists the vertices are ordered numerically according to
their labels. (@) The two-component graph whose adjacency lists,
when input to the DFS algorithm, produce the output below.

(b) The spanning-forest F (in solid lines) output from the DFS
algorithm. The back-edges are shown by dashed lines. (c) The
depth-first order of visiting vertices.
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Fig. 1.17. An example illustrating an application of the DFS
algorithm to a digraph. (a) A digraph which subjected to the DFS
algorithm produces the output below. (5) The spanning out-forest F
shown in solid lines. Back-, forward- and cross-edges are shown by
dashed lines. (c) The depth-first order of visiting vertices.
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F={13,32,0,5,054,06),0,8),7,9% B ={21)
C={43),(4,08),0,6} B,={1,6)

can only be added to F if they are directed away from the current vertex
being visited. If no such edge exists to an unvisited vertex from those
already visited, then the next vertex to be visited (if one exists) becomes the
root of an out-tree. Figure 1.17 illustrates such an application of DFS.
Notice that the search partitions the edges of the digraph into four types:

(i) a set of spanning-out forest edges, F,
(ii) a set of back-edges, B,, which are directed from descendants to
ancestors,
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(iii) a set of forward-edges, B,, which are directed from ancestors to
descendants,

(iv) aset of cross-edges, C, which connect two vertices neither of which
is a descendant of the other.

Despite this apparent complication for digraphs as compared with
undirected graphs, there is a useful theorem analogous to theorem 1.6:

Theorem 1.7. Following a depth-first search of a digraph, if (u, v) is a cross-
edge, then DFI(u) > DFI(v).

Proof. Assume, contrary to the theorem, that DFI(u) < DFI(v), thatis, u is
visited before v. Now v is in #’s adjacency list and so must be visited within
DFS(u). Consider the possible type of the edge (4, v). If DFI(v) is assigned
when (i, v) is explored then (u, v) must be a tree edge. Otherwise v is first
visited as a descendant, but not a son, of ». Then (u, v) must be a forward-
edge. Hence (u, v) cannot be a cross-edge and so we have a contradiction. B

1.3.3. Two linear-time algorithms
We now describe our first example of an algorithm made especially
efficient by depth-first searching. This algorithm finds all the blocks of an
undirected graph given its adjacency lists as input. Theorem 1.6 is crucial
to this algorithm because the following observations can be made as a
result of it:
If v is an articulation point then:

(a) If vis the root of a tree in the DFS spanning forest then » has more
than one son.

(b) If v is not the root of a tree in the DFS spanning forest then v has
a son v’ such that no descendant of v' (which includes v') is con-
nected by a back-edge to a proper ancestor of v.

These observations are illustrated in figure 1.16(b), where v = 1 is both
a root and an articulation point and where v = 10 is not a root but is an
articulation point.

In order to identify the blocks of a graph we need to identify its articu-
lation points and the above observations can be used to do this. For the
purpose of encoding (b) we associate a parameter P(v) with each vertex v.
If the vertices are labelled according to the order in which they are visited
in a depth-first search, that is, by DFI(v), then P(v) is defined to be the
smallest of v and those vertices which are connected by a back-edge to a
descendant of v (including v). The maximum value of P(v) is clearly .
Given this definition we can restate observation (b):
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If v is an articulation point then:

(b") If v is not the root of a tree in the DFS spanning forest, then v has
a son v’ such that P(v') > DFI(v).

‘We use the DFS algorithm as a basis for the block-finding algorithm and
embed within it a calculation of P(v). Since the DFS algorithm consists
essentially of a recursive procedure, we need a recursive means to evaluate
P(v). This is provided by:

P(v) = min ({DFI(v)} U {P(v")]v’ is a son of v}

U {DFI(v)|(v, v") € B})
Figure 1.18 incorporates this within the DFS algorithm. Line 3 of this
depth-first search for blocks (DFSB) algorithm initialises P(v) to its
maximum possible value DFI(v). Line 11 updates P(v) if a son v’ is found
such that P(v) > P(v') and again P(v) is updated in line 12 if an appro-
priate back-edge is found. The articulation points are identified through
line 10 whenever a vertex v is found such that P(v") > DFI(v) for some
son v'.

Fig. 1.18. The depth-first search for blocks algorithm.

1. procedure DFSB(v)

begin
2. DFI(v) «<1i
3. P(v) < DFI(v)
4, i<i+l
5. for all v’ € A(v) do
begin
6. stack (v, v’) if it has not already been stacked
1. if DFI(v") = O then
begin
8. father (v) « v
9. DFSB(v)
10. if P(v") = DFI(v) then pop and output the stack up
to and including (v, v)
11. P(v) < min (P(v), P(v"))
end
12. else if v’ # father (v) then P(v) < min (P(v), DFI(v’))
end
end of DFSB
13, i<«1

14. empty the stack

15. forall ve V do DFI(v) <0

16. while for some v, DFI(v) = 0 do
17. DFSB(v)
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The DFSB algorithm incorporates a stack from which the set of edges
of a block is popped as soon as it is found. Line 14 initialises the stack and
line 6 stacks edges. We need to show that when a vertex v and a son v’ are
found for which P(v) > DFI(v), then those edges on the stack, above and
including (v, v"), define a block. This is easily shown by induction on the
number of blocks B in a graph. If B = 1, then the only vertex v for which
P(v") > DFI(v) is the root of the DFS tree. When this is established every
edge of the graph is on the stack with (v, v') at the bottom. We thus have a
basis for our induction. As our induction hypothesis we assume that the
statement is true for all graphs with less than B blocks. Now consider a
graph with B blocks and let v be the first vertex for which it is found that
P(v") > DFI(v). No edges have been removed from the stack and those
above (v, v') must be incident with vertices which are descendants of v'.
Since v is an articulation point with no descendant which is an articulation
point, those edges above and including (v, v) on the stack can only define
the block containing (v, v"). When the edges of this block are removed
from the stack, the algorithm behaves precisely as it would for the graph
with (B— 1) blocks obtained by deleting the blocks containing (v, v'). This
completes the inductive step of the proof.

Before providing an illustration of this algorithm we point out that if v
is the root of a DFS tree then for every son v’ of v we have P(v") > DFI(v).
This ensures that whenever v is revisited in a DFS search for blocks, the
edges of the block containing (v, v’) are removed from the stack. Thus the
case when v is both a root and an articulation point is automatically
accommodated.

Figure 1.19 shows an application of the depth-first search for blocks
algorithm. In (a) the graph subjected to the algorithm is shown as are the
spanning-tree, and the values of DFI(v) and P(v) found during the course
of computation. In (b) we illustrate the state of the stack just before and
just after the three occasions in which a vertex v is found for which
P(v") > DFI(v) for some son v’. We also indicate within which of the
recursive calls of the DFSB procedure these occur.

The complexity of the depth-first search for blocks algorithm is
O(max (n, |E|)). This follows by a simple extension of the argument used
for the complexity of the DFS algorithm. The only complication arises
from the use of a stack. Clearly, however, the total time required over all
calls of the DFSB procedure to stack and to subsequently pop edges is
O(]E|) and so the result follows. Thus the algorithm is especially efficient,
operating within linear-time. This efficiency. is achieved through the
efficiency of the DFS algorithm and the particular characteristic expressed
in theorem 1.6.
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Fig. 1.19. Illustrating an application of the depth-first search for

blocks algorithm of figure 1.18.

u |DFI| P
1 1 1
2 2 1
3 5 5
4 4 1
5 6 1
6 3 1
(b)
Stack popping through line 10. Block found
o 16, 1)
(6) 26 [(6, 1), (2, 6), (1, 2)]
(1,2
@ 7 [(4,3)]
1,4 1,9
.o [ 551
i (G (1,4, (4, 9, 6, D]
(1,4

(i) Occurs within DFSB(1) after corgpletion of DFSB(2), which

itself contains a nested call of DFSB(6).

(ii) Occurs within DFSB(4) (which is nested within DFSB(1)) after

completion of DFSB(3).

(iii) Occurs within DFSB(1) after completion of DFSB(4), which
itself contains a call of DFSB(3) and a call of DFSB(5).

We now come to our second example of an algorithm made especially
efficient by depth-first searching. This algorithm determines the strongly
connected components of a digraph. The algorithm depends crucially

upon theorem 1.8, which itself utilises theorem 1.7.

Theorem 1.8. If G; = (¥, E)) is a strongly connected component of the
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digraph G and if F = (Vp, Ep) is a depth-first spanning forest, then
T, = (V,, E; 0 Ep) is a tree.

Proof. We first show that any two vertices u, v € ¥, have a common ancestor
in ¥. Let us assume, without loss of generality, that DFI(u) < DFI(v).
Since # and v belong to the same strongly connected component, there
exists a directed path P from u to v. We define w to be a vertex on P such
that DFI(w) < DFI(x) for any other vertex x on P. If we trace P from u,
then as soon as we reach w, P can only pass through vertices which are
descendants of w. This is because edges from descendants of w to vertices
which are not descendants of w are either cross-edges (and note theorem
1.7) or back-edges and both must be to vertices with smaller depth-first
indices. Thus w is an ancestor of v. Also since DFI(w) < DFI(u) < DFI(v),
u can only be a descendant of w. This completes the first part of the proof.

Let r be the root of the subtree containing every vertex in ¥. If x € ¥; and
if y is on the tree path from r to x, then we complete the proof by showing
that y e ¥. This is obviously the case since there is a path from r to y along
the tree path, and there is a path from y to r via x. ]

The root of the tree T; in the statement of theorem 1.8 is called the root
of the strongly connected component G;, and we denote it by r,. In passing
we note that what vertex within G, is its root is a function of which edges
are tree edges. A given digraph has, of course, a number of possible depth-
first spanning forests. The DFS algorithm of Figure 1.15 might produce any
one of these depending upon the initia] (input) numbering of the vertices.

Theorem 1.8 suggests a natural way to determine the strongly connected
components of a digraph G. We find the roots, ry, ry, ..., ry, Which we
conveniently order so that if i < j, then r, is last visited in a depth-first
traversal of G before 7, is last visited. From theorem 1.8 and that r; cannot
be a descendant of r; if DFI(r;) > DFI(r;), we deduce that G, is the sub-
graph induced by those vertices which are descendants of r; but which are
not also descendants of ry, ry, ..., 7_4.

In the same way that we defined the parameter P(v) to help in the
computational discovery of articulation points in undirected graphs, we
define a parameter Q(v) to help in the computational identification of the
roots of the strongly connected components of a digraph. Q(v) is defined
as follows:

Q(v) = min ({DFI(v)} U {DFI(v')|(x, v")is in B, or C, xis a
descendant of v and the root, r, of the strongly

connected component containing v’ is an ancestor
of v})

The value of this definition lies in the following theorem.
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Theorem 1.9. In a digraph G, v is the root of a strongly connected com-
ponent if and only if Q(v) = DFI(v).

Proof. Notice that by definition Q(v) < DFI(v).

We first show that if v is the root of a strongly connected component then
Q(v) = DFI(v). Suppose that, on the contrary, Q(v) < DFI(v). Therefore
thereexistsavertexv’, asin thedefinition of Q(v), such that DFI(v") < DFI(v).
Now DFI(r) < DFI(v') so that we have DFI(r) < DFI(v). But r and » must
belong to the same strongly connected component because there is a path
from r to v and a path from v to r via (x, v’). Thus, since DFI(r) < DFI(v),
v cannot be the root of a strongly connected component. This is a contra-
diction and so we conclude that Q(v) = DFI(v).

We now only need show that if v is not the root of a strongly connected
componentthen Q(v) < DFI(v). Letusassume, however, that Q(v) = DFI(v),
so that no vertex v, as described in the definition of Q(v), should exist
for which DFI(v') < DFI(v). Since v is not the root, some other vertex r
must be the root. Then there must exist a path P from v to r which contains
a first vertex (maybe r) which is not a descendant of v. Let this vertex be v".
Clearly, r and v’ belong to the same strongly connected component. The
edge of P incident to v’ is in By or C. Thus DFI(v') < DFI(v) which is a
contradiction. Hence Q(v) < DFI(v). ]

Again we use the DFS algorithm as a basis and embed within it a
calculation of Q(v). As with P(v) of the previous example, we require a
recursive method of evaluation for Q(v). This is provided by:

Q(v) = min ({DFI(v)} U {Q(")]v’ is a son of v} U {DFI(v")|(v, v")
is in B, or C such that the root of the strongly con-
nected component containing v’ is an ancestor of v})
Figure 1.20 incorporates this within the DFS algorithm. The modified
procedure DFSSCC(v), depth-first search for strongly connected com-
ponents, includes a stack upon which vertices are placed in line 5. An
array called stacked is used to record which vertices are on the stack.
Line 3 initialises Q(v) to its maximum possible value and line 9 updates
Q(v) if a son of v, v', is found such that Q(v') < Q(v). Line 10 further
updates Q(v) if an edge (v, v') in B, or C is found such that the root of the
strongly connected component containing v’ is an ancestor of v. Notice
that at line 10 DFI(v") # 0 and so v’ has been previously visited and since
DFI(v') < DFI(v) for the update to take place, (v, v") cannot be a forward-
edge. Also, since v’ is stacked, the root of the strongly connected com-
ponent containing v’ has yet to be identified and so, because of the order
in which roots are identified, must be an ancestor of v. Line 11 identifies
roots and, again because of theorem 1.8 and the order of identifying roots,
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those vertices above and including the root on the stack must induce a
strongly connected component. These are then removed from the stack and
output.

Fig. 1.20. The depth-first search for strongly connected components

algorithm.
1. procedure DFESSCC(v)
begin

2, DFI(v) «i

3. Q(v) < DFI(v)

4, i<i+l

5. put v on the stack and set stacked (v) < true

6. for all v’ € A(v) do

1. if DFI(v") = O then
begin

8. DFSSCC(v")

9 Q(v) +min (Q(v), Q"))
end

10. else if DFI(v’) < DFI(v) and stacked (v")

then Q(v) < min (Q(v), DFI(v"))

11, if Q(v) = DFI(v) then pop and output the stack up to
and including v, for each popped vertex u reset
stacked (u) < false

end of DFSSCC
12. i<1

13. empty the stack

14. for all v € ¥ do begin DFI(v) < 0, stacked (v) < false end
15. while for some u, DFI(u) = 0 do

16. DFSSCC(u)

Figure 1.21 shows an application of the depth-first search for strongly
connected components algorithm. In (a) the graph subjected to the
algorithm is shown as are the spanning forest and the values of DFI(v) and
QO(v) found during the course of computation. In (b) we illustrate the state
of the stack just before a vertex is found for which Q(v) = DFI(v) and just
after the vertices of a strongly connected component have been popped
from it. We also indicate within which of the recursive calls of DFSSCC
the strongly connected components are found.

The DFSSCC algorithm operates within linear time, having a com-
plexity O(max (n, | E|)). This follows by a similar argument to that em-
ployed for the DFSB algorithm. Notice that the use of the array called
stacked enables line 11 of figure 1.20 to check whether v’ is on the stack or
not in one step. This avoids unnecessary enhancement of the complexity
through a search of the stack in line 11.
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Fig. 1.21. Illustrating an application of the depth-first search for
strongly connected components algorithm of figure 1.20.
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(b)
Stack popping through line 11 Vertices inducing a strongly connected
component
. 2 R
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(i) Occurs within DFSSCC(]) after completion of DFSSCC(8)
which contains a nested call of DFSSCC(2).

(ii) Occurs within DFSSCC(6) which is nested successively within
DFSSCC(5), DFSSCC(4) and DFSSCC(3).

(iii) Occurs within DFSSCC(7) which is called immediately after
DFSSCC(6).

(iv) Occurs within DFSSCC(3) which is called after the completion
of DFSSCC(1).
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1.4 Summary and references

The basic definitions of this chapter concerning graphs and
algorithmic efficiency provide a basis for later chapters. The ideas of
algorithmic efficiency which we briefly described were first formalised by
Edmonds'™. In chapter 8 we shall pursue the question of intractable
problems in a formalised way, although we shall encounter many such
problems in the intervening chapters.

The depth-first search of a depth of a graph was first exploited by
Hopcroft and Tarjan in [2] and [3], and it is their algorithms that are
described in section 1.3.3. Several other linear-time algorithms also utilise
depth-first searching.

It is possible that no other problem in graph theory has received as much
attention as one used as an example in this chapter. This is the problem of
finding shortest paths. The problem can be posed with different constraints
and for each case there can be an appropriate algorithm. The review by
Dreyfus is recommended. Dijkstra’s algorithm,! described in the test,
applies to directed or to undirected graphs with non-negative edge-weights.
The O(n® algorithm for all pairs of vertices described in the text
is due to Floyd'® and is based on work by Warshall.”? For this problem
note Spira.' Exercises 1.8 and 1.15 are also about shortest path
algorithms.

As far as general reading is concerned, Aho, Hopcroft & Ullman,®!
Deo® and Even™ provide particularly useful elaboration for this chapter.

To some extent the problems that follow extend material in this chapter.
Exercises 1.14 to 1.16 are particularly recommended.

[1] Edmonds, J. ‘Paths, trees and flowers’, Canad. J. of Maths, 17, 449-67
(1965).
[2] Hopcroft, J. & Tarjan, R. ¢ Algorithm 447: efficient algorithms for graph
manipulation’, CACM, 16, 372-78 (1973).
*[3] Tarjan, R. ‘Depth-first search and linear graph algorithms’, SIAM. J.
Comput, 1, 146-60 (1972).
[4] Dreyfus, S. E. ¢ An appraisal of some shortest path algorithms’, J. Operations
Research, 17 (3). 395412 (1969).
[5] Dijkstra, E. W. ‘A note on two problems in connection with graphs’,
Numerische Math., 1, 269-71 (1959).
[6] Floyd, R. W. ¢ Algorithm 97: Shortest path’, CACM, §, 345 (1962).
[7] Warshall, S. ‘A theorem on Boolean matrices’, JACM, 9, 11-12 (1962).
[8] Aho, A. V., Hopcroft, J. E. & Ullman, J. D. The Design and Analysis of
Computer Algorithms. Addison-Wesley (1974).
[9] Deo, N. Graph Theory with Applications to Engineering and Computer
Science. Prentice-Hall (1974).
[10] Even, S. Graph Algorithms. Computer Science Press (1979).
[11] Moore, E. F. ‘The shortest path through a maze’, Proc. Internat. Symp.
Switching Th., 1957, Part i, Harvard University Press, pp. 285-92 (1959).
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[12] Munro, J. I. “Efficient determination of the transitive closure of a directed

graph’, Information Processing Letters, 1, 56-8 (1971).

[13] Spira, P. M. ‘A new algorithm for finding all shortest paths in a graph of

1.1,
1.2,

positive arcs in average time O(x® log *n)°, SIAM J. Computing, 2, 28-32
(1973).

EXERCISES
Draw every simple graph with n vertices, 1 < n < 4.

Show that any two of the following regular bipartite graphs are iso-
morphic.

1.3.

14.

1.5.

1.6.

1.7.

18.

1.9.

Show that in a disconnected graph there must be a path from any
vertex of odd-degree to some other vertex of odd-degree.

(Use theorem 1.1.)

Show that any connected graph G with n vertices and (n—1) edges
must be a tree.

(Show that the assumption that G is not a tree, that is it contains a
circuit, leads to a contradiction that G cannot be connected.)

Show that in a binary tree with » vertices:

(@) n is always odd.

(b) The number of vertices of degree 1 is 4(n+1).

Show that in a connected simple graph with n vertices, the number of
edges |E| satisfies:

(n—1) < |E| < #n(n—1)

(The lower limit corresponds to a tree, and the upper limit to a complete
graph.)

Show that if a simple graph has more than 4(n— 1) (n—2) edges, then
it must be connected.

(First show, by induction on %, that a simple graph with X components
has at most ¥(n—k) (n— k+1) edges.)

Figure 1.14 illustrates an O(n®)-algorithm to find the shortest distance
between every pair of vertices in a weighted graph. Describe an alter-
native algorithm for this task which procedurally incorporates Dijkstra’s
algorithm. What is the complexity of your algorithm?

A binary relation R is an equivalence relation on the set S if R is:

(a) reflexive, that is, aRa for all a€ S,

(b) symmetric, that is, aRb implies bRa for all a, b € S,
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and

(¢) transitive, that is, aRb and bRc implies that aRc.

It is easy to see that an equivalence relation on S partitions S into

disjoint subsets called eguivalence classes. Two elements of S are in the

same equivalence class if and only if they are related by R.

Show that the relations of:

(a) ‘connected to’ —in an undirected graph,

and

(b) ‘strongly connected to’ - in a directed graph

are examples of equivalence relations on the vertex-set of a graph.

For the undirected weighted graph shown and as in the matricial

algorithms of section 1.3.1:

(a) Construct 42 and so confirm that there are ten non-simple distinct
paths consisting of three edges from v; to vs. Describe each of these
paths.

(b) Construct W,, W,, ..., W, so finding the shortest paths between
each pair of vertices and which, for W;, only have v, v,, ..., v; as
internal vertices.

1.12.

1.13.

. The transitive closure of a digraph G = (¥, E,) is a digraph Te= (V, E,)

such that if there is a path from u to v in G, then (», v) € E,. Clearly E,
is a subset of E,;. Describe an algorithm to construct the adjacency
matrix A(Ts) of Te from the adjacency matrix of G. For obvious reasons
A(Te) is sometimes called the reachability matrix of G.

(An O(n?®) algorithm can easily be obtained by modifying the algorithm
for finding the shortest paths between dll pairs of vertices which is
described in the text. Note that Munro has described faster algo-
rithms.!'21)

Given the reachability matrix of a digraph (see the previous question

design an Oyn?)-algorithm to identify its strongly connected components.
(If A,(T6) = A;(Ts) = 1 then v, and v, belong to the same strongly
connected component.)

The condensation Cg of a digraph G is a digraph obtained from G by
replacing each of its strongly connected components by a vertex and
each non-empty set of edges from one strongly connected component
to another by a single edge. For example:
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G Ce

1.14,

1.15.

Show that the condensation of a directed graph cannot contain a
(directed) circuit.

Given the adjacency lists A(v) for each vertex v of a connected graph
(directed or undirected), the following algorithm conducts a breadth-
first search. On completion of the search each vertex has acquired a
breadth-first index (BFI) indicating the order in which the vertex was
visited. Vertex u is visited first and BFI(u) = 0. Hand-turn the algo-
rithm on a small graph of your choice. Notice that use is made of a
queue which is a data structure in which items are removed in the same
order that they are added. Such a structure is also known as FIFO
(first-in, first-out) store. Show that any graph will be traversed by the
algorithm in O(max(n, |E|) steps. Why is such a traversal called a
breadth-first search ?

for all ve ¥V do BFI(v) <0
i< 1, BFI(u) <1
add u to the queue
while the queue is not empty do
begin
remove a vertex from the queue, call it w
for all v € A(w) do
if BFI(v) = O then
begin
8. BFI(v) <i+1
9. ii+l
10. add v to the queue
end

Eal ol a

Now

end

The depth-first search algorithm of figure 1.15 constructs a depth-first
spanning-tree for a connected graph. Modify the above algorithm to
construct a breadth-first spanning tree.

Just as depth-first searching is a suitable way to traverse a graph for
some algorithms, so is breadth-first searching as described in the
previous question. For example, an algorithm which finds the lengths
of the shortest paths from a vertex u to every other vertex of an un-
weighted connected graph can be obtained by editing the algorithm of
the previous question as follows:
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(a) Between lines 5 and 6 insert:
if BFI(w) # itheni «i+1.
(b) Delete line 9,
(¢) Throughout replace BFI by L.
Show that on completion of this breadth-first search for shortest paths
(BFSSP) algorithm, due to Moore,""! (L(v)—1) is the shortest path
from u to v.
(Use induction on L(v).)

Show that the BFSSP algorithm has complexity O (max(n, |E |) and
therefore for sparse graphs (in which | E| < #?) it is more efficient than
Dijkstra’s algorithm. However, notice that the BFSSP algorithm
cannot be used for weighted graphs. Also note the implementation of
Dijkstra’s algorithm outlined in exercise 1.16(b) which has an improved
complexity for sparse graphs.

Here we introduce a data structure known as a priority queue and
illustrate one use of it. Another illustration can be found in exercise
2.14.

(a) A priority queue is an abstract data type in which a priority s
associated with each of its k£ elements. We can add an element to the
data structure and we can delete (or remove) the element of lowest
priority. Such a structure can be implemented in several ways. For
example a sorted or an unsorted list will do. For the former the in-
sertion operation, and for the latter the priority deletion operation, will
require O(k)-time. We can improve on this by using, for example, a
partially ordered tree. As we shall see, O(log k)-time is then sufficient
for either operation.

We define a partially ordered tree to bé a binary tree with the
(priorities of the) data elements located at the vertices. The elements are
arranged in partial order, by which we mean that the priority of any
vertex is no greater than the priority of its sons. Moreover, the tree is
as balanced as possible (path lengths from the root to the leaves differ
by at most one) with leaves furthest from the root being arranged to the
left. Such a tree is shown opposite (figure (a)).

Consider first the operation of removing the item of lowest priority.
This item will be located at the root of the tree so that its removal no
longer leaves us with a tree. To overcome this, the root is initially
replaced with the rightmost element from the lowest level of the tree.
In order to re-establish the partial ordering, this element is repeatedly
exchanged with one of its sons (the one of least priority) until no son
has lower priority than this element. Figure (b) shows this process
for the tree of figure (a).

Now consider adding an element to the tree. We can do this by
creating a new leaf at the lowest level and as far to the left as possible.
Placing the new element may require the partial ordering to be re-
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(@) A partially ordered tree

A
37 '8
o1 %
N\
17 16 1

N
o

(b) Removing an element of lowest priority and reconstructing the tree
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established. This is done by repeatedly exchanging the new element with

its father so long as its father has higher priority. This is illustrated in

figure (c) where an item with priority 1 is added to the tree of figure

(a). In this example the new item eventwually filters to the root of the tree.

Justify the following claims:

(i) In a partially ordered tree, the element of lowest priority is at the
root of the tree.

(ii) A partially ordered tree is in fact re-established after the operations
of adding an item and removing the one of least priority as we have
described.

(iii) The complexity of adding an item and the complexity of removing
one of lowest priority are both O(log, k).

(The complexity will be determined by the number of exchanges of
elements required to re-establish the partial ordering. This. is
obviously bounded by the maximum path length from root to leaf.)

(iv) A priority queue of k items can be constructed in O(k log k)-time
if it is implemented using a partially ordered tree.

It is interesting to note that a partially ordered tree, as defined, can
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be very usefully represented in terms of an array. We number the vertices
of the tree from top to bottom and within each level from left to right.
Then using an array H, the ith vertex is located in H[i]. With this
arrangement, the left son of H[i] is in H[2i] and the right son is in
H[2i+1]. Moreover, the father of HT[i], if it exists, is in H[i div 2].
Here i div 2 is the integral part of 3i. Such an array is called a HEAP.
(v) Making use of a HEAP, write detailed O(log k)-algorithms both
for removing an element of lowest priority and for adding an
an element to a priority queue.
(b) Consider again Dijkstra’s algorithm of figure 1.10. Set up before
line 4 a priority queue for the vertices in (V¥ — T). Line 5 can then simply
be the priority deletion operation on this structure. Thus for all
iterations of line 5, O(n log n)-time is required. For line 7, the only
possible changes to the L(v) are for those v adjacent to v’. These can be
attended to by skipping down an adjacency list of v’. For all v’ the total
number of skips will be proportional to | E|. For each skip, apart from
updating L(v), the partial order will need to be restored as a result of
this updating. This can be achieved in O(log n)-time, moving L(v) up
the tree as required. Thus overall, construct an O((|E|+n) log n)
implementation of Dijkstra’s algorithin. For large sparse graphs (in
which |E| < n®/log n) this complexity represents a considerable saving
in running time compared with the O(n®) implementation implied in
the chapter.
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Spanning-trees, branchings and
connectivity

Trees are the most commonly occurring type of graph in models and
computations of all kinds. Computer scientists are particularly familiar
with these structures through the consideration of parse trees, tree searches,
game trees and so on. In chapter 1 we defined trees and provided further
characterisation of them through theorem 1.2,

Given an arbitrary graph, our interest in this chapter is with certain of its
subgraphs which are trees. In the first half of the chapter we consider
weighted graphs and digraphs. For these algorithms are described which
find spanning-trees and forests of out-trees of optimal weight. In the
second half of the chapter we show how spanning-trees play an important
r6le in connection with the circuit space and with the separability of a
graph. This leads naturally to a generalisation of the definitions of cut-
edge and articulation point which we provided in chapter 1.

2.1 Spanning-trees and branthings

A spanning-tree of a connected undirected graph G is a subgraph
which is both a tree and which contains all the vertices of G. As we saw in
chapter 1, such a spanning-tree can be found in linear-time using, for
example, a depth-first search, such as we described in section 1.3.2 or a
breadth-first search as indicated in exercise 1.14. In this section we first
describe an algorithm which solves a more general task. This is to find,
given a weighted, connected and undirected graph, a spanning-tree of
minimum weight. This problem may appear in a number of guises, the
most common of which concerns the construction of a communication
network, perhaps a road or a railway system linking a set of towns. Given
the cost of directly connecting any two towns, the problem is to find a
network at minimum cost and which provides some route between every
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two towns. The solution is the minimum-weight spanning-tree of the
associated complete weighted graph. Because of this description the problem
is often called the connector problem. The similar problem of finding a
maximum weight spanning-tree can be solved by making a minor modifica-
tion to the minimum weight spanning-tree algorithm we shall describe.

We shall also describe an algorithm to solve a similar but more difficult
problem for digraphs. Given a weighted digraph the problem is to find
a maximum- (or minimum-) weight forest of out-trees which is a subgraph
of the digraph. Such a forest is called a maximum (or minimum) branching.

We complete this section with a description of how to count the
spanning-trees of a graph.

2.1.1. Optimum weight spanning-trees

There are a number of algorithms known to solve the connector
problem for undirected graphs. The best-known of these are due to
Prim™! which we describe here, and to Kruskal® which is outlined in
exercise 2.4.

Prim’s algorithm is described in figure 2.1. At each iterative stage of the
algorithm a new edge e is added to T. Now, T is a connected subgraph of
the minimum-weight spanning-tree under construction, and it spans a
subset of vertices V' < V. The edge e is the edge of least weight con-
necting a vertex in (V'—V’) to a vertex in ¥”. Initially ¥’ contains some
arbitrary vertex u. At each stage, the label L(v), for each vertex v, records
the edge of least weight from v € (V— V') to a vertex in V’. Thus each L(v)
is initialised to the weight w((, v)) of the edge (4, v), provided (u, v) € E.
Otherwise w((u, v)) = oo if u and v are distinct, whilst w((v, v)) = 0. Line 8
of the algorithm updates the L(v) whenever a new vertex w has been added
to V’. The algorithm stops when V' = V at line 4. An example of an
application of Prim’s algorithm is shown in figure 2.2.

The following theorem proves that Prim’s algorithm works.

Theorem 2.1. Prim’s algorithm finds a minimum-weight spanning-tree of a
connected undirected graph G.

Proof. We prove by induction on the size of ¥’ that T is a subtree of a
minimum-weight sparnning-tree of G spanning the vertices of V.

As the basis for our induction, we note that the statement is trivially
true when T and V' are initialised in lines 1 and 2 of the algorithm. We
assume then, that it is true, whatever the value of |V’|, just before e is
added to T in line 6. Now consider (T+¢). We first show that (T+e) is
a tree.

The edge e serves to connect w to a vertex of T. Since by the induction
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hypothesis T is connected, (7+ €) must be also. Now (7'+€) cannot contain
a circuit because T does not dnd because one end-point of e, namely w, is of
degree one in (T'+e). Thus (T+¢) is both connected and acyclic and must
therefore be a tree.

Fig. 2.1. Prim’s minimum-weight spanning-tree algorithm.

1. T« o
2. V' «{u
3. for all v e (V—V"’) do L(v) < w((u, v))
4. while V' £ Vdo
begin
5. find a w for which L(w) = min {L(v)|v € (V- V")} and denote
the associated edge from V' to w by e
6. T« TU{e}
7. V' <« VU {w}
8. forallve (V-V¥’)do

L@) < if w((v, w)) < L(v) then w((v, )

end

Fig. 2.2. An application of Prim’s algorithm. For each iteration of
the while-loop T becomes T U {e} and V"’ becomes ¥’V {w}. Finally,
T is the minimum-weight spanning-tree consisting of the heavily

scored edges.
Iteration | w e

Y 1 "1 (ll, v!)
2 Ve (ll, vl)
) 3 Vs | (v, vy)
4 Ve | (vs, vy)
5 i (V‘, VS)
i ¢ 1w Jeuw

v

v, 5 ’

We now show that (T+¢) is a subtree of a minimum-weight spanning-
tree of G. By the induction hypothesis T < Tp,, where T, is some minimum-
weight spanning-tree of G. Suppose that e is not an edge of Tp,. Then by
theorem 1.2 (T3, +€) contains a circuit C. One edge of C, namely e, con-
nects a vertex in ¥’ to a vertex in (V' — V”). There is therefore another edge
e’ from V'to (V— V')on C. If we now construct the tree Ty = (Tyy +e)—¢’,
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we notice that (T, +€) < Ts. Moreover Ty is a minimum-weight spanning-
tree because:

w(Ta) = w(Tyy)+w(e)—w(e')
and from line 5 of the algorithm:

w(e) < w(e)
so that:

W(Ty) = W(Tyy)
Thus when e is added to T, (T'+e) is still a subtree of some minimum-
weight spanning-tree.

On completion of the algorithm through line 4, V' = ¥V so that T
spans G. ]

Prim’s algorithm is an efficient one, as can easily be seen as follows.
The while body, lines 5 to 8 of figure 2.1, is executed (n— 1) times. Within
each execution both the computation of min {L(v)|v e (V—V"')} at line 5
and the for statement of line 8 can be executed within O(n) steps. Thus
overall we have an O(n?)-algorithm. More efficient algorithms are known.
See, for example, Cheriton & Tarjan."®! Note also exercise 2.14.

Prim’s algorithm, as we have described it, finds a minimum-weight
spanning-tree. It is easy to see that the simple modification of replacing
min {L(v)} by max {L(v)} in line 5 will cause the algorithm to find a
maximum-weight spanning-tree. The proof of this is obtained by replacing
‘minimum’ by ‘maximum’ throughout theorem 2.1.

The following is a generalisation of the minimum-weight spanning-tree
problem. Given a proper subset, V’, of the vertices of a weighted connected
and undirected graph, find a minimum-weight tree which spans the vertices
of V' and, if necessary, some others. Such a tree is called a Steiner tree. No
efficient algorithm is known for the Steiner tree problem. In fact the related
decision problem (Given a constant W, does G have a subtree which both
spans ¥’ and is of weight < W?) is NP-complete. Chang®! has, however,
described an efficient algorithm to find an approximate solution.

2.1.1. Optimum branchings

In the preceding subsection we were concerned to find optimal
weighted trees for undirected graphs. Here we look at a similar problem for
digraphs. We describe an algorithm due to Edmonds.® This finds a sub-
graph of a digraph which is a maximum-weight, which does not necessarily
mean spanning, forest of out-trees called a maximum branching. We shall

see that the same algorithm, with minor changes, can be used, to find a
minimum branching.
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The algorithm traverses the digraph examining vertices and edges. It
places vertices in a so-called vertex-bucket BV as they have been examined,
and edges in an edge-bucket BE if they have been provisionally chosen for
the branching. Throughout the course of the algorithm BE always contains
a branching, that is an acyclic collection of directed edges with at most
one edge incident to any given vertex. The examination of a vertex v
consists simply of choosing an edge of maximum positive weight e that is
incident to v. Notice that no edge of negative weight would be chosen for a
maximum branching (a digraph consisting of negative weighted edges
only has a maximum branching of zero weight and no edges). The edge e is
checked to see if it forms a circuit with the edges already in BE. If it does
not then e is added to BE and a new vertex is examined. If is does then the
graph is restructured by shrinking this circuit to a single vertex and assigning
new weights to those edges which are incident to this new ‘artificial’ vertex.
The process of examining vertices then continues until BV contains all the
vertices of a final graph. It contains just these vertices, several of which
may in general be artificial’, because whenever a circuit is shrunk to form
a new graph the edges and vertices of the circuit are removed from BE and
BV. BE at this stage contains the edges of a maximal branching for the
final graph. The reverse process of replacing in turn each of the artificially
created vertices by its associated circuit then begins. At each replacement
the choice of edges placed in BE is such that for the currently recon-
structed graph BE contains the edges of a maximum branching. As we
shall see, the crucial element of the algorithm is the rule for reassigning
weights to edges when circuits are shrunk. It is this which forces the choice
of edges to be included in the branching when the reconstruction phase is
underway.

An outline of the algorithm is shown in figure 2.3. The original digraph,
input to the algorithm, is G, = (V,, E;) and G, = (V,, E)) is the graph
obtained after the ith circuit C; has been replaced by a single vertex u;.
Lines 1-13 inclusive generate the succession of graphs Gy, G, ..., Gy pro-
vided one or more circuits have to be shrunk to artificial vertices. This
process ceases when BV contains the edges of the current graph at line 4.
We need to fill in the details by which G; is constructed from G;_; and by
which BE, BV and some edge-weights are modified in lines 10 and 11.

As might be imagined G, contains every vertex of G,_, except for those
in C,. ¥; also includes the new vertex u,. E; contains every edge of E;
except those with one or more end-points in C;. We also add to E; new
edges as follows. For every edge (x, y) € E;_, for which x ¢ C; and ye C; (or
for which x € C; and y ¢ C)), E; contains an edge (x, u;) (or an edge (;, y)).
Any edge in G; has the same weight as its corresponding edge in G;_,
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Fig. 2.3. Edmond’s algorithm to find a maximum branching.

1. BV<BE« g
2. i<0
3. if BV = V, then go to 14
4. for some vertex v ¢ BV and v € V; do
begin
5. BV < BV VU {v}
6. find an edge e = (x, v) such that
w(e) = max {w(y, v)|(, v) € E}
7. if w(e) < 0 then go to 3
end
8. if BE VU {e} contains a circuit then
begin
9. i<i+1
10. construct G; by shrinking C; to u,
11, modify BE, BV and some edge-weights
end
12. BE<BEV {¢}
13. goto3
14. while i # 0 do
begin
15. reconstruct G;_; and rename some edges in BE
16. if u; was a root of an out-tree in BE then
17. BE <« BE U {elec C,and e # b}
18. else BE < BEU {elee C;and e # &}
19. i<i=1
end
20. Maximum branching weight « X w(e)
ee BE

except for those edges incident to ;. For any edge (x, u;) let us denote its
equivalent edge in E;_, by e = (x, y). This defines a vertex y on C; and a
unique edge & in C; which is incident to y. We also define an edge of
minimum weight in C; by ). Then the weight of each edge (x, ;) in G; is
defined to be:

w(x, u) = w(e)—w(@)+wle})

The motivation for this assignment will become clear in theorem 2.2. BV
is modified simply by removing any vertices of BV that might be in C,. BE
is modified by removing edges of C; and by replacing those edges with a
single end-point on C; with their equivalent edges in E;. Notice that the
latter will involve, if any, only edges incident from u,. Edges of maximum
weight into vertices of C; are actually edges of C;, otherwise C; would not
have been identified. When u; is subsequently chosen in line 4, an edge
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incident to u; might be added to BE at line 12 if it has, given line 7, a
positive weight.

The while statement of lines 14-19 selects, in turn, those edges of each
circuit Cj, Cy_y, ..., C that are to be included in the branching. At
line 15 G;_; is reconstructed from G, in an obvious way (in fact, a detailed
algorithm might actually retain G;_; when G, is constructed from it). Also
at line 11 any edges of BE with u; as an end-point are replaced by their
equivalent edges in G;_;. Which edges of each C; are added to BE depends
upon whether or not BE already contains an edge incident to a vertex of C,.
The details can be seen in the conditional statement starting at line 16.

As indicated in line 20, the final set of edges in BE defines a maximum
branching for G,. We prove this in the following theorem.

Theorem 2.2. Edmond’s algorithm finds a maximum branching for a
weighted digraph.

Proof. We shall show that if BE contains the edges of a maximum branching
for G, then it subsequently does so for G;_, in the reconstruction phase of
the algorithm. If BE contains the edges of a maximum branching for
the smallest constructed graph G, then we shall have an inductive proof
that eventually BE will contain the edges of some maximum branching
of G,.

As the basis for our induction let us then consider G, when BV contains
all the vertices of ¥, as detected at line 3. Then BE contains just one edge
of maximum-weight incident to each vertex of ¥}, provided that edge is of
positive weight. Also the edges of BE are acyclic. Clearly, BE then repre-
sents a maximal branching for G,.

Now, by the induction hypothesis, BE cofitains the edges of a maximum
branching of G;. Consider G;_, and the cosresponding set of edges BE, as
redefined in the while statement starting at line 13 of the algorithm. Let

+-1 be the set of edges of G;_; which are incident to vertices of C; and
let E7_; be the remaining edges of G;_;. We denote those edges of E}_,;
that are in BE by BE’ and those edges of E}_; that are in BE by BE". If
BE does not represent a maximum branching of G;_, then there must be
a branching B with edges B’ in E;_; and edges B” in E]_; such that:
either

(@) w(B) > w(BE'),
() w(B") > w(BE").

In fact we shall show that BE’ is a maximum branching for E; ; and
that w(B") = w(BE"). Consider E;_, first.
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For every vertex of C; the incoming edge of maximum weight, and it will
be of positive weight, is an edge of C;. Otherwise C; would not have been
identified as a circuit. No maximum branching of E;_,; can contain every
edge of C;. However, there is maximum branching of E;_, which includes
all but one edge of C,. This is because, from a branching excluding two or
more edges of C;, we can always obtain a branching of greater or equal
weight as follows. Let v be a vertex of C; which has no edge of C; incident
to it. Then either v has an edge e, not of C,, incident to it or it does not. If
e exists then it is replaced by another edge of greater weight, & incident to v
and in C;, otherwise a branching of greater weight is obtained by simply
including €. Now consider which of those branchings of E;_; with all
but one edge of C; is of maximum weight. Any such branching can have
at most one edge of the form e = (x, »), x ¢ C; and y € C,, where the edge
of C; incident to y, & would be absent. Now if such an edge e exists for a
branching of E;_,, then the weight of the branching would be:

w(C)+w(e)—w(®)

Let us suppose that e has been chosen to maximise this expression. Of
those branchings not using an edge such as e, the one having maximum
weight has the weight:

w(C)—w(ed)
where ¢! is the edge of C; with the minimum weight. Thus if

W(C)+w(e)—w(@) > w(C)—w(e])
that is, if

w(e)—w(@+w(ed) > 0

then a branching of maximum weight of E;_,, which includes every edge
but one of C;, would have an edge such as e. Otherwise it would not. The
left-hand side of the last inequality is precisely the weight assigned to e
when C; is shrunk to u; in the algorithm. When the algorithm finds a
branching for G; then it includes e in BE if the inequality holds for the edge
of maximum weight incident to u;,. Then line 18 assigns the edges of
C,—{&} to BE' when u, is expanded to C; to form G;_,. If the last inequality
holds for no edge into u, for G, then u; becomes the root of an out-tree in
BE. Line 17 of the algorithm then assigns the edges of C;— ¢ to BE’. Thus
the algorithm provides a maximum matching for E;_;.

We now show that w(B") = w(BE"). Without loss of generality we can
assume that B’ is of the form generated for BE’ by the algorithm. If it is
not then it can be converted into such a form without affecting B”. There
are then two cases to consider:
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(i) The branching of E;_; contains no edge outside C;.
(ii) The branching of E;_, contains an edge e = (x, y) where x ¢ C;
and ye C,.

By the induction hypothesis BE represents a maximum branching for G,
before u, is expanded to C;. In case (i) this maximum branching has a one-
to-one edge correspondence with the branching produced for E;_, by the
algorithm. Thus in this case w(B") = w(BE"). In case (ii) the branching of
E}_, produced by the algorithm has a one-to-one edge correspondence
with the maximum branching of G, less the edge of this branching incident
to u;. However it is still clear that w(B") = w(BE") because if the weight of
the branching for E7}_, could be increased, without including a path from
a vertex of C; to x, then the branching for G; would not be maximal. We
could construct another of greater weight from that branching with a one-
to-one edge correspondence with enhanced branching of Ej_; plus the
edge of the original maximum branching of G, into u,. ]

Figure 2.4 shows an application of Edmond’s algorithm. The vertices
are imagined to be examined in alphabetical order, with artificial vertices
being added at the tail end of the order as they are created. Starting with
Gy, (a) shows the successive graphs G; and G, obtained in the circuit
reduction stage of the algorithm. Coincidentally, for it would not generally
be the case, BV and BE are empty when the processing of G, and G, starts.
For G,, G, and G, the final values of BE and BV are shown. Figure 2.4(b)
shows the successive contents of BE as G, and G, are reconstructed. Notice
that the final set of edges in BE, which define a maximum branching for
G,, is in fact a single out-tree rooted at B which does not, incidentally,
include the edge of maximum weight in Gy,

Edmond’s algorithm is efficient, runnigg in O(r|E|)-time. The most
expensive stages concern the construction and reconstruction of graphs.
For each new graph we require O(| E|) steps and this process is repeated
no more than n times. Perhaps the only other steps of any complexity are
embodied in lines 6 and 8. For each vertex v, the incoming edge of maxi-
mum weight requires ~ d—(v) comparisons. Hence line 6 requires for all
vertices (even those artificially created which cannot exceed n in number)
only O(|E|) steps. For line 8, any circuit, if it exists, can be detected in
O(n)-time. A newly created circuit must contain the edge denoted by e in
line 8. If a circuit exists it can be detected by tracing edges in reverse
direction starting at e and by visiting no more than n vertices.

If we require @ minimum rather than a maximum branching, it is easy to
modify Edmond’s algorithm to find one. We simply replace the weight of
each edge by its negative and then apply the algorithm as it has been
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described. Obviously a maximum branching for the graph with modified
edge-weights provides a minimum branching for the original graph.
We now conclude this section with a completely different type of problem.

2.1.3. Enumeration of spanning-trees
Generally a graph has a number of distinct spanning-trees. For

some applications it is useful to construct spanning-trees with specific
qualities. For example, there are the depth-first or the breadth-first trees
which we met in chapter 1. Or we might be interested in, the much more
difficult to obtain, degree-constrained spanning-trees in which no vertex
has degree exceeding a specified value. We can describe a large variety of
spanning-trees. However, we are not concerned here with their individual
qualities but, rather, with the total number of trees associated with a given
graph.

Before solving the general problem we prove a well-known specific
result first obtained by Cayley.®!
Theorem 2.3, The number of spanning trees of K, is n"—2.

Proof. The overall number of spanning-trees of K,, is clearly the same as
the number of trees that can be constructed on n distinguished, that is,
labelled vertices. Let T be a tree in which the vertices are labelled 1, 2, ..., 7.

Fig. 2.5

We can construct a sequence of (n—2) labels, S, which uniquely encodes T
as follows. In choosing the ith element of S we remove the vertex of degree
one from T which has the smallest label. The ith element is then the label of
the vertex remaining in T which was adjacent to the removed vertex. The
process stops when only two vertices remain in 7. For example, for the
tree in figure 2.5 we obtain the sequence (1, 3, 3, 4, 4, 4). Notice that no
vertex originally of degree one in T appears in S.

Conversely we can construct a unique tree with n vertices from a
sequence S, of (n—2) labels as follows. Let I be the list of labels (1, 2, ..., n).
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We first look for the smallest label in I that is not in S. Let this be i;. The
edge (i3, sy is then in T. We remove i; from I and s, from S and the process
is repeated with the new S and the new I. Finally, S contains no elements
and the last edge to be added to T is that defined by the remaining pair of
labels in 1.

Thus there is a one-to-one correspondence between the spanning-trees
of K,, and the words of length (n—2) over the alphabet (1, 2, ..., n). The
number of such words is n*—2 and so the theorem follows. ]

We come now to the general problem of counting the number of
spanning trees for an arbitrary multi-graph G. This requires that we first
concentrate on digraphs and counting the number of spanning out-trees
rooted at a particular vertex. To this end we now introduce the so-called
Kirchoff or in-degree matrix K(G). The elements of K are defined as follows:

K(i’j) = d—(vi)’ i=j
=—k,i#j
where k is the number of edges from i to j. Within this definition the graph
is presumed to have no self-loops. If they exist in a graph of interest, then
they can be safely erased because they can make no contribution to the
number of spanning trees. Figure 2:6(a) shows a digraph and its Kirchoff
matrix.

Notice that the sum of the entries in any column of X is necessarily zero.
We can use K to identify the set {g,} of subgraphs of G, in which every
vertex v has d—(v) = 1, provided in G, d—(v) > 1. The procedure is best
understood with the aid of an example. In figure 2.6(b) the determinant
of K, for the graph of figure 2.6(a) is expanded into a sum of determinants,
each corresponding to some g;. This procedure is always possible by a
continued application of the identity:

det (cy, g, ..., (¢;+C)), .. €)
= det (¢y, Cg +o+5 €y ooy Cp)+det (Cy, gy o5 €5y oees €)
where each c; is a column of n elements. Subsequent applications are used
to reduce the value of a diagonal element which is greater than one and to
produce two determinants, each of which has the sum of the elements in
any column equal to zero. Thus each is of a Kirchoff matrix for some

graph. The expansion stops when every diagonal element of the deter-
minants produced are not greater than one. We then have

det (K(G)) = g det (K(g,))

where K(g,) is the in-degree matrix of g;. In our example g, is drawn below
its associated det (K(g,)) in figure 2.6(b).
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In the expansion of figure 2.6(b) each g, corresponds to a subgraph of G
in which d-(v) = 1, ifin G, d~(v) > 1. Clearly, every such subgraph of G is
represented precisely once in this expansion. Consider the spanning out-
trees rooted at a particular vertex r of G and let Tbe such a tree. If d—(r) > 1
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then T appears within exactly d—(r) of the g,. Each of these g; being T plus
one possible edge incident to r. If, however, d—(r) = 0 or 1 then T appears
in one g, only. If we let G, denote G with those edges incident to r deleted,
then we can expand det (K(G,)) according to the method prescribed
earlier. In this expansion, however, any particular out-tree rooted at r will
be represented by exactly one term. In figure 2.6(c) we see two examples.
Notice that each term in these expansions is the determinant of an in-degree
matrix for a subgraph g; of G in whichd-(v) < 1, v # r,and d=(r) = 0.
‘We now require the following theorem in which det (X,,(G)) denotes the
minor resulting from the deletion of the rth column and the rth row of

det (K(G)).

Theorem 2.4. If g is a finite digraph such that for each vertex v, d~(v) < 1,
then

det (X,,(g)) = 1if g contains a spanning out-tree rooted at r

= 0 otherwise

Proof. Suppose that g contains a spanning out-tree T rooted at r and that
its vertices are labelled 1, 2, ..., n. Then either g = Tor g = T+e where e
is an edge incident to r. We can relabel the vertices according to a breadth-
first order of traversing 7, visiting r first. Then r = 1 so that K(1,1) < 1
and for i > 1, K(i,i) = 1. Also if i # 1 and i > j then K(i,j) = 0. Thus
K;1(g) is an upper-right-triangular matrix with unit diagonal elements, and
so det (K3,(2)) = 1.

Now suppose that g does not contain a spanning out-tree rooted at r.
If any vertex v # r has d—(v) = O then the corresponding column of K
consists of zeros only, so that det (K,,(g)) = 0. Suppose then that every
vertex v # r has d-(v) = 1. Since g does not contain a tree rooted at r,
then it must contain a circuit which excludes r as follows. Trace the edge
into v; # r backwards to v; and the edge into v; backwards to v, and so on.
If r is finally reached in this process then v;, v;, vy, ... belong to a subtree
rooted at r. Otherwise the process ends up tracing a circuit not including r.
If r is reached we repeat the process starting at vertices not in the subtree.
Clearly we can accommodate every vertex, without constructing a spanning
out-tree rooted at r, only by completing a circuit. Consider now the set of
columns of K corresponding to vertices on a circuit. Any row of this set
contains zeros only or it contains a single (— 1) and a single (4 1). Thus the
sum of these columns is a column of zeros. It follows that det (X,.(g)) = 0. W

The g} (and incidentally the g;) defined earlier satisfy theorem 2.4. We
note that K,,(G) is identical to K(G,) except that the (rr)th element is unity
instead of zero. There is obviously a one-to-one correspondence between
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the terms of det (K,,(G)) and of det (K(G,)) if each is expanded according
to the prescription given earlier. In fact:

det (K,(G) = 2‘: det (K,,(g9)

and if we apply theorem 2.4 to each term of the above sum we immediately
obtain the following theorem.

Theorem 2.5. The number of spanning out-trees rooted at r in a finite
digraph G is equal to det (K, (G)).

Figure 2.7 illustrates an efficient algorithm based on theorem 2.5 to
calculate the number of spanning out-trees rooted at r. Now, Kisannxn
Kirchoff matrix and line 1 of the algorithm assigns (or inputs) the elements
of K,, to an (n—1) x(n—1) determinant 4. This can clearly be done in
O(n?) steps. Lines 2-5 use a Gaussian method to convert 4 into an upper
triangular form. In other words, a series of weighted row subtractions
reduces each element A(i, j) of A4, for which i > j, to zero. This is achieved
in O(n3) steps. The determinant is then evaluated by a diagonal expansion
in line 7 using O(n) steps, the result being assigned to DKRR. Overall,
therefore, figure 2.7 illustrates an O(n%)-algorithm.

Fig. 2.7. An algorithm to find the number of spanning out-trees
rooted at r in a digraph with in-degree matrix KX, or the number of
spanning trees of an undirected graph with degree matrix K.

A< K,
for k = 2to (n—1) do
fori=kto(n—1)do
forj=1to(n—1)do
A@,]) < AG,7)— (AG, (k—1))/ ARk 1), (k—1))). A((k—1), /)
DKRR < A(1, 1)
for i = 2 to (n—1) do DKRR < DKRR. A(i, i)

NANDEWN =
NN PBRDE

Having resolved the problem of counting the number of spanning out-
trees rooted at a given vertex in a digraph, we can very quickly see a solution
to the problem of counting the spanning-trees of an undirected graph. To
do this we note, given an undirected graph G, that we can construct a
digraph G’ by replacing each edge (u, v) by two directed edges (1, v) and
(v, u). Then for every spanning-trec of G there corresponds a spanhing
out-tree in G’ rooted at a particular vertex, and vice-versa. We define the
degree matrix of G to be identical to the in-degree matrix of G’, and we
denote it also by K. We therefore have the following theorem.
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Theorem 2.6. The number of spanning-trees in a finite undirected graph
is equal to any one of the minors det (K..(G)) for 1 < r < n.

The theorem embodies the obvious conclusion that the number of
spanning trees cannot depend on the choice of r. As the caption to
figure 2.7 implies, we can obviously use that O(n%)-algorithm to count the
number of spanning-trees of an undirected graph as well as to count the
spanning out-trees rooted at a particular vertex in a digraph.

2.2 Circuits, cut-sets and connectivity

In this section we demonstrate the importance of spanning-trees
with respect to the circuit space and the so-called cut-set space of a graph.
We shall also be concerned with the separability of a graph by generalising
the notions of articulation point and cut-edge which were introduced in
chapter 1.

It is convenient here to extend our definitions. A co-tree of a graph
G = (V, E) with respect to a spanning-tree T = (¥, E’) is the set of edges
(E—E"). If G has n vertices then any co-tree, if one exists, has |E|—(n—1)
edges. Any edge of a co-tree is called a chord of the spanning-tree. We need
also to define the operation of ring-sum. The ring-sum of two graphs
G, = (V3, Ep and G, = (Vp, E,), which we write G, ® G,, is the graph
("1 U V), ((Ey VU Ep)—(Ey 0 Ey)). In other words the edge-set of G, @ G,
consists of those edges which are either in G, or are in G, but which are not

in both. It is easy to see that the operatipn of ring-sum is both commutative
and associative. That is, that:

G1$G3=G3®Gl
and that
(G, ® Gy) ® Gy = G, ® (G, ® Gy

2.2.1. Fundamental circuits of a graph
From theorem 1.2 we see that the addition of a chord to a spanning-
tree of a graph creates precisely one circuit. In a graph the collection of
these circuits with respect to a particular spanning-tree is called a set of
fundamental circuits. As we shall see, any arbitrary circuit of the graph may
be expressed as a linear combination of the fundamental circuits using the
operation of ring-sum. In other words, the fundamental circuits form
a basis for the circuit space.
Figure 2.8 shows, for the graph illustrated there, a spanning-tree T, the
corresponding set of fundamental circuits and some other circuits expressed
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Fig. 2.8. Some circuits of G expressed as linear combinations of the
fundamental circuits of G with respect to T.
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T: a spanning-tree of G
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as linear combinations of these. In general then, we have the following
theorem.

Theorem 2.7. A set of fundamental circuits, with respect to some spanning-
tree of a graph G, forms a basis for the circuit space of G.
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Proof. We first show that any circuit can be expressed as a linear combi-
nation of the fundamental circuits F with respect to some spanning-tree 7'
We denote an arbitrary circuit C by its set of edges:

C= {el, €gs ceoy €4y €p gy eey ej}

where ¢, for 1 < k < iisachord of T and fori < k < jis an edge of T.
F contains precisely one fundamental circuit containing each e;. for
1 < k < i. We denote the fundamental circuit containing e; by C(e;). We
now define C’ as follows:

C’ = C(el) @ C(ez) oD ... @ C(ek)
and show that C and C’ contain precisely the same set of edges. If they do
not then:

CoC #0

For any two circuits C; and C,, C; ® C, must be a circuit or an edge
disjoint union of circuits. Thus C’ is a circuit or an edge disjoint union of
circuits and so is C @ C’. But C and C’ each contain the set of chords
ey, ey, ..., e; of T and no other chords. Thus C @ C’ could only contain
edges of T'and could not therefore contain a circuit. Thus we have a contra-
diction so that our assumption that C # C’ must be wrong.

We complete the proof by noting that no member of F can be expressed
as a linear ring-sum of the other circuits of F. This follows immediately
from the observation that each chord of T'is contained in one and only one
fundamental circuit. [ ]

We have an immediate corollary:

Corollary 2.1. The circuit space for a graph with | E| edges and n vertices has
dimension (|E|—n+1).

A set of fundamental circuits, FCS, for a graph G can easily be found in
polynomial time. The algorithm outlined in figure 2.9 for example operates
in O(n®)-time. Line 1 states that a spanning-tree T and the corresponding
co-tree CT of G are found first. We saw in chapter 1 that a spanning-tree
can be found in O(max(n, | E))-time. It is easy to modify such an algorithm
so that when an edge is found not to be required for T, then it is not
discarded but is added to CT. What is more, this can easily be done at no
cost to the order of the complexity. Thus line 1 can be achieved in
O(max(n, | E|))-time.

For each edge e; e CT the body of the for statement in lines 4-6 finds one
fundamental circuit and adds it to the set FCS. The search for the path in
T which makes a circuit with e; in line 4 can be achieved in O(n) steps as
follows. Vertex v; in T is labelled one. Then starting at v; and using a
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breadth-first scan of T, each vertex v is labelled (L + 1) where L is the label
of the father of ». The process stops when v} acquires a label. The path
from v} to v, is then easily traced by starting at v} and proceeding so that at
each step the next vertex visited has a label which is numerically one less
than that for the current vertex. In this subalgorithm the initial labelling
can clearly be achieved in O(n) steps. The total time spent scanning edges
at individual vertices when tracing the path is O(n), at worst each edge is
scanned twice except for the initial and final edges and 7 has (n—1) edges.
The path itself is the accumulation of at most (n—1) edges and so the
whole path finding process requires no more than O(n)-time.

Fig. 2.9

1. Find a spanning-tree T and the corresponding co-tree CT of G.
2. FCS«+ @
3. for all ¢; = (v, v}) € CT do
begin
4. find the path from v, to v} in T and denote it by P;
s. C( <"P4 V] {e‘}
6 FCS <~ FCS VU C;
end

The number of edges in CT'is O(| E|), that is, O(n?) generally or O(n) for
a sparse graph. Thus the body of the for statement is executed O(|E|)-
times so that lines 3—6, which essentially determine the overall complexity
of the algorithm, can be executed in O(n2)-time for a sparse graph and, at
worst, in O(r%)-time.

Kirchoff ¥ was an early developer of the theory of trees, in his case in
connection with electrical circuits. A well-known consequence of theorem
2.7 and its corollary concerns Kirchoff’s voltage law. That is, that the net
voltage drop around any cycle of an electrical circuit is zero. This law is
generally used to obtain a set of simultaneous equations in the unknown
voltage drops across individual components of the network. One equation
is obtainable from each circuit of the network. Theorem 2.7 and its corollary
tell us which circuits of the underlying graph of the network, and how
many of them, provide a linearly independent set of equations.

2.2.2. Fundamental cut-sets of a graph

A cut-set of a connected graph, or component, is a set of edges
whose removal would disconnect the graph or component. As a part of
the definition no proper subset of a cut-set will cause disconnection.
A consequence of this is that a cut-set produces exactly two components.
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It is sometimes useful to denote a cut-set by the partition of vertices that it
induces. If ¥ denotes the vertex-set of G and if P is the subset of vertices in
one component of G induced by the cut-set, then the cut-set can be
specified by (P, P) where P = V—P.

As we shall see in chapter 4, cut-sets play an important role in the study
of transport networks. Also another practical application concerns the
vulnerability of communicating systems with respect to failure. In a graph.
whose edges represent the lines of communication in such a system, the
weakest link is the cut-set of smallest size.

In the previous section we defined-a basis for the circuits of a graph in
terms of fundamental circuits. We shall similarly define a set of fundamental
cut-sets. Again, the idea of a spanning-tree plays an important rdle here.
Let T be such a spanning-tree of the connected graph G. Any edge of T'
defines a partition of the vertices of G since its removal disconnects T into
two components. There will be a corresponding cut-set of G producing the
same partition of vertices. This cut-set contains precisely one edge and a
number of chords of T. Such a cut-set is called a fundamental cut-set of G
with respect to 7. Figure 2.10 shows, for the graph of that diagram, a
spanning-tree, a corresponding set of fundamental cut-sets and some other
cut-sets expressed as linear ring-sums of fundamental cut-sets. In general
we have theorem 2.8.

Fig. 2.10.

v &

T: a spanning-tree of G

C = {eh €3, €5, eg}
CS = {eb €3, €5, €7}
Cs = {es, €3, €a}
C, = {es, €5, €5}

The set of fundamental cut-sets of G with respect to T’
{es, €5, €5, &} = C; ® C,

{eene =C® GO Cy
{el’ €g, €5, e!} = Cl (&) Cs (] Ca (<] CQ

Some cut-sets of G expressed as linear combinations of the funda-
mental cut-sets of G with respect to T.
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Theorem 2.8. The fundamental cut-sets with respect to some spanning-
tree form a basis for the cut-sets of a graph.

Proof. This is entirely analogous to that for theorem 2.7 and so we omit the
details: The main function of the proof, given an arbitrary cut-set CS:

CS =e,€p ..., €41, .., 8

where ¢, for 1 < k < iare edges of the spanning-tree and e, fori < k < j
are chords, is to show that CS is identical to CS’:
CS' = CS(e) ® CS(ep) ® ... ® CS(ey)

where CS(e) is the fundamental cut-set associated with the edge e of T.

We proceed exactly as in the proof of theorem 2.7, the only difficulty
here is that it may not be immediately obvious that the ring-sum of two
cut-sets is a cut-set or an edge disjoint union of cut-sets. We can see this
informally as follows. Let C, = (V;, ¥,) and C, = (V,, ¥,) be cut-sets of a
graph G. If the edges of both C; and C, are removed from G, then the
vertices are partitioned into four subsets (V; n %), (*; n %) (7, n ¥,) and
(74 0 %) such that no remaining edge of G connects vertices in different
subsets. The ring sum of C; and C, consists of those edges in C; and those
in C, but not those in both C; and C,. Those edges common to both C,
and C, can only connect vertices in (V; n V;) to vertices in (V; n 7;) or vertices
in (7, n V) to vertices in (7, n V). Thus if the edges of C; ® C, are removed
from G then there is a partitioning of the vertices into (V; n V) U (%, n %) and
(10 %) U (Fin V). If each of these subsets induces a connected subgraph
then C; ® C, is a cut-set. Otherwise it is an edge disjoint union of cut-sets.
Figure 2.11 illustrates this. |

Fig. 2.11. Ilustrating, with reference to figure 2.10, that the ring-sum
of two arbitrary cut-sets is either a cut-set or the edge-disjoint union of
cut-sets.

{e1, e, eg} © {ey, €3, €5, €6} = {ey, €5, €3}
{e, ea, €, €5} @ {eg, €5, €5, 7} = {ey, €3, €y, €5, €4, e}
= {el’ 84, eo} U {ea, 85, e8}

‘We have the following corollary.

Corollary 2.2. The cut-set space for a graph with » vertices has dimension
(n-1).

As for the case of fundamental circuits, it is easy to construct a poly-
nomial time algorithm to find a set of fundamental cut-sets. See, for
example, exercise 2.8.
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2.2.3. Connectivity

Circuits and cut-sets are aspects of the connectedness of a graph.
It is natural therefore that we should generalise here those two basic
definitions of separability, cut-edge and articulation point, which were
introduced in chapter 1. This leads naturally to consideration of the
number of edge disjoint paths between any two distinct vertices.

It is clear that removing any vertex from a tree will disconnect it. On
the other hand, the removal of any vertex or subset of vertices from a
complete graph will not disconnect it. Trees and complete graphs represent
the two extreme cases of vertex-connectivity, or simply connectivity of a
graph. For an arbitrary graph G, we defineits connectivity, written K,(G) or
simply K,, to be the minimum number of vertices whose removal will
disconnect G. Also we say that G is h-connected for any positive integer h
satisfying & < K(G). Any subset of vertices whose removal will discon-
nect G is called a vertex-cut.

Similarly we define the edge-connectivity, K(G) or K,, for the connected
graph G to be the size of the smallest cut-set of G. G is said to be h-edge-
connected for any positive integer h satisfying h < K,(G).

We denote the smallest degree of any vertex in a graph by 8. Since the
set of edges incident with any vertex forms a cut-set, we have that é > K,(G).
Also K,(G) cannot exceed K,(G). We can see this informally by recognising
that a vertex-cut is obtainable by removing an end-point from each edge
of a minimum cut-set. For convenience we define K,(K,,) to be (n—1). We
then have the following theorem:

Theorem 2.9. For any connected graph G:
K(G) < K(G) < ¢

We now describe a theorem for 2-connected graphs before stating its
generalisation to graphs which are h-connected.

Theorem 2.10. A graph G with at least three vertices is a block if and only
if two vertices are connected by at least two edge disjoint paths.

Proof. If any two vertices of G are connected by at least two edge disjoint
paths then G is connected and cannot contain an articulation point.
Therefore G must be a block.

On the other hand, suppose that G is 2-connected. Let /(u, v) be the
path length from u to v. We prove, by induction on /(y, v), that there are
two edge disjoint paths from u to v. If /(¥, v) = 1, then (u, v) cannot be a
cut-edge if G is a block. Then G—(u, v) is connected and so G contains a
path from u to v which does not utilise (4, v). We thus have a basis for our
induction. Let us assume then that there are two edge disjoint paths
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between u and v for I(, v) < L. Now suppose that /(u, v) = L and let P be
a path of length L from u to v and let w be the vertex adjacent to u on P.
By the induction hypothesis v and w are connected by two edge disjoint
paths. Without loss of generality, we can take one to be P—(u, w) and we
denote the other by Q. Since G is a block, G—w must be connected. Let R
be the path from u to v not including w, and let x be the first vertex common
to R and Q which is encountered by following R from u. It is possible that
x = u. Clearly, there are two edge disjoint paths from u to v. One is

RS,
" * \. /;)v
(WL —r

P and the other is that portion of R from u to x plus that portion of Q from
X to v. |

We have two corollaries:

Corollary 2.3. In a block with at least three vertices any two vertices lie
on a common cycle.

Corollary 2.4. In a block with at least three vertices any two edges lieon a
common cycle.

Proof. Let G be a block with at least three vertices. Let any two of its
edges by (i, v;) and (u,, vs). From G we construct G’, a block with at least
five vertices by adding two vertices, w, and w,, both of degree 2. This is
done by replacing (u;, v,) with the edges (¥, w;) and (w,, v and by
replacing (uy, v;) With (13, w,) and (wy, v5). From corollary 2.3, w, and w,
of G’ lie on a common cycle. It follows that (4,, v)) and (u,, v,) of G lie
on a common cycle. |

In chapter 4 we prove a well-known theorem, due to Menger,™ which
is a generalisation of theorem 2.10. This is that a graph with at least (h+ 1)
vertices is A-connected if and only if two distinct vertices are connected by
at least h edge disjoint paths. There are, of course, also generalisations of
the above corollaries.

We shall delay until chapter 4 presentation of algorithms to determine
K(G) and K(G) for an arbitrary graph G.
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2.3 Summary and references

Our concern in this chapter has been with subgraphs that are trees.
We described Prim’s™ algorithm which finds optimal weight trees for
undirected graphs and Edmond’s®! algorithm for optimal branchings. For
alternative insight into theorem 2.2 see Karp."® Edmond’s algorithm may
also be used to find optimal weight spanning out-trees (or in-trees) if they
exist. See, for example, exercise 2.10. We shall utilise both the idea of a
spanning-tree and the enumeration of spanning-trees in chapter 3.
Kirchoff® first described, amongst other material, a matricial method for
counting spanning-trees. Excercise 2.13 describes another interesting,
although inefficient, method to count the spanning-trees of an undirected
graph.

In the second half of the chapter we showed how spanning-trees give
particular insight into the structure of a graph as viewed from its circuit
and cut-set spaces. The intimate connection between cut-sets and circuits
will be further pursued in chapter 4.

Theorem 2.10 is due to Whitney™ and its generalisations due to
Menger will be proved in chapter 4. We shall also in that chapter describe
algorithms to determine the edge- and vertex-connectivities of a graph.

Those readers interested in pursuing the specific application areas of
trees mentioned in the first paragraph of the chapter might refer to Hop-
croft & Ullman,"# Knuth® and Bell™. For general reading on trees the
following are recommended. Chapters 2, 3 and 12 of Bondy & Murty,"s!
chapters 24 of Deo,"! chapters 1 and 2 of Busacker & Saaty,?8] chapters
4 and 15 of Harary" and chapters 12, 13 and 16 of Berge.l'!
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EXERCISES

2.1. Given a specific edge e of an undirected graph G, how would you
construct a spanning-tree of G which contains e? How can a graph be
constructed given the set of all its spanning-trees?

2.2. Use theorem 2.5 to derive Cayley’s theorem that the number of
spanning-trees of K, is n"2,

2.3. Theorem 2.5 provides a method to count the number of spanning out-
trees rooted at a particular vertex of a digraph. Contrive a similar
method to count the number of spanning in-trees.

2.4, The following algorithm due to Kruskal® finds a minimum-weight
spanning-tree, MWT, of a weighted undirected graph G = (¥, E). Show
that it operates in polynomial time.

1. Relabel the elements of E so that
if w(e;) > w(e;) theni > j
2. MWT« @
3. fori=1to|E|do
if MWT U {e} is acyclic then
MWT <~ MWTV {e;}
(Also see exercise 2.6.)

2.5. Given a weighted undirected graph G = (V, E), let ¥V’ be a proper
subset of its vertices. Also let e denote the edge of smallest weight with
one end in ¥’ and the other in (V—¥”). Show that there exists a
minimum-weight spanning-tree of G which contains e.

(Let T be a minimum-weight spanning-tree of G. If T does not contain
e, then (T'+ ¢) contains a circuit, C. Let ¢’ # e be an edge of C. T’ then
defines a tree:

T = T+e-¢

Clearly,

w(T") < m(T))
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Prove that Kruskal’s algorithm (exercise 2.4) finds a minimum-weight
spanning-tree.
(Let T be a spanning-tree constructed according to Kruskal’s algorithm
and let Ty be a minimum-weight spanning-tree. We assume that the
edges are ordereq, as in exercise 2.4, according to non-decreasing weight.
Change Ty into Tx by a series of edge replacements each as follows. If s
be the smallest value of i such that e;e Tx but e; ¢ Ty, construct
Ty = Ty+e,—e, such that ¢, ¢ Tx and e; is an edge of the.circuit in
(Tx+e,). Show that T must also be a minimum-weight spanning-tree
of the graph.)
Let T be a particular spanning-tree of an undirected graph G. By ¢ we
denote a chord and by e an edge of 7. Justify the following statements:
(a) If S is a fundamental circuit defined by T and c, then ¢ appears in
each fundamental cut-set defined by an edge in (S—{c}) and in no
others.
(b) If K is a fundamental cut-set defined by 7" and e, then e appears in
each fundamental circuit defined by a chord in X and in no others.
Construct a polynomial time algorithm to find a set of fundamental
cut-sets for some undirected graph G = (¥, E).
(An O(n®)-algorithm may be constructed as follows. First find a
spanning-tree T of G. Then for each edge e € T determine the two blocks
B, and B, of (T— {e}). The fundamental cut-set associated with e, FCS(e)
is then given by:
FCS(e) « &
for all v, € B, do
for all v; € B; do
if (v, v;) € E then FCS(e) < FCS(e) U {(v,, v3)})
Construct a counterexample to show that the following ‘algorithm’
does not always construct a maximum branching, MB, of a weighted'
digraph G = (V, E).
1. Relabel the elements of E so that
if w(e;) > w(e;) then i > j.
2. MB« g
3. fori=1to |E|do
if w(e;) > 0 and MB U {e;} is acyclic then
MB <~ MBV {e,}.
Given a weighted directed graph, modify Edmond’s algorithm to find
a maximum-weight spanning out-tree if one exists.
(Consider the effect of adding a constant positive weight to the existing
weight of each edge of the graph.)
Justify the following statements:
(a) If G is a simple graph then
K6 < X

n
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(b) If G is simple and 3-regular then
K.(G) = K(G).

(Note theorem 2.9.)
The connector problem may be modified by insisting that certain pairs of
locations be directly linked. Modify Prim’s algorithm to accommodate
this.
(From the original weighted graph G of the problem, construct a new
graph G*, by contracting every edge that must appear in the solution.
Consider applying Prim’s algorithm to G*.)
N(G) denotes the number of spanning-trees of the undirected graph
G = (V, E). Show that the following recursive formula holds:
N(G) = N(G—e)+N(Goe)
where e € G and G o e means the graph obtained from G by contracting
the edge e.

Show that the implied algorithm for calculating N(G) has exponential
time-complexity.
(N(G—e) is the number of spanning-trees of G not using e. To every
spanning-tree of G o e, there corresponds exactly one spanning-tree of
G that uses e.)
Consider again Kruskal’s algorithm of exercise 2.4. We provide an
outline of it once more but in the following form:
1. Construct a priority queue based on the edge-weights

MWT <« @

2.
3. Assign a ‘component’ number L(v) to each vertex v
4. fori=1to |E|do

5. Remove the edge (4, v) of minimum weight from the
priority queue

6. if L(u) # L(v) then

begin

Unite (C(w), C(v))

MWT <~ MWTV {(u, v)}

end

®N

end

We described priority queues in exercise 1.16. In the course of con-
structing MWT, the set of edges which eventually becomes the minimum-
weight spanning-tree, MWT contains a set of connected components
each of which is a tree (initially just a single vertex). Each vertex in the
same component has the same ‘component’ number L(v) which is
different for vertices in different components, The purpose of line 7 is
to make the vertices in the component C(x) which contains # and the
vertices in the component C(v) which contains v, have the same
component number. This could be the component number of v or of u.
Notice the condition of line 6. L(x) # L(v) shows that u is not in the
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same component as v. If L() = L(v) then MWT U {(, v)} would
contain a circuit.

Fill in the implementation details which are missing from the
algorithm outline and which will ensure that it runs in O(|E| log | E|)-
time. Notice that the use of a priority queue (exercise 1.16(a)) ensures
that, for all iterations, line 5 requires only O(|E| log | E|)-time. The
remaining difficulty concerns line 7. We can see, in principle, that the
total time spent executing all iterations of this instruction can be con-
tained within the specified limit as follows. Two components C(u) and
C(v) are united into a single component by changing the component
number of the vertices in the smaller component to the component
number of the larger component. Consider the total number of vertex
component number changes there will be. Each vertex, after changing
its component number will belong to a component which is at least twice
as big as its component before the change. Hence, if a vertex has its
component number changed i times, it belongs to a component con-
taining at least 2* vertices. This cannot exceed n, so that the maximum
value of i is log n. For all vertices, the total number of component
number changes is therefore O(rn log n). Your implementation details
should ensure that this is the case.

Obviously an O(|E| log | E|)-algorithm will be preferable to an
O(n?)-algorithm (described in the text) for graphs with relatively few
edges.
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Planar graphs

Our primary interest in this chapter is to determine what graphs can be
arranged on a plane surface such that no two edges cross and such that no
two end-points coincide. Further, we describe one algorithm to show that
for an arbitrary graph efficient algorithms exist to determine whether or
not it falls within this category.

This question of the planarity of a graph, apart from its theoretical
interest, has a number of practical applications. For example, in the
layout of electronic circuits, does a planar representation of a given circuit
exist? If not what is the minimum number of planar graphs whose union
is a representation of the circuit?

31 Basic properties of planar graphs

In this first section we outline some basic properties of planar
graphs. As has already been stated, a graph is planar if it can be drawn on
a plane surface with no two edges interseeting. More precisely, a graph
G is planar if it is isomorphic to a graph G’ such that the vertices and edges
of G’ are contained in the same plane and such that at most one vertex
occupies or at most one edge passes through any point of the plane. G’ is
said to be embedded in the plane and to be a planar representation of G. In
general, G will denote an embedding of G.

We can extend the idea of embedding to other surfaces. Figure 3.1(a)
shows the complete graph with five vertices which, as we shall prove later,
cannot be embedded in the plane. Figure 3.1(b) shows that K; can in fact
be embedded on a toroidal surface. A torus is a solid figure obtained by
rotating a circle (or in fact any closed curve) about a line in its plane but
not intersecting it.

A basic property of planar graphs is embodied in the following
theorem:
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Fig. 31

(a) K

Theorem 3.1. A graph G is embeddable in the plane if and only if it is
embeddable on the sphere.

Proof. We show this by using a mapping known as stereographic projection.
Consider a spherical surface S, touching a plane P at the point x. The point
¥ (called the point of projection) is on S and diametrically opposite x. Any
point z on P can be projected uniquely onto S at z’ by making y, zand z’
collinear. In this way any graph embedded in P can be projected onto S.
Conversely, we can project any graph embedded in S onto P, choosing y so
as not to lie on any vertex or edge of the graph. ]

A planar representation of a graph divides the plane into a number of
connected regions, called faces, each bounded by edges of the graph.
Figure 3.2(a) indicates the faces of a particular embedding of the graph
shown there. Of course, any planar representation of a (finite) graph always
contains one face enclosing the graph. This face, called the exterior face, is
/1 in figure 3.2(a). Theorem 3.2 will be of particular use later on.

Fig. 3.2

(a) 7 (b) .

flf’f.f‘ fa f‘fo
Jo N

Theorem 3.2. A planar embedding of a graph can be transformed into a
different planar embedding such that any specified face becomes the
exterior face.

Proof. Any face of G is defined by the path which forms its boundary.
Any such path, T, identified in a particular planar representation P of G,
may be made to define the exterior face of a different planar representation
P’ as follows. We form, as we can according to theorem 3.1, a spherical
embedding P” of P. P’ is then formed by projecting P* onto the plane in
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such a way that the point of projection lies in the face defined by the image
of T on the sphere. ]

Figure 3.2(b) shows a mapping of the graph of figure 3.2(a) according
to theorem 3.2 so that f; becomes the exterior face.

There is a simple formula connecting the number of faces, edges and
vertices in a connected planar graph. Euler’s formula, as it is known, will
be of particular use to us in establishing the non-planarity of two im-
portant graphs. We derive the formula in theorem 3.3 in which the following
notation is used. For a graph G, n(G) denotes the number of vertices,
¢(G) the number of edges and f(G) the number of faces. Where there is no
ambiguity we respectively write n, |E| or f.

Theorem 3.3. If G is a connected planar graph, then, for any G:
f=|E|-n+2

Proof. By induction on f. For f= 1, G is a tree and by theorem 1.2,
|E| = n—1, and so the formula holds. Suppose it holds for all planar
graphs with less than f faces and suppose that G has f > 2 faces. Let
(u, v) be an edge of G which is not a cut-edge. Such an edge must exist
because G has more than one face. The removal of (u, v) from G will cause
the two faces separated by (u, v) to combine, forming a single face. Hence
(G—(u, v)) is a planar embedding of a connected graph with one less face
than G, hence:

f(G—(u,v) = f(G)-1

also
n(G—(u, v)) = n(G)

e(G—(u, 1)) = e(G)-1
But by the induction hypothesis:
S(G—(,v)) = AG—(u, v))—n(G—(u, 1)) +2
and so, by substitution:
S(G) = e(G)—n(G)+2

Hence, by induction, Euler’s formula holds for all connected planar
graphs. n

and

We shall require three corollaries to theorem 3.3. Before presenting
them, we define the degree of a face, d(f), to be the number of edges
bounding the face f'and we denote the number of vertices of degree i by

n(i).



70 Planar graphs

Lemma 3.1. For a simple planar graph G, we have for any G
26(G) = Td(%) = Zin(j)
because each edge contributes one to the degree of each of two vertices.

Corollary 3.1. For any simple connected planar graph G, with |E| > 2,
the following holds:

|E| € 3n—6
Proof. Each face of G is bounded by at least three edges and so:

Eid(fi) >3
The result then follows by substitution into Euler’s formula and using
lemma 3.1. ]

Corollary 3.2. For any simple connected bipartite planar graph G, with
|E| > 2, the following holds:

|E| < 2n—4
Proof. Each face of G is bounded by at least four edges. The result then
follows as for corollary 3.1. ]

The third corollary will be of particular use in chapter 7.

Corollary 3.3. In a simple connected planar graph there exists at least one
vertex of degree at most 5.

Proof. From corollary 3.1:
|E| < 3n—6

also n = Y,n(i) and from Lemma 3.1, 2|E| = X,,i n(i). Therefore, by
substitution:

SE-)n) > 12

The left-hand side of this inequality must clearly be positive. Since i and
n(i) are always non-negative it follows that there must exist some non-
zero n(i) for at least one i less than six. ]

As examples of the use of corollaries 3.1 and 3.2 we now establish the
non-planarity of the two graphs K; and Kj ;. These graphs play a funda-
mental rdle in one characterisation of planarity, embodied in Kuratowski’s
theorem which is presented in section 3.3. Now Kj has five vertices and
ten edges and so cannot be planar because the inequality of corollary 3.1
is violated. Similarly, K 3 cannot be planar because with six vertices and
nine edges the inequality of corollary 3.2 is not satisfied.
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Corollaries 3.1 and 3.2 are necessary but not sufficient to characterise
planar graphs and therefore have limited applicability. In section 3.3 we
describe ways to more precisely characterise planar graphs.

3.2 Genus, crossing-number and thickness

Wehave seen that both K and K gcannotbeembedded in the plane.
Both, in fact, are toroidal graphs; that is to say that they can be embedded in
the surface of a torus. For Kj this embedding is illustrated in figure 3.1(b).
It is instructive to understand the topological difference between a spherical
surface and a toroidal surface. Any single closed line (or curve) embedded
in a spherical surface will divide the surface into two regions. On the other
hand, a closed curve embedded in a toroidal surface will not necessarily
divide it into two regions, although any two non-intersecting closed curves
are guaranteed to. Figure 3.3 shows a closed curve C drawn first on a

Fig. 3.3

spherical surface and then on a toroidal surface. In the first case two regions
result but in the second case the surface remains connected. For any non-
negative integer g, we can construct a suface in which it is possible to
embed g non-intersecting closed curves without separating the surface into
two regions. If for the same surface (g+1) closed curves always cause a
separation, then the surface is said to have a genus equal to g. For a
spherical surface g = 0, while for a toroidal surface g = 1.

The genus is a topological property of a surface and remains the same
if the surface is deformed. The toroidal surface is topologically like a
spherical surface but with the addition of a ‘handle’, as shown in figure 3.4.
In that diagram Kj 3 has been embedded on the toroidal surface. Any
surface of genus g is topologically equivalent to a spherical surface with
g handles. A graph that can be embedded in a surface of genus g, but not
on a surface of genus (g—1) is called a graph of genus g. Notice that the
so-called crossing-number of a graph (that is, the minimum number of
crossings of edges for the graph drawn on the plane) is not the same as its
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Fig. 3.4

genus. More than one edge may pass over or under a handle on the sphere
and so the genus of a graph will not exceed its crossing-number.

Theorem 3.4. If G is a connected graph with genus g, n vertices, | E| edges
and if G has f faces, then:

f=|E|-n+2-2¢g
Proof. By induction on g. For g = 0 the theorem coincides with theorem
3.3. As our induction hypothesis we assume that the theorem is true for all
graphs with genus (g—1). These graphs may be drawn on a spherical
surface with (g—1) handles and include all those graphs obtained by
deleting those edges passing over a single handle in any graph of genus g.
We construct G with genus g on a surface of genus g by adding a single
edge requiring an additional handle. Using primed letters for G, we have
by the induction hypothesis:

[ =|E'|-n"+2-2¢
but

|E| = |E'|+1,g=¢g'+1andn =n’
Also f = f’—1 because the handle connects two distinct faces in G’ making
a single face in G. Hence by substitution:

f=|E|-n+2-2¢
and so by induction the theorem is proved. Notice that adding more (non-
crossing) edges over the handle does not change the genus of the graph,

although each edge added in this way also adds another face to the graph
so that the formula continues to hold true. ]

Genus and crossing-number have obvious implications for the manu-
facture of electrical circuits on planar sheets. A fact of recent interest for
the large scale integrated circuits of silicon chips is that there is (Lipton &
Tarjanl)) a planar equivalent for any boolean electrical circuit, obtained
by replacing each pair of crossing wires by a fixed size planar subcircuit
which simulates the behaviour of the original crossing. Figure 3.5 shows
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such a simulation using, in this case, exclusive- or gates. The cross-over of
wires (X, X")and (Y, Y’) of (a) is replaced by three exclusive- or gates in ().
It is easy to check that whatever boolean values are input at X and Y they
will bereproduced respectively at X’ and Y’. In a planar circuit with straight
wire connections and » vertices (gates), there can be at most O(n®) cross-
overs. Hence a planar equivalent of a boolean circuit can be obtained at the
expense of at most an O(n?) increase in the number of gates (the so-called
circuit size).

Fig. 3.6
(a) X Yy (b)) X y
XOR XOR
Y X Y X

A convenient practice is to make connections between parallel planar
subcircuits separated by insulating sheets at vertices of the corresponding
graph. The problem is then equivalent to decomposing the graph into
planar subgraphs and, in particular, we become interested in the so-called
thickness of a graph. The thickness T(G) of a graph G is the minimum
number of planar subgraphs of G whose ugion is G. If G; = (V, E,) and
G, = (V, E,), then their union, G, U G,, is tle graph (V, E,; U E,). Figure 3.6
shows three graphs G,, Gy and G; whose union is K,. Hence T(K,) < 3.
We shortly present an expression for the thickness of a complete graph on
n vertices and this provides an upper bound for any graph with the same
number of vertices.

Before completing this section we note two corollaries arising from
theorem 3.3 and from theorem 3.4.

Corollary 3.4. The thickness T of a simple graph with n vertices and |E|
edges satisfies:

7> [1EL]

Proof. Each planar subgraph will contain, according to corollary 3.1, at
most, (3n—6) edges and so the result follows. n
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Fig. 3.6
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Corollary 3.5. The genus g of a simple graph with n (> 4) vertices and |E|
edges satisfies:

g = B(E|-3n)+11

Proof. Every face of an embedding of the graph is bound by at least
three edges each of which separates two faces, therefore 3f < 2.|E|.
From theorem 3.4, g = ¥(|E|—n—f)+1) and so the result follows by
substitution. ]

Specific results for thickness and genys are known for special cases (e.g.,
complete graphs, complete bipartite graphs (see exercise 3.11)) and involve
lengthy proofs. In the case of complete graphs |E| = 4n(n—1) and the
above corollaries then give:

g 2 [{5(n—3) (n—

d
nn—1)] _|nr—-1)+(6n-14)] _
T> [6(;.-2) = l_ 6(1—2) = @+l

It is known that in the result for g equality holds. Similarly, equality holds
in the expression for T except for n = 9 and for n = 10, in both cases
T = 3. These refinements required the considerable efforts of mathe-
maticians over many years. Beineke & Wilson[™ provides a reference list
of primary sources.

Filotti et al."8 have described an O(n0®)-algorithm which takes as input
a graph G and a positive integer g and which then finds an embedding of
G on a surface of genus g if such an embedding exists.

an
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3.3 Characterisations of planarity
In section 3.1 we proved that K; and K, 5 are non-planar. These

two graphs play a fundamental r6le in the classical characterisation of
planarity due to Kuratowski and which is embodied in theorem 3.5. We
use Kuratowski’s theorem to establish two other descriptions of planarity
which more precisely fit the requirements of this text. Before proceeding
we need some definitions.

By G, = (¥, E}) we denote a subgraph of G = (V, E). A piece of G
relative to G is then:

either
(a) an edge (v, v) € E where (4, v) ¢ E; and u,ve V,
or
(b) a connected component of (G—G,) plus any edges incident with
this component.

In figure 3.7 the graph G has a subgraph G, which is a circuit (v,, vy, v5,
vy, U5, U)). By, B, and By are the pieces of G relative to G,. For any piece B,
the vertices which B has in common with G, are called the points of
contact of B. Thus in figure 3.7 B, has the points of contact v and v;,
while B, has the points of contact v,, v, and v;. If a piece has two or more
points of contact then it is called a bridge. Thus B, and Bg are bridges but B,
is not a bridge.

Fig. 3.7
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Obviously a graph is planar if and only if each of its blocks is planar.
Thus in questions of planarity we can always assume that we are dealing
with blocks. Any piece of a block with respect to any proper subgraph is
clearly a bridge.

Let C be any circuit which is a subgraph of G. C then divides the plane
into two faces, an interior face and an exterior face. For every pair of
vertices of a given bridge of C, there is a path from one vertex to the
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other which does not use an edge of C. Of course, if G is planar, and if
there exists a single bridge relative to C, then C is a boundary of some face
because the bridge can belong to one and only one (namely, the other)
face of C. Two bridges B, and B, are said to be incompatible (B, # By) if,
when placed in the same face of the plane defined by C, at least two of
their edges cross. See figure 3.8(a). To establish incompatibilities, each
bridge is conveniently reduced to a single vertex connected to the points
of contact with C.

Fig. 3.8
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An auxiliary graph G+(C) relative to a circuit C has a vertex-set consisting
of a vertex for each bridge relative to C and an edge between any two
such vertices B; and B; ifand onlyif B; # B;. See, for example, figure 3.8 ().
Suppose that G+(C) is a bipartite graph with bipartition (B, B). Then the
bridges in B may be embedded in one face of C and the bridges in B may
be embedded in the other face. In this way no incompatible bridges occur
in the same face.

Before presenting Kuratowski’s theorem we need just one more defi-
nition. Whether or not a graph is planar is obviously unaffected either by
dividing an edge into two edges in series by the insertion of a vertex of
degree 2, or by the reverse of this process. Two graphs are said to be
homeomorphic if one can be made isomorphic to the other by the addition
or the deletion of vertices of degree two in this manner. Figure 3.9(a) shows
a graph which is homeomorphic to Ky g, while (b) shows a graph which

Fig. 3.9

(a)
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contains a subgraph homeomorphic to Kj 5. In this second case the sub-
graph is obtained by deleting the edge (A4, B), by replacing the connected
subgraph G, by the path it contains from E to Fand by similarly replacing
the connected subgraph G, by a path from D to C.

Theorem [Kuratowski] 3.5. A graph is planar if and only if it has no sub-
graph homeomorphic to Kj or to K3 5.

Proof. In section 3.1 we proved that K; and Kj 5 are non-planar. It follows
that any graph containing a subgraph homeomorphic to either cannot be
planar.

It remains to be shown that a graph is planar if it does not contain a
subgraph homeomorphic to K or to K 3. We shall prove this by induction
on the number of edges. It is clearly true for graphs with one or two edges.
As the induction hypothesis we assume it to be true for all graphs with
less than N edges. We now show that it is true for the graph G with N edges
by demonstrating that the following statement leads to a contradiction:
G is non-planar and does not contain a subgraph homeomorphic to Kj
or to K3 5.

If G is non-planar, the following consequences apply:

(@) G must be connected. Otherwise G would consist of a number of
components each with less than N edges, and each not having a
subgraph homeomorphic to Kj or K 3 (because G does not). By
the induction hypothesis each component would be planar and
hence so would G.

(b) G must not contain a point of articulation. If it did then G could be
separated at this point of articulation, x. Each resulting com-
ponent would be planar as in (a). For each component x could
be mapped into the exterior face of B planar embedding according
to theorem 3.2. The components could then clearly be rejoined
at x without loss of planarity. Hence G would be planar.

(c) If any edge of G is removed, say (x, y), then the remaining graph
G’ contains a simple circuit passing through x and y. Notice that
G’ is connected because G contains no point of articulation. If no
such simple circuit exists then every path from x to y would have
to pass through a common vertex, say z. In other words, z would
be an articulation point of G’. G’ could then be separated at z into
two components, G; (containing x) and G, (containing y). We add
the edge (x, 2) to Gy so forming Gy, and we add the edge (y, z) to
G,, so forming G3. Now neither G nor Gj could contain sub-
graphs homeomorphic to K; or to Kj 3 otherwise G would. This
is because G contains a subgraph homeomorphic to G, forexample,
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where the path (x, y, ..., z) in G takes the part of (x, z) in G}. By
the induction hypothesis G; and G would be planar. According
to theorem 3.2 we could map (x, z) of Gj into the boundary of the
exterior face of G}, similarly, we could take (y, z) of G} to the
exterior face of Gj. Without loss of planarity, the two graphs G}
and Gj could then be joined at z and the edges (x, z) and (y, 2)
replaced by (x, y). This planar reconstruction of G thus yields a
contradiction and so G’ cannot contain an articulation point. G’
is thus a block and so by theorem 2.10 contains a simple circuit
passing through x and y.

Thus, summarising, G’ = G—(x, y) is connected and contains a simple
circuit C passing through x and y. In fact C could be one of a number of
such circuits. G’ contains no subgraph homeomorphic to K; or to Kg 3,
has one less edge than G and so, by the induction hypothesis, is planar.
Let G' be a planar embedding of G'. We then choose C to be the circuit
passing through x and y which contains the largest number of faces of G’
in its interior. Any bridge of G’ with respect to C is called an interior or an
exterior bridge depending upon whether it lies in the interior or exterior
of Cfor the embedding &'. For convenience we assign a direction to C which
we take to be clockwise. If p and g are vertices on C, then S[p, q] denotes
the set of vertices from p to g (including p and g) on S going in a clockwise
direction. S]p, g[ denotes S[p, g]—{p, ¢}. Note that no exterior bridge can
have more than one point of contact in S[x, y] or in S[y, z]. Otherwise C
could be expanded to enclose at least one more face of G'.

G is constructed from the planar graph G’ by adding the edge (x, ).
Consider the requirements of exterior and interior bridges of G’ with
respect to C in order that G be non-planar. There must exist at least one
exterior bridge E and one interior bridge I. As fas as E is concerned there
will be just two points of contact i and j with C such that:

ieSlx,y[ and jeSly,x

I may have any number of points of contact with C. We certainly require
that there are points of contact:

acSlx,yl and beSly, x|

otherwise (x, y) may be added to the interior of C. We also require points
of contact:

ce Sli,jl and deSYj, il

in order that 74 E. In other words,  must be incompatible with E so
that it cannot be taken into the exterior of C without loss of planarity.
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Figure 3.10 schematically illustrates this. In this diagram a coincides with

¢ and b coincides with d. There are however other possible configurations.
Figure 3.11 illustrates all of those that are essentially different. For reasons of

Fig. 3.10

clarity whenever any of a, b, ¢ or d coincide, a single label is used. Notice
that the configurations (d) and (e) differ only according to the internal
paths in I linking a, b, ¢ and d. Each of the configurations illustrated in
(a), (b), (c) and (d) exhibit subgraphs which are homeomorphic to Kj 3.
Open and closed circles are used to indicate the vertices of each partition.
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The rather exceptional case indicated in (e) exhibits a subgraph homeo-
morphic to K;. We have thus found the contradiction we were seeking and
so the theorem is proved. ]

The following theorem provides a more appropriate insight into the
nature of planarity as far as the planarity algorithm of section 3.4 is
concerned.

Theorem 3.6. A necessary and sufficient condition for a graph G to be
planar is that for every circuit C of G the auxiliary graph G*+(C) is bipartite.

Proof. The condition is necessary because for any circuit C of a planar
graph G, we can form a bipartition (B, B) of the bridge vertices of G relative
to C, such that bridges in B lie in one face of C for G, and the bridges of B
lie in the other face. Clearly, G+(C) is bipartite because no edge of G+(C)
connects two vertices in B or connects two vertices in B.

That the condition is sufficient can be seen as follows. If G is not planar
then according to Kuratowski’s theorem G contains a subgraph homeo-
morphic to K; or to K3 3. We suppose that G contains K or Ky 5 as a
subgraph, the generalisation to G containing proper homeomorphisms is
obvious. In either case (see figure 3.12, in which the chosen circuits are

Fig. 3.12

Ks,s

indicated by heavily scored edges), we can choose C of the subgraph such
that G*(C) is not bipartite. For K g there are three bridges B,, B, and By,
each of which is a single edge and any two of which are incompatible. In
the case of K; there are again three bridges B;, B, and B,. B, and B, are
single edges while By is a vertex of Kj plus its edges of attachment to C.
Again any two of the bridges are incompatible. Thus for both K; and
K g, for the circuits chosen, G+(C) = Kj which is not bipartite. ]

The second characterisation of planarity of particular use in this text
concerns dual graphs to which we devote the following section.
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3.3.1. Dual graphs
The main purpose of this section is to provide an alternative way to
characterise planar graphs. In particular we shall see that a graph is planar
if and only if it has a dual. However, as we shall see, there is an important
connection between circuits of a graph and the cut-sets of its dual. This
connection provides an additional stimulus for our interest in dual graphs.
Given a particular planar representation G of a graph, we informally
introduce the idea of its dual G* by providing construction rules for it.
A vertex of G* is associated with each face of G. For each edge ¢, of G
there is an associated edge e} of G*. If e, separates the faces f; and f;, in G,
then e} connects the two vertices of G* associated with f; and f;.. Excep-
tionally, e; may not separate two faces of G, namely, when ¢ is incident
with a vertex of degree one. In this case e} forms a self-loop on the vertex
of G* associated with the face of G surrounding ¢;. An example con-
struction is shown in figure 3.13. We do specify which of the two overlain
graphs is the dual. In fact either one is the dual of the other as can be easily
verified by inspection. This is a consequence of the construction process
and not of the example. Notice that that G* must also be planar.

Fig. 3.13

We have carefully referred to the dual of a planar representation G of a
graph G and not to the dual of that graph. Figure 3.14 contains a different
planar representation of a graph first shown in figure 3.13. We can see that
the dual of the second representation is not isomorphic to the dual of the
first representation. In particular the vertex X in figure 3.14 has degree six
unlike any vertex in figure 3.13. In fact, there is a rather simple con-
structional relationship between the duals of different planar representations
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Fig. 314

of the same graph. We illustrate this in figure 3.15, where () illustrates a
graph isomorphic to the unlabelled graph in figure 3.13. In (b) this has been
separated into two components by division of the vertices A and B.
Figure 3.15(c) shows a graph isomorphic to the graph containing the
vertex X in figure 3.14. This has been constructed by identifying vertex 4,
with B, and vertex A4, with B, in figure 3.15(b).

Fig. 3.15
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The graphs, figure 3.15(a) and (c), are said to be 2-isomorphic. Any two
graphs G; and G, are 2-isomorphic if they become isomorphic under
repeated application of either or both of the following operations:

(a)

(a) separation of G, or G, into two or more components at articu-
lation points,

(b) if G; and G, can be divided into two disjoint subgraphs with two
vertices in common, then separate at these vertices, 4 and B, and
reconnect so that A4, coincides with B, and 4, coincides with B,
as in figure 3.15.
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As a further example, the two graphs of figure 3.16 are 2-isomorphic.

Fig. 3.16

A

We state the following theorem without proof (see excercise 3.10).

Theorem 3.7. All the duals of a planar graph G are 2-isomorphic and any
graph 2-isomorphic to a dual of G is also a dual of G.

We require a (combinatorial) definition of a dual graph which will suit
our purposes in a better way than the (geometric) definition outlined
earlier. This is provided as follows:

Definition of a dual of a graph. Let G, and G, denote graphs with a
one-to-one correspondence between their edges and let C denote the set of
edges forming any simple circuit in G,. G, is a dual of G, if and only if the
corresponding set of edges C* in G, is a cut-set.

Notice that this definition makes no allusion to G, or G, being planar.
We shall however prove that if G, is planar then the above combinatorial
definition coincides with the geometric definition:

Theorem 3.8. Every planar graph has a (planar, combinatorial) dual.

Proof. 1t is clear that every planar graph has a (planar, geometric) dual.
Given a planar graph we construct its geometric dual G* overlaying G in
the manner described earlier. Any simple circuit C of G divides the plane
into two regions and so the vertices of G* are divided into two (non-empty)
subsets. Removal of the set of edges C* of G* (which cross C in G) clearly
separates G* into two components. Hence C* is a cut-set of G*.
Similarly any cut-set C* of G* defines a corresponding set of edges in
C in G. We shall show that if C is not a simple circuit then C* cannot be
a cut-set. By construction only one vertex of G* sits in each face of G.
Consider the set of edges radiating from a single vertex of G. Each such
edge separates two faces of G each containing a vertex of G*. The end-
points of the corresponding edges of G* have no choice of which vertex to
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be attached to, and these edges are thus constrained to form the boundary
of a face of G*. Hence every vertex of G sits in one face of G*. If Cis not a
circuit in G then there are at least two edges of C with end-points not
connected to others in C. If C* is a cut-set then these end-points of C must
lie in the same face of G*. But this is a contradiction because each face of
G* contains only one vertex of G. Notice that C must be a simple circuit
otherwise it would separate G* into more than two components and so
C* would be the union of more than one cut-set. ]

Corollary 3.6. If G* is a dual of G then G is a dual of G*. The proof is
straightforward and similar to that for theorem 3.8.

From now on, when we refer to the dual of a graph, we shall have in
mind the definition of a combinatorial dual. We remember that this
definition makes no reference to planarity. The following theorem is the
main result of this section.

Theorem 3.9. A graph has a dual if and only if it is planar.

Proof. From theorem 3.8 we know that every planar graph has a dual. We
need, therefore, only to prove that a non-planar graph has no dual. From
the definition of dual it is clear that a graph G can only have a dual if every
subgraph of G has a dual. Also if a graph has a dual then any graph homeo-
morphic to it must have a dual. Since every non-planar graph contains,
according to theorem 3.5, a subgraph homeomorphic to K; and/or to
K, ; we need only show that these graphs have no dual. We do this in (i)
and (ii) below:

(i) We suppose that K; has a dual, K¥, and show that this leads to a
contradiction. We observe that K; has ten edges, no circuit of length 2,
no cut-set with two edges and cut-sets with only four and six edges. These,
respectively, have the following consequences. K* has ten edges, no vertex
with degree less than 3, no circuit of length 2 and circuits of length 4 and
6 only. It is easy to see that these are mutually incompatible and so we
have the desired contradiction.

(ii) We now suppose that K ; has a dual, K33 and shall similarly show
that this leads to a contradiction. Kj 3 has no cut-set consisting of two
edges and so K33 has no circuits of length 2. Also Kj 3 has circuits of
length 4 and 6 only, therefore K 3 has no cut-set with less than four edges.
It follows that the degree of every vertex in K3, is at least 4. That is, there
are at least five vertices in KJj, each of at least degree 4, requiring
3(5 x4) = 10 edges. However, K§ s must have the same number of edges
as Kj g, that is, nine. Thus we have found the required contradition. M

We conclude this section by anticipating an interest in dual graphs that
arises in chapter 7. In that chapter we turn our attention to the problem of



A planarity testing algorithm 85

colouring areas of a map using the minimum number of colours such that
no two adjacent regions are similarly coloured. It is now known that the
famous ‘four-colour’ conjecture is true, namely, that four colours are
sufficient. All we wish to note here is that the map colouring problem is
precisely equivalent to the problem of colouring the vertices of the dual
(of the graph corresponding to the map) such that no two adjacent vertices
are similarly coloured. The dual graph provides a more convenient vehicle
for reasoning about the problem.

3.4 A planarity testing algorithm

Before subjecting a particular graph to an algorithm which deter-
mines whether or not it is planar, some preprocessing may considerably
simplify the task. In this connection we note the following points:

(a) If the graph is not connected then we subject each component to
the test separately.

(b) If the graph is separable (that is, has one or more articulation
points) then it is clearly planar if and only if each of its blocks is
planar. We therefore disconnect the graph and subject each block
separately to the test.

(c) Self-loops may obviously be removed without affecting planarity.

(d) Each vertex of degree 2 plus its incident edges can be replaced by
a single edge. In other words, we construct the homeomorphic
graph with the smallest number of vertices. This graph is clearly
planar if and only if the original graph is planar.

(e) Parallel edges can clearly be removed without affecting planarity.

The last two simplifying steps ought to be applied repeatedly and
alternately until neither can be applied further. Following these simplifi-
cations two elementary tests can be applied:

(f) If |[E| < 9 or n < 5 then the graph must be planar.
(g) If |E| > 3n—6 then the graph, by corollary 3.1, must be non-
planar.

If these two tests fail to resolve the question of planarity then the pre-
processed graph is subjected to a more elaborate test. We pursue that
shortly. First it is worth demonstrating what simplification can result from
this preprocessing, particularly the repeated applications of (d) and (e).
Figure 3.17 shows a graph with three blocks subjected to this processing
which resolves that the graph is planar.

Many algorithms have been published which test for planarity. Planarity
testing can be done in O(n) time as Hopcroft & Tarjan® first showed.
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Lempel, Even & Cederbaum® published an algorithm which, through the
work of Even & Tarjan®! and Leuker & Booth®™ was also shown to be
realisable in O(n)-time. These two algorithms require lengthy explanations
and verification. We therefore describe a much simpler but nevertheless
fairly efficient algorithm due to Demoucron, Malgrange & Pertuiset.'®! Of
course, what is subjected to the algorithm, following any preprocessing,
is a block. Before describing the algorithm we need one further definition.

Let A be a planar embedding of the subgraph H of G. If there exists
a planar embedding G, such that & < G, then H is said to be G-admissible.
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For example consider figure 3.18. In (a) a graph is shown while (b) and (¢)
show two different planar embeddings of the samesubgraph H = G—(1, 5).
In (b) A is G-admissible whilst (c) shows an embedding of H which is not
G-admissible.

Fig. 3.18

(a) 2

(c)l 2
J

4
G G-admissible G-inadmissible

»

Let B be any bridge of G relative to H. Now, B can be drawn in a face of
H if all the points of contact of B are in the boundary of /. By F(B, H) we
denote the set of faces of A in which B is drawable.

The planarity testing algorithm is outlined in figure 3.19. The algorithm
finds a sequence of graphs Gy, Gy, ..., such that G; = G, and finds their
planar embeddings Gy, G,, .... If G is planar then, as we shall see, each
G, found by the algorithm is G-admissible and the algorithm terminates
with a planar embedding of G, G\g_,,,. If G is non-planar then the
algorithm stops with the discovery of some bridge B (with respect to the
current G,) for which F(B, G)) = @. Obviously a necessary condition that
G, is G-admissible is that for every bridge B relative to G;, F(B, G, # &.

The first of the sequence of graphs found by the algorithm, G,, is a
circuit (lines 1-3). Since G is a block it must contain such a circuit. Clearly,
G, will be planar. The boolean variable EMBEDDABLE (lines 5, 6, 10
and 12) has the value true so long as the algorithm has not detected a
bridge B relative to the current G, for which F(B, G;) = @. If it acquires
the value false then the algorithm terminates (line 6) with the message ‘G is
non-planar’ (line 11). The variable f'is used to record the number of faces
of the current G;. It is initialised to the value 2 in line 4 and is incremented
by one for each execution of the while body (lines 7-19). Each execution
of the while body constructs a new G, from the current G,. This is
achieved as follows. Lines 7 and 8, respectively, find the set of bridges of G
relative to G, and for each such bridge B, the set F(B, G,). If there now
exists a bridge B which can be drawn in only one face F of G, (i.e.,
|F(B, G))| = 1, line 13), then G, is constructed by drawing a path P,
between two points of contact of B in the face F. If no such bridge exists
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Fig. 3.19. A planarity testing algorithm.

1. Find a circuit C of G
2. i<«1 .
3. Gi<C, G «C
4. f<2
5. EMBEDDABLE < true
6. while f# |E|—n+2 and EMBEDDABLE do
begin
1. find each bridge B of G relative to G,
8. for each B find F(B, G,)
9, if for some B, F(B, G) = o then
begin
10. EMBEDDABLE « false
11, output the message ‘G is non-planar’
end
12, if EMBEDDABLE then
begin 3 3
13. if for some B, |F(B, G;)| = 1 then F < F(B, G,)
else let B be any bridge and F be any face such
that Fe F(B, G))
14, find a path P; = B connecting two points of contact
of B to G‘
15. G‘-l-l <« G(+P‘
16. Obtain a planar embedding G,,, of Gy,, by drawing P,
in the face F of G,
17. i<i+l
18. f<f+1
19. if f = |E|—n+2 then output the message ‘G is planar’
end
end.

then P, is a path between two points of contact for any bridge. In either case,
P, divides some face F into two faces and f'is incremented by one (line 18).
Notice that if G is planar then G will have, according to theorem 3.3,
(|E]|—n+2) faces and this fact is used to terminate the algorithm (lines
6 and 19). In a more detailed encoding of the algorithm, each G, may be
represented by its set of faces {F}. Here each F, can be described by the
ordered set of vertices which mark its boundary in, say, a clockwise
direction about an axis passing through the face. In this sense of course,
each axis ought to be viewed from the same side of the plane.

Of course, if the graph is planar, then the algorithm obtains a planar
embedding, Gz _,,,, and this could be output in the form of a set of faces
by a modification of the conditional statement 19.

Theorem 3.10. The algorithm of Demoucron et al. is valid.
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Proof. We have to show that each term of the sequence G, Gy, ..., Gig\_p1»
if G is planar, is G-admissible. The proof is by induction. If G is planar then
G, is clearly G-admissible. We assume that G, is G-admissible for
1 < i < k < |E|—n+1. We now show that G, will be G-admissible. Let
B and F be as defined in statement 13 of the algorithm. Let G be a planar
embedding of G where G < G. If |F(B, G})| = 1 then, clearly, Gy, as
constructed by the algorithm satisfies G,,,; = G. We therefore suppose
that |F(B, G;) > 1 and imagine that B is not drawn in F in G but in some
other face F’'. Now G is a block so that every bridge of G with respect to
G, has at least two points of contact and can therefore be drawn in just
two faces. Thus each bridge with points of contact on the boundary between
the faces F and F' may be drawn individually in either F or in F’. Now
there clearly exists another planar embedding of G in which each such
bridge is drawn in Fif it appears in F’ in G and is drawn in F’ if it appears
in Fin G. The G, constructed by the algorithm is clearly G-admissible,
since G}, is contained in this new G. ]

It is easy to see that the planarity testing algorithm can be implemented
in polynomial time although it is less sophisticated than the linear-time
algorithms mentioned earlier. We leave the details to the reader (exercise
3.14). However we note the following. The body of the while statement
(lines 7-19) is executed at most (|[E|—n+1) times. In order to find each
bridge B of G = (V, E) relative to G; = (¥}, E,) in line 7, we define
G’ = (G—¥), and then need to find:

(a) each (u, v) € E such that (u,v) ¢ E, butue¥V;and vel,
and
(b) each component of G’ and add to each component any edges that
connect it to vertices in V.

For each bridge we need to record its points of contact with G;. If b is the
set of points of contact of B, then in line 8, a face Fis in F(B, G,) if and
only if every element of b is in F. Here we presume that F denotes an
(ordered) set of vertices as described earlier. If each face is described in
this manner, then in line 16 G,,, is easily obtained from G; by simply
replacing one F e G;,, by two new faces in an obvious manner. Returning
to the determination of bridges in line 7, notice that all but one of the
bridges relative to G; are bridges relative to G;,,. This exceptional bridge
is replaced by none or more other bridges. All other steps of the algorithm
are easily implemented in an efficient manner.

Figure 3.20 shows an application of the algorithm to the graph G shown
there. For each successive Gy, the diagram contains a tabulation of the set
of bridges relative to G, the value of f, F(B, G)), B and F as defined in
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Fig. 3.20. An application of the planarity testing algorithm.

G, | f |Bridges| F(B,G)| B | F| P,
G |2 B, |{F,F}

By |{F,F3}

By |{F, Fy}

B, |{F,Fy}

By |{F,F} |B|F| (13
Gy |3| B [{FuFy

By |{Fy Fa}

B‘ {F ) F l}

By | {F} [B|FR|@T9)
G |4 5 {Fs}

Ba {F » F l}

B, | {Fy

B, | {F}

By, |{FsF¢ |By| Fs| (1,4)
G|5| By | {F&

B, | {F}

By | {Fg}

B" {Fb FC} BS Fl (39 5)
Gl 6 B‘ {F 'l}

B, {Fs}

By |{Fs, Fo} |By| Fp| (4,6)
G |7 B {Fs}

B, |{Fs, Fg} |Bs| Fs| (6,7)
G, |8 B, | {(F} |B|Fs|(285
Gy |9| By | (R} |Bs|Fus| (7,8)
Gy |10 |(E|-n+2) = 10 = . AlECTitRM

Bridge definitions

By =[(1,3)], B; = [(1,4)), By = [(3, 9)]
B, = [(4,6)]
BB = [(7» 8)» (7r 2): (7a 5)9 (7’ 6)' (8’ 2): (89 5)]
BG = [(6) 7)]9 B‘l = [(8, 2)9 (8’ 5)’ (8: 7)]

B, = [(7,8)]

G 6

&
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statement 13 of the algorithm and P; as defined in statement 14. There is a
separate table defining each bridge by its edge-set. As can be seen, in this
case the algorithm terminates when f = (| E| —n+2) with a planar embed-
ding of G, G, and the message ‘G is planar’ would be output. The ad-
ditional sketch labelled G’ represents a planar embedding of G which could
have resulted if in going from G, to G, the path (1, 3) had been placed in F,
rather than in F,. This illustrates a point in the verification of theorem 3.10.
Because G is planar, the bridges relative to G, that are finally placed in F,
could all have been placed in F, and vice versa. This is rather a special
example because G’ is not distinctly different from G,. In fact, G’ can be
obtained from G, merely by causing (see theorem 3.2) the face (2, 8, 5, 3)
to become the exterior face. In general, however, given a choice of Band F
as defined in statement 13 of the algorithm, distinctly different embeddings
can be obtained.

Fig. 3.21. An application of the planarity testing algorithm.

F(Bla Gl) = {Fh Fj}

Bl P! = (l) 2’ 4, 6’5)

Q
N b
u%a u@a
Dy e w

F(B,, Gz) = {Fa}

P,=(3,9
3
1 5
G \/ B, F(B,.Gy) =9

R
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Finally, Figure 3.21 shows an application of the algorithm to the non-
planar graph K. For each G there is one bridge denoted by B, F(B;, G)
and P, also indicated in each case. The algorithm terminates when
F(By, G) = @with the message ‘G is non-planar’.

3.5 Summary and references

Euler’s formula provides a simple basis for deriving many
immediate results relating to planar graphs. Some of the problems that
follow provide further illustration of this. We also provided the extension
to non-planar surfaces in section 3.2. The treatment of non-planar surfaces
was informal, being illustrative rather than rigorous. Results in this area
are highly specific and not of much practical benefit. Chapter 2 of Beineke
& Wilson™ provides a good commentary and selection of results.
Chapter 11 of Harary® is also worthy of a reference.

The main characterisations of planarity we described were those of
Kuratowski® and of Whitney™ who used the idea of combinatorial dual.
Our proofs of the relevant theorems are not based upon the original papers
but on simpler expositions. The proof of theorem 3.5 is largely based on
one given by Berge,™! whilst the proof of theorem 3.8 is based on
Parsons’."® Another well-known characterisation of planarity not covered
in the text is that due to McLane®3l: a graph is planar if and only if it has
a circuit basis (see section 2.2.1), together with one additional circuit
such that this collection of circuits contains each edge of the graph twice.
Finally, theorem 3.6 is essentially taken'from Demoucron et al !

A survey of early planarity testing algorithms is provided by Shirey.t4!
As was stated earlier, linear time algorithms have been described by
Hopcroft & Tarjan® and by Lempel et al.® Both of these algorithms
receive detailed description in Even.™® Our validification in theorem 3.10
of the planarity testing algorithm of Demoucron et al.,*® which is rather
simpler than that to be found in the original text, was influenced by
the presentation of Bondy & Murty in [16].
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EXERCISES

3.1. Given an arbitrary simple planar graph with » vertices and |E| edges,
show that the maximum number of edges, M, that can be added to the
graph, subject to it remaining planar Is given by
M = 3n—|E|-6

(Use Euler’s formula. When no more edges can be added every face of
an embedding is triangular. Every simple planar graph is thus a sub-
graph of such a planar triangulation.)

3.2. Demonstrate that every simple graph with |E| < 9 or with n < 5§ is

planar.

3.3. (a) Three houses have to be connected individually to the sources of
three amenities (electricity, gas and water). Show that this cannot
be done without at least two of the lines of supply crossing.
(Because of this old problem, K, is sometimes known as the
amenities graph.)

(b) Show that the Petersen graph (figure 6.14) contains a subgraph
homeomorphic to K;,s and is therefore, according to Kuratowski’s
theorem, non-planar.
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3.4.

3.5.

3.6.

3.7.

3.8.

Planar graphs

In a completely regular (simple planar) graph every vertex has the same
degree d(v), and every face has the same degree d(f). Draw every
completely regular (finite) graph. (For these graphs 2| E | = nd(v) = fd(f).
Euler’s formula then gives:
n= 4d(f)

2d(v)—d(f) dv)—2)

For a fixed d(v) we can find the allowable d(f) consistent with a finite
positive integer n. There are only five such graphs with d(v) > 2 and
i) > 2)

In the previous exercise we presumed that » was finite. Suppose,
however, that n = oo, then show that if G is completely regular and
d(v) > 2 then d(f) can only be 3, 4 or 6. This is a well-known fact in
crystallography.

A self-dual is a simple planar graph which is isomorphic to its dual.
Show, using Euler’s formula, that if G is a self-dual then 2n = |E|+2.
How might a self dual be constructed for n = 4?

(Not every simple planar graph with 2» = |E| +2 is a self-dual. Take
care with vertices of degree 2.)

The complement G of a graph G = (V, E) with n vertices is given by
G = (K,—E). Show that if n > 11, then at least one of G and G is
non-planar.

(Use corollary 3.1. This result is also true for n = 9 and » = 10, but
the proof is more difficult.)

Draw a planar embedding of the following graph in which every edge
is a straight line.

3.9.

(Every simple planar graph has an embedding in which each edge is
a straight line, Fary?,)

Show that the average degree of the vertices in a simple planar graph is
less than 6 (in fact less than or equal to [6—(12/n)]). Thus providea
different proof from that in the text that any simple planar graph must
have at least one vertex of degree at most 5.

(Use corollary 3.1 and that the average degree of the vertices is
2|E|/n.)
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3.11.

3.12.

3.13.
3.14.
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Show that if G, is a dual of G, and that if Gi is 2-isomorphic to G,,
then Gj is also a dual of G,.
(Establish first that there is a one-to-one correspondence between edges
of G, and edges of Gi and that a circuit in G, is a circuit in G and
vice-versa. This exercise proves one-half of theorem 3.7, proof of the
other half is quite lengthy — see Whitney!?.)
An electrical circuit consists of connections between two sets of
terminals 4 and B. Set A has six and set B has five terminals. Each
member of 4 is connected to every member of B. Show by construction
that such a circuit can be printed on two sides of an insulating sheet
with terminals extending through the sheet.
[In general the thickness of a complete bipartite graph X, , is given by
(see the chapter by White & Lowell in )):
rs

r+s)—4.
There may be some rare exceptions to this formula, but none has less
than 48 vertices.]
Find three planar graphs such that their union is the complete graph
on ten vertices, K.
Embed the complete graph on seven vertices, K, on a torus.
Describe the details of an implementation of the planarity testing
algorithm of figure 3.17 which is as efficient as you can make it.

T=
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Networks and flows

A useful standpoint in solving a variety of problems is to model them in
terms of some flow along the edges of a digraph. In some cases this flow
may bear an obvious and direct analogy to the original problem. For
others, flow may have been contrived to provide a novel or unexpected
mode of solution.

This chapter provides an introduction to classical network flow theory.
We describe an algorithm to maximise the flow across a suitably para-
meterised network and an algorithm to produce minimum-cost flows.
Novel applications of this material may be found in the section on
connectivity in this chapter, in the description of bipartite matching in
chapter 5 and in the section on postman’s tours in chapter 6.

41 Networks and flows
We start with some definitions. A (transport) network is a finite

connected digraph in which:

(a) one vertex x, with d+(x) > 0 is called the source of the network,
and

(b) one vertex y, with d=(y) > 0, is called the sink of the network.
A flow for the network N, associates a non-negative integer f(u, v) with
each edge (u, v) of N, such that for all vertices v, other than x or y:

Sf0) = Sf0, 1)

Clearly, a network is a model for the flow of material leaving a single
departure point (the source) and arriving at a single destination (the sink).
Within the model f(u, v) quantifies the flow along (u, v). The last equation
ensures a conservation of flow at each vertex. In practice it is likely that
there will be an upper bound on the possible flow along any edge. For each
edge (u, v) this maximum, denoted by c(u, v) and called the capacity of the
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edge, is a positive integer. For our purposes (although, see exercise 4.4)
we take the minimum allowable flow along any edge to be zero. We now
add to our definition of a flow by requiring that for each edge (u, v):

0 < f(u,v) < c(u,v)

A cut of a network N = (¥, E) is a cut-set of the underlying graph. The
cut partitions ¥ into two subsets P and P such that P contains x and P
contains y. We denote the cut by (P, P). Clearly,Pn P = gandPU P=V.
The capacity of a cut (P, P), denoted by K(P, P) is defined to be the sum of
the capacities of those edges incident from vertices in P and incident to
vertices in P:

K(>, p) = u§£ c(u, v)

The value of the flow F(N) for a network N = (V, E)is defined to be the
net flow leaving the source x:

F(N) = Z.f(x, 9)=Z.f(v, %)
We can now prove the following intuitively obvious theorem:

Theorem 4.1. For an arbitrary cut (P, P) of the network N, the value of the
flow is given by:

F (N) = uggf(u’ v)— “%f (“’ v)

ve P
= (flow from P to P)—(flow from P to P)
Proof. By definition
F(N) = %f(x, v)—gf(v, x)

Also, for any vertex u € P other than x:
0=3/ v)—Zo‘.f(v, u)

Summing these equations over all ¥ € P, including x, we obtain:

FV) = 3, (5f )= 3 £, 1))
Now: )

uZ@p%)f u,v) = é‘.gf(u, v)+¥}§:5f (4, v)
and

2 Zf(v’ u) = z f(v9 u)+ ) f(v’ u)
R =
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Clearly, e 3 f(v, u) is the same as e E J(u, v) and so the theorem follows
vE vE

by substitution into the expression for F(N). ]

Corollary 4.1. The value of the flow for any network cannot exceed the
capacity of any cut (P, P):

F(N) < min (K(P, P))

Proof. This follows directly from the previous theorem, since for any cut

(P, P):
F (N) = uggf (u) v) _u%f(u’ v)

veP

< 2 c(u, v)_ E u, 0)
ve :ng(

= K(P, P) —uze:Pf (u, v)
< K(P,P) veP -

4.2 Maximising the flow in a network

Corollary 4.1 provides an upper bound for the maximum-flow
problem which we now consider. The problem is simply to find a flow of
maximum value in any given network.

A path Q from the source x to the sink y of a network N = (V, E) is
defined to be a sequence of distinct vertices Q = (v, vy, ..., v3), Where
vy = x and v, = y such that Q is a path from x to y in the underlying
graph of N. Clearly, for any two consecutive vertices v; and v;,; of Q,
either (v, v44,) € E or (v;,3, v;) € E. In the former case (v, v;,,) is called a
forward-edge whilst in the latter case it is called a reverse-edge.

For a given flow F(N) of N, a (flow) augmenting path is a path Q of N
such that for each (v, v;,,) € Q:

(a) if (v, v,y is a forward-edge then:

A; = c(vy, 04— 04 0441) > 0
and
() if (v;, v44y) is a reverse-edge then:
Ay =f(0s41,0) > 0
If Q is an augmenting path then we define A as follows:
A=minA;>0

Each (v, vg,,) of Q for which A; = A is called a bortleneck-edge relative
to F(N)and Q.

For a given N and F(N), if an augmenting path Q exists, then we can
construct a new flow F'(N) such that the value of F'(N) is equal to the value
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of F(N) plus A. We do this by changing the flow for each (v;, v;,,) of Q as
follows:

(@) if (vy, v,y is a forward-edge then
Sy, 0340 < f03, 04D +A
and

() if (v;, v;,y) is a reverse edge then

S 41, ) < f0542, ©)—A
Clearly, these changes preserve the conservation of flow requirement at
each vertex excluding x and y so that F'(¥) is indeed a feasible flow.
Moreover, the net flow from x is increased by the addition of A to the flow
along (x, vy).

Figure 4.1 shows a network in which each edge (u, v) is labelled with the
pair f(u, v), c(u, v). Q is an augmenting path for which (x, v,) and (vg, y)
are forward-edges, while (v, v;) and (v,, vy) are reverse-edges. Each edge
of the path except (vs, y) is a bottleneck-edge and A = 1. We can therefore
augment the flow by making the following assignments:

f(x’ vl) <« 2’f(vl, vz) <« oaf(”m vs) <« o’f(v& y) <« 2
Fig. 4.1

Q=(x,n, Vs ¥3, )

The idea of an augmenting path forms the basis of an algorithm,
originally due to Ford & Fulkerson, for solving the maximum-flow
problem. Starting from some initial flow Fy(N), which could be the zero
flow (i.e., f(u, v) = O for all (4, v).€ E), we construct a sequence of flows
F(N), Fi(N), F4(N) .... F4(N) is constructed from F(N) by finding a
flow augmenting path along which E(XN) is augmented. Ignoring for the
moment the question of finding augmenting paths, we can see that such an
algorithm would work because:

(a) termination is guaranteed by observing that for all i the value
of F,4(N) is greater than the value of E(N) and corollary 4.1
provides an upper bound on the maximum flow,
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and
(b) theorem 4.2 guarantees that if no augmenting path exists for F(N),
then E(N) has a maximim value.

Theorem 4.2. If no augmenting path exists for some F(N), then the value
of F(N) is a maximum.

Proof. We first describe a labelling process for the vertices of N. Initially
no vertex is labelled and the labelling proceeds as follows:

(a) x is labelled.

(b) If for (u, v) € E, u is labelled and v is unlabelled, then, provided
S(u, v) < e(u, v), v is labelled.

(¢) If for (u, v) € E, v is labelled and u is unlabelled, then, provided
S, v) > 0, u is labelled.

By a repetition of (b) and (c) as many vertices of N as possible are labelled.
It is easy to see that the above process cannot cause y to be labelled if no
augmenting path exists. The labelling process defines a cut (P, P) of N such
that any labelled vertex is a member of P and any unlabelled vertex is a
member of P. From the labelling rules we deduce that:

fu,v) = c(u,v) if uePandvelP
flw,v) =0 if uePandveP

Thus, using theorem 4.1:

F(N) = 3 f(u,0)— 3 _f(u,0) = 3 c(u,v) = K(P, P)
vk ’:?gf vk
and so, by corollary 4.1, F(N) must be a maximum. Notice that (P, P)
must be a cut of minimum capacity because if a cut of smaller capacity
existed then the value of F(V) would exceed that capacity and corollary 4.1
would be violated. |

The algorithm we have outlined for the maximum-flow problem shows
that it is always possible to attain a flow value F(N) equal to min (K(P, P)).
This proves, along with corollary 4.1, the well-known max-flow, min-cut
theorem originally stated by Ford & Fulkersonl:

Theorem 4.3 (max-flow, min-cut). For a given network the maximum
possible value of the flow is equal to the minimum capacity of all cuts:

max F(N) = min K(P, P).

Until now we have deliberately put to one side the question of how best
to find an augmenting path at each step of the maximum-flow algorithm
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This is because the question bears significantly upon the efficiency of the
algorithm. If each augmentation only increases the overall flow from x to y
by one unit, then the number of augmentations required for maximisation
could be equal to min K(P, P). This can be arbitrarily large and bear no
relationship to the size of the network. For example, consider the network
of figure 4.2. The edge (v,, v;) has a unit capacity whilst every other edge
has a capacity of I. Starting with the zero flow, we could carry out a

Fig. 4.2

141

Ve

succession of augmentations alternately using the paths P, = (x, vy, v5, )
and P, = (x, vy, vy, y). Each augmentation enhances the flow by only one
unit so that, overall, 27 augmentations will be required. We shall describe
an algorithm of Edmonds & Karp'® which chooses augmentation paths
in such a way that the complete algorithm for flow maximisation operates
in O(n|E|?)-time. In fact more efficient algorithms are known (see, for
example, Karzanov!® and Malhotra et al.¥! for O(n®)-algorithms), but they
require considerably more explanation. We content ourselves with a
demonstration that the maximum-flow prablem can be solved in a time
which is polynomially dependent upon tie network size only. In other
words, the complexity is independent of the edge capacities. We closely
follow the work of Edmonds & Karp.

In fact, the following method of choosing augmentation paths due to
Edmonds & Karp is so natural that it is likely to be included unwittingly
in any implementation of the maximum-flow algorithm. Given a network
N = (V, E) with a flow F, we first construct an associated network
NF = (V, E") such that there is a one-to-one correspondence between
augmentation paths in N for F and directed paths from x to y in N¥. This
is clearly the case if N and NF have the same vertex set and if, for any two
vertices # and v, (4, v) is an edge of N¥ if and only if either:

(u,v)e E and c(u,v)—f(u,v) >0
(v,u)e E and f(v,u) >0

or
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Thus the question of finding an augmentation path for N and F is reduced
to finding a directed path from x to y in N¥. We denote a directed path in
NF by PF and its corresponding path for F(N) by P. Any edge of PF
corresponding to a bottleneck-edge of F(N) is also called a bottleneck-
edge. We now have to describe the precise method by which PF is found.

In détermining PF each vertex v of N7 is first labelled L(v), where L(v)
is equal to the minimum distance (in edges) from x to v. If no such path
exists then L(v) = 0. This can be done using the breadth-first search for
shortest paths algorithms which is detailed in exercise 1.15. If a path exists
from x to y, then P¥ is chosen to be a path of minimum length. This can be
traced backwards from y by next visiting a vertex u such that L(u) = L(v)—1,
where v is the current vertex being visited.

Fig. 4.3. The breadth-first search for P¥ procedure, BFSPK.

1. begin
Carry out a breadth-first search for the shortest distances in N¥
from x to each vertex v. (L(v) > 0, if v # x, denotes
this path length and if L(v) = 0 then no path exists.)
2. if L(y) = O then PATH <« false
else
begin
for all v € ¥ construct B’(v)
PT < (y)
u<y
while u # x do
begin
find a vertex v such that v € B'(x) and L(u) = L(v)+1
add v to the head of P¥
9. U<v
end
end
end

S

o=

Figure 4.3 encapsulates this breadth-first search procedure for PX within
a procedure called BFSPK. Line 1 represents the labelling process detailed
in exercise 1.15, which we recall operates in O(|E|)-time. Line 2 simply
determines whether or not a path PF exists. If not, a boolean variable
PATH is assigned the value false and the procedure terminates. If a path
PF does exist then the rest of the procedure is designed to construct the
list of vertices defining it. We can do this efficiently by making available
for each vertex v, a list B'(v). This contains those vertices u,, #, ..., such
that (4, v), (4g, v), ... are edges of NF. In other words, B'(v) specifies all
the edges incident 7o v, as opposed to the adjacency list B(v) which specifies
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all those edges incident from v. We imagine that the adjacency lists are
available globally, then it is easy to see that line 3 can construct all the
B'(v) in O(|E])-time. The benefit afforded by the B’(v) can be seen within
the while statement beginning at line 6. This constructs P¥ by adding the
current vertex being visited to the head of the list of vertices defining that
portion of PF that has been traced so far from y. In line 7, the use of the
B’'(u) means that the search for v need only inspect d—(u) vertices. Thus for
all iterations of the body of the while statement, these searches require at
worst X}, d-(u) = O(|E|) inspections. We conclude that the breadth-first
search for PK procedure executes in O(] E|)-time. In order to establish the
overall complexity of the maximum-flow algorithm, using shortest
augmentation paths, we require the following theorem.

Theorem 4.4. If in the maximum-flow algorithm each augmentation is
carried out along a shortest path then a maximum flow will be obtained
after no more than 4|E|-n augmentations.

Proof. Let F° F1, F2, ... be a sequence of flows in N such that F¥+1 js
obtained from F* by an augmentation corresponding to a shortest path
Pk in N¥*, We shall write N* for N¥* and denote by d*(u, v) the shortest
distance from u to v in N¥, If no path exists from u to » then we take
d%(u, v) = 0.

In order to proceed with the proof we need two lemmas:

Lemma 4.1. If k < m and (u, v) is a bottleneck-edge relative to P¥ and F¥,
and also relative to P™ and F™, then for some / such that k </ < m,
(v, u) e P,

Clearly, if (4, v) is a bottleneck-edge relative to P* and F¥, then it will
not be an edge of N¥+1, It can only be reiniroduced as an edge for some
subsequent N™ if the flow from u to v along(¥, v) is reduced in some inter-
mediate augmentation, say for N%. This is only possible if (v, ) € P.

Lemmad4.2.Ifk < [, (u, v) € P¥and (v, u) € P}, then d'(x, y) > d*(x, y)+2.
In order to prove this lemma we first need to show that for all k and u:
d¥(x, u) < d*+Y(x, u)

d¥(u, y) < d*+i(u, y)
We shall first prove the first statement, proof of the second being very
similar, If d%+1(x, 4) = oo then the result is trivial. If d¥+}(x, u) is finite
then we denote a shortest path from x to u in N*+! by

(g = X, ty, g, ..., th = U)
Now d¥(x, ug) = 1 and

d¥(x, upy) < 1+d¥x,u), i=0,1,...,(h—1)

and
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because since (4, ;,y) € N¥+1 then either (u;, u,,,) € N* or (u,,, 4;) € P
In the former case d*(x, u;,,) < 1+d*(x, u;) since (u;, u;,,) enables us to
get a directed path from x to u;,, in N* having no more than 14 d*(x, u;)
edges. In the latter case

dqxa%)==1+d“x,W+ﬂ
d¥(x, upy;) = —1+d¥(x, u) < 1+d%(x, u;)

Summing the set of inequalities over all i, we obtain:

SO

h—1 h-1
‘z%dW?,W+ﬂ‘5h+ z%dHXr%)

so that
d¥(x, u) < h+d*(x, x) = d*+Y(x, u)

which is the inequality we set out to prove.
We can now complete the proof of lemma 4.2. Since (i, v) € P¥:

d¥(x, y) = d¥(x, u)+1+d¥(v, y)
d¥(x, v) = 14-d¥(x, u)
d¥(u, y) = 1+d%v, y)
Also (v, u) € P! so that
d(x, y) = d¥(x, v)+1+d(u, y)
and using the inequalities previously obtained it follows that:
d(x, y) = d*(x, v)+1+d*(u, y)
= (1+d¥(x, u))+ 14 (1 +d¥(v, y))
= 2+4(d*(x, u)+1+d*(v, y))
= 2+d¥(x, )

Hence lemma 4.2 is proved.

Given these two lemmas the proof of theorem 4.4 is easily obtained. Let
u and v be two vertices such that either (, v) or (v, ) is an edge of N. The
sequence {K;} consists of those indices K such that either (u, v) or (v, u) is
a bottleneck-edge relative to PXi and FK:, Utilising lemma 4.1 we can find a
sequence {/;}, with {K;} as a subsequence such that:

and

(u, v) e PY, jodd and (v, u) € PY, j even
or
(u, v) € P4, jeven and (v, u) € PY, j odd

Hence, by lemma 4.2:
d4+1(x, y) = d%(x, y)+2
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so that in consecutive appearances of (i, v) or (v, #) as a bottleneck, the
length of the augmentation path increases by at least two edges. Since an
augmentation path cannot be less than one edge or more than (n—1) edges
in length, it follows that any edge of the network cannot provide a bottle-
neck more than 4r times. Every augmentation path contains at least one
bottleneck and there are | E| edges in the network. It follows that in the
maximum-flow algorithm no more than }| E | - n shortest path augmentations
will be required. u

The breadth-first search for PX procedure BFSPK of figure 4.3 is called
in line 5 of the maximum-flow algorithm outlined in figure 4.4. Using
theorem 4.4, we can now see that the complexity of this maximum-flow

Fig. 4.4. The maximum-flow algorithm.

1. Input the adjacency lists A(v), edge capacities and initial edge
flows for the network N = (V, E)
2. PATH < true
3. while PATH = true do
begin
4, Construct the adjacency lists B(v) for N, for each edge
(u, v) recording A(u, v) and whether (u, v) is a forward
or reverse edge.
BFSPK
if PATH = true then
begin
find A = min A(y, v), (4, v) € PX
for all (i, v) € PX do
if (4, v) is a forward edge of P¥
then f(u, v)+A
e]sef(v’ u) "g(”» u)_A

o @

—
SO 0o N

end
end

algorithm is O(n| E|%). Line 1 of the algorithm merely inputs the network N
in adjacency list description and so requires O(| E |)-time. One convenience
that might be adopted here is to append to each appearance of a vertex
u € A(v) a record of ¢(u, v) and f(u, v). Line 2 initialises the boolean global
PATH, which records whether or not an augmentation path exists for the
current NX. Each iteration of the while statement corresponds to one
augmentation of the flow in N. In line 4 the adjacency lists B(v) for the
current NX are constructed. This requires O(| E |)-time. For each (v, v) € E
we add v to B(u) if c(u, v) > f(u, v), recording within appended locations
that (4, v) is a forward-edge and that A(w, v) = c(u, v)—f(u, v), and if
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J(u, v) > 0 then u is added to B(v) noting that (v, u) is then a reverse-edge
and that A(v, ) = f(v, u). Line 5 then determines the augmentation path
PX within O(|E|) steps as previously described. If no path exists then,
within the call of BFSPK, there is an assignment of false to PATH and the
computation stops. If an augmentation path does exist then the conditional
statement starting at line 6 augments the flow in N as previously described.
Since there are at most (n—1) edges in P¥, this requires O(n) steps.
Altogether, the body of the while statement therefore requires O(|E|)
operations. According to theorem 4.4 at most 4|E|-n iterations will be
required. It follows that the complete algorithm of figure 4.4 has
O(n| E | H-complexity.

4.3 Menger's theorems and connectivity

As anticipated in section 2.2.3 we prove here some well-known
theorems of Menger. In doing so we make use of the max-flow, min-cut
theorem. In a natural way these theorems furnish us with algorithms to
determine the vertex- and edge-connectivities of a graph. We shall be
describing these also. First we require some definitions.

By pe(v;, v;) we denote the maximum number of edge disjoint paths
between v; and v;. Similarly, by p,(v;, v;) we denote the maximum number
of vertex (other than v, and v,) disjoint paths from v, to v;. By c,(v;, v;) we
denote the smallest cardinality of those cut-sets which partition the graph
so that v, is in one component and v; is in the other. Also, we define
c,(v;, v;) to be the smallest cardinality of those vertex-cuts which separate
G into two components, one containing'v, and the other containing v;,.
Clearly, no such vertex-cut exists if (v;, v;) is an edge of the graph.

The following is a variation of one of Menger’s theorems.

Theorem 4.5. Let G = (¥, E) be an undirected graph with v, v; € V, then
ce(v" vj) = pc(v{a vj)-

Proof. From G we construct a network N as follows. N contains the same
vertex-set as G and for each edge (u, v) of G, N contains the directed edges
(u, v) and (v, u). For each edge e of N, we assign a capacity c(¢) = 1. Thus
for any flow in N, f(e) = 0 or 1. We denote the maximum value of a flow
from a source x to a sink y of N by F.

We first show that F = p(x, ). If there are p(x, y) edge disjoint paths
from x to y in G, then there are p.(x, ¥) edge disjoint paths from x to y
in N. Each such path can be used to transport one unit of flow from x to y.
Thus F > p/(x, y). For a maximal flow from x to y in N we can, without
loss of generality, assume that for each edge (¢, v) not both of f(u, v) and
JS(v, ) are unity. If they were, then we could replace each flow by zero
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without affecting F. Flow can then be considered to consist of unit flows
from x to y in N, corresponding to edge disjoint paths in G. ThusF < p(x,y),
and using our first result this yields F = p(x, y).

According to the max-flow, min-cut theorem F is equal to the capacity
of a cut-set C = (P’, P") of N, x € P’ and y € P”. Every path from x to y in
N uses at least one edge of C. The corresponding set of paths in G each uses
at least one edge (u, v) such that (4, v) of N is in C. This set of edges will
disconnect G and so we have a cut-set with cardinality F. Thus

Ce(xa y) <F= pc(x’ y)

We can easily see that C(x, y) = p.(x, »), because every path from x to y
uses at least one edge of a set which disconnects G, and no two paths use
the same edge. Thus c¢,(x, y) = p(x, y). |

The following corollary is the more usual statement of Menger’s edge-
connectivity theorem.

Corollary 4.2. A graph is k-edge connected if and only if any two distinct
vertices are connected by at least k-edge disjoint paths.

Proof. This follows directly from theorem 4.5 and the definition of a k-edge-
connected graph (see section 2.2.3). |

We are now in a position to describe a polynomial time algorithm to
find the edge-connectivity K,(G) of an arbitrary graph G = (¥, E). From
the definitions of both K,(G) and c,(v;, v;) it is evident that:

K(©) = min_c(0,v)

We can therefore ﬁnd K/(G) by solving the maximum-flow problem
(perhaps using the algorithm of figure 4.4% for a series of networks each
derived from G as in the proof of theorem 4.5. An immediate reaction
might be that O(»%) maximisations are required because there are n(n—1)
different pairs of vertices. However, O() maximisations will suffice. Notice
that if for some network, (P, P) is a cut-set of minimum cardinality, with
v; and v; any two vertices such that v, € P and v; € P, then K, = c,(v;, v,).
It follows that K, will be found by solving only those maximum-flow
problems for which a particular vertex, say u, is the source. The remaining
vertices are then taken as the sink in turn. Thus only (— 1) maximisations
are required.

Figure 4.5 outlines the algorithm for K,(G) which results from the above
considerations. G denotes the digraph obtained by replacing each edge of
G by two antiparallel edges, each of unit capacity. Line 3 simply assigns
a convenient and suitably large initial value to K,. The major and time



108 Networks and flows

consuming part of the algorithm is embodied in the for statement starting
at line 4. Each application of line 5 finds the value of a maximum flow F
for the network consisting of G with a source x and a sink y. If the algorithm
of figure 4.4 is utilised then line 5 requires O(n| E |%)-time. With O(n) repe-
titions of this, we see that, overall, the algorithm of figure 4.5 would have
O(n?| E}%)-complexity. This can, of course, be improved by using one of
the more efficient maximum-flow algorithms referred to earlier.

Fig. 4.5. Algorithm to find the edge-connectivity K(G) of an
undirected graph G.

Input G and construct G
Specify u
K, < |E|
for all ve V—{u} do
begin
find F for (G with x = uand y = v)
if F< K, then K, < F
end
7. Output K,

P

o

We turn to the problem of evaluating the vertex-connectivity K,(G) of
a graph G. Our treatment is very similar to that for K,(G) but with minor
complications. First we require a theorem analogous to theorem 4.5.

Theorem 4.6. If (x, y) ¢ E then c,(x, y) = p(x, y).

Proof. Given G = (¥, E), we construct a digraph G as follows. For every
vertex v € V, G contains two vertices v’ and »” and an edge (v', v") called
an internal edge. In addition, for every edge (v;, v;) € E, G contains two
edges (v7, v}) and (v}, v7) which we call external edges. We now define a
network N consisting of the digraph G in which the source is x” and the
sink is )’. The capacity of each internal edge is one, and each external edge
has an infinite capacity. Figure 4.6 shows N for the graph G illustrated.
If we now denote the value of a maximum flow from x" to )’ by F, our
proof proceeds like that for theorem 4.5.

We first show that F = p(x, y). If there are p,(x, y) vertex disjoint paths
in G, then we can identify p.(x, y) vertex disjoint paths from x” to 3’ in G.
For this we simply associate with the path (x, vy, vy, ..., ) in G, the path
(x", v}, v}, v§, ¥3, ..., ¥) in G. In G these p,(x, y) paths can be used to carry
unit flows from x” to )’ so that p,(x, ) < F. Now consider a flow in N.
For each edge e, f(e) is either zero or one. This is easily seen by noting that
the flow through each vertex v is effectively bound by unity because either
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a single edge which has unit capacity is incident fo v or a single edge which
has unit capacity is incident from v. Thus any flow from x” to ' can be
decomposed into unit flows carried along vertex disjoint paths. These
correspond to a set of vertex disjoint paths in G. Hence p(x, y) > F and
so we have completed the proof that F = p,(x, ).

Fig. 4.6

v Vs

Vs

According to the max-flow, min-cut theorem, F is equal to the capacity
of a cut-set C = (P’, P") such that x”" € P’ and y’ € P". Moreover, every
edge from P’ to P” must be an internal edge because the capacity of the cut,
equal to F, is finite. Every path from the source to the sink in N uses at
least one of these internal edges of C. Hence every path from x to y in G
passes through a corresponding vertex. This set of vertices is therefore
a vertex-cut of G, has cardinality F and is such that its removal from G
produces two components one containing x and the other containing y.
Hence c,(x, y) is at most F: c,(x, y) < F = p,(x, y). Also p(x, y) cannot
exceed c,(x, y) because every one of the paths from x to y uses at least one
vertex of a vertex-cut of size c,(x, y) and no two paths use the same vertex.
Thus c,(x, y) = py(x, y). u

The following corollary is Menger’s vertex-connectivity theorem.

Corollary 4.3. A graph is k-vertex-connected if and only if any two distinct
vertices are connected by at least k-(internally) vertex disjoint paths.

Proof. This follows directly from theorem 4.6 and the definition of a
k-vertex-connected graph (see section 2.2.3). u

From section 2.2.3, if G is complete then K (G) = (n— 1) and otherwise:

= min ¢, (v, v
Kv(G) (v, oEE o( ¢ 1] j)
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In view of theorem 4.6 and the definition of K,(K,) we may therefore
write, whether G is complete or otherwise:

K(G) = mln pv(v{’ vj)

and we can find K,,(G) by solving the maximum-flow problem for a series
of networks each derived from G as in the proof of theorem 4.6. Incidentally
(see exercise 4.7), we can drop the requirement in the last equation that o,
and v; have to be non-adjacent. If min p,(v;, v;) occurs for two adjacent
vertices, then it also occurs for two non-adjacent vertices.

If we base an algorithm to find K (G) on the last equation, how many
maximum-flow problems need to be solved? We can see that O(|E|) are
always sufficient. If a vertex-cut of minimum cardinality produces one
component with a vertex-set ¥’ and another component with a vertex-set ¥,
with v, and v; any two vertices such that v;e V’ and v;e V”, then
K, = py(v;, v)). It follows that K,, will be found by solving a maximum-flow
problem for which the source is in ¥ and the sink is in ¥”. Such a problem
is guaranteed to be solved in the following process. First solve all those
maximum-flow problems with v, as the source (taking in turn each of
v;,j = 2,3, ..., nas thesink, provided (v;, ;) ¢ E), then those with v, as the
source (taking in turn vy, j = 3, 4, ..., n, as the sink, provided (vy, v;) ¢ E)
and so on until v, has taken a turn as the source where k = K(G)+1. In
this way one of vy, s, ..., Uy, 53y v;, is guaranteed not to be contained in a
vertex-cut of size K, (G). The process solves all maximisation problems
with v, as source and so K(G) will be found. For a given vertex as the
source there are O(n) possible sinks. Thus in all there are O(K,(G)'n)
maximum-flow problems to be solved. Using the following theorem we see
that this is bound by O(|E|) because, according to theorem 2.9,
K(G) < K,6).

Theorem 4.7. For G = (V, E), K(G) < 2|E|/n.
Proof. From theorem 2.9, K,(G) < 8, however:
8< 3 d) = 2|E|
vieV

and so the result follows. [ ]

Figure 4.7 outlines the algorithm for K, (G) based on the preceding
considerations. Line 1 inputs G and constructs G defined in the proof of
theorem 4.6 and exemplified in figure 4.6. G has 2n vertices and (n+2|E|)
edges. It can therefore be constructed (JE| > n) in O(|E|)-time. Line 2
initialises K,, to n and each subsequent assignment to K, (in line 8) records
the smallest value of py(v;, v;) found so far. Each execution of the body of
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the while statement corresponds to solving all thos¢ maximum-flow
problems with a given vertex v, as the source x. F denotes the value of a
maximum flow and y denotes the sink. Notice that on termination of the
while statement, i > K,. This means that the currently held value of the
vertex-connectivity is less than the number of vertices which have been
used as a source in the maximum-flow problems solved in line 7. This is

Fig. 4.7. Algorithm to find the vertex connectivity of G = (¥, E).

1. Input G and construct G
2. K,<n
3. i<0
4. whilei $ K, do
begin
5. i<i+l
6. forj=i+1tondo
begin
1 if (v, v)) ¢ E find F for (G with x = v; and y = v))
8. if F< K, then K, < F
end
end
9. Output K,

in accord with the previous discussion concerning the number of maxi-
misations required to be solved. Line 7 is dominant as far as the complexity
of the algorithm is concerned. If the algorithm of figure 4.4 is used to
determine F, each maximisation takes O(n|E |?)-time, so that, overall, K,
can be found in O(n|E|3)-time. Of course it is easy to construct faster

algorithms by utilising the faster algorithms to find F which we referred
to earlier.

4.4 A minimum-cost flow algorithm

In section 4.1 we solved the problem of maximising the flow in a net-
work in which each edge (v, v) had a maximum allowed flow of ¢(u, v). In
this section we wish to associate a further parameter a(u, v) with each edge,
where a(u, v) is the cost of sending a unit of flow along (u, v). This has an
obvious interpretation in any real transport network where the unit cost
of transportation may vary from edge to edge depending upon the nature
of that transport. This extra consideration of costs obviously poses new
problems. In this section we consider just one, called the minimum-cost
flow problem. This is the problem of how to transport ¥ units of flow across
a network such that a minimum cost is incurred. We describe here one
method of solution, due to Ford & Fulkerson,® which is called the
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minimum-cost flow algorithm. The algorithm is in fact an interesting
generalisation of the maximum-flow algorithm described earlier.

Each edge (4, v) of our network N has a maximum capacity c(u, v) and
an integer non-negative cost parameter a(u, v). As before, we denote the
source by x and the sink by y. The problem is to construct a minimum-
cost feasible flow of ¥ units. We can formulate this as a linear programming
problem (see the appendix on linear programming) as follows:

minimise (Z )a(u, v) f(u, v) @)
subject to the constraints:

2',] (f(u, v)—f(v,u)) = 0, for all u # x or y (ii)
G, 0)=-f, x)-V) =0 (iii)
(Zv(f(y, 0)—f(®, y))+V) =0 i)
Su, v) < c(u, v), for all (u, v) )

and the non-negativity conditions:
S, v) > 0, for all (u, v) (vi)

These statements have the following interpretation, (i) is the total cost of
the flow, (ii) ensures that there is conservation of flow at all vertices other
than x or y, (iii) and (iv) require that the flow from the source and into the
sink is V while (v) and (vi) ensure that the edge flows are feasible.

Ford & Fulkerson solved the problem in a slightly different form,
replacing (i) by the following:

maximise (p¥'— 2, 0 v) flu, v)) (vii)

The idea is to solve a sequence of linear programs, one for each consecutive
value of the parameter p = 0, 1, 2, .... V, the value of the network flow, is
explicitly treated as a variable. For each linear program, p is the maximum
cost that any unit of flow incurs in getting from x to y. Given a maximum
flow at minimum cost for p, a maximum flow at minimum cost is then
found for (p+1). This is achieved by incrementing the flow along all
possible paths which incur a total cost of (p+ 1) in sending a unit of flow
from x to y. The cost along such an augmenting path is calculated by
summing the edge costs of forward-edges and subtracting the edge costs of
reverse-edges.

Given our definition of p we can see that the value of expression (vii) can
never be negative. This is because p¥ would be the cost of sending all units
of flow from x to y, each unit at maximum cost p, while Za(u, v) f(u, v)
is the actual cost. Hence, maximising (vii) is equivalent to minimising (i).
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Verification of the algorithm is possible through a consideration of the
dual (see the appendix) of the pth problem described in (ii)~(vii). The
dual is:

minimise('g’) c(u, v)y(u, v) @)
subject to the constraints:

—n(x)+n(y) =p @ii")
w(u)—n()+y(u, v) > —a(u, v), for all (v, v) (iii")
and the non-negativity conditions:

y(u, v) > 0, for all (u, v) @iv)

while #(x) is unconstrained in sign for all . Here the dual variables m(x)
correspond to equations (ii), (iii) and (iv) while the dual variables y(u, v)
correspond to the constraints (v). We call y(u, v) edge numbers and m(u)
vertex numbers. The equality sign in (ii’) appears because we have not
explicitly restricted the sign of ¥V, although it would be a trivial matter to

do so. The complementary slackness conditions (see the appendix) are,
for all (u, v):

(m(w)—m(v)+v(u, v)) > —a(u, v) = f(u,v) = 0
Y(u, v) > 0= f(u,v) = c(u, v)

Hence, if we let

anda:

and n(x) =0,7()) =p @
y(u, v) = max {0, 7(v) — m(u) — a(u, v)} )
for all (i, v), then the slackness conditions become:
n()—n(u) < a(u, v) = f(u,v) =0 (©
T a0)-) > at0) = ) = ol 0 @

Therefore, if we can find values for the vertex numbers and edge flows
which satisfy (a), (c) and (d), and if the edge numbers are defined by (b),
then we have found optimal solutions for the primal and dual problems
for the current value of p.

As for the maximum-flow problem, the present algorithm uses a labelling
process. This is as follows. Initially every vertex except the source is
unlabelled. New vertices v are labelled if they are adjacent to one, u, that
has already been labelled if either:

fl,v) < c(w,v) and (@()—n(w)) = a(u,v)
Sf,v) >0 and (m(v)—n(w) = a(u,v)

or if:
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Notice that if within this process the sink becomes labelled, then a flow
augmenting path has been found. This is precisely as was the case for the
maximum-flow algorithm but here we have the additional fact that the
path cost is p. We can see this as follows. We define F to be the set of
forward-edges of the path P and R to be the set of reverse-edges. Then we
let P’ be the set such that if (4, v) € F then (u, v) € P’ and if (v, u) € R, then
(u, v) € P’. 1t follows that:

pathcost = 3% a(m,v)— X a(v,u)

(u, v)eF (n,u)eR
= o 5, @ =7
= 7(x)+70) = p

We can now provide a description of the minimum-cost flow algorithm
outlined in figure 4.8. Lines 1 and 2 initialise the flows f(u, v) and the
vertex numbers 7(x) to the value of zero. The algorithm proceeds essentially
by repetition of the labelling process described earlier. Each repetition
takes place at line 4. What happens after each application of this labelling
process depends upon whether or not the sink becomes labelled. If it
becomes labelled then the edge flows along the resultant augmenting path
are incremented in line 6, exactly as in the maximum-flow algorithm. If the
required final value of the network flow, say V", is attained in this process
then the algorithm terminates. If in the labelling process the sink does not
become labelled, then two actions take place.

Fig. 4.8. Minimum-cost flow algorithm.

for all ue V do n(1) <0
for all (u,v)€ Edo f(u,v) <0
TEST < true
Carry out the labelling process
if the sink is labelled then
begin
Modify the edge flows, stopping if ¥ = V*
TEST < true
goto 4
end
9. if the sink is not labelled then
begin
10. if TEST then stop if V saturates the network
11. Modify the vertex numbers, n()
12. TEST < false
13. goto 4
end

nhwbe

Ll ]
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First, if in the previous labelling process a flow incrementation resulted,
then a check is made to see if the current flow is a maximum for the net-
work. This is most easily achieved by noting whether or not the cut pro-
duced by the last labelling process is saturated. Of course, if a maximum
flow for the network has been achieved then the algorithm terminates. The
boolean variable TEST, used in line 10 and which is assigned to in lines 3,
7 and 12, is simply a device which, for complexity reasons, ensures that the
test for saturation is only carried out if the previous labelling process
caused a flow incrementation whilst the present labelling process does not.
The other action that takes place if the sink does not become labelled is a
modification of the vertex numbers in line 11. For the present we take this
modification to be:

w(u) < m(u)+1

if, and only if, u is not labelled in the last application of the labelling
process. Notice that this modification always increments #(y) and that
this implies, through (a), that p is incremented.

With the above description of the algorithm we can present the following
theorem:

Theorem 4.8. The minimum-cost flow algorithm finds a minimum-cost
flow.

Proof. Initial values of zero for the vertex numbers and for the edge flows
ensure that at the outset, when p = 0, the complementary slackness
conditions are satisfied. We now show that these conditions stay satisfied
throughout the course of the algorithm.

The algorithm consists of a sequence of applications of the labelling
procedure, each application is followed either by a flow change or by a
vertex number change. Flow changes canmot affect the complementary
slackness conditions because edge flows are only changed on edges (u, v)
for which #(u)—n(v) = a(u, v), whereas the slackness conditions (b) and
(c) only apply to edges for which m(u) —m(v) # a(u, v). Now consider vertex
number changes. Primed quantities will denote values after an update of
vertex numbers. For the complementary slackness conditions to hold we
must show that:

7'(x) =0, 7'(y) =p+1 ®
w'(@)—7'(u) < a(u,v) = f'(u,v) =0 (ii)
w'(©)—'(U) > a(u, v) = f'(u, v) = c(u, v) (i)

In the application of the labelling process just prior to a vertex number
update no augmenting path is found, so that, whilst the source is labelled,
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the sink is not. Thus (i) follows from the relabelling rule. We now prove (ii),
the proof of (iii) being similar. If #'(v)—»'(4) < a(u, v) then, since the
vertex numbers are integer, it must be the case that #(v) —n(u) < a(u, v).
In the case of strict inequality (4, v) was not a candidate for flow change
so that f’(u, v) = f(u, v) = 0 and (ii) holds. In the case of equality we have
that #'(v) = n(v) and that #'(u) = m(u)+1. Thus (u, v) has v labelled and
u unlabelled. But since n(v)—7(u) = a(y, v) it follows that f'(u, v) = 0,
otherwise # would have been labelled from v. Hence (ii) again holds.

So the minimum-cost flow algorithm ensures that the complementary
slackness conditions are satisfied throughout its operation. Therefore, for
each value of p = 0, 1, 2, ..., the value of the expression

(V= 3 alw, o) s, )

is maximised. As we observed earlier, each new addition to the flow has a
unit cost of transportation from x to y equal to the latest value of p. Thus
it is always the case that maximisation of the expression

(p V- 2 a(u, v)f (u, 0))

(%, )

is equivalent to minimising Y, wa(#, v) f(u, v). The algorithm terminates
either when a desired overall flow is achieved in line 6, or when a flow is
detected in line 10 which will be a maximum possible for the network. In
the latter case we obtain a maximum flow at minimum cost. |

Let us now consider the complexity of the algorithm. As we remarked
earlier, the algorithm can be viewed as a sequence of flow maximisations
over subgraphs of the network (containing edges for which

(@(v)—7(w)) = a(u, v)

only), one for each of the values p = 0, 1, 2, .... As we saw when describing
the maximum-flow algorithm, each maximisation has an execution time
which is polynomial in the size of the subgraph and, therefore, in the size
of the network. Of course, many of the maximisations are likely to be
trivial, contributing nothing to the overall network flow. In each such
maximisation, the labelling process fails to label the sink even once for
the current value of p. It is an easy matter to speed up the algorithm,
causing it to by-pass many of these situations. This may be achieved (see
exercise 4.9) by incrementing the vertex numbers by an amount which
guarantees that at least one more vertex gets labelled in the next application
of the labelling process. In this way there can never be more than »n con-
secutive applications of the labelling process which result in no flow
augmentation. Each flow augmentation adds at least one to the network



Fig. 4.9. An application of the minimum-cost flow algorithm.

a 1,4 c
1,2
3,5
x
Yy
3,3 2
b
N: each edge (u, v) is labelled a(u, v), c(u, v)
lterationr(xyn(@{m(e)\m(cy™) ~ Edees effective | Labelled |1y, ajfix, b f(a, o), b)f16, NG f(c.)
= P in labelling vertices
0 0{0]0}O0] O none X 0 0 0 0 0 0 0
1 ol1]1]l1]1](xa X, a 0 0 0 0 0 0 0
2 0|1[2]2]2]|(xa)(abd), (a,c) x,a,b,c 0 0 0 0 0 0 0
3 ol 1]2]2] 3|(a),(a,b),@c),®,y)ixabcy 2 0 0 2 0 2 0
4 0j1]12(2]3 none X 2 0 0 2 0 2 0
5 0/2(3]|3]|4]|xb5),(0,a),(,c) x,b,a,c 2 0 0 2 0 2 0
6 0]2{3]|3]5]|(xd),(,a),(,c) x,b,a,c 2 0 0 2 0 2 0
7 0|2]3]|3]6]|(x,b),0,a),@c)yxbacyl 2 2 2 0 0 2 2
8 0[2[3]3]6]|(x>d) x, b 2 2 2 0 0 2 2
9 0({3[3[4]7](xd x, b 2 2 2 0 0 2 2
10 0[4]3]|5]8|(xd),(®0),(y x,b,c,y 2 3 2 0 1 2 3
11 _]0j4]3]5]8 none x Network saturated F(N) = 5
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flow. Thus there can never be more than ¥’ flow augmenting maximisations
interspersed between at most nV’ maximisations which are not flow aug-
menting. Thus the complexity of the minimum-cost flow algorithm is
polynomial in n, |E| and the required network flow V.

In figure 4.9 we can see an application of the minimum-cost flow
algorithm. The table shows the vertex numbers and edge flows which
follow successive applications of the labelling procedure. Finally, a maxi-
mum flow for the network is obtained. Of course, the flows obtained at
each earlier stage of execution are minimum-cost flows for the current
values of F(N).

The minimum-cost flow algorithm, like several others which solve the
same problem (see, for example, Busacker & Gower™ and Iri®!), works
on the principle of incrementing the network flow along augmenting paths
of minimum cost. This works because of an underlying theorem (proof of
which is implicit in our verification of the present algorithm) that such an
incrementation to a minimum-cost flow results also in a minimum-cost
flow.

The algorithm described in this section is not as general as it might be.
For example it cannot cope directly with non-zero minimum edge capacities,
nor can it handle non-positive edge costs. These- particular drawbacks can
be avoided by employing another algorithm, also due to Ford &
Fulkerson,®! and which is known as the out-of-Kilter algorithm. For our
purposes, we shall be satisfied with the minimum-cost flow algorithm
described here.

45 Summary and references

Amongst others, the problems of maximising the flow and finding
minimum-cost flows in networks, for which algorithms were described in
this chapter, have long been of interest in operations research. The
question of finding efficient algorithms has more recently been the interest
of computer scientists as the references that follow make clear. Networks
have been the subject of many variations and generalisations as their
applications have warranted. Two variations not mentioned in the chapter
or hinted at in the exercise section are as follows. The first is that traversal
times may be associated with the edges; one problem might then be to send
all the flow units across the network within a specified time. The second
is to regard each edge as an amplifier so that the volume of flow is enhanced
(or perhaps diminished) according to some parameter as any edge is
traversed; one problem might then be to maximise the flow arriving at the
sink for a given flow leaving the source. Chapter 4 of Minieka™® provides
an introduction to these generalisations. Chapter 4 of Lawler" and chap-
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ters 5 and 6 of Even™™ also provide general background for the material
of this chapter. A third important generalisation (Lawler, for example,
provides an introduction) concerns multicommodity flows. Several types of
goods simultaneously traverse the network using the same edges but leave
and arrive at their own sources and sinks. From the analysis point of view
this creates much greater difficulty than is the case for single commodity
flow and much work still needs to be done. For example, there is no result
like the max-flow, min-cut theorem for general networks given multi-
commodity flow.

As was implied in the introductory paragraphs of this chapter, flow
techniques have interesting applications in combinatorial problems. Apart
from the instances mentioned there, others may be found amongst the
exercises that follow. In dealing with the particular problem of con-
nectivity in section 4.3 we drew upon Dantzig & Fulkerson.®!
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EXERCISES

4.1.

4.2,

A generalisation of (transport) networks as defined in section 4.1 is to
have several sources and several sinks. Let {x;, x, ...} and {yy; ;. ...},
respectively, be the set of sources and the set of sinks of such a
generalised network. If we wish to maximise the overall flow from
{x1, x5, ...} to {, ys, ...} then we can still use the maximum-flow
algorithm to do this. Before applying the algorithm, however, we need
to modify the network. This is done by adding a new source X and a
new sink Y. Edges (X, x,), (X, x,), ... are then added from X to each
original source and the edges (3, Y), (s, Y), ... are added from each
original sink to Y. Each additional edge is given an infinite capacity.
Briefly justify the following statement. If the maximum-flow al-
gorithm is used to maximise the flow from X to Y, then the flow
obtained is also a maximum for the original network.
A manufacturer has two despatch points D; and D, for his goods which
he sends to three market points M;, M, and M, across the network
shown below. Each edge is labelled according to the maximum flow of
goods it can sustain. There is a market demand ¢(M) at each of the
market points as follows:

S(My) = 10, $(M,) =8, ¢(My) =8

Can the network meet the demand? If a factory is sited at D, and
another at D,, determine (non-unique) separate outputs in order to
meet the situation.

(Use the construction of exercise 4.1 and maximise the network flow.)

20
D,
5 5
D,
3

4.3.

(a) We wish to construct, if it exists, a directed simple (not necessarily
connected) graph with n vertices {v}, where each vertex v; has a specified
out-degree d+(v;) and a specified in-degree d—(v;). Show that the
following procedure achieves this objective.

First construct a network N with the vertex-set {X, Y, a,, a,, ..., @y,
by, b, ..., by} and edges
(X, a,) for all i, where (X, a;) = d*(v))
(bs, Y) for all i, where c(by, Y) = d—(v))
(as, by) for all i # j, where c(ay, by) = 1
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Now maximise the flow from X to Y. If the maximum flow saturates all
edges from X and all edges to Y then a digraph satisfying the require-
ments exists. It is obtained from N by removing X and Y, and each v,
is formed by coalescing a; with b,.

(b) A question related to (a) concerns the excursion problem. R families
go on an excursion in .S vehicles. There are f; people in the ith family
and v, seats in the jth vehicle. Is it possible to arrange the seating so that
no two members of the same family are in the same vehicle ? Describe
how this question may be answered.

A generalisation of (transport) networks as defined in section 4.1 is to
associate a minimum edge capacity ¢(», v) with each edge (4, v), so that
a feasible flow must satisfy:

&, v) < f(u,v) < c(,v) forall (u,v)eE

and

Xf(u,v)=Zf(o,u) forall veV,v#x,y
u u®

(a) If for all (i, v), é(u, v) = O as in section 4.1, then some feasible flow
exists. However, for the present generalisation a feasible flow need
not exist. Construct a simple example to show this.

(b) Suppose that a feasible flow F does exist for the network N.
Starting from F show, as was done for the proof of theorem 4.3, that
we can augment to a maximum value given by:
max F(N) = min(K(P, P)— EP c(u, v)).

veP

(¢) Show that flow F described in (b) can be reduced to a minimum
value given by:

min F(N) = max ( £_&u, v)— Z_ c(u, v))
ue ueP
vE veP
The reduction from F is achieved by ‘increasing’ the flow along a
path from the sink to the source. Such paths may be found using a
labelling process, similar to that described in theorem 4.2, which
starts with a labelling of the sink.
One of the most popular uses of networks is in the scheduling of large,
complicated tasks. Each edge of a PERT (Program Evaluation and
Review Technique) digraph represents a subtask and its weight is the
time required to complete that subtask. Each edge (4, v) represents a
subtask which can only be started when those subtasks represented by
edges incident 70 u have been completed. The digraph has one vertex
with zero in-degree (the start vertex), and one vertex with zero out-
degree (the termination vertex) and every vertex is on some path from
the start vertex to the termination vertex.
(a) A properly constructed PERT digraph contains no directed circuits.
Moreover (see (b)), it is useful to numerically label the vertices such
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that for every edge (i, v), u < v. This labelling is called a topological
sorting. Verify that the following algorithm creates a topological sorting
and checks that the digraph is acyclic, Initially every vertex of the
digraph N is unlabelled.
1. i<1
2. look for a vertex v € N with zero in-degree

if no such vertex exists then goto 5

if such a vertex exists then

begin
label v with i
redefine N: N <~ (N—v)
end

3. i«i+l

4. goto 2

5. if N contains no vertices

then stop (the acyclic graph has a topological sorting)

else stop (the graph contains a directed circuit)
(b) An important parameter in any PERT digraph is the length of the
longest path from the start to the termination vertex. Such a path is
called a critical path, and its length represents the shortest time within
which the overall task can be completed. For this reason the analysis is
sometimes called CPM (Critical Path Method). Verify that, if the
vertices of N are topologically sorted, then the following algorithm
finds a critical path length. In fact it finds the longest path length L(i)
from the start vertex to each vertex i of the network. Task (j, i) takes a
time w(j,i) to complete.
1. fori=1tondo L(i)«0
2, fori=2tondo

for all j such that (j, i) € E do

L(@) < max (L(@), (LG)+w(, ©))

One version of the well-known knapsack problem is as follows. There
are N items, the jth is denoted by I; and it has an integer weight w;
and an integer value v,. The problem is to place a number of these items
into a knapsack which can take a maximum total weight of W and to do
this so that the items in the knapsack have a maximum combined value.
This problem can be transformed into one of finding a maximum-length
path in a weighted acyclic network N (see the previous exercise) by the
following construction.

N contains N.(W+1) vertices each denoted by v(i, j). The range of ¢
is from 1 to N while j ranges from 0 to W. Every vertex v(i, j) has two
edges incident to it, one from v((i— 1), j) with zero weight and one from
w((i—1), (j—w,)) with weight v,, provided these vertices exist. We now
add a source X and the edges (X, v(1,0)) with zero weight and
(X, v(1, wy)) with weight v,. Finally we add a sink Y and the edges
(N, ), Y)forj= 0,1, ..., W, all with zero weight.
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Prove that the set of paths from X to v(i,j) represents all possible
subsets of {I,, I, ..., I;} which have a total weight of j. Notice that one
of the two edges incident to v(i, j) represents the absence of I, and the
other represents the presence of I;in a subset. Notice also that each path
length is the combined value of the represented subset. It follows that
the longest path from X to Y solves this knapsack problem.

Given the definition of p.(v;, v,) in section 4.3 show that if min p,(v,, v;)
occurs for two adjacent vertices # and v in an incomplete graph G,
then it also occurs for two non-adjacent vertices.

(Define G’ = G—(u, v) and let p;(u, v) be the maximum number of
vertex disjoint paths between u and v in G’, then:

Po(, v) = p,(u, V) +1

Since (4, v) ¢ G’ there exists, by theorem 4.6, a vertex-cut VC separating
u from v in G, which has cardinality C = p,(u, v). Now C < (n—2)
because if C = n—2 then p,(1, v) = n— 1. This is not possible because
G is incomplete: for any two non-adjacent vertices a and b it must be
that p,(a, b) < n—2 and p,(u, v) is supposed to be a minimum over all
pairs of vertices. It follows that there exists a vertex w # u or v and
which is not a member of V'C. Suppose, without loss of generality, that
VC separates w from u (as opposed to w from v) in G’. The result then
follows by observing that (V'C U {v}) must separate u from w in G.)
An employer wishes to hire, at a minimum retraining cost, n employees
for different skilled work. He may choose from m candidates where
m = n. The cost of retraining candidate C, for job aj is b,,. Briefly justify
the following minimum-cost flow formulation of the problem.

Construct a network N with the vertex-set {X, Y, ¢, Cs, ... Cm,
a,, ay, ..., a,} and the edges:

X,C)fori=1,2,...,m where (X, C) =1,a(X,C)=0

(als Y)forj = l’ 2’ cees M, where c(d’ Y) = 11 a(a,, Y) =0

(Cy, ay) for all i, j where ¢(Cy, a5) = 1, a(Cy, aj) = by

where for any edge (u, v), c(i, v) is the capacity and a(y, v) is the cost.
Produce a maximum flow at minimum cost from X to Y. Employ each
candidate C; for which the flow f(X, C;) = 1, and assign him for
retraining to job a; iff(C‘, a,) =1.

Suppose that in the minimum-cost flow algorithm the vertex numbers
are not incremented by one but by A defined as follows:

A =min (4, 8,) > 0

where

0y = min {(a(u, v)+ () —7(v))|(4, v) € Ey}

8y = min {(m(v) — 7(u)— a(y, v))|(x, v) € E3}

E, = {(u, v)|ue P, ve P, n(v)—n(u) < a(4, v)}
E; = {(u, v)|ue P, ve P, n(v)—n(u) > a(u, v)}
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and (P, P) is the vertex-cut induced by the last application of the
labelling process. Show that this modification ensures that the labelling
process will label one more vertex in the next application than in the last.
Thus show that there could not be more than nconsecutive applications
of the labelling process which result in no flow augmentation.

The question: ‘Does the network N contain a cut of capacity less than
K7’ can be answered in polynomial time by an application of the maxi-
mum-flow algorithm and because of the max-flow, min-cut theorem.
Suppose that N is planar. Construct a polynomial time algorithm to
answer the question: ‘Does the network N contain a cut of capacity
greater than K?°

(See Hadlock.!™ However, if N is non-planar the problem is NP-
complete, see Karp.™)
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Matchings

A matching of a graph is any subset of its edges such that no two members
of the subset are adjacent. Interest in matchings arises in a direct and
natural way as described in some of the exercises at the end of this chapter.
Also the search for certain matchings can be an important subtask for some
larger problems such as the problem of the Chinese postman described in
chapter 6. Central to the content of this chapter is the description of a
maximum-cardinality matching algorithm in section 5.2, and the descrip-
tion of a maximum-weight matching algorithm in section 5.3.

5.1 Definitions

A matching of a graph G = (¥, E) is any subset of edges M < E
such that no two elements of M are adjacent. For example, some matchings
of the graph of figure 5.1 are {e;}, {e;, &5, €30}, {€2, €7, €10} and {e,, eg, eg}.
Clearly, any subset of a matching is also a matching.

Fig. 5.1

94 e.'

€

€3 €

A maximum-cardinality matching is a matching which contains a
maximum number of edges. A perfect matching is a matching in which
every vertex of the graph is an end-point of some element of the matching.
Not every graph contains a perfect matching. In section 5.2.1 we provide a
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necessary and sufficient condition for a graph to contain a perfect matching.
Clearly, if a graph does contain a perfect matching M, then M will be a
maximum-cardinality matching and any maximum-cardinality matching
will be a perfect matching.

In a bipartite graph G with bipartition (V’, V"), a complete matching of
V' onto V", is a matching M in which every element of V'’ is an end-point
of an element of M. In exercise 5.3 we describe a sufficient and necessary
condition for a bipartite graph to contain a complete matching. If a bi-
partite graph contains a complete matching M, then M is clearly a
maximum-cardinality matching, and a maximum-cardinality matching is
of course complete.

In a weighted graph, a maximum-weight matching is a matching for
which the sum of the edge-weights is a maximum.

5.2 Maximum-cardinality matchings
Consider first the special case of bipartite graphs. For these we
can use a simple method, utilising flow techniques (see chapter 4), to find
a maximum-cardinality matching. Let G = (¥, E) be a bipartite graph
with the bipartition (¥}, ¥;). We construct a network G’ from G as follows:
(1) Direct all edges from V] to ¥,.
(2) Add a source x and a directed edge from x to each element of ;.
(3) Add a sink y and a directed edge from each element of ¥; to y.
(4) Let each edge (u, v) have a capacity c(u, v) = 1.

Fig. 5.2

" Vs " Ve
% x % y
G G’

Given such a construction, which is illustrated in figure 5.2, we can find a
maximum-cardinality matching M by maximising the flow from x to y.
M then consists of those edges linking ¥; to ¥, which carry a flow of one
unit. If some matching M’ exists such that |M’| > |M]| then we could
construct a flow of value | M’|, which is greater than the value of the flow
found, by sending one unit of flow along each path ((x, u), (, v), (v, y)) for
all (u,v)e M'.
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We now consider general graphs. In the case of bipartite graphs the
algorithm we shall describe is just another view of the algorithm just
outlined. We need the following definitions. If M < E is a matching for
G = (V, E), then any vertex ve V is called a free vertex if it is not an
end-point of any element of M. An alternating path is a simple path in G
whose edges alternately belong to M and to (E— M). An augmenting path
with respect to M is an alternating path between two free vertices.
Denoting the cardinality of M by |M]|, notice that if G contains an
augmenting path P, then a matching M’ can be found such that

M| = [M]+1

simply by reversing the réles of those edges in P. Those edges not in M are
placed in M, whilst those in M are removed from M. Thus in figure 5.1,
if M = {eg, eg}, then an augmenting path can be traced along the sequence
of edges (ey, eg, €5). Reversing edge roles we obtain M’ = {e,, e;, e;}. The
following theorem underlines the importance of augmenting paths with
respect to maximum-cardinality matchings.

Theorem 5.1. There is an M-augmenting path if and only if M is not a
maximum-cardinality matching.

Proof. Clearly, if G = (V, E) contains an M-augmenting path then we can
construct M’ such that |M’| = | M|+ 1. Hence M cannot be a maximum-
cardinality matching.

Conversely, suppose that M is not a maximum-cardinality matching.
We shall show that G contains an M-augmenting path. Let M’ be a
maximum-cardinality matching so that [M’| > |M|. Also let

G=(V,Mo M)

In other words, G’ contains those edges which are either in M or in M’
but not in both. Notice that:

(@) G' has more edges from M’ than from M,
and
(b) each vertex of G’ is incident to at most one edge from M’ and at
most one edge from M.

It follows that each component of G’ is either an isolated vertex or an
alternating path. Moreover, at least one component (because of (a))
must have more edges from M’ than from M. Such a component is an
M-augmenting path. ]

The last theorem naturally suggests an algorithm to find a maximum-
cardinality matching. Starting from an arbitrary matching (the null
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matching for want of another) we repeatedly carry out augmentations
along M-augmenting paths until no such path exists. This process is bound
to terminate because a maximum matching has finite cardinality and
each augmentation increases the cardinality of the current matching by
one. The only practical problem is to specify a systematic search for
M-augmentations. Before we do this it is interesting to emphasise the
relationship between this algorithm applied to bipartite graphs and the
flow method described earlier.

Consider the flow F obtained at some intermediate stage of maximi-
sation in the flow method to find a maximum-cardinality matching in a
bipartite graph. This flow corresponds to a matching M in G. M consists
of those edges with a non-zero flow. Any flow augmenting path with
respect to F coincides with some M-augmenting path in G. Moreover, if we
separately carry out a flow augmentation in the flow algorithm and an
M-augmentation in the second algorithm (with respect to corresponding
augmentation paths), then there is still a one-to-one coincidence between
flow- and M-augmenting paths. Moreover, a flow augmenting path exists
if and only if an M-augmenting path does. Clearly, both algorithms are
different aspects of essentially the same process. The flow point of view as
described here cannot be used for non-bipartite graphs although the
idea of M-augmentations has quite general applicability. Incidentally,
Edmonds™ has shown that non-bipartite matching can be handled
through so-called bidirected network flow theory. We do not, however,
detail that approach here.

We return now to maximum-cardinality matching in general graphs
broadly described earlier. The crux of the algorithm is the means by which
augmenting paths are found. The following procedure by which such
paths may be found is inspired by Edmonds.[! The procedure constructs a
search tree T rooted at some free vertex v. Any path in 7 starting at v is an
alternating path in which the vertices are alternately labelled outer and
inner. The root v is labelled outer. The procedure, which we call the
M-augmenting path search procedure, MAPS(G), is shown in figure 5.3.
T is externally initialised to be v, at which time v is labelled outer. There are,
in fact, three possible exits from the procedure. These are to labels 4, B
and H. Only the exit to A indicates that an augmenting path has been
found. In other words, that some leaf of T'is found to be a free vertex. Let us
describe each exit in turn.

Notice that MAPS(G) constructs a tree unless y is found to be labelled
outer in which case an odd-length circuit has been found and this causes a
jump to B. If y is inner, an even-length circuit has been detected. In this
case (x, y)is not added to T"and the procedure seeks to extend the tree from
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Fig. 5.3. The M-augmenting path search procedure MAPS(G).

1. Choose an outer vertex x € T and some edge (x, y) not previously
explored. Deem (x, y) to have been explored. If no such edge
exists goto H.

2. If y is free and unlabelled, add (x, y) to T.

goto A.

If y is outer add (x, y) to T. goto B.

If y is inner goto 1

Let (y, z) be the edge in M with the end-point y. Add (x, y) and

(, z) to T. Label y inner and z outer. goto 1.

R ol od

some other outer vertex. Why does the procedure terminate on detecting
an odd-length circuit? Consider the graph G of figure 5.4(a) in which the
edge labelled M constitutes a matching. Clearly, G contains an M-
augmenting path, namely, P = (v;, v, 05, vy). If we now call MAPS(G)
with T initialised to v, and if line 2 is first executed with y = v,, then the
procedure terminates with a jump to B. T will then be as shown in figure
5.4(b). Now P cannot be found because v, is labelled inner. The presence
of odd-length cycles introduces ambiguities in alternating path searches.

Fig. 5.4

(8) " ( b) v, outer

Vg vy outer
vg inner
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This is because any vertex v; on such a circuit may be labelled either
outer or inner depending upon which direction around the circuit v is
approached from when tracing a path in T from the root to v;. If ; is
labelled inner, then T cannot be extended from v; and possible augmenting
paths can go undetected. In fact the maximum-cardinality matching algo-
rithm which uses MAPS(G) keeps all options open regarding any odd-
length cycle C. A new graph is constructed by shrinking C to form a
single vertex which is labelled outer. The algorithm then continues with
another call of the procedure MAPS(G). All previous labels of outer and
inner, except those on C, are carried forward. If subsequently a leaf
of T'is found that is a free vertex, then the augmenting path found might
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pass through one or more of these artificially created pseudo-vertices.
Indeed, notice that an odd-length circuit may itself contain pseudo-vertices
and so on. We return to this when describing the exit to label 4. Edmonds
gave the name blossom to an odd-length circuit found by the procedure. A
bipartite graph contains only even-length circuits. Without the need
to handle blossoms, the algorithm could be considerably simplified for
bipartite graphs.

Now consider the exit to H. In this situation 7" cannot be extended. Each
alternating path traced from the root of T is stopped at some outer vertex.
The only free vertex is the root of 7. T is now called a Hungarian tree.
Some vertices labelled outer may be pseudo-vertices, but each vertex
labelled inner is an ordinary vertex. It is crucial to notice that edges
connecting vertices in T to vertices not in T can only be attached to inner
vertices of 7. Otherwise some outer vertex must be connected to a free
vertex or 7' must be extendable from the vertex. We can see that no vertex
in a Hungarian tree can possibly occur in an augmenting path. T only
contains one free vertex, so that if some vertex of T is on an augmenting
path, then this path must enter T along an edge (not in M) at an inner
vertex. Thereafter the path must alternately visit outer and inner vertices,
entering the former along edges of M and the latter along edges not in M.
Such a path can neither reach the root of T nor can it leave 7. Thus on
exiting to H, the maximum-cardinality algorithm can remove T from the
graph in the current search for an M-augmenting path. Of course, if M is
eventually augmented then T must be restored to G before the next
augmenting path is sought.

Finally consider the exit to A. T contains an alternating path from the
root of T to some other free vertex. However, this may pass through one
or more shrunken blossoms. These can be expanded and one side of each
odd-length circuit (the side of even-length) can be interpolated into the
path. This continues until no blossoms exist on the augmenting path. Of
course, each expansion may expose other pseudo-vertices which were
created earlier than the one just expanded. However, eventually no
blossoms remain and an augmentation of M becomes possible.

In describing the exits from MAPS we have more or less described the
maximum-cardinality matching algorithms. Before describing an appli-
cation of this algorithm we have some comments to make. The algorithm
is outlined in figure 5.5. The bulk of the algorithm consists of the while
statement, lines 3-17 inclusive, which iterates once for each augmentation
of the matching. Line 1 initialises M to be the null matching. In line 6 a
stack is initialised. This stack is used to store blossoms and Hungarian
trees in the order in which they are found through lines 10 and 11. In this
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way the graph can be properly reconstructed within line 15. Each jteration
of the while statement starts by determining the free vertices with respect
to the current matching M in line 4. Then the for statement commencing at
line 5 attempts to find an augmenting path utilising the procedure MAPS.
The labels B, H and A denote the exits from MAPS, as described earlier.
Line 12 is only reached if either no free vertices exist with respect to the

Fig. 5.5. A maximum-cardinality matching algorithm.

1. M« g2

2. an augmenting path exists < true

3. while an augmenting path exists do
begin

4, determine the free vertices {v;} with respect to M
5. for each v, do
begin
6. empty the stack
1. deem each edge of G to be unexplored
8. T <« v, label v, outer
L: 9. MAPS(G)
B: 10, Place the Blossom found on the stack, shrink it in G
and label the resultant vertex outer and if it
contains the root label it free. goto L.
H:11. Place the Hungarian tree found on the stack and
remove it from G.
end
12, Output M.
13. an augmenting path exists < false
14. goto S
A: 15, Identify the M-augmenting path P € T. Empty the stack,
expanding G with each popped item. If the item is
a blossom correspofiding to a pseudo-vertex on P,
interpolate into P the appropriate even-length
section of the blossom.
16. Augment M by interchanging the edge réles in P
S: 17, end

current matching, or if no augmenting path is found from any of the
existing free vertices. The matching then has maximum cardinality and
the algorithm terminates.

Figure 5.6 illustrates an example application of the maximum-cardi-
nality matching algorithm. For G shown there, we detail the three
iterations required to maximise the matching. The vertices of G are
identified by the numerals 1-5. In choosing a next edge (v, v) to explore
from u in the construction of each T, first # and then v are conveniently
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chosen to be the first (numerically) available vertex. The first iteration
naturally discovers that the first edge explored is a path between free
vertices. Augmentation adds this edge to M. The second iteration discovers,
with the addition of edge (2, 3) that T contains a blossom with vertices
1, 2 and 3. This is shrunk to form a pseudo-vertex, 6. Exploration of the
edge from 6 to 4 discovers that 4 is a free vertex. Hence an augmenting
path P has been found. Expansion of 6 interpolates the even-length
portion ((3, 1), (1, 2)) of the blossom into P. Augmentation gives

M= (G129

Of course, this must be a maximum matching because only vertex 5 is free.
However, the algorithm, as described in figure 5.5, only terminates when it
fails to find an augmenting path. This is what happens in the final iteration.
In generating T from the root, vertex 5, a pseudo-vertex 7 containing
vertices 3, 2 and 4 is created. Then finally, with the addition of the edge
(5, 7), T becomes a single pseudo-vertex 8 containing vertices 1, 5 and 7.
At the same time the contractions in G, associated with the shrinking of
blossoms, have reduced G to the single vertex 8. Thus T must now be
a Hungarian tree (albeit a single vertex) and the algorithm terminates.

The maximum-cardinality matching algorithm, as is easily seen, is a
polynomial time algorithm. Its complexity is dominated by the accumu-
lated costs of finding augmenting paths. There can be no more than O(n)
augmentations. To find an augmenting path at most O(n) free vertices
have to be considered. In considering each free vertex we construct a search
tree T. This construction, including handling blossoms, requires no more
than O(|E|) steps. Thus even a cursory inspection shows that at most
O(n?|E|)-time is required. In fact we can easily improve this estimate to
O(n|E|). Notice that if a free vertex fails to yield an augmentation path,
then a Hungarian tree is found. As we have seen, no edge incident to a
vertex of such a tree can be on an augmentation path. As indicated in
line 11 of the algorithm, we remove these edges from G as the search for
an augmentation path proceeds to the next free vertex. Thus only O(| E|)-
time is required to find an augmentation path. Micali & Vazirani®® have
described how maximum-cardinality matchings may be found in O(/n| E|)-
time.

Verification of Edmond’s maximum-cardinality matching algorithm is
embedded in our description of it. It works by successively reducing the
number of M-augmenting paths. Such a path, if it exists, will be found
through the MAPS procedure. Eventually, no further paths can be found
and by theorem 5.1 the final matching must be of maximum cardinality.
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Fig. 56.6. An application of the maximum-cardinality matching
algorithm,

5 G
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First iteration (root)

Free vertices: 12345
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5.2.1. Perfect matchings

If every vertex of a graph is the end-point of an edge in a matching
M, then M is said to be a perfect matching. Clearly, if a perfect matching
exists for some graph G, then the result of applying the maximum-
cardinality matching algorithm of the previous section to G will be to find
a perfect matching. Obviously, a necessary but not sufficient condition for
a graph G to have a perfect matching is that G has an even number of
vertices. The following theorem is due to Tutte,¥ although our proof
follows Lovasz.”®! It provides a necessary and a sufficient condition for G
to have a perfect matching. Within the theorem ®(G— V") denotes the
number of components of the graph (G— V) containing an odd number of
vertices. Such a component is called an odd component and, naturally, if a
component of (G— V) contains an even number of vertices then it is an
even component. V' is any subset of ¥ where G = (¥, E).

Theorem 5.2, G = (V, E) has a perfect matching if and only if’:
®G-V)< |V| forall V'V

Proof. Let us first suppose that G has a perfect matching M. We denote
by G; the ith odd component of (G— V') where i = 1, 2, ..., k. Because G;
contains an odd number of vertices, some vertex of G; (say v;) must be
matched by an edge of M to some vertex (say u;) of ¥’. Now, because
{uy, ty, ..., u;} < V', it follows that:

OG-V =k = |[{uy, ty, ..., ux}| < |V’'|
To complete the proof we need to show that if G satisfies
oG-V < |V

for all ¥’ then G contains a perfect matching. We shall show that the
supposition that G contains no perfect matching leads to a contradiction.
By adding edges to G we construct a maximal graph G* with no perfect
matching. That is the addition of any further edge to G* will make a
perfect matching possible. Now (G—V’) is a spanning subgraph of
(G*—=V") so that ®(G-V’) > O(G*—V"). 1t follows that G* satisfies
O(G*—V") < |V’|forall V'.

Let us denote by ¥, the set of vertices of degree (|V|—1) in G*. If
V, = V then G* is complete and so, contrary to our assumption, has a
perfect matching. Notice in this respect that G* has an even number of
vertices, because if we let ¥’ be the empty set in ®(G*— V") < |V’| then
®(G*) = 0. We assume from now on then that ¥, # V.

‘We now show that each component of (G*—V,) is a complete graph. Let
G¥ be such a component which we initially presume is not complete. It is
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a simple matter to show that any incomplete graph has three vertices v,, v,
and vy such that (v, v,) and (v, vy) are in the edge-set but that (v, vy) is
not. Also, because v, ¢ V;, there exists a vertex v, in (G*—V;) such that
(vq, v,) is not in the edge-set of G*. This situation is illustrated in figure 5.7 (a)
where absent edges are indicated by dashed lines. G* is maximal so that
(G*+(vy, v3)) has a perfect matching, say M;, and (G*+(vy, vy) has a
perfect matching, say M,. Consider the component H, of the subgraph

Fig. 5.7
c Y4
(@ (b) g (©
= H,
]
]
v,: Vg
A‘ 121 V3 121 Vg
M, denoted by heavy edges

M, denoted by wavy edges

(M ® My) of (G*U {(vy, vg), (vg, v)}) which contains (v, vy). Now
(v1, v3) € M, but (vy, vg) ¢ My, so that H, consists of an even-length circuit
of edges alternately in M; and in M,. If H, does not contain (v, v,), which
is in M, but not in M;, then (v,, v,) belongs to a different alternating cycle
H,. Clearly, H, and H, would be edge disjeint. This situation is shown in
figure 5.7(b). The situation that both (v,, vg) and (v, v,) are in Hj is shown
in figure 5.7(c).

We first consider the case of figure 5.7(b). G*, which does not contain
(vy, v) or (vy, v,), clearly has a perfect matching containing the edges M,
of H, and the edges M, of H,. This contradicts the definition of G*. Now
consider the case of figure 5.7(c). Because of the symmetry of v, and v,
we can assume that v,, v,, v, and v5 occur in that order along the circuit
H,, as shown in the diagram. Again, G* has a perfect matching which
contains the edges of M in the section vy, v, ..., v3 of Hj, the edge (vg, v5)
and the edges of M, not in the section v,, v,, ..., v3 of Hy. So again we have
a contradiction of the definition of G*.

Both cases provide contradictions so that it must be the case that each
component of (G*—V¥,) is a complete graph. Now ®(G*—-V;) < |V,| so
that (G*—¥,) has at most |V;| odd components. We can again construct a
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perfect matching in this case for G* as follows. Each vertex of an even
component of (G*—V,) can be matched by an edge of the component
because the component is complete. Each vertex of an odd component of
(G*—V,), except one, can be matched by an edge of the component
because it is complete. The remaining vertex is then matched to a vertex
in ;. We then just need to match the remaining vertices of ¥,. Now G*
has an even numbser of vertices, so that the remaining unmatched vertices
of ¥, are even in number. The vertices can therefore be matched by edges

of the complete subgraph induced by ¥;. The perfect matching in this case
is shown schematically in figure 5.8.

Fig. 5.8

Even

( b

Odd

components { L components
of (G*—Vy) of (G*— V)
\ % @ y

Thus contrary to our assumption G* has a perfect matching and hence
so does G. |

The necessary and sufficient condition provided by theorem 5.2 does not
lead to an efficient algorithm to determine whether or not a graph contains
a perfect matching. This is because the number of subsets V' < V is
exponentially large. In contrast, the maximum-cardinality matching
algorithm described earlier will of course answer the question ‘does G
contain a perfect matching’ in polynomial time. For certain classes of
highly symmetric graphs, theorem 5.2 can provide short proofs of the
existence of perfect matching. See, for example, exercises 5.5 and 5.6.

5.3 Maximum-weight matchings

Just as is the case for maximum-cardinality matching, there are a
number of specific and relatively simple algorithms to solve the maximum-
weight matching problem in bipartite graphs. See, for example, Kuhn.®
The algorithm we describe here which is due to Edmonds & Johnson!
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has a considerably simplified form for bipartite graphs. This simplification
is left as an exercise for the reader.

Edmonds & Johnson’s algorithm is a generalisation. of the algorithm
described in section 5.2 and our description proceeds along parallel lines.

A weighted M-augmenting path is an alternating path in which the sum
of the weights of the edges not in the matching M is greater than the sum
of the weights of the edges in M. Also, if either the first or the last edge of
the path is not in M, then the edge has a free vertex as an end-point.
Clearly, by interchanging the réles of the edges of a weighted M-
augmenting path (that is, those in M are removed from M and those not
in M are placed in M), then a new matching of greater weight is obtained.
Unlike the M-augmenting paths of the previous section, a weighted M-
augmenting path may have edges in M as first and/or final edges. This
induces the following definitions. A weighted M-augmenting path which
contains:

(a) more edges not in M than in M is called a strong augmenting
path,

(b) the same number of edges not in M as in M is called a neutral
augmenting path,

(c) more edges in M than not in M is called a weak augmenting path.

Theorem 5.1 has the following counterpart:

Theorem 5.3. There is a weighted M-augmenting path if and only if M is
not a maximum-weight matching.

Proof. Clearly, if a weighted M-augmenting path P exists in G = (V, E)
then we can interchange the réles of the edges in P to obtain a matching of
greater weight. Hence M cannot be a maximum-weight matching,
Conversely suppose that M is not a maximum-weight matching. We shall
show that G contains a weighted M-augmenting path. Let M’ be a
maximum-weight matching, so that w(M") > w(M).LetG' = (V,M & M’).
That is, G’ contains those edges which are either in M or M’ but not in
both. Within G’ each vertex is the end-point of at most one edge from M
and at most one edge from M’. Thus each component of G’ is a path
(perhaps an even-length circuit) of edges alternately from M and M’. Since
w(M') > w(M) there must be at least one component of G’ in which the
sum of the edge-weights for edges in M’ exceeds the sum of the edge-
weightsfor edges in M. Such a component will be a weighted M-augmenting
path. |

Before describing Edmonds & Johnson’s maximum-weight matching
algorithm, we need to describe a linear programming (see the appendix)
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formulation of the problem. In the following formulation x(u, v) = 1 if
(u, v) € M otherwise x(u, v) = 0.

Maximise Y, x(u, v) w(u, v)
(u, v)

subject to the constraints
Y x(u,v) <1 forall ueV
v

> xuv)y<sr for 1<k<z
(u,v)e Ry

and the non-negativity conditions:
x(u,v) > 0 forall (u,v)

Each edge has a weight w(w, v), so that the objective function is simply the
weight of the matching. The first set of constraints states that no more than
one edge in M is incident with any vertex «. In the second set of constraints
R, denotes the subgraph induced by any set of (2r,+1) vertices. We
denote by z the number of these subgraphs. Clearly, there can be no more
than r;, edges of R, in M. As we shall demonstrate, this particular formu-
lation provides a set of complementary slackness conditions which can be
satisfied by an assignment of zero or one to each value x(, v).

The dual linear programming problem is expressed by the following.
The dual variables y, and z; are, respectively, associated with the primal
constraints for the vertex v and the subgraph R;.

Minimise 3} y,+X 72y
v k
subject to the constraints

YutdVot Xz = w(u,v) forall (u,v)
k: (u,v)eRy

and the non-negativity conditions:
Vo2 0 forall v

2,20 for 1<k<z

Notice that within the constraint for (u, v), the summation is over all k
such that R, contains (¥, v).
The following complementary slackness conditions are provided by the

primal-dual pair:

x(w,0) > 0=y, +y,+ X z;=wuv) forall (u0)

k:(u,v)e Rk
yu) > 0=>>x(u,v) =1, forall ueV
v

z,>0=> 3 x(w,v)=r, forall 1<k<z
(u, v)e Rk
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We shall refer to these three sets of conditions as respectively the edge,
vertex and odd-cardinality subset slackness conditions.

The algorithm we describe starts with the null matching (that is,
x(u, v) = 0 for all (u, v) € E) and with dual variables:

Ys = W = i max (w(u,v)), forall seV
(u, v)

2z, =0, forl <k<z

Thus at the outset, the constraints and non-negativity conditions for both
primal and dual problems are satisfied and, in fact, they remain satisfied
throughout the course of the algorithm. With the exception of the vertex
slackness conditions, the complementary slackness conditions are also
satisfied at the outset. During the course of the algorithm, those comple-
mentary slackness conditions which are or which become satisfied remain
thereafter satisfied. Moreover, each of the vertex conditions is eventually
satisfied. When this happens the algorithm terminates and because all
complementary slackness conditions are satisfied, the final matching is of
maximum weight. Notice that if some vertex v does not satisfy its vertex
slackness condition then y, > 0 and v is a free vertex (throughout
3o X(u, v) is zero or one).

The algorithm essentially consists of a reiterated step. Within each
iteration there is an attempt to find an augmenting path (using the pro-
cedure MAPS described for the maximum-cardinality matching algorithm
in section 5.2) in the subgraph G’ = G which consists of the edges
(u, v) € E* where:

* —_
E* = {(ll, v)lyu+yv+k:(u,zo)eRk 2y = w(u, v)}
If an augmenting path is fourd, then it extends between two free vertices
r and s for which:

h=Ys=W>0

If we now augment along this strong augmenting path, interchanging edge
roles, then r and s are made to satisfy their vertex slackness conditions.
Notice that we conveniently retain the term strong augmenting path (as
we shall the term neutral augmenting path), even though it is not clear that
the weight of the matching is increased. What is important is that this
‘augmentation’ causes two more vertices to satisfy their vertex slackness
conditions. Because each edge (u, v) on the path belongs to the subgraph
G’, the edge slackness conditions also remain satisfied, Suppose that
instead of finding a strong augmenting path in G’ the search ends with a
Hungarian tree. At this point changes are made to the dual variables.
These changes can allow another edge or edges to be added to E*, a
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pseudo-vertex to be expanded or cause the dual variable for some outer
vertex to become zero. In the last case if the vertex in question is the root
of the search tree then it now satisfies its vertex slackness condition; if it is
not the root then the path from the root to the vertex is a neutral aug-
menting path and after augmentation along the path the root satisfies its
vertex slackness condition. Notice that this augmentation frees the vertex
v for which y, = 0; however v still satisfies its vertex slackness condition
simply because y, = 0. If either of the first two cases occur (that is, edges
are added to E* or a pseudo-vertex is expanded) then the search for an
augmenting path can continue from the same root. Eventually, this search
will result in the root being made to satisfy its vertex slackness condition.

Fig. 5.9. The dual-variable changes procedure, DVC.

1. for all outermost vertices u labelled outer and all vertices u
contained in an outermost blossom whose pseudo-vertex is
labelled outer do

Yu < Yu— 6
2. for all outermost vertices u labelled inner and all vertices u

contained in an outermost blossom whose pseudo-vertex is
labelled inner do

Yu < Yut o

3. for all outermost blossoms R, whose pseudo-vertices are
labelled outer do

2z < zx+ 268

4. for all outermost blossoms R, whose pseudo-vertices are labelled
inner do

2y 4—2,,—28

Changes to the dual variables involve a quantity ¢ as described in the
dual variable changes procedure, DVC, of figure 5.9. Within lines 1 and 2
changes are made to y, for vertices u either not contained in a blossom
(outermost vertices) or to vertices u# contained in an outermost blossom
(but not contained in a more deeply nested blossom). We define é to be a
maximum such that the dual variables continue to provide a feasible
solution to the dual problem. The dual constraints and non-negativity
conditions continue to hold true if ¢ is determined by the d-evaluation
procedure, DEV, of figure 5.10. Notice that in statement 4 of that diagram,
u and v are not contained in the same outermost blossom. If they were,
then any changes to the dual variables would not affect the constraint:

YutVut+Zz = w(y, v)
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because the changes of é in each of y, and y, are offset by the change of
24 in z;, for the outermost blossom containing both u and ».

Fig. 5.10. The d-evaluation procedure, DEV.

1. 4, <} min{z,}
R
where R, is an outermost blossom whose pseudo-vertex is
labelled inner.
2, 8« m‘l‘n O}
where u is any outermost vertex labelled outer or any vertex

contained in an outermost blossom whose pseudo-vertex is
labelled outer.

3. 0 < min {yy+y,— w(l, v)}
(%,7)

where u is any outermost vertex labelled outer or any vertex in
an outermost blossom whose pseudo-vertex is labelled outer and
v is an unlabelled vertex or is contained in an outermost blossom
whose pseudo-vertex is unlabelled.

4. 6<% g‘n'g {utyo—w(u, v)}
where both u and v are each either outermost vertices labelled

outer or vertices contained in different outermost blossoms whose
pseudo-vertices are labelled outer.

5. &< min{d, 8, &, o

Consider the effect of the dual variable changes just described:

(a) If & = 0, then some dual variable z; becomes zero. We expand the
associated pseudo-vertex back to its original odd-length circuit.
The pseudo-vertex was labelled inner and so must have been the
end-point of some edge in M. This edge therefore matches some
vertex in the associated odd-length circuit. The other 2r,, vertices
of the circuit can then be matched by adding circuit edges to M.
Also when the pseudo-vertex is expanded, we can retain the
existing labelling of vertices which defines 7" and (if the pseudo-
vertex was of degree 2 in T) we can add to T the unique path
around one side of the blossom which will keep T connected and
alternating. In this case we label the vertices of the path outer and
inner as appropriate.

(b) If & = &,, then some dual variable y, becomes zero. The path in the
search tree from the root to u (if u is not the root) is an alternating
path with the same number of edges in M as are not in M. If we
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interchange the edge roles along this path then the root becomes
matched (so satisfying the vertex slackness condition) and since
Y. = 0, u also continues to satisfy the vertex slackness condition.
If the y-variable for the root is zero then it has been made to
satisfy the vertex slackness condition. In either case, we can now
continue by growing a new search tree from another vertex » which
is free and for which y, > 0. If no such vertex exists then the
algorithm stops.

(¢) If 6 = &,, then the associated edge can be added to E* and the
search for an augmenting path can be extended.

(d) If 6 = §,, then the associated edge can be added to E*. When the
search for an augmenting path continues, this will result in the
discovery of an odd cycle.

With the above explanation we can now present the Hungarian tree
procedure HUT outlined in figure 5.11. When the procedure MAPS exits
to H, H labels a call of HUT. Exits from HUT are either back to MAPS,

Fig. 5.11. The Hungarian tree procedure, HUT.

1. DEV
2. DVC
3. if 8 = 4, then expand each outermost pseudo-vertex labelled
inner which has a zero z-variable.
4, if 8 = 6, and (the y-variable of the root T # 0) then
begin
5. Identify the alternating path P from the root to some
vertex whose y-variable is zero.
6. Interchange edge roles along P
end
7. if 8 = & or & = &, then augment E*
8. if & = J; then begin
9. remove all inner and outer labels
0. goto C
end
11. if & = 6, or 6 = &; or & = &, then goto M.

labelled M, or to a statement labelled C. This precedes MAPS and chooses
the root of a new alternating tree. Notice that HUT subsumes the pro-
cedures DEV and DVC in lines 1 and 2. Line 3 expands pseudo-vertices as
described in (a) above. The conditional statement of lines 4-6 deals with a
(neutral) augmenting path as described in (b). Line 7 adds appropriate
edges to E* according to the prescriptions (¢) and (d). If § = 4, then the
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root of T is made to satisfy its vertex slackness condition so that a new
root must be chosen for a new T. This is achieved through lines 8-10, In
the other cases, § = 8, 83 or §,, the current search tree can be continued
with and so MAPS is recalled through line 11.

We are now in a position to present the maximum-weight matching
algorithm which is outlined in figure 5.12. Line 1 initialises M to be the
null matching. In line 2 the dual variables y, are initialised, whilst the
z-variable of each blossom is initialised in line 5 when the blossom is

Fig. 5.12. Maximum-weight matching algorithm.

1. M«g2
2. forallve Vdo
Yo < 3max (w(v,, v))|(v;, v;) € E}

C: 3. Choose a vertex v such that v is free and y, > 0.

If no such vertex exists goto L. Label v outer.
MAPS(G’)
Identify the blossom and shrink it. Label the resultant
pseudo-vertex outer and assign zero to its z-variable.
goto M.
H: 6. HUT
A: 7. Identify the (strong) augmenting path. Carry out
augmentation by interchanging edge réles. Remove
all outer and inner labels.
goto C.

L: 8. Expand all remaining pseudo-vertices in the final graph. Do
this in the reverse order of their being found, inducing
a maximum matching in each expanded blossom.

&R
(TN

discovered. The general step of the algorithns is initiated in line 3 with the
identification of a vertex whose vertex complementary slackness condition
is not satisfied. Within line 4 the M-augmenting path search procedure
grows an alternating tree rooted at this vertex and only using the edges E*
which define G’. As described earlier, exits from the procedure M APS are to
B if a blossom is found, to H if a Hungarian tree is discovered and to 4 on
the discovery of a (strong) augmenting path. The statements of lines 5, 6
and 7 then result in a return to line 3 if the vertex complementary slack-
ness condition of the root of the tree becomes satisfied or in a return to
line 4 when the tree can be further developed. Eventually, all vertices
satisfy their complementary slackness conditions and the algorithm termi-
nates with line 8.

Our description of the maximum-weight algorithm very nearly amounts
to its verification. As we indicated, growing an alternating tree from some
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root v will eventually result in its vertex complementary slackness con-
dition becoming satisfied. As we have seen, this is always done so that M
remains a feasible solution to the primal problem and so that the values
¥, and z;, continue to provide feasible solutions to the dual problem. To
complete verification of the algorithm we therefore only have to show that
on termination, both the edge and odd-cardinality subset slackness
conditions are satisfied. Notice that if an edge (¥, v) is in M and not in a
pseudo-vertex then (u,v) e E*. Also if (4, v) is contained within some
pseudo-vertex then the value of (v, +y,+22,,) is unchanged by changes to
the dual variables. Thus the edge slackness conditions are satisfied.
Consider the z-variables. Any z;, can become positive only if it is contained
within some pseudo-vertex. Whenever a pseudo-vertex is expanded a
maximum matching is induced on the edges of the odd-circuit, so that on
completion of the algorithm (when no pseudo-vertices remain) the odd-
cardinality subset slackness conditions are satisfied.

It is easy to see that the maximum-weight matching algorithm is a
polynomial time algorithm. We have, in our description, omitted details
of the management of blossoms. Of course, a record of the nesting of
blossoms has to be kept and continuously updated. Gabow!® has detailed
an O(n%) implementation of Edmonds’ algorithm.

Fig. 5.13

We now briefly describe an application of the algorithm to the graph of
figure 5.13. Figure 5.14(a) shows additions to E*, additions and deletions
to M and variations in the variable zp as the algorithm proceeds. In
figure 5.14(b) we plot changes to the y-variables. In fact the vertices q, c,
d, e and f, respectively, are taken in turn as the root of a new search tree at
each iteration of the algorithm starting at line 3 of figure 5.12.
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Fig. 5.14
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The following cryptic notes indicate what happens within each iteration:

choice of a (a is labelled outer)
MAPS(G"): (a, b) is explored. b is free and unlabelled so that:
T<a b

(outer)
and there is an exit to 4
A: (a, b) is the (strong) augmenting path so that (a, b) is added to M,
the label outer is removed from a.
Exit to C.

choice of ¢ (c is labelled outer)
MAPS(G'): (c, a) is explored:
inner

T<«c a NN
outer outer

(edges in M are denoted by wavy line).

No edge is explorable from b or c.

Exit to H.

HUT:DEV: 8, = o, 83 = 3 (vertices b and ¢)
03 = 3 (edges (b, d) and (c, €)), 8, = 1 (edge (b, c))
Hence 6 = 0, = 1.
DVC: y,«3—-1=2,p,<3-1=2

(b, c) joins E*. Exit to M.
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MAPS(G'):

MAPS(G'):
HUT:DEV:

DVC:

(b, c) is explored; since c is labelled outer a blossom has
been found consisting of the edges (¢, a), (a, b) and (b, c).
Exit to B.

: The blossom is shrunk and the pseudo-vertex, which we

denote by B is labelled outer. (a, b) is removed from M.
zp < 0. Exit to M.

No edge is explorable from B. Exit to H.

d; = o0, 8, = 2 (vertices b and c)

03 = 2 (edges (d, b) and (c, ¢€)), & = oo

Hence 8 = 6, = &3 = 2.
Va<4-2=2,y,<2-2=0

Ye< 2—2 = 0 (the y-variable of the root is zero)
zp<0+2.2=4

(d, b) and (c, €) join E*
All outer and inner labels are removed.
Exit to C.

choice of d (d is labelled outer)

MAPS(G'): (4, b) is explored. b is free and unlabelled so that:
T<d B
outer
Exit to A.

A: (d, b) is the augmenting path so that (d, b) is added to M. The
label outer is removed from d. Exit to C.

choice of e (e is labelled outer)

MAPS(G'):

HUT:DEV:

DVC:

(e, ¢) is explored so that:
inner
T<e v d
outer B outer

No edges are explorable from d or e.

Exit to H.

0, = 2 (vertex B), 0, = 3 (vertices d and )

dg = 0, 0y = ©

Hence = 6; = 2

Vo< 242 =4,y,<0+2=2,y,«0+2=2
ya<3-2=1y,¢<3-2=1,zp<4-2.2=0

The blossom associated with the pseudo-vertex B is expanded. The
even-length side of the blossom is interpolated into T with appropriate
labelling of vertices. (a, c) is added to M:

inner outer inner
T<e c Mg amann d
outer outer

Exit to M.
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MAPS(G"): No explorable edges exist from e, a or d.
Exit to H.

HUT:DEV: &, = o0, 8, = 1 (vertices d and ¢)
05 = 3 (edge (a,1)), 6, = ©
Hence 6 = 6, = 1.

DVC: y,«<4—-1=3,pp<2-1=1,y,«<2-1=1
ya<1-1=0, y,<1—1 =0 (The y-variable of the
root of T becomes zero.)

All inner and outer labels are removed.

Exit to C.

choice of f (f'is labelled outer)
MAPS(G'): (f, a) is explored:

inner
T<f asnnn e
outer outer
(c, e) is explored:
inner outer
T<f a~ e e

outer
e is free and unlabelled. Exit to 4.
A: The augmenting path is ((f; a), (g, ¢), (¢, )) hence (a, ¢)
is removed from M while (f, @) and (c, ¢) are added to M.
All inner and outer labels are removed. Exit to C.

No free vertices exist, jump to L. No unexpanded pseudo-vertices and so
the algorithm stops with:

M= ((a’.f)a (b’ d)’ (C, e))

5.4. Summary and references

The maximum-cardinality matching and maximum-weight match-
ing algorithms for general graphs, which form the central content of this
chapter, are essentially due to the pioneering work of Edmonds. Whilst
Edmonds’ work provides the guiding principles for these algorithms, we
have exercised considerable licence in the rather particular presentations
of this chapter. As we have seen, efficient algorithms exist for the maximum-
cardinality and for the maximum-weight matching problems and also for
the question of determining whether or not a graph contains a perfect
matching.

Edge coverings, which we define in exercise 5.10, provide problems
which are similar to those provided by matchings. In exercise 5.10, we
indicate how the problem of finding a minimum-cardinality covering can be
solved in polynomial time using the maximum-cardinality matching
algorithm. There is not, unfortunately, a similar relationship between the
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maximum-weight matching problem and the problem of finding a minimum-
weight covering. White?3! has, however, described a polynomial time
minimum-weight covering algorithm which is in the same spirit as the
maximum-weight matching algorithm of section 5.3.

Chapter 5 of Minieka¥! and chapters 5 and 6 of Lawler™ are recom-
mended reading for the material presented in this chapter.

The exercises that follow provide some illustrations of how matching
problems can arise naturally in a variety of guises.
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EXERCISES

5.1. A multinational army has a tank corps. Each tank requires a crew of
two who speak a common language. Each possible crew member
generally speaks more than one language. How might the problem of
maximising the number of crews be reduced to the problem of finding a
maximum-cardinality matching for a graph in which each vertex
represents a possible crew member?
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A theatrical agent receives offers of employment for some of his actors
from a number of theatrical impresarios. Each impresario wishes to
employ just one actor and, in an attempt to best meet his requirements,
he offers different rates of pay for the actors he is offered.

How might the problem of maximising the agent’s income (if he
receives a fixed percentage of his actors’ incomes) be reduced to the
problem of finding a maximum-weight matching for a graph in which
each vertex represents either an actor or an impresario?

The following is a statement of Hall’s!® theorem. If G = (V, E) is a
bipartite graph with bipartition (¥’, ¥”), then G has a complete
matching of ¥’ onto V” if and only if:

INV)| = |V, forall VisV’

where N(¥7) is the set of vertices adjacent to V.

Obtain Hall’s theorem from theorem 5.2.

(Suppose that | V| is even. We can construct G* by adding to G an edge
joining every pair of vertices in ¥”. Show that G has a matching, with
every vertex of ¥’ an end-point of an element of the matching, if and
only if G* has a perfect matching. Hall’s theorem then follows naturally.
For | V| odd, a simple modification to the proof is required.)

Job assignments

An employer wishes to fill i vacancies with pretrained skilled labour.
An employment agency provides a list of j potential employees, each
having been trained for one or more of the vacancies. Using Hall’s
theorem (exercise 5.3) how might the prospects of:

(a) filling all the vacancies,

and

(b) employing all the candidates,
be judged?

Does Hall’'s theorem provide an efficient way to answer these
questions? How might a maximum humber of vacancies be filled in
polynomial time?

The marriage problem

1In a certain community every boy knows exactly k girls and every girl
knows exactly k boys. Show that every boy can marry a girl he knows
and vice versa.

(Construct a k-regular bipartite graph in which each edge signifies that a
boy (represented by one end-point) knows a girl (represented by the
other end-point). The problem then reduces to showing that any k-
regular bipartite graph, k¥ > 0, has a perfect matching. Show that the
number of boys must equal the number of girls and that the graph
satisfies Hall’s theorem (exercise 5.3). The result then follows.)

G = (V, E) is any 3-regular graph without cut-edges. Let

G‘ = (I,(’ E‘)’ i= 1, 2, -..,k
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be the odd components (see theorem 5.2) of (G— V"), V' < V.If m, is
the number of edges with one end-point in G, and the other in V*, show
that m, is odd and that m; > 3. Justify the following:

1 k
- =k<= < = |V’
G-V =k<3z Em<3 T do)= V|

thus proving, by theorem 5.2, that G has a perfect matching.
Shortest time scheduling for two processors

A complicated task can be broken down into a number of subtasks,
s, §=1,2,...,n each requiring a unit of processing time. Two
processors are available and can operate simultaneously. There exists a
partial ordering ¢ <’ for the s,, such that s; < s; means that s; must be
completed before s;. G is a digraph in which each vertex represents some
s; and there is an edge (sy, s;) for each relation s; < s;. An undirected
graph G* = (¥, E*) is constructed as follows. G* has the same vertex
set as G and (s, sy) € E* if and only if there is no directed path from
$; to s; or from s, to s; in G. Such a construction is shown below. Justify
the statement that if M is a maximum-cardinality matching in G*, then
a lower bound in the computation time for the overall task is given by
(n—|M]).

Sy

S,
B
G S G* *Ss
/ / S
3 A

5.8.

(Such a matching for the problem is said to be feasible if it describes a
possible scheduling sequence. For example, matching {(s,, s5), (53, s0)}
describes a feasible schedule: (s, and s;) being executed simultaneously,
followed by (s, and s,), and finally s, is executed. However, the matching
{(s1, 5, (s, 53)} is not feasible. Fujii ez al."% have shown that a feasible
matching always exists which is of maximum cardinality and that this
can be found in O(n®)-time. See also Coffman & Graham.™)
The stable marriages problem

In a community of # men and » women each person ranks those of
the opposite sex according to his or her preference for a marriage
partner. The problem is to marry off all members of the community in
such a way that the set of marriages is stable. The set is unstable if a
man and a woman exist who are not married to each other but prefer
each other to their actual mates.
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Gale & Shapley™® have described the following algorithm to solve the
problem:

To start, let each boy propose to his favourite girl. Each girl who

receives more than one proposal rejects all but her favourite from

amongst those who have proposed to her. However, she does not

accept him yet, but keeps him on a string to allow for the possibility

that someone better may come along later.

We are now ready for the second stage. Those boys who were
rejected now propose to their second choices. Each girl receiving
proposals chooses her favourite from the group consisting of the new
proposers and the boy on her string, if any. She rejects all the rest and
again keeps the favourite in suspense.

We proceed in the same manner. Those who are rejected at the
second stage propose to their next choices, and the girls again reject
all but the best proposal they have had so far.

Eventually...every girl will have received a proposal, for as long as
any girl has not been proposed to there will be rejections and new
proposals, but since no boy can propose to the same girl more than
once, every girl is sure to get a proposal in due time. As soon as the
last girl gets her proposal the ‘courtship’ is declared over, and each
girl is now required to accept the boy on her string.

Provide brief justification for the following claims:

(a) The algorithm provides a stable set of marriages.

(b) The algorithm also works if the number of males does not equal the
number of females.

(¢) The algorithm has complexity O(n?).

(d) The algorithm rejects men only from women that they could not
possibly be married to under any stable matching. That is, that any
man is at least as well-off as he would be under any other stable
marriage. The algorithm is calkéd man-optimal for this reason.
A woman-optimal set of marriages is, of course, obtained by getting
the women to propose to the men.

By simplifying the algorithm described in section 5.3, produce a

maximum-weight matching algorithm specifically for bipartite graphs.

A covering C is any set of edges such that any vertex of the graph is an

end-point of (at least) one edge of C. A minimum-cardinality covering is

a covering with the smallest possible number of edges.

(a) A salesman in educational toys has a selection of geometrical shapes

(cubes, pyramids and so on), each of which is manufactured in a range

of colours. He wishes to carry with him a minimum number of objects so

that each colour and each shape is represented at least once. Justify the
following statement. The number of objects he must carry is equal to the
number of elements in a minimum-cardinality covering in the graph

where each shape and each colour are individually represented by a
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single vertex and there is an edge joining a shape vertex to a colour
vertex if that shape is manufactured in that colour.
(b) Let M be a maximum cardinality matching and C be a minimum
cardinality covering of G = (¥, E). Now construct:
(i) acovering C’ from M by adding to M, for every unmatched vertex
v, one edge incident with v,
and
(ii) a matching M’ from C by removing from C, for every overcovered
vertex v (that is, v is the end-point of more than one edge of C)all
but one edge incident with C.
Show that:
IC’l = V|- M|
and that
IM’] = |V|-|C|
Hence deduce that C’ is a minimum-cardinality covering and that M” is
a maximum-cardinality matching. Thus the problem of finding a
minimum-cardinality covering can be solved essentially by the
maximum-cardinality matching algorithm of section 5.2.



6

Eulerian and Hamiltonian tours

In this chapter we concentrate on two fundamental ways of traversing a
graph. In historical terms these represent perhaps the oldest areas of
inquiry in graph theory. The first concerns paths or circuits in which every
edge is used precisely once. These are called Eulerian after the Swiss
mathematician L. Euler. He published in 1736 (see exercise 6.2) what is
often referred to as the first paper in graph theory. The second way of
traversing a graph of interest to us involves visiting each vertex precisely
once. These paths or circuits are called Hamiltonian after the English
mathematician W. R. Hamilton who studied them (circa 1856) in con-
nection with a game of his invention (see exercise 6.3).

In connection with Eulerian and Hamiltonian paths and circuits, the
word tour will mean either a path or a circuit. We shall be interested in
characterising graphs that contain either Eulerian or Hamiltonian tours.
Also, we shall be investigating the well-known and related problems of the
Chinese postman and of the travelling salesman.

6.1 Eulerian paths and circuits

A postman delivers mail every day in a network of streets. In order
to minimise his journey he wishes to know whether or not he can traverse
this network and return to his depot without walking the length of any
street more than once. This problem concerns the existence or otherwise of
an Eulerian circuit of the corresponding graph. If one exists then he may
wish to know how many others do in order to vary the otherwise tedious
routine. We shall see in this section just how questions of this type may be
answered.
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Fig. 6.1. (@) An Eulerian circuit of G,. (b) An Eulerian path of G,.

(a) (b) v, vy
Y, U U;
G, G,
1Y Us U £
T T
"1
u
C, uy Uy C, C,‘> uy iC,
G; G,
/_\ "1 ¢
Uy Uy u U
An Eulerian circuit of G, An Eulerian path of G,
Fig. 6.2
(a) (b) (e) (d)




Eulerian paths and circuits 155

6.1.1. Eulerian graphs

An Eulerian graph is an undirected graph, or a digraph, which
contains an Eulerian circuit. Of course, for a digraph each edge of the circuit
can only be traversed as it is directed. The following theorem determines
whether or not an undirected graph is Eulerian or contains an Eulerian
path.

Theorem 6.1. An undirected multi-graph G, has an Eulerian circuit (or
path) if and only if it is connected and the number of vertices with odd-
degree is 0 (or 2).

Proof. The conditions are clearly necessary because if an Eulerian tour
exists then G must be connected and only the vertices at the ends of an
Eulerian path can be of odd-degree.

To show sufficiency we use induction on the number of edges |E|. The
theorem is trivially true for |E| = 2. Let G have |E| > 2 edges, and let it
satisfy the conditions of the theorem. If G contains two vertices of odd-
degree, we denote them by v, and v,. Consider tracing a tour T from a
vertex v; (= v, if there are vertices of odd-degree). We trace T leaving each
new vertex encountered by an unused edge until a vertex v, is encountered
for which every incident edge has been used. If G contains no vertices of
odd-degree then it must be the case that »; = v;, otherwise it must be the
case that v; = v,. Suppose that T does not use every edge of G. If we
remove from G all those edges that have been used, then we are left with a,
not necessarily connected, subgraph G'. G’ only contains vertices of even-
degree. By the induction hypothesis each component of G’ contains an
Eulerian circuit. Since G is connected, 7" must pass through at least one
vertex in each component of G'. An Eulerian tour can then be constructed
for G by inserting into T, at one such vertex for each component of G,
an Eulerian circuit for that component. |

Figure 6.1 illustrates the construction of an Eulerian circuit for G, in
(a) and the construction of an Eulerian path for G, in (b) both according to
the prescription of the above proof. In both cases the original graph, less
the edges of 7, forms a graph with two components, C, and C,. The vertices
u, and u, indicate the points where the Eulerian circuits of these com-
ponents are inserted into T.

The following corollary applies to digraphs. Its proof exactly parallels
that for theorem 6.1.

Corollary 6.1. A digraph is Eulerian if and only if it is connected and is
balanced. A digraph has an Eulerian path if and only if it is connected and
the degrees of its vertices satisfy:
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d*(v) = d-(v) forall v # v, oro,
d*(v) = d-(v)+1
d=(vy) = d*(vy)+1

Given theorem 6.1 and its corollary check that in figure 6.2, graphs (a)
and (b) have Eulerian circuits while (c) and (d) have Eulerian paths but
not circuits.

6.1.2. Finding Eulerian circuits

Theorem 6.1 and its corollary describe algorithms to find Eulerian
circuits in graphs and digraphs. We describe here algorithms which
construct Eulerian circuits directly in the sense that they do not proceed by
the repeated addition of subcircuits.

We first describe an algorithm which is applicable to undirected graphs.
It will become evident that the same algorithm may be utilised for digraphs.
However, in the case of digraphs, it will be useful for other purposes to
describe a second algorithm. The first algorithm then is outlined in
figure 6.3. Given an undirected Eulerian graph G = (V, E), the algorithm
traces an Eulerian circuit during which CV denotes the current vertex
being visited, E’ denotes the set of edges already traced and EC is a list of
vertices ordered according to the sequence in which they have been visited.
Also A(v) denotes the adjacency list of the vertex v within the graph
(G—E’). The first vertex visited is w. When the circuit has been traced as
far as CV, the conditional statement starting at line 5 chooses the next
vertex v that shall be visited. This is done so that if (CV, v) is not the only
edge incident with CV in (G— E"), then (CV, v) is not a cut-edge of (G—E’).
Such a choice is always possible because, as we shall see in the next
theorem, there can only ever be at most one cut-edge of (G— E’) incident
with CV. This important fact also means that the search for v in line 6
will be restricted to checking whether or not (CV, v), where v’ is the first
vertex in A(CV), is a cut-edge of (G—E’). If it is not, then v’ becomes v,
otherwise the second vertex in A(CV) becomes v. Before validifying the
algorithm we establish its complexity according to the implementation of
figure 6.3.

The body of the while statement, lines 5-11, is executed | E | times, once
for each successive edge traced in the Eulerian circuit. Within each
execution we need, in line 6, to determine whether or not a particular edge
of (G— E’)is a cut-edge. It is easy to do this in O(| E— E' |)-time by searching
for a path in G—(E’V (v, v;)). We simply tag neighbours of ¥, then
repeatedly tag untagged neighbours of tagged vertices until the process
cannot proceed further. If, finally, v; remains untagged then (v;, v;) must
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be a cut-edge of (G— E’). Thus overall we have an O(| E|?%) implementation.
We can in fact with little trouble find Eulerian circuits in O(|E|)-time.
See, for example, exercise 6.5.

Fig. 6.3

EC «[w]

CVe<w

E <« @

while |A(w)| > 0 do
begin

bl ol 8

if |[A(CV)| > 1 then
find a vertex v € A(C) such that (CV, v) is not a
a cut-edge of (G—E)
else let the vertex in A(CV) be denoted by v
delete v in A(CV) and CV in A(v)
E’ < E’' VU {(CV, v)}
CV<«v
add CV to the tail of EC
end
12. Output EC

o>

mow®N

1
1

Theorem 6.2. The algorithm of figure 6.3 finds an Eulerian circuit EC of
an undirected graph G = (V, E).

Proof. We first show that the choice of the next vertex v, within the
conditional statement starting at line 5, is always possible. Having arrived
at CV (# w) it must be that |4(C¥V)| > 0 and that |A(CV)] is odd because
d(CV)is even. If | A(CV)| = 1 then the next vertex is uniquely determined
by the else clause at line 7. However, if |4(C¥)| > 1 then at most one edge
incident to CV can be a cut-edge. We can see this by noting that any com-
ponent of the graph (G—E’) attached to CV by a cut-edge must contain
a vertex of odd-degree in (G—E’). Suppose this were not so. Then every
vertex of the component will be of even-degree so that the sum of these
degrees will be even. However, the sum of these degrees is odd because
each edge of the component adds two to the sum except for the single
cut-edge attaching it to CV. Now there are precisely two vertices of odd-
degree in (G—E’), namely, w and CV. Hence, there can only be at
most one cut-edge of (G— E’) adjacent to CV (# w). Suppose now that
CV = w. If A(w) > 0, as required by line 4, then no edge incident to CV
is a cut-edge of (G—E’). This follows by noting that when the Eulerian
circuit revisits w, then every vertex of (G— E’) is of even-degree. But by a
previous argument if a cut-edge attaches a component of (G—E’) to w,
then this component would contain at least one vertex of odd-degree.
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Thus a next vertex can always be chosen as the algorithm requires
within line 6. According to line 4 the process stops when |A(w)| = 0. At
this stage an Eulerian circuit will have been traced. Otherwise, before
reaching w, some other vertex # with |4(«)| > 1 must have been left along
a cut-edge of (G—E’). |

We now describe an algorithm specifically appropriate for digraphs. It
constructs an Eulerian circuit starting with a spanning out-tree of the
digraph. This construction will be of interest to us again when we come to
count the Eulerian circuits of a graph in section 6.2.1.

Before describing the algorithm we show that the reverse construction is
possible. That is, given an Eulerian circuit of a digraph we can construct a
spanning out-tree. Starting at an arbitrary vertex u, we trace the Eulerian
circuit and, for each vertex except u, we identify the first edge incident to
the vertex. According to theorem 6.3 this set of (n— 1) edges constitutes a
spanning out-tree of the digraph.

Theorem 6.3, The subgraph of an Eulerian digraph G constructed according
to the above rule is a spanning out-tree of G rooted at u.

Proof. We denote the subgraph by 7. By the construction rule we see that
within T' d—(u) = 0, while for every vertex v % u d—(v) = 1. Then since T
has (n—1) edges we need just show that T is acyclic.

Suppose that T contains a cycle. As edges are added to T according to
the construction rule, let (v, v;) be the first edge that completes a circuit
in T. Clearly, v; # u. Since (v, v;) completes a circuit, v; has been visited
previously in tracing the Eulerian path, Thus (v;, v;) cannot be an initial
entry to v; and so would not be included in 7. This is a contradiction and
so T is acyclic. |

Figure 6.4 shows a digraph G and an Eulerian circuit C. It also shows a
spanning out-tree T constructed according to the rule described for the
previous theorem.

Fig. 6.4
" 4] 41 Va
G u u
) Vs L3 £

C = (u, vy, Vg, U, V3, Vy, V3, Vg, ¥y, Vg, U) T
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By a proof similar to that for theorem 6.3 it is easy to see that a spanning
in-tree T, rooted at u, for an Eulerian digraph G can be constructed as
follows. Starting at u trace an Eulerian circuit adding to T those edges
which correspond to final exits from each of the (n— 1) vertices other than
u. It is also clear that we can construct a spanning-tree for an undirected
graph by these methods by temporarily regarding the edges to be directed
in the same sense as an Eulerian circuit is traced.

We now return to the algorithm which finds an Eulerian circuit of a
digraph given a spanning out-tree 7. This is embodied in theorem 6.4
which is clearly the converse of theorem 6.3.

Theorem 6.4. If G is a connected, balanced digraph with a spanning out-
tree T'rooted at u, then an Eulerian circuit can be traced in reverse direction
as follows:

(a) The initial edge is any edge incident to u.

(b) Subsequent edges are chosen so as to be incident to the current
vertex and such that:
(i) no edge is traversed more than once,
(ii) no edge of T is chosen if another edge is still available.

(c) The process stops when a vertex is reached which has no unused
edges incident to it.

Proof. Since G is balanced, the path traced by the above rules can only
terminate at u. Howev€r, suppose that this circuit does not contain an edge
(v;, v;) of G. Now, G is balanced and so v; must be the final vertex of some
other unused edge (v, v;). We can take (v, v;) to be an edge of T since
such an edge incident to v; will not have been used because of rule (b (ii)).
We can now by a sequence of similar edges fdllow a directed path back-
wards to u. Because G is balanced we should then find an edge incident to
u which has not been used in the circuit. But this contradicts rule (c).
Hence the circuit must be Eulerian. |

The algorithm of theorem 6.4 can be executed in O(]E|)-time as can be
readily seen by an inspection of figure 6.5. Within that diagram the first
statement indicates the initial task of finding a spanning out-tree. This tree
is represented by the set of boolean variables {T'(¢)|e € E}. It is easy to see
that if an Eulerian digraph is subjected to the DFS algorithm of figure 1.15,
then it will find a spanning out-tree. Since that algorithm operates in
O(max (n, | E|))-time and since for an Eulerian digraph |E| > n, the first
task of figure 6.5 required O(JE|)-time. For each vertex v, the for state-
ment at line 5 constructs 4, which is a list of the vertices v; such that
(v, v) € E. Moreover, that edge incident to » (# u) and which is an edge
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Fig. 6.5. An O(| E|)-algorithm to find an Eulerian circuit of a
digraph G = (V; E).

1. Find a spanning out-tree T of G = (V, E) rooted at &,
representirig it by the assignments:
T((v;, v,)) <«if (v,, v,) € T then true else false

2. for every vertex ve ¥V do

begin
3. A, <« o
4, I(v) <0
end

5. for every edge (v, v;) € E do
if T((v,, v,)) then add o, to the tail of 4,,

else add v, to the head of A,
6. EC« &
7. CV<«u
8. while I(CV) < d-(CV)do
begin
9. add CV to the head of EC
10. I(CY)<«<I(CV)+1
11. CV <+ Ao(I(CV))
end
12. Output EC

of the spanning out-tree is arranged to be the last edge in the list 4,.
Clearly, all the 4, are constructed within O(| E|)-time. The for statement
beginning at line 2 provides an initial assignment of the empty list to each
A, and zero to each I(v) and does this within O(n)-steps. I(v) is used as an
index to the list A, and CV denotes the current vertex being visited. Thus
in line 11 Agp(I(CV)) means the I(CV)th element in the list Agy. EC
eventually lists the vertices of the Eulerian circuit in the order in which
they are visited. The circuit is traced within the while statement starting
at line 8. Rule (b) of theorem 6.3 is ensured by the construction of the A4,
and the incrementation of the I(v) in line 10. Rule (c) is taken care of by
the condition of line 8 and rule (a) is ensured by the assignment of line 7.
Since the while body, lines 9-11, is executed once for each edge in the
Eulerian circuit, the while statement requires O(|E|)-time. Thus overall
we have an O(| E|)-algorithm.

Figure 6.6 illustrates an application of the algorithm of figure 6.5. The
spanning out-tree produced by the first stage of the algorithm consists of
those edges e for which it is shown that T(e) = true. For each v € V, the
lists 4, are also shown. The table then shows for each iteration of the
while loop, lines 9-11 of figure 6.5, the values of C¥ and each I(v). The
final state of EC which is shown indicates which Eulerian circuit is found.
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Fig. 6.6. An application of the algorithm in figure 6.5.

e, A=l T(, ) = e
A, =[v, ] T((w,v)) = tree
A =Doul (@ vy) = true
A= D] T v0) = true

A s A, =[vy,v] forallv,d”(v)=2
Iteration | CV Kw) Iv,) Iv) Ivs) I(v)
0 u 0 0 0 0 0
1 Vg 1 0 0 0 0
2 Vs 1 0 1 0 0
3 A 1 0 1 1 0
4 v 1 0 1 1 1
5 vy 1 1 1 1 1
6 v 1 1 2 1 1
7 u 1 2 2 1 1
8 vy 2 2 2 1 1
9 Vs 2 2 2 1 2
10 u 2 2 2 2 2
11 - 3 2 2 2 2

EC = [u, vy, vq, U, V4, Vs, ¥y, Vg, V3, Vs, 4]

6.2 Postman problems

'We now consider problems of the type posed by the postman in the
opening paragraph of section 6.1. The question of whether or not the post-
man can traverse his network of streets, starting and finishing at the
depot and traversing each street exactly orfee, can now be easily answered.
If the streets can be traversed in either direction then the Eulerian test of
theorem 6.1 provides the answer, whilst if the streets are one-way travers-
able then we can refer to corollary 6.1. If the network of streets is not
Eulerian then we can naturally ask a further question. How can we find a
shortest circuit for the postman which visits each street at least once?
Here we associate a length with each street so that the associated graph is
weighted. Because of the origin of an early paper!!! describing it, this
problem is called the Chinese postman problem. We shall devote most of
this section to solving this problem both for undirected and for directed
graphs. Before coming to that, however, we deal with the problem of
counting the number of distinct Eulerian circuits in an Eulerian graph.
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6.2.1. Counting Eulerian circuits

For digraphs, on the basis of theorem 6.4, we can count the
number of distinct Eulerian circuits associated with a given spanning out-
tree by considering the choice of edges available at each vertex as the
circuit is traced. Let the out-tree be rooted at u. In counting circuits we
must fix the final edge that is to be traced backwards from u in order to
avoid multiple counting. Otherwise each circuit would be counted d-(u)
times, any two counts differing only by a cyclic permutation of the edges.
Also, the choice of edge to be traced backwards from any other vertex is
restricted in that the edge associated with the spanning out-tree must be
traced last. An Eulerian circuit encounters any vertex v, d—(v) times. On
the first occasion the circuit has a choice of (d—(v)— 1) exits, on the second
occasion (d-(v)—2), and so on. Since the choices at each vertex are
independent, there are in all:

ill (d-()—1)!

different Eulerian circuits that can be constructed according to the method
of theorem 6.4 for a given spanning out-tree. Theorem 6.3 tells us that every
Eulerian circuit may be associated with a particular spanning out-tree
rooted at u. We therefore have the following theorem:

Theorem 6.5. The number of distinct Eulerian circuits in a connected,
balanced digraph is given by:

T(G)-i’l1 (@) —-1)!

where T(G) is the number of spanning out-trees rooted at a given vertex.

We have already seen how to calculate T(G) for an arbitrary graph in
theorem 2.5. For an Eulerian digraph we can draw an immediate con-
clusion concerning T'(G). Since the number of Eulerian circuits cannot
depend upon which vertex is taken to be the root in theorem 6.5, it follows
that 7(G) must also be vertex independent. In other words, in an Eulerian
digraph the same number of distinct spanning out-trees are rooted at each
vertex.

Figure 6.7 shows an example of counting Eulerian circuits of the
digraph G. The diagram shows the Kirchoff matrix K(G). For any r,
1 < r < n,we have T(G) = det (K,,(G)) = 2, whilst [T?_, (d-(v)—1)! = 4.
Hence the number of distinct Eulerian circuits for G is 8. We leave it as a
short exercise for the reader to list them.

For a given undirected Eulerian graph G, we could count its Eulerian
circuits by noting that it will be the underlying graph of each of a number
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Fig. 6.7

5
1 0 0 0-1
-1 1 0 0 0
KG=|0-1 2 0-1
0 0-1 1 0
0 0o-1-1 2

1 2
G

of determinable Eulerian digraphs. To each Eulerian circuit C of G there
will be precisely two corresponding Eulerian circuits in the digraphs, one
in, say, G, and one in G,. One of this pair of circuits will correspond to
tracing C in one direction in G and the other will correspond to tracing C
in the opposite direction. In fact, G, will be precisely G, with all edge
directions reversed.

6.2.2. The Chinese postman problem for undirected
graphs
We describe here how to find a shortest (non-simple) circuit in a
weighted, undirected; non-Eulerian graph such that each edge is traversed
at least once. Any postman’s circuit, shortest or otherwise, in a non-
Eulerian circuit must repeat one or more edges. This is because every
vertex is entered the same number of times that it is left, so that any vertex
of odd-degree (there must be at least two such vertices) has at least one
incident edge that is traversed at least twice. We therefore define r(u, v)
to be the number of times that edge (v, v} is repeated in the course of a
postman’s circuit. In all, (u, v) is traversed (1+r(u, v)) times. If we trace a
path of repeated edges then we see that it can only end on vertices of odd-
degree, perhaps passing through any number of vertices of even-degree (and
maybe some of odd-degree) before termination. In any event, the edge
repetitions can clearly be partitioned into a set of paths, each path having
odd-degree vertices as end-points. Each repetition of an edge belongs to
exactly one such path and every vertex of odd-degree is the end-point of
just one path. Of course, if we add to the original graph G, r(u, v) repe-
titions of each edge (v, v) then the resultant graph, which we denote by
G", is Eulerian.
The postman’s problem is therefore to find a set of paths such as we
have described and such that their edge weight sum is a minimum. The
required circuit is then equivalent to an Eulerian circuit of the associated
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graph G”. A suitable algorithm is described in figure 6.8 and it essentially
consists of a series of applications of previously described algorithms. In
line 1, the shortest distances between each pair of vertices of odd-degree,
in the graph of interest G, are found. A suitable algorithm for this (in fact,
it would find the shortest distance between every pair of vertices) was
described in chapter 1 and verified in theorem 1.5. In line 2, G’ is the com-
plete graph whose vertex-set is the set of vertices of odd-degree in G and

Fig. 6.8. Algorithm to solve the Chinese postman problem in an
undirected, non-Eulerian graph.

1. Find the set of shortest paths between all pairs of vertices of
odd-degree in G.

Construct G’

Find a minimum-weight perfect matching of G’

Construct G”

Find an Eulerian circuit of G” and thus a minimum-weight
postman’s circuit of G.

SR w N

whose edge-weights for each edge (u, v) is d(u, v), the shortest distance from
u to v in G. Notice that G’ must have an even number of vertices because
there are, by theorem 1.1, an even number of vertices of odd-degree in G.
The purpose of line 3 is to identify such a matching which has minimum
weight. This minimum-weight perfect matching allows us to identify a
set of paths of repeated edges (one path from each edge of the matching)
needed to solve the Chinese postman prqblem for G. An efficient minimum-
weight perfect matching algorithm is easily contrived from the maximum-
weight matching algorithm described in chapter 5. We replace each
edge-weight d(u, v) in G’ by (M —d(u, v)), where M is a constant such that
M > d(u, v) for all (u, v). It is then easy to see that a maximum-weight
matching in this graph with modified edge-weights is equivalent to a re-
quired minimum-weight perfect matching in G'. Line 4 constructs G"
which was defined earlier. Finally, an Eulerian circuit of G” is found in
line 5 (perhaps using the algorithm described in section 6.1.2) which is
then easily used to identify a minimum-weight postman’s tour of G.

Our description of the algorithm amounts also to its verification. More-
over, notice that the algorithm is efficient because each of its constituent
algorithms runs in polynomial time. Figure 6.9 shows an application of the
algorithm. The graph G of that diagram is sufficiently simple to identify
the d(u, v) by inspection; moreover, we can similarly identify a minimum-
weight perfect matching of G’ and an Eulerian circuit of G". The paths of
repeated edges in G required for the solution to the Chinese postman
problem are (v, ¥, v,) and (v, u;, vg).
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Fig. 6.9. An example solution to the Chinese postman problem for
undirected graphs.

d(vy, va) = 4 along (vy, s, g, vy)
d(v, vs) = 5 along (vy, 1, 5, vs)
d(vy, ve) = 2 along (v, uy, v,)

d(ve, vs) = 3 along (vy, uy, vs)

d(V’, V‘) = 5 along (Vz» Ug, Uy, Ug, v‘)
d(vg, v¢) = 3 along (v, v4)

G v 4 e V A minimum-weight perfect matching
: ' consists of the edges (v, v,) and
2 3 (va, vs).

An Eulerian circuit of G” and

a solution to the Chinese postman
problem for G is (vy, 4y, v, vs,

Uy, VS’ V1, ut, Us, Vg, Uy “8’ us’ Vs’

Uy, Uy, Vy, Ug, Us, Us, Ug, Uy, V1)

6.2.3. The Chinese postman problem for digraphs

We consider here directed, weighted graphs. If the graph in
question is connected and balanced, then the solution to the Chinese
postman problem will be, by corollary 6.1, an Eulerian circuit. Such a
circuit may be found by the algorithm of figure 6.5. The remainder of this
section describes how to proceed with non-Eulerian digraphs.

In the case of undirected graphs, any connected graph clearly contains a
solution to the Chinese postman problem. This is not the case for all
connected digraphs. For example, in figure 6.10 no circuit exists which
traverses every edge at least once. This is because there is no path from
the subset of vertices {u;, uy, 13} to the subset {v,, vy, vs}. The following

theorem provides a necessary and sufficient condition for a digraph to
contain a postman’s circuit.



166 Eulerian and Hamiltonian tours

Fig. 6.10

Vg Us

Vs Uy

Theorem 6.6. A digraph has a postman’s circuit if and only if it is strongly
connected.

Proof. Clearly, if the digraph G has a postman’s circuit then it must be
strongly connected. This is because, for any two vertices # and v part of
the circuit provides a path from u to v whilst the remainder of the circuit
provides a path from v to u. We therefore only have to show that if G is
strongly connected then it contains a postman’s circuit. Such a circuit
(perhaps a long one) is constructed as follows. Starting from some vertex u
we add successive loops (from u and back to u) to that part of the post-
man’s circuit already traced. Suppose at some stage of this process the
edge (v;, v;) has not been traversed. Since G is strongly connected there will
be a path P(u, v;) from u to v, and a path P(v;, u) from v; to u. To include
(v;, v;) in the postman’s circuit, the next loop from u will be

(P (ua vt), (via vj), P (vj, u))
We continue until every edge is included. ]

As in the case for undirected graphs, a postman’s circuit for a non-
Fulerian digraph necessarily involves repeated edges. We again denote the
number of times that the edge (u, v) is repeated by r(u, v). Let G” denote
the digraph obtained by adding r(u, v) copies of each edge (u, v) to the
original digraph G. Any postman’s circuit in G will correspond to an
Eulerian circuit of G”. In the case for undirected graphs, the repeated edges
formed paths between vertices of odd-degree. In the present case repeated
edges must form paths between vertices whose in-degree is not equal to
their out-degree. In particular, for any such path from u to v, we must
have that:

d-(u)—d+(u) = Du) <0
d-(v)—d+(@v) = D) > 0

Moreover, if D(u) < 0, then — D(u) paths of repeated edges must start
from u. Similarly, if D(v) > 0, then D(v) paths must end at v. The problem

and
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then reduces to choosing a set of paths such that G” is balanced and we
must do this so as to minimise X, d(, v) r(u, v) where d(u, v) is the
weight of (i, v).

The above description suggests the following solution to the Chinese
postman problem. It is based upon the flow methodology of chapter 4.
Each vertex u, D(u) > 0, can be thought of as a source and each vertex v,
D(v) < 0, can be thought of as a sink. A path of repeated edges from u
to v may be thought of as a unit flow with a cost equal to the sum of the
edge-weights on the path. In terms of a flow problem, we wish to send
(for all u such that D(u) > 0), + D(u) units of flow from u and (for all »
such that D(v) < 0), — D(u) units of flow o v, and we wish to do this at
minimum cost. As described in exercise 4.1, we convert this problem of
multiple sinks and sources to one of a single source and a single sink. Let
the single source be X, then every edge from X to a source u of the original
problem is given a capacity equal to + D(u) and is given a cost of zero.
Similarly, denoting the single sink by ¥, each edge to Y from a sink v of
the original problem has a capacity equal to — D(v) and a zero cost. The
capacity of all other edges is set to infinity. Since for any digraph:

u,D(2u)<0D(u) n _v,D§)>0 D(v)
a maximum flow (at minimum cost) from X to Y will saturate all edges
from X and all edges to Y. Given such a flow we can construct a balanced
digraph G”. Any Eulerian circuit in G” will correspond to a minimum-cost
postman’s circuit in G.

Fig. 6.11. Algorithm to solve the Chinese postman problem in a

non-Eulerian digraph.

1. Construct G’

2. Find a maximum flow at minimum cost in G’

3. Construct G".

4. Find an Bulerian circuit of G” and thus a minimum-weight
postman’s circuit of G.

Given the above description figure 6.11 outlines a suitable algorithm.
G’ is the network obtained from G by adding the source X and the sink Y,
as previously described. Line 2 finds a maximum flow at minimum costin G,
This can be done by using the minimum-cost flow algorithm of chapter 4.
Line 4 might utilise the algorithm of figure 6.5.

As far as the complexity of the algorithm is concerned, notice that the
execution time of lines 1, 3 and 4 is bounded by a polynomial in » and |E|.
In fact, so is the execution time of line 2, but less obviously so. In the
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previous chapter we saw that the complexity of the minimum-cost flow
algorithm is polynomial in », |E| and the value ¥ of the required flow.
The required flow in the present case is given by:

V= D@) < |E
o0 DO < |E|

since each edge contributes at most one to the summation. Thus overall,
the execution time of this algorithm for the Chinese postman problem for
digraphs, is bounded by a polynomial in n and | E| only.

Figure 6.12 shows an application of the algorithm to the graph G of
that diagram. G is such that the minimum-cost flow can be found by
inspection in G’, as can the Eulerian circuit in G".

Fig. 6.12. An example solution to the Chinese postman problem for

digraphs.
Vs D(
v
G ) —1P»
v | -1
Ve v,z | O
5 vy 2
6 v, 1
vs | —2
K3
17 2 "
GI
0 c(X,vg) =c(v, ¥Y) =2
X Y (X, v) = e(n, =1
for all other edges (u, v)
0 ¢(u, v) = oo and each edge
. 3 ve is labelled a(u, v)
Maximum flow at minimum cost in G’ is two units of flow along
(X, vy, Vg, V5, Y) plus one unit along (X, v,, v5, vy, Y).
G V3 2 vy

An Eulerian circuit of G”
V and a minimum cost
2 postman’s circuit of G is
4 (V15 Vo, V3 Vo V5 Vay Vo V5o
m V3, Vas V5, V1, Vg, Vg, V5, Vy)
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6.3 Hamiltonian tours

We have already defined a Hamiltonian tour to be a path or a
circuit which visits every vertex precisely once. A graph is Hamiltonian if
it contains a Hamiltonian circuit. Theorem 6.1 provides a quick and
simple test for determining whether or not a graph is Eulerian. No such
test is known and none is thought to exist to determine whether or not a
graph is Hamiltonian. Indeed, the question of whether or not an arbitrary
graph is Hamiltonian is a classic NP-complete problem. Notice the obvious
connection with the problem of finding a longest simple path which we
discussed in chapter 1. There are many results which provide either
sufficient or necessary conditions for a graph to be Hamiltonian. Section
6.3.1 presents some well-known results in this area.

A well-known problem related to the Hamiltonian circuit problem is
that of the travelling salesman. The problem is as follows. A salesman,
starting in his own city, has to visit each of (n— 1) other cities and return
home by the shortest route. We shall see that a solution can be provided
by finding a Hamiltonian circuit of shortest length in a complete weighted
graph. We shall prove in chapter 8 that the question of the existence of a
Hamiltonian tour of less than some specified length is NP-complete. In
section 6.3.2 we describe an inefficient algorithm to find Hamiltonian tours
and we also describe some well-known approximation algorithms. These
have the advantage of operating in polynomial time but produce results
which only approximate, within some known tolerance, to an exact
solution.

Many other scheduling problems, see, for example, exercise 6.12, involve
consideration of Hamiltonian tours. The origin of interest in these tours is
to be found in game theory (exercise 6.3). Puzzles and board games in
particular often involve Hamiltonian ciruits. For example, the question
of finding a knight’s tour of a chessboard (that is, a sequence of knight’s
moves which visit every square of a chessboard precisely once and returns
to the initial square) is precisely that of finding a Hamiltonian circuit of an
associated graph.

6.3.1. Some elementary existence theorems
As we stated earlier, given an arbitrary graph, there is no quick
test to determine whether or not it is Hamiltonian. There are, however,
many partial results in this area. This section presents some elementary
ones.
An immediate observation is that the more edges a graph contains, then
the greater is the chance that a Hamiltonian circuit exists. The extreme case
is that of complete graphs. Since. there is an edge between every pair of
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vertices and this edge may be traversed in either direction, it follows that
any permutation of the vertices is a Hamiltonian path. Moreover, a
Hamiltonian circuit is obtained by including the edge from the final to the
initial vertex of such a path. We therefore have the following theorem.

Theorem 6.7. Every complete graph is Hamiltonian.

Suppose now that we assign a direction to each edge of a complete
graph. The following theorem shows that the resulting digraph still
contains a Hamiltonian path.

Theorem 6.8. A digraph, whose underlying graph is complete, contains a
Hamiltonian path.

Proof. Let G = (V, E) be a digraph with a complete underlying graph and
let P = (vy, vy, ..., v,) be a (directed) path in G. Suppose that v € ¥ is not
contained in P. Now, for all i 1 < i < n, we have that:

(v, vy ¢ E implies that (v, v) € E
(v, v) ¢ E implies that (v,v) e E

Thus v and P may be used to construct a path with (n+ 1) vertices by the
following argument:

If (v, v € E then the path (v, vy, vy, ..., v,) exists,
otherwise (v,, v) € E. Then

if (v, vy) € E then the path (v, v, vy, ..., v,) exists,
otherwise (vy, v) € E. Then

if(v,v)€E...
otherwise (v,,_,, v) € E. Then

if (v, v,) € E then the path (v, ..., v,—y, v, V,)) €xists,
otherwise (v,,, v) € E and

the path (v, v,, ..., v, V) exists.

Hence, starting with any path (a single edge would do) we can repeatedly
extend it by the addition of vertices until every vertex is included. |

It is easy to construct examples to show that a digraph satisfying the last
theorem need not be Hamiltonian. However, the next theorem provides a
narrower definition which guarantees the presence of a Hamiltonian circuit.

Theorem 6.9. A strongly connected digraph whose underlying graph is
complete is Hamiltonian.

Proof. If G = (V, E) satisfies the theorem then being strongly connected
it contains at least one simple circuit. Let C = (v, v, ..., v,,, v;) be such
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a circuit of maximum length. Suppose that C does not include some
vertex v. We first show that either there is an edge incident from v to every
vertex v; of C or there is an edge incident from every vertext of C to v.
Since C is maximal, then, for all i, modular n:

(v, v)) € E implies that (v;_,, v) ¢ E

and
(v, v) € E implies that (v, v;,,) ¢ E

otherwise, in either case a circuit longer than C could be constructed.
Now since G has an underlying complete graph:

(v;_3, v) ¢ E implies that (v, v; ;)€ E
an

(v, vy ¢ E implies that (v;;, v) € E

Hence for all i:

q (v, v;) € E implies that (v, v;_) e E
an
(v;, v) € E implies that (v;;, ) e E

We can therefore partition those vertices not on C into two classes, V'’
and ¥7”. There is an edge incident from each vertex in V'’ to every vertex
of C, and there is an edge incident from each vertex in C to every vertex
in V.

Now, since our hypothesis is that C is not a Hamiltonian circuit, we
have that V'V V" # @. Moreover, G is strongly connected so that
V'# o and V" # @, and there exists an edge from V" to V'. Denoting
this edge by (v, v'), we then have a circuit C' = (v, s, ..., U, 0", V', 1;)
such that |C’| > |C|. Therefore our hypothesis is contradicted and C must
be a Hamiltonian circuit of G. ]

Let us return to undirected graphs. Theorem 6.7 is hardly a powerful
theorem. The degree of any vertex in a complete graph is (n—1) and this
is also the minimum degree 8, of any vertex in that graph. Theorem 6.10
provides a rather stronger result in the sense of guaranteeing a Hamiltonian
circuit for a smaller value of é.

Theorem 6.10. If G is a graph such that n > 3 and § > 4n then G is
Hamiltonian.

Proof. Suppose that G satisfies the conditions of the theorem but that it is
not Hamiltonian. G cannot therefore be complete because of theorem 6.7.
We can add edges to G without violating the conditions of the theorem
until the addition of any one extra edge will create a Hamiltonian circuit.
Let v, and v,, now be any two non-adjacent vertices of G. Now G +(v,, v,,)



172 Eulerian and Hamiltonian tours

is Hamiltonian so that G contains a Hamiltonian path, (vy, vy, vs, ..., 0,,),
from v, to v,. We now define two subsets of vertices:

V' = {vs|(vy, vs42) € E}
V" = {|(v;, v,) € E}

Now |V'n V"| = 0. If this were not the case then ¥’ and V" would
contain a common vertex v; and G would contain the Hamiltonian circuit

(V15 D25 «oes gy Uy Dy, oovy Ugyq, 0p). Also, |V U V7| < n because v,, is in
neither ¥’ nor V”. We therefore see that:

d@)+dwy) = |V'|[+|V"| = [V'UV|+|V'a V| <n
so that even with the additional edges added to G we have that
d(v,) or d(vy) < %n

This contradicts the original assumption so that G must be Hamiltonian. m

and

The above theorems provide sufficient conditions for the existence of
Hamiltonian tours. It is a trivial matter to construct examples showing
that these conditions are not necessary. Our final theorem provides a
necessary condition for a graph, or indeed a digraph, to be Hamiltonian.

Theorem 6.11. If G = (V, E) is Hamiltonian, then for every non-empty
proper subset of vertices V' < V:

aG-vH) < |V
where C(G— V") is the number of components of the graph (G— V).

Proof. If H is a Hamiltonian cycle of G and therefore a spanning subgraph
of G, we have for every V"':

CH-V)< |V -
But (H— V") is a spanning subgraph of (G— V") and so:
C(G-V)< CH-V)
and so the theorem follows. ]

As an example of the use of theorem 6.11 consider the graph of
figure 6.13(a). The removal of the vertices v, and v, leaves the three
components shown in figure 6.13(b). Hence for this graph G, we have that
C(G—{vy, v5}) > [{vy, v2}|, and so by theorem 6.11 G cannot be Hamil:
tonian.

The condition of theorem 6.11 is not sufficient for a graph to be
Hamiltonian. For example, the Petersen graph shown in figure 6.14 is not
Hamiltonian (see exercise 6.8) and yet every non-empty proper subset of
its vertices, V', satisfies |V’'| = C(G—V").
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Fig. 6.13

N
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Fig. 6.14. The Petersen graph.

We have described here just a few of the most elementary theorems
concerning the existence of Hamiltonian tours. There are many other
results in this area. See, for example, chapter 10 of Berge!2.

6.3.2. Finding all Hamiltonian tours by matricial
products
We describe here, by example, a straightforward technique for
generating all the Hamiltonian tours of a graph or digraph. It can easily
be adapted to find a shortest Hamiltonian circuit. Like all known, and
probably unknown, methods for this problem, it provides an inefficient
solution.

In chapter 1 we saw how the (i, j)th element of the kth power of the
adjacency matrix of a graph gives the number of paths of length k from
vertex i to vertex j. That is, the number of complex paths. We now see a
variation of this theme where an element of a related matricial product
individually identifies each simple path of length k from i-to j. Such a
path of length (n—1), where n is the number of vertices, is necessarily a
Hamiltonian path. Given all the Hamiltonian paths it is a trivial matter
to identify all the Hamiltonian circuits.
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Fig. 6.15

We illustrate the method with reference to the digraph of figure 6.15.
Application to an undirected graph should be obvious. First we construct
a matrix M,, formed from the adjacency matrix by replacing any (i, j)th
non-zero entry with the string ij, and any non-zero diagonal element is
replaced by zero. For our example:

0 AB 0 0 0
0 0 BC 0 0
M,={0 0 0 CD CE
0 0 0 O DE
EA EB 0 ED 0

We now define a second matrix, M, derived from M, by deleting the initial
letter in each element that is a string, for our example:

B 0 0 O
0 C 00
0 0 DE
0 0 0 E
B 0 DO

Finally, we define a matricial product from which we can generate M;, for
all j where n > j > 1. M; displays all the simple paths of length j:

Mj = Mj—l * M
where the (7, s)th element of M; is defined as follows:

R
1
hoooo

neither M,_l(r, ) nor M(t,s) are

Mr,s) = {ﬁ;_l(r, 1) M(t, 5)
zero or have a common vertex

1<t <n M (r,t)e My_yr, t):}

Here ﬁ,(r, )M(t, s) denotes the concatenation of A?,(r, t) and M(1, ).
Clearly, My(r, s) is the set of simple paths (since by construction no vertex
appears more than once in any path) from r to s consisting of j edges.
Using this definition in our example we obtain:
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0 O ABC O 0
0 0 o0 BCD BCE
M,=|CEA CEB 0 CED CDE
DEA DEB 0 0 0
0 EAB EBC 0 0
0 0 0 ABCD ABCE
BCEA 0 0 BCED BCDE
M; = | CDEA gf;g) 0 0 0
0 DEAB DEBC 0 0
0 0 EABC EABD 0
0 0 0  ABCED ABCDE
BCDEA 0 0 0 0
M,=| 0 CDE4B 0 0 0
0 0 DEABC 0 0
0 0 0 EABCD 0

Generally each matricial element is a set of paths, although the only entry
in our example which consists of more than one path is My(C, B). Since
our example has n = 5, M, displays all the Hamiltonian path of the
graph of figure 6.15. In order to establish the Hamiltonian cycles we need
only check whether or not the end-points of these six paths are appro-
priately connected by an edge. This establishes a single Hamiltonian
circuit, namely (4, B, C, D, E, A). Alternatively, we could carry out a final
multiplication, M,, = M,,_, * M, for which the requirement that no vertex
appears more than once is dropped. The diagonal entries in M,, would
describe any Hamiltonian circuits.

There are many ways of finding Hamiltonian tours of a graph (if they
exist). The one described here is particularly straightforward which is in
contrast to other methods, for example the branch and bound algorithm,
more commonly encountered. All of these methods are inefficient in-
volving unacceptable volumes of computation. This is because, as we
indicate in the next section, the number of potential circuits grows
factorially with n.

6.3.3. The travelling salesman problem

There are several extant definitions of the travelling salesman
problem. One definition requires us to find the minimum-length circuit
which visits every vertex of a weighted graph precisely once. Another
definition requires us to find a minimum-length circuit of a weighted graph
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which visits every vertex at least once. For the following discussion we
take the second definition. Figure 6.16 illustrates that a solution to this
travelling salesman problem (in our example the circuit (a, b, a, ¢, a) with
length 4) is not necessarily a simple circuit. This is generally true for any

Fig. 6.16

graph in which the triangle inequality does not hold. If for every pair of
vertices 4 and v of a graph G, the weight w(u, v) satisfies

w(u, ©) < Wy, x)+w(x, v)

for all vertices x # u, x # v, then the triangle inequality is said to be
satisfied in G. Notice that if G is, say, a representation of a road network
and the edge-weights are actual distances, then the triangle inequality will
almost certainly hold in G. However, if the edge-weights represent some
other quantity, say, for example, the cost of transportation, then it could
well be that the triangle inequality is not satisfied. It is useful for such cases
to notice that there is a simple technique for converting the travelling
salesman problem for any graph G = (V, E) into the problem of finding a
minimum-weight Hamiltonian circuit for another graph G’ = (V’, E').
G’ is a complete graph with ¥ = ¥’ and each edge (u, v) € E’ has a weight
w(u, v) equal to the minimum distance from u to v in G. Notice that each
edge of G’ corresponds to a path of one or more edges in G. In con-
structing G’ it is useful to label any edge with the path it represents in G
if this path is longer than one edge. Figure 6.17 shows G’ for G of figure 6.16.
Given G and G’ as just defined we have the following theorem. We re-
emphasise that if triangle inequality does not hold, then the travelling
salesman problem means a shortest circuit visiting each vertex at least

once and not precisely once. If triangle inequality is satisfied, then either
definition will do.

Theorem 6.12. A solution to the travelling salesman problem in G corre-

sponds to and is the same length as a minimum-weight Hamiltonian circuit
in the complete graph G’.
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Fig. 6.17

Proof. Suppose that C is a solution to the travelling salesman problem for
G which is not equivalent to a minimum-weight Hamiltonian circuit of G’.
Let C’ be the equivalent circuit in G'. Notice that C’ must follow the same
sequence of edges in G’ as C does in G and that these edges have the same
weight in G’ as in G. This is because if any one of these edges, say (u, v),
had a smaller weight in G, then a shorter solution to the travelling sales-
man problem could be found by replacing (¢, v) in C by the sequence of
edges that labels (¥, v) in G'. C’ is a circuit in G’ which visits every vertex
at least once.

Suppose that C’ visits some vertex s a second time. Let r be the vertex
visited just before this happens and let ¢ be the vertex visited just after it
happens. We can replace the subpath (r, s, ¢) in C’ by (r, t) without affecting
the fact that C’ is equivalent to a solution to the travelling salesman
problem in G. This is because, by construction w(s, t) in G’ is equal to the
length of the shortest path from s to ¢ in G. In this way we can eliminate
any multiple visitations to any vertex in G’ and, contrary to our hypothesis,
C' eventually becomes a Hamiltonian circiiit. Notice that it must be a
Hamiltonian circuit of minimum length ; a Hamiltonian circuit of minimum
length in G’ would be equivalent to a shorter solution to the travelling
salesman problem in G. ]

In view of the previous theorem we can assume from now on that we
wish, in solving the travelling salesman problem, to find a minimum-
weight Hamiltonian circuit in a complete graph. This is unless, of course,
we mean, by the travelling salesman problem, a circuit of shortest length
which visits every vertex precisely once in a graph for which triangle
inequality does not hold. An immediately obvious method of solution is
to enumerate all the Hamiltonian circuits and then by comparison to find
the shortest. This approach, although straightforward, presents us with an
unacceptably large amount of computation. For a complete undirected
graph with n vertices, there are 3(n— 1)! essentially different Hamiltonian
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circuits. The number of addition operations then required to find the
lengths of all these circuits is O(r!). Given a computer that can perform
these additions at the rate of 108/second, the following approximate
computation times follow:

n ~n! Time

12 4.8x 108 5 seconds
15 1.3x 1012 3 hours
20 2.4x 1018 800 years
50 3.0x 10% 10% years

The importance of this model calculation is that it demonstrates the
phenomenal rate of growth of the computation time as n increases. For n
of quite moderate value, n! is too large to make the computation feasible.
In fact, no known efficient algorithm exists for the travelling salesman
problem. In chapter 8, we prove that the problem of determining whether
or not a Hamiltonian circuit exists, which is shorter than a specified length,
is NP-complete.

For the travelling salesman problem, as indeed for any other intractable
problem, it is useful to have a polynomial time algorithm which will
produce, within known bounds, an approximation to the required result.
Such algorithms are called approximation algorithms. Let L be the value
obtained (for example, this might be the length of a travelling salesman’s
circuit) by an approximation algorithm and let L, be an exact value. We
require a performance guarantee for the approximation algorithm which
could, for a minimisation problem, be stated in the form:

1<L/Ly<

For a maximisation problem we invert the ratio L/L,. Of course, we would
like e to be as close to one as possible.

Unfortunately, not every heuristic produces a useful approximation
algorithm. Consider the following approach which is perhaps the most
immediately obvious for the travelling salesman. Starting at vertex vy, we
trace C, an approximation to a minimum-weight Hamiltonian circuit,
along (v,, vy) which is the shortest edge from v,. We then leave v, along
(v, vy), the shortest edge from v, which keeps C acyclic. We continue in this
way until every vertex has been visited. The Hamiltonian circuit is then

completed by the edge (v, v;). It can be shown (see Liuf't) that for this
algorithm:

a = H[Inn]+1)
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Thus, for this so-called nearest-neighbour method, the possible error in the
approximation is a function of the problem size. For arbitrarily large
graphs, the resulting error may be arbitrarily large. Fortunately, we can
do better than this.

Consider the approximation algorithm presented in figure 6.18. G,
which is subjected to the algorithm, is a complete weighted graph within
which the triangle inequality holds. The algorithm first finds a minimum-
weight spanning-tree T of G using, perhaps, Prim’s algorithm described in
chapter 2. The next step associates a depth-first index to each vertex with
respect to a depth-first search of 7. For this, the depth-first algorithm
described in chapter 1 could be used. Finally, the algorithm outputs a
Hamiltonian circuit which visits the vertices of G in the order of the
depth-first indices.

Fig. 6.18. An approximation algorithm for the travelling salesman
problem.

1. Find a minimum-weight spanning-tree T of G.

2. Conduct a depth-first search of T associating a depth-first index
L(v) with each vertex v.

3. Output the following approximate minimum-weight Hamiltonian
circuit:

C= (v‘p v(” v‘,) sooy v{,‘a v‘l)

where L(v;) = j

The component steps of this algorithm, as described in previous chapters,
have low order polynomial time complexi#® and so the algorithm is an
efficient one.

Figure 6.19 shows an application of this algorithm to the graph G.
A minimum-weight spanning-tree T consists of the heavily scored edges.
C is the Hamiltonian circuit output by the algorithm. The subscript on
each vertex denotes its depth-first index with respect to the particular
traversal of T undertaken. C, indicated in the diagram is a circuit which,
in a depth-first traversal of T, travels twice around the spanning-tree 7.
Here, C,, closely related to C, gives the algorithm its name of the twice-
around-the-minimum-weight-spanning-tree algorithm.

Theorem 6.13. For any travelling salesman problem within which the
triangle inequality is satisfied, the twice-around-the-minimum-weight-
spanning-tree algorithm gives & < 2.
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Proof. Let W be the weight of a minimum-weight spanning-tree of G and
let W, be the weight of a minimum-weight Hamiltonian circuit of G. We
first note that:

W< W,

because a spanning-tree shorter than a minimum-length Hamiltonian circuit
can be obtained by deleting any edge from this circuit. We next observe
that a depth-first search of a spanning-tree traces a circuit C, which
traverses each edge of the tree twice. For a minimum-weight tree this
circuit has length 2W which is strictly less than 2W;. Now the circuit C
generated by the algorithim follows C, except that C proceeds directly to
the next unvisited vertex on C, rather than revisiting any vertices. Because
the triangle inequality holds within G, C is no longer than C, and so the
théorem follows. ]

Fig. 6.19. An application of the twice-around-the-minimum-weight-
spanning-tree algorithm.

Co = (V15 Y2y V55 Y2y Vas V2 V15 Vs V15 Vs V1) C = (¥, V3, Vg, Vg, Vi Ve V)

The heuristics used to obtain a circuit from a minimum-weight spanning-
tree in the above algorithm can be improved upon as we describe in
figure 6.20. Here steps 2, 3 and 4 essentially replace step 2 of the previous
algorithm. Notice that in step 2 of figure 6.20, ¥’ must contain an even
number of vertices by theorem 1.1. Thus a perfect matching of ¥’ exists
and one of minimum weight can be found in polynomial time in just the
same way as was described for step 3 of the algorithm of figure 6.8. In
step 3 of figure 6.20, G’ must be Eulerian because the construction ensures
that every vertex is of even-degree. Step 4 may be efficiently carried out
incorporating one of the Eulerian circuit algorithms described elsewhere
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in this chapter. For convenience we shall call the algorithm of figure 6.20,
the minimum-weight matching algorithm for the travelling salesman
problem.

Fig. 6.20. An improved approximation algorithm for the travelling
salesman problem.

1. Find a minimum-weight spanning-tree T of G.

2. Construct the set ¥’ of vertices of odd-degree in T and find a
minimum-weight perfect matching M for V.

3. Construct the Eulerian graph G’ obtained by adding the edges
of MtoT.

4. Find an Eulerian circuit C, of G’ and index each vertex
according to the order, L(v), in which v is first visited in a

trace of C,.
5. Output the following approximate minimum-weight Hamiltonian
circuit:
C = (D3, iy Vigy -0 Dy s)
where L(v,, =j

Figure 6.21 shows an application of this algorithm to the graph G of
figure 6.19. In figure 6.21 a minimum-weight tree T of G is indicated by
heavily scored edges. In this case every vertex of 7" has odd-degree and so
belongs to ¥’. A minimum-weight perfect matching of ¥’ is, by inspection,
M = {(vy, vg), (vg, V3), (v, vg)}. G', constructed from the edges of M and T,
is shown in the diagram. C, is the Eulerian circuit from which the tabu-
lated indices L(v) are derived. From these the approximate minimum-
length Hamiltonian circuit C is obtained.

Fig. 6.21. An application of the mimtmum-weight matching
algorithm for the travelling salesman problem.

Ve Co = (Vb Vss V15 Vas Vg5 Vg, Vs Ve 1)
v | L(v)
vy 1
vy 3
Vs 4
. Va 5
121 2 Vg v 2
Ve 6

C= (vh Vs> Vas V3, Vg, Ve Vl)
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The following theorem shows that the present heuristics are an improve-
ment on those used in the algorithm of figure 6.18.

Theorem 6.14. For any travelling salesman problem within which the
triangle inequality is satisfied, the minimum-weight matching algorithm
for the travelling salesman problem gives « < 2.

Proof. Because the triangle inequality holds, the circuit C is no longer than
the circuit C,. As in the previous algorithm C follows C, except that C
proceeds directly to the next unvisited vertex of C, rather than revisiting
any vertices. The weight of C,, is obtained by adding the weight of T, which
we denote by W, to the weight of the matching M, which we denote by
W;. By W, we denote the weight of a minimum-weight Hamiltonian circuit
of G. As in theorem 6.13:
W< W,

and we just need to show that W, < 4W¥, in order to complete the proof.

Given a Hamiltonian circuit H of weight W,, we can construct a circuit
of no greater weight which passes only through the vertices in ¥’. We do
this by tracing H and by-passing those vertices not in V’. Because the
triangle inequality holds, the new circuit cannot be longer than H. Because
V'’ contains an even number of vertices we can construct two matchings
from this new circuit, each obtained by taking alternate edges. Consider
that matching of this pair which has smallest weight. This matching has a
weight which is not less than W; but which is not greater than half the
weight of the circuit through the vertices of V. The result follows. ]

At present no polynomial time algorithm is known which gives a better
approximation guarantee than that provided by theorem 6.14.

6.3.4. 2-factors of a graph

We define a k-factor of a graph G to be a k-regular spanning
subgraph of G. Our interest here concerns 2-factors because a Hamiltonian
circuit is a 2-factor, although, of course, not every 2-factor is a Hamiltonian
circuit. For example, the graph of figure 6.22 has several 2-factors including
a Hamiltonian circuit (1,2, 3,4, 7, 8,6, 5,1) and the 2-factor with com-
ponent circuits (1, 2, 6, 5, 1) and (3, 4, 8, 7, 3).

We can determine whether or not a graph contains a 2-factor, and find
an example if one exists, in polynomial time as follows. If G = (V, E) then
we first construct a bipartite graph G’ =(V”, E’). Here V" = VU V’,
|V] = |V’| and G’ has the bipartition (¥, V'). We shall denote the vertices
in V by vy, v,, ..., v, and those in V' by v}, vy, ..., v). There is an edge
(v, v7) € E’ if and only if (v;, v;) € E. The construction is illustrated for
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Fig. 6.22

G = K, in figure 6.23. The second step of the algorithm is to find a
maximum matching in the graph G’. This can be done in polynomial time,
as described at the beginning of section 5.2. Such a matching is indicated
by heavily scored edges in figure 6.23. We now need the following theorem.

Fig. 6.23
2 1 1
2 2
G 1 G
3 3
4
4 4

Theorem 6.15. G contains a 2-factor if and only if G’ contains a perfect
matching.

Proof. Suppose that G’ contains a perfect matching M. It is easy to see that
G then contains a 2-factor which consists of every edge (v;, v;) such that
(vs, v7) € M. Conversely, suppose that G contains a 2-factor. We can then
construct a perfect matching in G’ as follows. For each component of the
2-factor, which must be a circuit, we define a direction. Thus every edge in
the 2-factor becomes a directed edge. If (v;, v;) is such an edge, then
(v;, v)) is an edge of a matching in G'. It is easy to see that this matching
must be perfect. [ ]

If the maximum matching phase of our 2-factor algorithm finds a
matching M, such that |M| = n, then M will be perfect. In this case,
according to theorem 6.15, G contains a 2-factor which consists of every
edge (v;, v;) such that (v;, v})) € M.
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6.4 Summary and references

We can determine the existence of and find an Eulerian circuit of
a graph or digraph in linear-time. This is in marked contrast to the
situation for Hamiltonian circuits. As we shall prove in chapter 8, the
question of whether or not a graph is Hamiltonian is NP-complete. Of the
existence theorems of section 6.3.1, theorem 6.10 is due to Dirac.’! Many
others can be found in the expository accounts in chapter 10 of Berge!®
and chapter 6 of Beineke & Wilson.”!

Scheduling problems often involve Eulerian and Hamiltonian circuits.
Edmonds & Johnson® provide a comprehensive treatment of postman
problems and methods of Eulerian circuit generation. There is a great
volume of literature associated with the travelling salesman problem. See,
for example, the survey of Bellmore & Nemhauser.® The minimum-
weight matching approximation algorithm described in the text is due to
Christofides.”? Although we were able to prove the effectiveness of such
an algorithm for one class of travelling salesman problems, Sahni &
Gonzalez'®! have shown that the problem is non-approximable (unless the
NP-complete problems have polynomial time solutions) if we require both
that the salesman must visit each city precisely once and that triangle
inequality is not satisfied.

For general reading, Chapters 6 and 7 of Mineaka'® are recommended.
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EXERCISES

In what graphs is an Eulerian circuit also a Hamiltonian circuit ?

In 1736 (theorem 6.1) Euler solved a recreational puzzle of interest to
the inhabitants of Konigsberg (now Kaliningrad). Kaliningrad sits
across the river Pregel with seven bridges connecting the various banks
and islands of the river as shown. The problem is whether or not it is
possible to follow a circular walk starting and finishing at the same river
bank and crossing each bridge precisely once. What is the answer ?

s

r\

6.3.

In 1859 Sir William Hamilton sold, for 25 guineas, a puzzle to a Dublin
games manufacturer. The puzzle consisted of a dodecahedron (a
regular solid figure with 12 pentagonal faces and hence 20 corners) and
on each corner was marked the name of some capital city. One game
that could be played was to construct a world tour. This consisted of a
circuit, following the edges of the dodecahedron, which visited every
capital city exactly once. Trace such a Hamiltonian circuit on the
projection of the dodecahedron below.

6.4.

A tournament is a digraph in which there is precisely one directed edge
between any pair of vertices. Suppose that n people play in a singles
tennis competition, each player meeting each of the other (n—1)
competitors just once. Clearly, a tournament is a representation of the
competition results in which the edge (i, /) implies that competitor i
beat competitor j. Show that the competitors can always be ordered so
that any competitor is immediately above a competitor he has beaten
(see theorem 6.8). In general how quickly can such an ordering be
found ?
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6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

Eulerian and Hamiltonian tours

Suppose that for an edge (4, /) there also exists a path from j to i.
Comment upon the sensibility of ranking the players now in the way
described.

Using the proof of theorem 6.1 as a basis, carefully describe the details

of an algorithm of O(| E |) complexity which finds an Eulerian circuit of

an undirected Eulerian graph.

Determine the complexity of the algorithm described in section 6.3.2

to find all the Hamiltonian tours of a graph. Hence justify the claim that

it is inefficient.

G = (V,E) is a bipartite graph with bipartition (¥”, V"), where

[V’| # |P”|. Show that there always exists a proper subset of vertices W

such that:

CG-wW)> W

where C(G— W) is the number of components of (G— W). Therefore,

in view of theorem 6.11, G cannot be Hamiltonian.

(a) Show that the Petersen graph of figure 6.14 is not Hamiltonian. The
amount of computation required to find all the Hamiltonian circuits
of a graph with ten vertices using the usual algorithms will be large,
so use ad hoc arguments,

(b) Demonstrate that the removal of any vertex from the Petersen
graph yields a Hamiltonian graph. (The Petersen graph is the only
non-Hamiltonian graph with ten or less vertices with this property.)

Show that every 3-regular graph without cut-edges, contains a 2-factor

(see exercise 5.6). Notice (exercise 6.8(a)) that not every such graph is

Hamiltonian.

The Chinese postman problem for both non-Eulerian graphs and non-

Eulerian digraphs has, as indicated in the text, an efficient solution.

Obtain polynomial bounds, which are as tight as you can make them, for

the execution times of the algorithms described.

The following problem may appear in a number of guises. In essence it

amounts to finding a longest circular sequence of characters (from an

alphabet of m characters Iy, b, ..., [,,) that can be formed without

repeating a subsequence of n characters. Such a sequence is called a

de Bruijn sequence and for m = 2 the problem is called the teleprinters

problem. Since there are m" distinct subsequences, then the required
sequence cannot be more than m" characters long. Does a sequence of
this length exist and if so, how can it be constructed ? The problem can
be solved using a graph in which each edge is labelled with one of the
n-character subsequences; if one edge follows another on some path of
the graph then the construction is such that their labels are of possible
contiguous subsequences in the required circular sequence. For
example, if we denote a particular (n— 1) sequence of characters by
and if /;« labels an edge into some vertex, then those edges labelled
aly, aly, ..., al,, will leave that vertex. In the diagram below, (a) shows
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the general attachment of edges to any vertex which is naturally
labelled «; (b) shows the whole graph for n = m = 3.

(a)

6.12.

(a) Show that for all » and m the graph constructed according to the
above rules is Eulerian. Moreover, show that an Eulerian circuit can
be used to construct a circular sequence of length m" in which no
subsequence of length n is repeated by taking in turn the first letter of
each edge label on the circuit. (Such a sequence for (b) in the above
diagram is 201200011122202212110100210.)

(b) A metal disc, mounted on an axle, has its circumference divided
into 256 equal segments. An electric current supplied via the axle will
conduct radially through the disc to a contact which touches one of the
circumferential segments. Some of the&segments are, however, insulated.
If a contact is fixed and the disc rptates then in some positions the
contact will detect a current whilst in others it will not. Show that a set
of eight contacts set adjacently along the circumference of the disc can
just provide sufficient information to determine the orientation of the
disc. This of course presupposes a suitable ordering of insulated and
conducting segments. This problem has been of practical interest in
telecommunications.

(¢) Interms of m and n, how quickly can you find a de Bruijn sequence ?
A major computer complex has a number of operational modes for
different production work. The cost in machine down time in converting
from one mode of operation i to another j is denoted by T3, j). In
general we note that T'(,j) # T(j, ). In planning a week’s work schedule
the operations manager notes that his installation needs to operate in
each of N modes once only. He also notes that in order to minimise the
total machine down time he needs to find a quickest Hamiltonian path
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in a digraph G whose vertices are the operational modes and whose
edges have execution times 7'(7, /). In order to find an approximation to
such a path he adopts the following sequence of heuristics:
(a) He removes from G, for each pair of modes i and j, the most time-
costly edge of either (i, /) or (j, i). The resultant graph G’ still contains a
Hamiltonian path. Why ? Show by example that a quickest Hamiltonian
path in G’ may be slower than a quickest Hamiltonian path in G.
(b) He determines the strongly connected components of G’: C,,C, ...,
C;. Show that there is an ordering of these components: Cy, Cy, ..., Cy,
such that there is an edge directed from every vertex of C;, to every
vertex of Cy, provided thats > ¢. These are the only edges connecting the
components.
(¢) He notes that each Hamiltonian path of G’ must consist of a
Hamiltonian path of C;, followed by a Hamiltonian path of C,, and so
on. Justify his claim that if G’ contains a number of strongly connected
components then the number of Hamiltonian paths in G” will in general
be considerably smaller than the number in G. Hence a quickest path
in G’ can then be determined in much shorter time than a quickest
path in G.

In terms of both complexity and approximation, would you generally
recommend employing these heuristics?
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Colouring graphs

Our concern in this chapter is to partition or colour the vertices, edges or
faces of a graph in a way dependent upon their various adjacencies. Many
problems motivate these considerations, not the least of which concern
scheduling and timetabling. Historically, the four-colour problem of planar
maps also led to many inquiries in this area. We take a look at this
problem at the end of the chapter. As we shall see, questions of par-
titioning and colouring are frequently intractable.

71 Dominating sets, independence and cliques

Board games provide ready illustrations of domination and of
independence. For example an 8 x 8 chessboard can be represented by a
graph with 64 vertices. An edge (u, v) might imply that similar chess pieces
placed at the squares corresponding to # and to » would challenge one
another. Any vertex adjacent to the vertex v is said to be dominated by v
whilst any other vertex is independent of u.

For any graph a subset of its vertices is an independent set if no two
vertices in the subset are adjacent. An independent set is maximal if any
vertex not in the set is dominated by at least one vertex in it. The
independence number, I(G), of a graph G is the cardinality of the largest
independent set.

A subset of the vertices of a graph is a dominating set if every vertex not
in the subset is adjacent to at least one vertex in the subset. A minimal
dominating set contains no proper subset that is also a dominating set.
The domination number, D(G), of a graph G is the cardinality of the smallest
dominating set.

Consider again the graphical representation of a chessboard. The
problem of placing eight queens on the board so that no queen challenges
another, is precisely the problem of finding a maximal independent set for
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the graph which contains the edges (#, v) where v and v are vertices corre-
sponding to squares in the same row or the same column or the same
diagonal. There are, in fact, 92 such maximal independent sets (one is
shown in figure 7.1(a)) and, of course, J(G) = 8. Another problem asks
what is the minimum number of queens that can be placed on a standard
chessboard such that each square is dominated by at least one queen. This
problem is equivalent to finding D(G) for the graph of the first problem.
Figure 7.1() shows a minimal dominating set of smallest cardinality and

so D(G) = 5.
Fig. 7.1

(@) [ Je (b)

The following elementary theorem provides a relationship between

I(G) and D(G):

Theorem 7.1. An independent set is also a dominating set if and only if
it is maximal. Thus I(G) > D(G).

Proof. This follows directly from the definitions. Any vertex that is not in
a maximal independent set is dominated by at least one vertex in the set,
hence a maximal independent set is also a dominating set. Conversely, an
independent set that is also a dominating set has to be maximal because
any vertex not in the set is dominated by at least one vertex in the set. W

In connection with this theorem consider the following problem. A
community wishes to establish the smallest committee to decide an issue
which is of concern to a number of interested minority groups. Any
individual may belong to more than one interest group and every group
has to be represented. The community can be represented by a graph in
which the vertices are individuals and each edge connects two individuals
in the same interest group. What is required is an independent set (no
interest group should be represented more than once in a smallest com-
mittee) which is also a dominating set (each group must be represented).
The above theorem shows that such a choice is always possible.
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We cannot present efficient algorithms to find I(G) or to find D(G) for
an arbitrary graph G. In fact, for a positive integer K, the following
questions are NP-complete:

(a) does G contain an independent set of size greater than K?
and
(b) does G contain a dominating set of size less than K?

This claim is specifically justified for (@) in chapter 8. Justification for (b),
like that for (a), is easily obtained by showing that (b) is transformable
from the problem of vertex cover which is described in chapter 8. We now
describe algorithms to find D(G) and to find I(G).

In order that a vertex v; is dominated we must include either »; in a
dominating set or any of the vertices v}, v3, ..., v®) which are adjacent to
v;. We can therefore (treating addition as logical or and multiplication as
logical and) seek a minimal sum of products for the boolean expression:

n
A= iIIl (v, + 03+ 03+ ... +0X00)
in order to find the minimal dominating sets. Here, of course, if any vertex
has the value true then it is included in the dominating set, whilst if it has
the value false then it is excluded. For example, in connection with the
graph of figure 7.2 we have that:

A= (a+b+d+e)(a+b+c+d)(b+c+d)(a+b+c+d+e)

x(a+d+e+f) (e+f)
Fig. 7.2
a b
c
f e

and using the identity (u+v)v = v we obtain:
A = (a+b+d+e) (b+c+d)(e+f)
= be+de+ec+fb+fd+fac+ace

The seven terms in this expression respectively represent the minimal
dominating sets {b, e}, {d, e}, {e, c}, ..., {a, ¢, €}. Five of these have the
minimum cardinality of 2, so that in this case D(G) = 2. In general, the
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expression (v;+v}+v3+ ... +v3®)) contains at least two terms, so that the
number of ‘multiplications’ involved in the evaluation of A exceeds 2",

Rather than directly enumerating the maximal independent sets of a
graph, it is easier to enumerate the complement sets. In other words, for
each maximal independent set I of the graph G = (V, E), we more easily
find its complement I = V' —1I. For every edge (u, v) of the graph, I must
contain u or v or both. In order to find I(G) we must find the smallest sets
I satisfying this condition for each edge. If we obtain a minimum sum of
products for B, where:

B= JI (@u+v)
(v, v)el

then each term will represent a minimal set [ which is guaranteed to contain
at least one end-point from each edge (4, v) € E. For example, for the
graph of figure 7.2, we have that:

B = (a+b)(a+d)(a+e)(b+c)(b+d) (c+d)(d+e) (e+))

= abce+ abdf+aced+ acdf+bed

So that the graph has the maximal dominating sets:

V—{a,b,c,et = {d,f}

V—{a,b,d f}={ce}

V—{a,c, e d} ={bf}

V—{a,c,d,f} = {b, e

V—{b,e,d} = {a,c,f}
The last set has the largest cardinality so that in this case D(G) = 3. In
general, notice that evaluation of B requires 2'E! ‘multiplications’.

We consider now the réle of cliques in relation to independence and
dominance. A cligue is any subgraph of G = (V, E) which is isomorphic
to the complete graph K, where 1 < i < n and n = |V|. We can always
partition the vertices of a graph into chques Let C(G) denote the number
of cliques in a partition which has the smallest possible number of cliques.

Theorem 7.2. For any graph G, I(G) < C(G). Also if I is an independent
set and P is a partition into cliques such that |J| = |P| then I = I(G) and
|P| = C(G).
Proof. By definition, no independent set 7 can have more than one vertex
in any clique of a partition P, hence:

111 < |P|
Therefore:

I(G) = max |I| € min |P| = C(G)
If |I] = |P| then the second result follows. |
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The presence or absence of large cliques is clearly significant to the
values of D(G) and I(G) because all the vertices in a clique are dominated
by any one of its vertices. Intuitively there is a limit to the number of edges
that a graph may have in order that no subgraph be a clique of specified
size. We shall present a well-known theorem due to Tiuran™ which
provides such an upper bound. The next theorem, from which we derive
Turan’s, is a result due to Erdds.’? We first need, however, to define the
term degree-majorised. A graph G, is degree-majorised by another graph G,
if there is a one-to-one correspondence between the vertices in G; and G,
such that the degree of a vertex in G, is greater than or equal to the degree
of its corresponding vertex in G,. Also the degree sequence of a graph is
defined to be the degrees of its vertices arranged in non-decreasing order.

Theorem 7.3. If G is a simple graph not containing a clique of size (i+1),
then G is degree-majorised by some complete i-partite graph P. Moreover,
if G has the same degree sequence as P then G is isomorphic to P.

Proof. By induction on i. If i = 1 then G contains no edges and is degree-
majorised by the 1-partite graph isomorphic to it. We thus have a basis
for our induction and now assume that the theorem is true for all i < j.
Let G be a simple graph which contains no complete subgraph K;,,. We
denote by G, a subgraph whose vertices are adjacent to a vertex u of
maximum degree in G. Since G contains no Kj,, then G, contains no K;
and, therefore, by the induction hypothesis, G, is degree-majorised by
some complete (j— 1)-partite graph P,. We denote by ¥; the set of vertices
in Gy and by ¥, the set of vertices (V—V,), where V is the vertex-set of G.
G, will denote the graph with no edges but with the vertex-set ¥;. Consider
the join of G, and G, (that is, the graph obtained by drawing an edge from
each vertex of G, to each vertex of G,) which we denote by J(G,, Gy). In
J(G,, Gy) the vertices ¥, have degree equal to the maximum degree of any
vertex in G, while the vertices ¥; have at least the same degree that they
have in G. Thus G is degree-majorised by J(G,, G,). Since G, is degree-
majorised by some complete (j— 1)-partite graph P,, then G is also degree-
majorised by the complete j-partite graph P = J(P,, G,). This completes the
proof of the first part of the theorem.

Suppose that G has the same degree sequence as P. Then G, has the same
degree sequence as P,. By the induction hypothesis G, is then isomorphic
to P,. Also G must then have the same degree sequence as J(Gy, G,). It
follows that in G each vertex in ¥; must be joined to every vertex in V,.
Thus G is isomorphic to P. n

Figure 7.3 illustrates the proof of theorem 7.3 for the graph G shown
there. Before presenting Tiran’s theorem we define T} ,, to be the complete
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J-partite graph with n-vertices in which the parts are as equal in size as
possible. For example in figure 7.3, H is T, ,. In the following, E(G)
denotes the edge-set of G.

Fig. 7.3
G (with G, heavily scored) P, (3-partite)
u A, As
G B,
C, B
A, D, 4,
ORITAN

H = J(P,, G,) (4-partite)

Theorem 7.4 (TGran). If G is a simple graph which does contain K}, then
|E(G)| < |E(T;,,)|. Also, |E(G)| = |E(T;,,)| only if G is isomorphic to
T\ne
Proof. If G is a simple graph not containing K ,,, then from theorem 7.3, G
is degree-majorised by some complete j-partite graph, P. Hence:

|E@)| < |EP)]
Also, as is easily verified (exercise 7.4):

|E(P)| < |E(T;, )|
and so the first part of the theorem follows. If now | E(G)| = |E(T},,,)| then
|E(G)| = |E(P)| and from theorem 7.3 G and P are isomorphic. Also, since

|E(P) = |E(T;,,)| it follows (exercise 7.4) that P and T; , are isomorphic.
Hence G is isomorphic to T; ,,. ]

The question of determining whether or not an arbitrary graph contains
a clique greater than a given size is NP-complete. This is not surprising
because, as we make use of in theorem 8.5, an independent set of a graph
G = (V, E) give rise to a clique in its complement (that is, in the graph
(Kip— E)).
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7.2 Colouring graphs

In this section we first investigate the problem of colouring the
edges of a graph, G, such that no two adjacent edges are similarly coloured.
Such a distribution of colours is called a (proper) edge-colouring of G.
Subsequently we shall be interested in colouring the vertices of G such
that no two adjacent vertices are similarly coloured. In this case we refer
to a (proper) vertex-colouring of G. A graph is said to be k-edge (or vertex-)
colourable if a proper colouring using k colours exists.

The edge-chromatic index, ¥ ,(G), is the minimum number of colours
required for a proper edge-colouring of G. Similarly, we define the vertex-
chromatic index, {(G), to be the minimum number of colours required
for a proper vertex-colouring of G.

The problem of colouring the faces of (specifically planar) graphs is
deferred until section 7.3. We conclude this section with a brief look at
chromatic polynomials which are concerned with the number of ways in
which a graph may be vertex-coloured.

We shall from time to time in this section and in the next refer to the
Kempe-chain argument. Kempe published the first, but ill-fated, proof of
thefour-colour conjecture for plane maps in 1879. The argument concerns the
recolouring of some vertices (the argument can in fact also be applied to
edge-recolourings) of a proper colouring so that a different, but neverthe-
less proper, colouring of the graph is produced. Consider a vertex v which
is coloured A. This vertex plus all the others coloured A or B which are
reachable from v by paths in the graph passing only through vertices
coloured A4 or B, constitute a component of the subgraph of G which is
induced by those vertices which are coloured 4 or B. We denote such a
subgraph by H(A, B) and where appropriate we specify a component of it
which includes » by Hy(4, B). The Kemge-chain argument now proceeds
as follows. In a proper colouring of G, those vertices in H,(4, B) coloured
A can be recoloured B, and those coloured B can be recoloured 4, and
the result is still a proper colouring. If vertex v’ is a vertex in H(A, B) but

not in H (A, B), then v can be recoloured in this way without affecting the
colour of v'.

7.2.1. Edge-colouring

An obvious lower bound for ¥(G) is the maximum degree A, of
any vertex in G. This is, of course, because the edges meeting at any vertex
must be differently coloured. In fact, we shall see in due course that for
any simple graph G, the following holds:

A<¥(G) <A+l
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This result is Vizing’s theorem®® which we prove after presenting theorems
which are specifically concerned with bipartite and with complete graphs.

Theorem 7.5. If G is a bipartite graph then ¢ (G) = A.

Proof. By induction on the number of edges |E|. The theorem is trivially
true for |E| = 1. We shall show that if every edge but one has been
coloured with at most A colours, then there exists a proper colouring of G
using A colours.

Let (u, v) be the uncoloured edge. Since there are A colours available,
it follows that at least one colour is absent from u and that at least one
colour is absent from v. If the same colour is missing at both vertices, then
(u, v) can be coloured with it. Otherwise let C, be missing at # and let C,
be missing at v. Of course, C, is present at v and C, is present at u. We
denote by H,(C,, C;) the component of the two-coloured subgraph
containing u. Now u and v belong to different parts of the bipartition so
that any path from u to v within H,(C,, C,) must have a final edge coloured
C,. However, C, is missing at v and so v cannot be in H(C,, C;). We can
therefore interchange the colours of the edges in H,(C;, C;) by a Kempe-
chain argument so that C, is absent from u as well as from ». Thus (u, v)
can now be coloured C,. |

Theorem 7.6. If G is a complete graph with n vertices, then
Y(G) = Aifniseven
= A+1ifnis odd

Fig. 7.4

Proof. If n is odd we arrange the vertices of G in the form of a regular
polygon. Figure 7.4 shows the case for n = 5. We colour the edges around
the perimeter of the polygon using a new colour for each edge. The
remaining edges are then coloured each with the same colour as the edge
it is parallel with on the perimeter. Since no two edges are parallel at any
vertex this must result in a proper colouring using (A+1) = n colours.
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If G had a A-colouring then, since G has 4n(n—1) edges, there would be at
least 4n edges with the same colour. But in a proper colouring the
maximum number of edges with the same colour cannot exceed the size
of a maximum-cardinality matching which is 4(n—1). Hence G is not
A-colourable.

If n is even, then G can be viewed as a complete graph G’ with an odd
number of vertices plus an additional vertex connected to all the vertices
of G'. If G’ is coloured according to the process described for n odd above,
then one colour is missing from each vertex. These colours are all different,
so that the remaining edges of G can be coloured with the missing colours.
Thus G, even n, can be properly coloured with the same number of colours
as the complete graph with (n— 1) vertices. [ ]

For applications of the previous two theorems see exercises 7.5 and 7.6.

These theorems show that for specific graphs ¥,(G) is equal to A or to
(A +1). Vizing’s theorem generalises this result.

Theorem 7.7 (Vizing). For any simple graph G:
A<y(6) <A+1

Proof. Since ¥,(G) > A we need only show that ¥ (G) < A+1. We prove
this by induction on the number of edges. For one edge the theorem is
trivially true. We therefore suppose that all the edges of G have been
properly coloured using at most (A + 1) colours except for the edge (v,, v,)-
Since (A + 1) colours are available there will be at least one colour missing
at v, and at least one colour missing at v;. If the same colour is missing at
both v, and v; then this can be assigned to (vy, v;). We therefore assume
that C, is missing from v, (but is present at v;) and that C, is missing from
v, (but is present at v,).

We proceed to construct a sequence of edges (vq, vy), (g, Vo), Vg, Vg), ..
and a sequence of colours C;, Cy, Cs, ... such that C; is missing at v; and
such that (v, v;,,) is coloured C;. Let the sequences at some stage of the
construction be (vg, vy), (Vgs V), ---» (Vg ¥;) and Cj, C,, ..., C;. Notice that
there is at most one edge (vy, v) of colour C,. If such a v exists and if
v ¢ {vy, v,, ..., v;} then we make v,,, be v and let C;,, be a colour missing
at v;,,, otherwise the sequence stops. Any sequence must stop with at
most A elements. Suppose that on termination the sequences are (v, vy),
(vgs Vp), ..., (g, v;) and Gy, G,, ..., C;. There are just two reasons why the
sequences will have terminated:

(i) There is no edge (v, v) coloured C; .We can then obtain a proper
colouring as follows. Recolour each edge (v, v;) for i < j with the colour
C;. Now every edge is coloured except (vy, v;). But C; is missing at both
v, and v; and thus (v, v;) can be coloured C;.
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(i) There exists some k < j for which the edge (v, v,) is coloured C;.
We obtain a proper colouring as follows. First colour each edge (v, v;)
for i < k with the colour C,, leave (v, v;) uncoloured so that C; is absent
from v. Each component of the Kempe subgraph H(C,, C;) is either a path
or a circuit because at any vertex there is at most one edge coloured C,
and at most one edge coloured C;. Now at least one of Cy and C; are
missing at each of the vertices v, v, and v; and so all three vertices cannot
belong to the same component of H(C,, C). One of two circumstances
must therefore occur:

(@) Vertex v, is not in the component H, (Cq, C;). We then obtain a
proper colouring as follows. Interchange the colours Cyand C;in H,,(C,,C))
so that C; is now missing at v;. Since C, is missing at v, we can colour
(v, v3) With C;.

(b) Vertex v, is not in the component H,,j(Co, C,). We then obtain a
proper colouring as follows. Recolour each edge (v,, v;) for k < i < jwith
the colour C; and leave (,, v;) uncoloured. Notice that neither C, nor C;
is involved in this recolouring, and therefore H(C;, C;) remains unaltered.
Interchange the colours C, and C; in H,(G,, C;) making C, absent from
v;. But G, is absent from v, so that (v, v;) can be coloured C;. ]

The proof of Vizing’s theorem essentially embodies (see exercise 7.7)
a polynomial time algorithm to obtain a proper edge-colouring of a graph
using at most (A + 1) colours. As we shall see in chapter 8, the question of
whether or not ¥,(G) = A, for an arbitrary graph G, is NP-complete. Thus
the algorithm embodied in the proof might be thought of as an approxi-
mation algorithm which derives proper edge-colourings using a minimum,
or very nearly a minimum, number of colours. Theorem 7.7 applies
specifically to simple graphs. A more general result (which we shall not
prove) also due to Vizing applies to graphs without self-loops. If M is the
maximum number of edges joining any two vertices (M is called the
multiplicity of the graph) of a graph, then:

A<y(G)<A+M

In fact, for any M, there exists a multi-graph such that y(G) = A+ M.

7.2.2. Vertex-colouring

Vizing’s theorem (section 7.2.1) provides tight bounds on ¥ (G)
for an arbitrary simple graph G. Unfortunately, as far as y,(G) is con-
cerned, no theorem exists which gives such tight bounds based on simple
criteria. Like ¢,(G), there is no known polynomial time algorithm to
determine ¥,(G); in fact, as we prove in chapter 8, the question of whether
or not a graph contains a proper vertex-colouring using less than k (a
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positive integer) colours is NP-complete. It is a simple matter to construct
an exponential-time algorithm to find ¢,(G), although it requires rather
more than a casual approach to get the complexity down to

O(E|n(1+4/3)"

as Lawler'¥ has described. Throughout this section we can assume that G
is a simple graph because any multi-graph has the same ¥,(G) as its
underlying simple graph. The following theorem provides an obvious
bound on ¥ (G).

Theorem 7.8. Any graph G is (A + 1)-vertex-colourable.

Proof. By induction on n, the number of vertices. For n = 1 the theorem is
trivially true. If we add a vertex to the graph then this additional vertex
will be attached to at most A other vertices and so can be coloured with the
one or more colours not used by its neighbours. |

The bound provided by theorem 7.8 can be far greater than the actual
value of ¥,(G). For example, if G is planar then (see section 7.3) ¥,(G) < 4
whereas G may have a vertex of arbitrarily large degree. The following
theorem, due to Brooks,® provides only a marginally improved bound.

Theorem 7.9. If G is not a complete graph, is connected and has A > 3,
then G is A-vertex-colourable.

Proof. By induction on the numniber of vertices. Notice that if any vertex of
G has degree less than A, then we could colour G with A colours by
imitating the proof of theorem 7.8. Without loss of generality we can then
presume that G is regular, each vertex having degree A. Let G have n
vertices. We remove a vertex v from G sq that the remaining graph has
(n—1) vertices and by the induction hypothesis is A-vertex-colourable. We
suppose that all the neighbours of v are differently coloured otherwise v
could be coloured with a colour missing from its neighbours. Let us
denote the neighbours of v by vy, v,, ..., 95 and their colours, respectively,
by Cl’ C2’ ceey CA.

We assume that any two neighbours of », v; and v;, belong to the same
component of the two-coloured subgraph of G, H(C;, C;). Otherwise v,
could be coloured C; without affecting the colours of the other neighbours
of v by a Kempe-chain argument, so freeing the colour C; for v. We now
show that every vertex of H,(C;, C;), apart from v; and v;, must be of
degree 2. Starting at v; in H,(C,, C;) we follow a path, not leaving any
vertex by an edge along which it was approached. Suppose that we reach
a vertex u (of degree A) which has degree greater than 2 in H,(C,, C)).
Then there must be at least one colour absent from the neighbours of «



200 Colouring graphs

in G which is neither C; nor C;. We can recolour » with such a missing
colour and so cause v; and v; to be in separate components of H(C;, C).
Thus v; could be coloured C; and v could then be coloured C,.

Notice that two paths such as H,(C;, C)) and H, (G, C)) can be pre-
sumed to intersect at v; only. Any other point of intersection, say u,
would have four of its neighbours utilising only two colours. Then u
would have at least one colour absent from its neighbours apart from C;.
Thus u could be coloured with a colour which is not C;, C; or G, so
breaking the path H,(C;, C;) from v, to v,.

We now choose any two neighbours of v, v; and v;, which (if such a
choice is possible) are not adjacent. Let u be the vertex adjacent to v; and
coloured C;. We can interchange the colours in H,(C;, G), j # k, without
affecting the colouring of the rest of the graph. However, this leads to a
contradiction because then u# would be an intersection of the paths
H,(C, C)) and H,,j(Ck, C;). Therefore we cannot choose two non-adjacent
neighbours of v. Thus v and its neighbours must be K, (and since G is
connected this must imply that G = K,,,). This case is specifically
excluded and now all possible cases have been dealt with. ]

Given that it js unlikely that the problem of finding ¥,(G) has a
polynomial time solution, it is natural to think in terms of approximation
algorithms. However, this problem, like a number of others (see section 7.4),
seems to be unapproximable. Consider, for example, the algorithm out-
lined in figure 7.5. This uses the obvious heuristic of colouring the vertices
in turn using the colours represented by the positive integers and such that

Fig. 7.5
1. fori=1tondo
begin
2. while N [jldoj «j+1
3. for all v € A(v,) do N,[j] « true
4. C(v) «Jj
end

a vertex is coloured by the integer of lowest value not used by its coloured
neighbours. Such a scheme is called sequential colouring. The colour of
vertex v; is C(v;) and the boolean array element N,[j] is true if a
neighbour of v, is coloured j. Initially each N,[j] is false. As usual
A(v,) is the adjacency list of v,, It is easy to see that the algorithm, including
any necessary initialisation, has a complexity of O(n2). The behaviour of
this algorithm is highly sensitive to the order in which the vertices are
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coloured. For example, consider the bipartite graph G = (V, E) where V
is partitioned into the subsets V, = {uy, u,, ..., ;} and V, = {vy, vy, ..., 0},
and where E = {(u;, v;)|i # j}. It is easy to see that if the vertices are
coloured in the order uy, uj, ..., Uy, vy, U, ..., U then the graph is coloured
using a minimum number of colours. But if the vertices are coloured in
the order uy, vy, 5, U, ..., Uy, ¥, then the algorithm uses k = 4n colours.
Thus if, as usual with approximation algorithms, we define a performance
ratio of C/C, where C is the number of colours used by the algorithm and
C, is the optimal number, then we see that this ratio can be arbitrarily
large. It is possible to modify the algorithm (see exercise 7.8) to produce
an enhanced performance for many graphs. However, there are no known
polynomial time algorithms for which the performance ratio is bound by
a constant. The best-known performance ratio, due to Johnson® is
O(n/log n). In fact, there is little prospect of finding a polynomial time
algorithm with a good performance ratio because Garey & Johnson!” have
shown that if an approximation algorithm existed with a performance ratio
of two or less, then it would be possible to find an optimal colouring in
polynomial time.

We end this section by indicating a practical application of vertex-
colouring. The example is a classic one concerned with timetables. A large
educational institution finds itself under pressure to schedule classes so
that they can all fall within acceptable teaching hours. The restricting
factor is that many classes cannot be scheduled at the same time because
they have to be attended by the same students. How can the designers of
the timetable be certain that the scheduled lectures have been compressed
into the shortest possible time ? One solution is to represent the lectures as
the vertices of a graph in which the edges connect vertices corresponding
to lectures which cannot be scheduled &t the same time. The vertex-
chromatic index of this graph then represents the smallest timespan
within which the lectures can be scheduled.

7.2.3. Chromatic polynomials

The idea of chromatic polynomials was introduced by Birkhoff. 1!
By P,(G) we denote the number of ways of properly vertex-colouring the
graph G with k colours. As we shall see, P(G) is a polynomial in k. P(G)
is therefore referred to as the chromatic polynomial of G. Two simple
examples are provided by the graphs of figure 7.6.

For G, we can colour the vertex of degree 3 first in k different ways. The
remaining vertices can then each be coloured in (k— 1) ways. It is easy to
see that for any tree with n vertices, T,, we have P(T,) = k(k—1)»1,
Colouring the vertices of G, in turn provides a choice of k colours for the
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first, (k—1) for the second and (k—2) for the third. In general, for any
complete graph K,, we have Py(k,) = k!/(k—n)! Note also that the
graph with n vertices and no edges, ¢, has P(¢,) = k. For k < ¥ (G),
P(G) = 0 and the reader may check that this condition holds for the
examples used so far.

A A

Fig. 7.6

Py(Gy) = k(k—1) Py(G,) = k(k—1) (k—2)

It is not necessarily an easy matter to derive P,(G) for an arbitrary
graph. A useful device which provides a systematic derivation is the
recursion formula of the next theorem.

Theorem 7.10. Let » and v be adjacent vertices in the graph G, then
P(G) = P(G—(u, v))— PG o (u, v))

where G—(u, v) is derived from G by deleting the edge (4, v) and G o (u, v)
is obtained from G by contracting the edge (u, v).

Proof. Because u is adjacent to v, P,(G) consists of a count of colourings
in which u is differently coloured from v. Thus all the colourings counted
in P(G) are also counted in P(G—(u,v)). However, P(G—(u,))
includes, in addition, the number of colourings in which u and v are
identically coloured, this number is specifically P(G o (4, v)) and so the
result follows. ]

Repeated application of the recursion formula of this theorem will
eventually express P(G) as a linear combination of chromatic polynomials
of graphs with no edges. We noted earlier that P(¢,) = k™ and so B(G)
will be a polynomial in k. What is more, if G has n vertices, then P(¢,)
only appears once in the afore-mentioned linear combination. Thus
P(G) is of degree n and the coefficient of k™ is one. It is also not difficult
to see that the coefficient of k7~ is (—|E|). This follows from the obser-
vation that removing an edge from G at each stage of a recursive evaluation
of P(G) spawns a negative term which ultimately leads to a contribution to
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P/(G) from ¢,,_;. We also note that the coefficient of k? in P,(G) must be
zero, because if k = 0 then we must have P(G) = 0.
The formula of theorem 7.10 may also be applied in the following form:

P(G) = PG+ (u, v))+ P((G+(u, v)) o (4, 1))
Fig. 7.7
Pk(Ga)=D=I__I -A
=(d-0)-(d-1)
=== 1= -(d-D-(=4)

= (-4 v (D) -3 ()
= Pu$)—4Pu(¢s) +6PUd,) — 3Pu($))
= k(k—1)(k*—3k+3)

n) =< = <P+ <7
- )@ )
=@+3ﬁ>+27

= Pu(Ks)+3Py(K)+2Py(Ky)
= k(k—1) (k—2) (k*—4k +5)

Recursive evaluation of P(G) using this form will eventually express
P(G) as a linear combination of chromatic polynomials of complete
graphs. If G has a large number of edges then this mode of solution will
evaluate P(G) more quickly than the former method. In figure 7.7 -we
illustrate the two methods of evaluating P(G). Obvious convenience is
made of representing the chromatic polynomial of a graph by the graph
itself. Also, whenever more than one edge arises between two vertices only
one edge is retained. Obviously, ¥,(G) is the smallest value of k for which
P(G) > 0. Thus ¥,(G3) = 2 and ¥(Gy = 3.
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The original motivation for studying chromatic polynomials was to seek
a solution to the four-colour problem of planar maps. In terms of chro-
matic polynomials the four-colour conjecture (see section 7.3) would be

proven true if for any planar graph (which is the dual (see section 3.3.1)
of any planar map) G:

RG) >0

In the event such a method of solution has not been found.

It is unlikely that P,(G) can be found in polynomial time because this
would imply that an efficient determination of 1,(G) existed. This in turn
would provide an efficient solution to any other NP-complete problem.

7.3 Face-colourings of embedded graphs
This section is largely concerned with planar graphs and the four-

colour conjecture which was eventually proved correct by Appel & Haken.
The conjecture that four colours are sufficient to colour the regions of a
plane map (that is, the faces of a graph embedded in the plane) so that
bordering regions (adjacent faces) are differently coloured became perhaps
the best-known unsolved problem in mathematics. It became so because it
withstood the onslaught of many mathematicians for over 120 years.

Although our concern is specifically with planar embeddings, we note
in passing that for maps of genus g > 1 Heawood™ has shown that the
following numbers of colours are sufficient:

|‘7+‘/(12 + 48g)'|

Proof of this formula does not unfortunately carry over for g = 0. Also,
Heawood unwittingly presumed the necessity for this number of colours
but proof of this was not obtained until Ringel & Youngs"™ published
their work. For a discussion of this see chapter 3 of Beineke & Wilson.n2

In section 7.3.2 we indicate the lines along which Appel & Haken
eventually provided a proof of the four-colour conjecture. Because of the
complexity of their work it is not possible to provide a detailed description.
Fortunately, we can easily show that five colours are sufficient to provide
a proper face-colouring for any planar graph. This we do in the following
section.

7.3.1. The five-colour theorem

Kempe*3! published what seems to have been the first attempted
proof of the four-colour conjecture. Although Kempe’s work contained
a flaw which Heawood™® pointed out, it contained a valuable contribution
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which formed the basis of many later attempts to solve the problem
including Appel & Haken’s successful attempt. Kempe marshalled the
following ideas:

(a) As we described at the end of section 3.3, showing that ¥ (G) < 4
for any simple planar graph is equivalent to proving the four-colour
conjecture.

() In colouring the vertices of a simple planar graph it is sufficient to
consider plane triangulations only. A plane triangulation is obtained from
an embedding of any planar graph G by adding edges so as to divide each
non-triangular face into triangles. Figure 7.8 shows the addition of
(dashed) edges to form a plane triangulation. Clearly, any planar em-
bedding G is a subgraph of some plane triangulation 7, so that a proper
vertex-colouring of T will be a proper vertex-colouring of G.

Fig. 7.8

(c) As we proved for corollary 3.3, every planar graph contains at least
one vertex of degree at most 5. Hence, any plane triangulation contains one
of the configurations (subgraphs) illustrated in figure 7.9. Notice that a
plane triangulation cannot contain a vertex of degree 1.

Fig. 7.9

b
) Y e
a [+

(i) (iii) @iv)




206 Colouring graphs

(d) Kempe-chain arguments. This style of reasoning was described at
the beginning of section 7.2.

Kempe’s attempt at a proof of the four-colour conjecture used induction
on the number of vertices of a plane triangulation. For n < 4 the con-
jecture is clearly true. Suppose that » > 4. The plane triangulation will
contain one of the configurations of figure 7.9. If v is removed from the
triangulation, 7, then the remaining graph is 4-vertex-colourable by the
induction hypothesis. Given such a colouring then we are required to
replace and colour ¥ without the use of an additional colour. For con-
figurations (i) and (ii) of figure 7.9 this can be done trivially by assigning
to v a colour not utilised at a, b or c. We presume then that T does not
contain the configurations (i) and (ii). Consequently it contains (iii)
or/and (iv).

Kempe used the following argument to deal with configuration (iii). We
presume that the vertices a, b, ¢ and d are all differently coloured, otherwise
v could be replaced and coloured with an unused colour. Let a, b, ¢ and d
be then coloured C;, C,, C3 and C,. It cannot be the case that vertices a
and ¢ belong to the same component of H(C,, Cy) and at the same time
vertices b and d belong to the same component of H(C,, C,). Clearly, such
a supposition would lead to these components of H(C;, C3) and H(C,, Cp
having at least one vertex, u, in common. The colour of # cannot be
(C, or Cy) and (C, or C,). Without loss of generality, we may assume that
a is not in the same component of H(C,, C;) as ¢ and hence, by a Kempe-
chain argument, vertex a may be coloured C; without affecting the colours
of by ¢ and d. This makes the colour of C; available for v.

Unfortunately, Kempe’s treatment of the configuration (iv) of figure 7.9
contained an error. His argument relied upon two simultaneous colour
changes which, as Heawood showed, can cause two adjacent vertices to
become similarly coloured. Nevertheless, Heawood was able to salvage
the following result as the five-colour theorem.

Theorem 7.11. Every planar map is 5-face-colourable.

Proof. This exactly parallels Kempe’s attempted proof of the four-colour
conjecture. For the first three configurations of figure 7.9, v can be replaced
and coloured with a colour not used at a, b, c or d. As far as configuration
(iv) is concerned the only non-trivial case occurs when the neighbours of v
are all differently coloured. In a manner exactly like Kempe’s treatment of
configuration (iii), we can recolour one of these vertices and in the process
make a colour available for v. |

The proof of theorem 7.11 embodies a polynomial time algorithm to
five-colour the vertices of a planar graph. It is an easy matter (exercise 7.11)
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to describe an O(n%) implementation. However, it is possible (see, for

example, Chiba et all¥) to describe a linear-time implementation of
five-colouring.

7.3.2. The four-colour theorem

As we stated earlier, the basis of Appel & Haken’s proof of the four-
colour conjecture (which we can now properly call the four-colour
theorem) can be traced back to Kempe’s attempt. After Kempe many other
researchers also contributed in the direction of this successful proof. Of
course Appel & Haken’s achievement was a major one and involved a
great extension both qualitatively and quantitatively from this simple base.

In a text of this kind it is not appropriate, let alone possible, to elucidate
every detail of a proof which in one area made massive use of computer
time and which in another involved a long period of trial and error and of
insight gained from the results and performances of computer programs.
However, what we can do is to outline the deceptively simple concepts
behind the proof and then hopefully try to give some idea of the technical
difficulties involved in pursuing them.

The object of the proof was to show, like Kempe’s attempt, that every
plane triangulation has a 4-vertex-colouring. The two essential concepts
behind the proof are those of unavoidable sets and reducible configurations.
Before defining these we need to explain what is meant by a configuration.
A configuration consists of part of a plane triangulation contained within
a circuit. This circuit is called the ring bounding the configuration and the
number of vertices in the circuit is called the ring-size of the configuration.
Figure 7.9 shows some configurations with respective ring-sizes of 2, 3,
4 and 5.

An unavoidable set is a set of configufations such that évery plane
triangulation must contain at least one of the configurations in the set.
Thus figure 7.9 provides one example of an unavoidable set.

A configuration is said to be reducible if it cannot be contained in a
triangulation which would be a smallest counterexample to the four-
colour conjecture. For example, we saw in section 7.3.1 that a counter-
example would not include configurations (i), (ii), and (iii) of figure 7.9.
If Kempe had been able to show that configuration (iv) of that diagram
was also reducible then his proof would have been complete.

The starkest description of Appel & Haken’s proof is that they were
able to find an unavoidable set of reducible configurations. This descrip-
tion, however, belies the fact that the proof required a great deal of effort
and ingenuity in order to avoid intractable computation. It would be
incorrect to presume that their task was simply divided into two parts,
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that of finding an unavoidable set and that of proving that every con-
figuration in the set was reducible. In fact, both parts were made to play
a strongly interdependent rdle in the development of the final set of
reducible configurations.

The search for alternative unavoidable sets has a long history. In 1904
Weinicke published the unavoidable set shown in figure 7.10. Others were
published by Franklin in 1922 and Lebesque in 1940. Appel & Haken’s

Fig. 7.10

>

method for proving that a set of configurations is unavoidable was a
development of the so-called method of discharging presented by Heesch
in 1969. The principle behind this method is as follows. Each vertex is
assigned a number (6—7) where i is the degree of the vertex. This number
is called the charge on the vertex. For any plane triangulation we have
from corollary 3.3 that:

> (6—i) n(i) = 12

where n(i) is the number of vertices with degree i. Hence the total charge
for any plane triangulation must be 12. Given a set of configurations, S,
we suppose that there exists a triangulation, 7, not containing any con-
figuration in S. If we can redistribute the charge in T (without creating or
destroying charge) such that no vertex ends up with a positive charge then
we have a contradiction. The total charge must be positive and so the
assumption that S is not an unavoidable set is proved false. The difficulty,
in general, is how to redistribute the charge. We can demonstrate the kind
of technique with a rather simple example.

We shall show that Wernicke’s set of configurations shown in figure 7.10
in unavoidable. T is then a plane triangulation with no vertices of degree 2,
3 or 4 and no vertex of degree 5 adjacent to a vertex of degree 6 or less.
Notice that only vertices of degree 5 are positively charged (with one unit)
in the first instance. We now allow each vertex of degree 5 to discharge
one-fifth of a unit of charge to each of its neighbours. In this way every
vertex ends up with a non-positive charge, because any vertex with
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degree i (> 7) will have at most ~4i neighbours of degree 5. Thus we have
a contradiction of the type described earlier.

As a result of using a particular discharging procedure Heesch thought
that the four-colour problem could be reduced to considering a finite set
of configurations. In fact, he explicitly exhibited a set of ~ 8900 con-
figurations. The ring-size (up to 18) of some of these was too large for
them to be tested for reducibility in a practical length of time. Heesch also
observed that in investigating the reducibility of some configurations,
certain features (so-called reduction obstacles) appeared to prevent
reduction. Appel & Haken’s task was to find a set of configurations with
manageable ring-size (in the event 14 was the largest) and which avoided
the reduction obstacles.

The study of reducibility, like that of unavoidable sets, has a long
history. Birkhoff wrote an important paper in 1913 in which, amongst
other things, he proved that the so-called Birkhoff diamond (figure 7.11(a))

Fig. 7.11
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is reducible. Thousands of reducible configurations are now known
following the interest of many mathematicians. The sort of method used
by Heesch (which is a refinement of Birkhoff’s) can be briefly described as
follows. The object is to show that a four-colouring of a plane triangu-
lation T, not containing a particular configuration, C, can be extended to
include the configuration. Any colouring of 7, for this purpose, can be
represented by the way it distributes the available four colours amongst
the vertices in the ring bounding the configuration C. A list of all possible
permutations of the colours on the ring is constructed. Several of these
permutations allow a colouring of the configuration immediately and can
therefore be removed from the list of permutations to be considered. Next,
Kempe-chain arguments can be applied to the remaining permutations
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and this converts some of them into permutations that have already
been discarded and so they can be discarded as well. Configurations that
can be entirely dealt with in this way are called D-reducible. If the con-
figuration can be dealt with by considering a subset of permutations, in
fact a subset corresponding to replacing C with a smaller configuration,
then the original configuration is called C-reducible. An example for the
Birkhoff diamond is shown in figure 7.11(b) where, as required, the rest of
the graph would be left intact. Appel & Haken’s computer programs
utilised these methods, abandoning particular configurations when proof
of reducibility proved too lengthy, at the expense of introducing one or
more further configurations.

Eventually, an unavoidable set of approximately 1500 reduciblé con-
figurations was constructed. This was achieved after a long period of trial
and error, involving much empirical adjustment to a complicated dis-
charging algorithm depending on the interplay between the developing
unavoidable set and the discharging procedure. Appel & Haken developed
such a strong intuitive sense for what was likely to be successful that they
were eventually able to enact the discharging process by hand and so
construct the final unavoidable set without the use of the computer. Appel
is on record as estimating that it would take about 300 hours on a large
computer to check all the details of their proof, many of the difficulties of
which we have skated over in this brief description. The final unavoidable
set used in the proof is illustrated in [17]).

Appel & Haken’s proof of the four-colour theorem could not have been
achieved without the computer. Unfortunately, the sheer effort and time
required to check every detail mitigate against wide verification by many
other mathematicians. No doubt there will be a continuing effort to seek
alternative and shorter proofs of the theorem.

7.4 Summary and references
As we shall confirm in chapter 8, many graph colouring problems

are NP-complete. The problem of vertex-colouring is particularly in-
transigent because, as we saw in section 7.2.2, it seems that we cannot even
find a useful approximation to ¥,(G) in polynomial time. The problem of
finding the independence number of a graph is similarly non-approximable
(Garey & Johnson," see also exercises 7.10 and 8.15).

Practical applications of the material of this chapter can be found in
exercises that follow as well as in the chapter.

For further general reading see chapters 12-15 of Berge,'”! chapter 12
of Harary,!20! chapter 4 of Busacker & Saaty®!! and chapters 6-8 of
Bondy & Murty.[8!
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The book by Ore?! provides a fund of background information on the
four-colour problem. The articles by Appel & Hakenl'516.17 describe
their solution, as does chapter 4 of Beineke & Wilson.['2!
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EXERCISES

7.1. Show that any graph with » vertices and at least [n?] edges contains a
triangle.

(Use theorem 7.4.)

7.2. In a group of eight people one person knows three others, two know-
four others, three know six others, while the remaining two each
know two others. Show that there must be a group of three mutual
acquaintances.

(Use theorem 7.4.)

7.3. A national radio service transmits to a population residing in townships

distributed throughout the country. Each town is within radio trans-
mission distance of at least one other. If radio transmitters are to be
located in the towns, the problem of economically siting them is one of
finding a minimal dominating set. For purposes of reliability, however,
the engineers wish to have two sets of transmitters, each set being
operated as a unit. If one unit breaks down, then the whole population
is still to be serviced by the second unit. Show that this can be done
within the constraint that no two transmitters are located in any one
township and that it may not be necessary to have a transmitter in
every town.
(The problem is equivalent to showing that in every connected graph
there are two disjoint minimal dominating sets. If ¥ is the vertex-set
and X is a minimal dominating set, show that (¥ — X) is a (not neces-
sarily minimal) dominating set.)

7.4. P is a complete m-partite graph with n vertices. T,,,,, is the complete
m-partite graph with n vertices in which the numbers of vertices in each
part are as equal as possible. Show that:
|EP)| < |E(T.n)|
and that if equality holds then P and T, , are isomorphic. (The number
of vertices in any part of T, , differs by no more than one from the
number in any other part. This is not true for P if T, , and P are not
isomorphic. Show then that |E(P)| < |E(Tm,»)|.)

1.5. A Latin square is an N x N matrix in which the entries are integers in the
range 1-N. No entry appears more than once in any row or any
column. Justify the following construction of a Latin square, 7.

Form a complete bipartite graph G, each part having N vertices.
Properly edge-colour G (note theorem 7.5) using a minimum number of
colours. In such a colouring associate the edge-colours of G = (V, E)
with the column indices of T and associate the indices of the vertices in
one part of G (let these be ¥, and let ¥, = V'— ¥,) with the row indices
of T. Then T(;, j) is assigned the index of the vertex we arrive at in V; by
following the edge coloured j from the ith vertex in V;.

7.6. There are 2N contestants in a chess tournament. No contestant plays
more than one match in a day and must, in thecourseof thetournament,
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play every other player. Justify the following scheme to complete the
tournament in (2N—1) days.

Properly colour the edges (note theorem 7.6) of the complete graph
K,y using a minimum number of colours. Label the colours 1-(2N—1).
Let the vertices of K,y represent the players. On the ith day those
players connected by edges coloured i are drawn together.

Describe, in a style similar to that used for algorithmic description
throughout this text, a polynomial time algorithm to properly edge-
colour a graph using at most (note the proof of theorem 7.7) A+1
colours, where A is the maximum degree of any vertex of the graph.
Make the ipplementation as efficient as you can.

Modify the sequential colouring algorithm of figure 7.5 so that it
interchanges two colours C; and C; in any two-coloured subgraph of the
coloured portion of the graph if doing so will avoid the use of a new
colour for the next vertex v, to be coloured. This will be the case if each
neighbour of v, which is coloured C; does not belong to a same com-
ponent of the Kempe subgraph H(C}, C;) as any neighbour of v, which
is coloured C;.

(a) Show that the modified algorithm will produce a proper two-
colouring for any bipartite graph irrespective of the order in which
vertices ‘are coloured.

(b) Show that the modified algorithm can utilise, for particular
colouring sequences, up to k colours for graphs G’ = (V’, E’) where
V'= {u‘,m, W‘Il <is< k}’ E'= {(u(’ vl)’ (ub wl)s(vb W;)Ii?‘-'j} and k>3.
Notice that ¥,(G") = 3 and hence, as for the unmodified algorithm, the
performance ratio can be arbitrarily large.

Prove the following lemma due to Isaacs™

G = (V, E)is a 3-regular graph with a proper 3-edge-colouring. V’ is
any subset of vertices and E’ is the set of edges connecting vertices in ¥’
to vertices in (V— V). If the number of edges coloured i in E’ is K;,
i = 1,2, 3, then the K are either all even or are all odd.

(Consider the components of H(C;, C,) all of which are circuits.)
Show (by example) that the following algorithm to find an approxi-
mation I to a maximum independent set I, has an arbitrarily large
performance ratio (|1|/}1]).

1. I+« o

2. fori=1tondo

3. If v, is not adjacent to any ve I
4 then I < I VU {v;}

Demonstrate that the performance of the algorithm is highly sensitive
to the order in which the vertices are labelled.

Use the proof of the five-colour theorem, theorem 7.11, to construct a
polynomial time algorithm to properly S5-vertex-colour any planar
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graph. The complexity of your algorithm will probably be quadratic,

however note the paper of Chiba et ql.04

(a) Show that a planar graph G has a 2-face-colouring if and only if
G is Eulerian.

(Show that the dual of G is bipartite and that any bipartite graph has an

Eulerian dual.)

(b) Show that every planar Hamiltonian graph has a 4-face-colouring.
(Any Hamiltonian circuit divides the plane into two regions.
Consider using two colours for the faces in either region.)

N committee members sit at a round table. X different organisations

have representatives on the committee. How many ways can the

members be seated subject to the constraint that each organisation has

a varying membership of at least one representative and when it has

more than one then no two of them may sit next to each other?

(The answer is provided by the chromatic polynomial of the circuit of

length n, C,:

Px(C,) = (k—1)"+ (=" (k-1))

Show that the following two statements are equivalent:

(a) Every simple planar graph is 4-face-colourable.

(b) Every simple 3-regular, 2-edge-connected planar graph is 3-edge-
colourable.

(Show that (a) implies (b) as follows. Let G be a simple cubic, 2-edge-

connected planar graph. According to (a) it has a 4-face-colouring, let

such a colouring use the colours 4, B, C and D. Assign the colours «,
£ and ¥ to the edges as follows:

a if the edge separates faces coloured (4 and B) or (C and D)

B if the edge separates faces coloured (4 and C) or (B and D)

< if the edge separates faces coloured (4 and D) or (B and C)

This is easily seen to be a proper 3-edge-colouring of G.

Show that (b) implies (a) as follows. An equivalent statement to (a)
is that any plane triangulation is 4-vertex-colourable. But any simple
planar graph with triangular faces is the dual of some cubic, 2-edge-
connected graph. We need, therefore, only show that (b) implies that
any cubic, 2-edge-connected graph is 4-face-colourable. Let G be such
a graph with a 3-edge-colouring using colours a, # and y. The two-
coloured subgraph H(e, ) of G is 2-regular and so (see 7.12(a)) has a
2-face-colouring using colours a and b, say. Similarly, H(x, 7) has a
2-face-colouring using colours ¢ and d. Each face of G lies within a face
of H(e, p) and a face of H(e, ¥) and can therefore be assigned a pair of
indices, namely (a or b) and (b or d). In fact, each face of G is an inter-
section of a face of H(a, ) and a face of H(«, ) so that any two adjacent
faces of G differ in at least one index. Thus the following assignments
provide a proper 4-face-colouring using colours 1, 2, 3 and 4.

1=(ac), 2=(@d), 3=(b0), 4=(4d).
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A proper 3-edge-colouring of a cubic graph is called a Tait colouring.
In 1880 Tait gave a proof of the four-colour conjecture for planar maps
on the assumption that every cubic 2-edge-connected planar graph is
Hamiltonian. However, in 1946 Tutte showed that this was an invalid
assumption by constructing the non-Hamiltonian cubic 3-connected
graph shown below.

The Tutte graph
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Graph problems and intractability

In this chapter we provide a formal framework for the concept of
algorithmic efficiency used in previous chapters.

We re-emphasise the difference between those algorithms whose
execution times are bounded by a polynomial in the problem size and
those which are not. Furthermore we introduce a broad class of problems,
the so-called NP-complete problems, which are widely believed to be
inherently intractable. This belief is largely based on the circumstantial
evidence that, despite the expenditure of much effort in the search for
efficient algorithms, not one is known for any member of this class.
Moreover, if such an algorithm was known for any one of these problems,
then such an algorithm would exist for any one of the others.

We shall see that every problem, for which we were unable to provide
an efficient solution earlier, is NP-complete:

8.1 Introduction to NP-completeness

Previously we have found it unnecessary to have a formal definition
of the concept of an algorithm. Any algorithm we introduced consisted of
a set of informally expressed instructions. In every case this description
could easily be embodied in a computer program. We shall have a need
later to be more precise, taking the definition of an algorithm to be that
embodied in Church’s thesis that there is an algorithm to solve a particular
problem if and only if it can be solved by a Turing machine which halts for
every input. Turing machines provide a model of computation which we
describe shortly. The usefulness of this model lies within its simplicity
which greatly facilitates theorising about algorithms. A number of other
formal models are commonly used to prove complexity theorems, some of
these (unlike the Turing machine) are random access machines and are
therefore fairly realistic. All these models are equivalent with respect to
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polynomial time complexity, each able to simulate a computation on the
other at (low order) polynomial time cost. See, for example, chapter 1 of
Aho, Hopcroft & Ullman.' This allows the viewpoint that those problems
which we have ‘shown’ to have efficient algorithms in earlier chapters
retain their efficiency in terms of the Turing machine model. By the same
token, we can continue to use informal arguments to demonstrate efficiency,
using our previous method to describe algorithms, when it suits our purpose.

Conveniently, polynomials bring an algebraic advantage in what theory
follows because as a class of functions they are closed under the operations
of addition, multiplication and composition. In other words, a polynomial
results from the addition or the multiplication of two polynomials and
from taking a polynomial of a polynomial. This can be useful from two
points of view. First, a complex algorithm can often be subdivided into a
number of smaller polynomial time components. If the complexity of the
original algorithm is bounded by the addition, multiplication and compo-
sition of the complexities of its components, then it will itself be of
polynomial time complexity. Secondly, it is often the case that one
problem may be solved by transforming it into another. If we have
efficient algorithms both for the transformation process and for the second
algorithm, then it follows that we have an efficient algorithm for the initial
problem. This idea will be of particular interest in section 8.1.2 where we
describe the notion of NP-completeness.

8.1.1. The classes P and NP

In order to define the classes of problems P and NP we need first
to complete our formal definition of algorithm by a description of Turing
machines.

A Turing machine (TM) carries out its computation on an infinite tape
which is divided into cells along its length. At any one time a cell contains
a single symbol or is blank. At the outset of a computation a finite set of
contiguous cells contains an encoding of the input to the computation and
all other cells are blank. The computation then proceeds by the repetition
of a cycle of actions involving the tape head. This device has a finite number
of internal states. The actions within a cycle are as follows: the tape head
reads the contents of a single tape cell, then depending upon what it has
read and which state it is in it replaces the contents of that cell with a new
symbol (this may in fact be identical to the old symbol), enters a new state
(which might be its old state) and moves one cell to the right or to the left
before starting on the next cycle. The specific changes occurring in any one
cycle are determined by a quintuple, or instruction, written as follows:

(q" t 4 Uy, m)
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where g, is the current state, gy the new state, #; is the current tape symbol
and ¢, the new tape symbol. Whether or not the tape head moves to the
right or to the left depends upon whether, respectively, 7 has the value + 1
or the value (—1). Since the set of states, O, and the set of tape symbols
(called the tape alphabet), T, are finite, any computation can be completely
specified by a finite set of quintuples. Such a set constitutes a (non-
sequential) program for the TM. For the moment we presume that a
computation is deterministic in the sense that for any pair (g,, #,) precisely
one quintuple exists to determine (gy, #y, m); the computation is then said
to be performed by a deterministic TM or DTM. At the outset of a compu-
tation a TM is conventionally in its initial state q,, and a specified tape cell
is being scanned. If the tape cells are labelled ..., C(—2), C(—1), C(0),
C(1), C(2), ..., we shall presume that C(0) is always this initially scanned
cell. The computation halts when the TM enters one of a set of final states,
F <= Q. The result of the computation is then either encoded within the
symbols that remain on the tape or is indicated by the particular halt state
that the TM is in. The latter case is especially suitable for decision problems
which simply require a ‘yes’ or ‘no’ answer. As an example of a TM we
now make use of just such a problem.

Fig.8.1
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(95 B, gy, B, +1)
(92 0,450, +1)
@ 1,901, -1)
@ 2,95, 1, +1)

Suppose that we want to know whether an integer M(>1) exactly
divides a second integer N. Figure 8.1 shows a DTM which solves this
decision problem. The upper half of the diagram shows the tape at the
outset of the computation. Both M and N are required to be in unary
representation for the algorithm (that is, the TM) to work. The tape
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symbols 4 and B are simply used as punctuation. We presume cell C(0)
is that occupied by the symbol B. The final state gy indicates a ‘yes’
answer while gy indicates ‘no’. The set of 15 quintuples listed in the
diagram constitute the TM’s program, which operates by repeatedly sub-
tracting M from N. If, whilst partially through one of these subtractions,
none of N remains, then the TM is in state g, and the right-hand cell
containing 4 is scanned. The appropriate quintuple then requires that the
state gy is entered. Notice that in this quintuple the character * indicates
the irrelevance of specifying ¢y or m. Similarly, if one of the subtractions of
M from N has been completed and none of N remains, then the TM is in
state g, and the right-hand A is scanned. The appropriate quintuple then
causes the state gy to be entered.

For convenience, the theory of NP-completeness has been designed to
apply only to decision problems. This is not restrictive because we can cast
any problem into a closely related decision problem. For example, for the
travelling salesman problem we might utilise the decision problem: does
the graph G have a tour of length less than k? Here G is said to be an
instance of the (travelling salesman) problem.

We are now in a position to define the class of problems called P. The
class P consists of those decision problems for which there exists a
polynomial time algorithm. In other words, P contains all those decision
problems which can be solved, within p(S) computational steps, by a DTM
which halts for any input. Here p(S) is a polynomial in S, the size of an
instance of the problem. Thus P consists of those problems which can be
efficiently solved.

Before introducing the class of problems called NP in a formal way,
we shall try to capture the idea in an informal manner. For this purpose
we refer to the travelling salesman decision problem defined earlier. In
Chapter 6 we stated that there is no known efficient algorithm for the
travelling salesman problem. However, consider the claim that the answer
to an instance of the decision problem was ‘yes’ and that a particular tour
was offered as evidence. It would be an easy matter to check this claim by
determining whether or not the evidence indeed represented a tour and
was of length less than K. Also, it is a simple matter to construct a poly-
nomial time algorithm for this verification process. Of course, any set of
edges may be a candidate for such a claim, and if it were possible to apply
the verification algorithm simultaneously to all these sets then our decision
problem could be solved in polynomial time. There is an extremely large
class of decision problems, many of which have great practical importance,
for which there is no known efficient algorithm, but yet which, like the
travelling salesman problem, are polynomial time verifiable. 1t is this idea



of polynomial time verifiability that the class of problems called NP is
intended to capture.

We need to be certain that our terminology is clear. Given a verification
algorithm (i.e., a TM), its input would consist of an instance of the decision
problem and a guess for that instance. So, for example, in the case of the
travelling salesman problem: does G contain a tour of length less than K?,
any set of edges might be a guess and G is an instance of the problem.

We shortly describe a non-deterministic algorithm of the type we shall
formally use to define the class NP. Such an algorithm will consist of two
stages. The first stage simply produces a guess, placing this in the tape cells
C(-1), C(-2), ..., C(—1), and leaves the tape head over C(0) in readiness
for the second stage. An instance of the problem is already presumed to
occupy the tape cells C(1), C(2), ..., C(r). Any string of symbols from the
tape alphabet will suffice for a guess. The guessing stage produces an
arbitrary string by operating non-deterministically. That is, for any pair
(g4, 1) there is (possibly) more than one triplet (gy, #7, m) and an arbitrary
choice is made as to which one to apply when (g, #;) arises. Q might
contain two special guessing states g, and g;. The state g,, is a left moving
state in that if the tape head is scanning a blank cell, then an arbitrary
symbol from the tape alphabet is printed and if the new state is ¢, then
the tape head moves to the left. If, however, the new state is g, then right
moving results and thereafter the M remains in this state, causing the
tape head to move rightwards (leaving the content of tape cells unchanged)
until C(0) is encountered (which might be distinguished by containing a
particular type symbol). Then the TM is made to enter state g, in readiness
for the second state of the computation. This stage operates deterministic-
ally and attempts to verify the guess for the instance of the problem
encoded within the tape cells C(1) to C(n).

As an example of such a non-deterministic algorithm or TM (NDTM)
consider the decision problem: is N divisible by some M(>1)? For the
second stage of operation we can make use of our previous example of a
TM illustrated in figure 8.1. However, for the guessing stage we need some
further quintuples and we also need to respecify the initial tape layout.
This is illustrated in figure 8.2. The non-determinism here is provided by
the first two of the additional quintuples listed in that diagram. This
example is particularly simple because the guess is only constructed from
one symbol, M being in unary representation. If a different encoding
scheme were used, much more non-determinism would have to be built in.

For the example NDTM and indeed for any NDTM of the generic type
we are describing there are several possible putcomes. The NDTM might
halt in state gy, it might halt in state gy or might ffot stop at all. We say



Fig. 8.2
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The program consists of the quintuples of figure 8.1 plus the following
(¢., blank, g,, 1, —1)
(g., blank, g, 4, +1)
@ Lag, 1, +1)
@ B,g,, B, —1)
(g0, blank, g, 1, —1)
(g, blank, g, 1, —1)

Q = {40 91 95> I» I> Ges I3 9}
F and T are as shown in figure 8.1.

that an NDTM solves a decision problem D, if the following two conditions
hold for all instances I of D:

(a) If D is true for I then there exists some guess for 7 which will
lead to the NDTM to stop in state gy.

(b) If D is false for I then no guess exists for I which will lead to the
NDTM to stop in state gy-.

We have described an NDTM without reference to time-complexity. The
informal preamble, however, made it clear that we are interested in poly-
nomially bounded verification. Let us then define a polynomial time
NDTM. The NDTM for the decision problem D is said to operate in
polynomial time if for every instance I of D that is true, there is a guess
that leads to the checking (or verification) stage of the NDTM to stop in
state ¢, within p(S) computational steps. Here p(S) is a polynomial in S,
the length of 1. An NDTM which operates in polynomial time is naturally
called a polynomial time NDTM.

We are now in a position to define the class NP. NP is the class of all
decision problems that can be solved by a polynomial time NDTM. NP is
an acronym for non-deterministically polynomially bounded.

Clearly, any problem D € P is also contained in NP, because we can
obtain a polynomial time NDTM for D by using the polynomial time
DTM for D as the checking stage, and this machine will respond with yes’
whilst ignoring guesses. It is an outstanding and important question in
complexity theory as to whether or not P = NP. There is a widespread



belief, based on a great deal of circumstantial evidence, but not on a proof,
that NP is a much larger class than P.

We finish this section by noting that a polynomial time algorithm is not
precisely defined unless the definition includes the format of its input
(exercise 8.7 illustrates the importance of this). We also note that for the
execution of a polynomial time verification algorithm we can disregard
any guess longer than p(n) - the polynomial bounding the computation.

8.1.2. NP-completeness and Cook’s theorem

The unresolved question as to whether or not P = NP is im-
portant because if P 2 NP then whilst the problems in P can be efficiently
solved, those in (NP~ P) would be intractable. It seems that a resolution of
this fundamental question will be difficult to obtain so that the theory of
NP-completeness, which we introduce in this section, concentrates on the
weaker question: if P ¢ NP then does the problem in hand belong to
(NP-P)?

A basic idea in the theory of NP-completeness is that of a polynomial
transformation. Let D, and D, denote two decision problems. We say that
there is a polynomial transformation from D, to D,, written D, oc Dy, if
the following two conditions hold:

(a) There exists a function F(I) transforming any instance 7 of D, to
an instance of D, such that the answer to I with respect to D, is
‘yes’ if and only if the answer to F(I) is ‘yes’ with respect to D,.

(b) There exists an efficient algorithm to compute F(I).

Notice that the TM implied by (b) would not supply a ‘yes’ o1 ‘no’ answer
but would print F(I) on the tape given I as input.

If D, oc D, and if there is a polynomial time algorithm for D,, then there
is a polynomial time algorithm for D,. We denote the polynomial bounding
the computation of F(I,) by p,(S,) where S, is the length of /;, and the
polynomial bounding the computation of D, is denoted by py(S,) where S,
is the length of I, = F(I,). Clearly, S; < py(S,) and so the computation
time for D, consisting of a transformation to D, followed by the compu-
tation of D,, is bounded by py(Sy) + po(p1(Sy) which is clearly a polynomial
in S;. It is easy to see that if D, oc D, and Dy < Dg then Dy oc Dg.

We are now in a position to define NP-complete problems. A decision
problem, D, is said to be NP-complete, written NPC, if D e NP and if for
every problem D’ € NP, D' oc D. The importance of this definition can be
seen from the following two observations:

(a) If D is NPC and if D € P then NP = P.
() If Dis NPC, D D’ and D’ € NP then D’ is NPC.



Thus the set of problems which are NPC form an equivalence class of what
might be considered the most difficult problems in NP. The next theorem,
a celebrated one due to Cook, provides us with the first problem that was
known to be NPC. Using this basis along with the fact that the relation of
polynomial transformation is transitive, hundreds of problems have been
shown to be NPC. Many of these have important applications and many
are to be found in graph theory.

Before describing Cook’s theorem we need to define the problem of the
satisfiability of conjunctive normal forms, or SAT for short. Given a finite
set V = {v,, vy, ..., v,,} of logical variables, we define a literal to be a
variable v; or its complement, 5. If y; = true then §; = false and vice-versa.
We define a clause, C,, to be a set of literals. An instance, I, of SAT,
consists of a set of clauses (any literal may appear in any number of these
clauses). The problem of SAT is whether or not there exists a truth assign-
ment (i.e., an assignment of the values true or false to each member of V)
such that at least one member of each clause of I has the value true. If the
answer is ‘yes’, then we say that I has been satisfied. Let us restate the
problem in a format which from now on we take to be a standard means
to describe decision problems.

SAT:
Instance: A set of clauses, {C;}, over the set of logical variables, V.

Question: Is there a truth assignment to ¥V such that {C} is
satisfied ?

Theorem 8.1 (Cook). SAT is NPC.

Proof. A non-deterministic algorithm for SAT has simply to check that any
truth assignment satisfies each clause in an instance of the problem. It is
a simple matter to construct a polynomial time NDTM to do this. Thus
SAT € NP.

The more complex part of this proof is to show that every problem in
NP is polynomially transformable to SAT. In order to do this we shall
construct a mapping from any instance I of an arbitrary polynomial time
NDTM, M, to instances F(I) of SAT. This will be done in such a way that
F(I) is satisfiable if and only if M responds with ‘yes’ for some guess
applied to I. As we shall see, the idea behind F(J) is a simulation of M for
the instance /.

Let us define the set of states Q of M, and the set of tape symbols T,
as follows:

Q = {90 %15 ---» 4, Where g; = gy and g, = gy
T= {to, ’1, eesy t.} Where to = blank



and we take I, contained in the tape cells C(1) to C(n) to be:
I= tkl’ tkg! ceey tk..

In order to construct F(I) we need to define a set of logical variables.
This set will be a union of three subsets:

{QG, k)} v {HG, )} v {SG, J, D}

The interpretation to be placed on each variable is as follows: at time i,
Q(, k) specifies as true or false that M is in state g;, H(i, j) specifies that
the tape head of M is scanning C(j) while S(, j, /) specifies that the content

of C(j) is ;. M is a polynomial time NDTM so that i and j are bounded as
follows:

0 <i<p@), —pl) <j<pn)+1

where p(n) is a polynomial in the length n of I. Of course, both Q and T
are finite:

0<k<ro<gliI<s

where r and s depend on M. It follows that the number of H-variables and
the number of S-variables are of order (p(n))2 while the number of Q-
variables is of order p(n).

Clearly, a truth assignment to the logical variables we have defined
might correspond to a computation of M, although an arbitrary assign-
ment will probably not. Indeed such an assignment may imply that M is
simultaneously in several states and that several tape cells are being
scanned. The construction of F(I) which we now describe, builds a set of
clauses, each of which is designed to ensure one requirement that F(I)
models a computation on M. F(I) contains six groups of clauses as follows:
(how many clauses are in each group is determined by i, j, k and /, where
they occur, taking on all possible permutations of values consistent with
the ranges shown above):

(a) At the outset of a computation, M is in state g,, cell C(0) is being
scanned and 7 is contained in the cells C(1) to C(n). We shall also assume
the convention that when i = 0, C(0) and C(n+ 1) to C(p(n)+1) are blank.
(This convention was not used in our earlier example when 7 was delimited
with the punctuation symbols 4 and B. The use of punctuation symbols
can greatly reduce the number of states required by a TM, but they can
be avoided. See for example exercise 8.5(b).) These observations result in
the following clauses for F(7):

(@) {Q(0, 0)}, {H(0, 1)}, {S(0, 0, 0)}

{S(O, 1, kl)}: {S(o’ 2» kz)} - {S(O, n, kn)}
{S(O, n+ l)}’ {s(o’ n+2’ 0)} - {S(o’ p(”)"' l» 0)}



(b) At any time M is in at least one state:
{Q(i’ 0)9 Q(i’ l) - - Q(ia ’)}
but in not more than one state:
{QGN, 0G0 <j<j <
(c) At any time exactly one tape cell is being scanned (cf. (b))
{HG, —p(n), H(i, —p(n)+1), - - - HG, p(n) + 1)}
{H(i’j)’ H(i,j')}, ""P(n) < .i < j’ < p(”)"'l
(d) At any time each tape cell contains exactly one symbol (cf. (b)):
{S(i,f, o)a S(i,f, l)’ - S(i’j’ S)}
{SG,J, 1) SG, j, NogI<l'ss
(e) By the time i = p(n), M has entered state gy :
{0(p(n), 1)}
(f) The changes in M from one computational step to the next are
dictated by a quintuple of M and so F(J) includes:
{H(, /), G, k), SG,j,1), H(i+1,j+m)}
{HG,)), 0G, k), 5G,j, D), 0G+1, k)
{HG,J), 0G, k), SG, j,1), SG+1,1}
where if g, € Q—{qy, qn} then the values of /', k' and m are
provided by the quintuple (g, #, gy, tr, m) Whilst if gy e{gr,gn}
thenk’ = k,l'’=1land m = 0.

The set of clauses which is a union of those described in (a) to (f)
constitutes an instance of SAT. As we have carefully explained, the
construction ensures that F(I)is satisfied if and only if the truth assignment
describes a computation of M which halts in state gy

It is easy to see that F(I) can be constructed in polynomial time. As we
explained earlier, the fact that M is polynomially bounded means that the
number of variables of F(I) is polynomially bgunded. This in turn leads
to a polynomial bound on the number of clauses constructed in (a) to (f).

For example, from (f) we obtain 6 p(n) (p(n)+1) [(r+1) (s+1)] clauses,
where r and s are fixed by M.

Thus SAT, by all requirements, is NPC. ]

For the purposes of proving that other problems are NPC it is often
simpler to transform to a subproblem of SAT, namely 3SAT, which we
now define and prove to be NPC.

3SAT
Instance: A set of clauses {C;} each clause containing precisely
three literals, over the set of logical variables, V.

Question: Is there a truth assignment to V¥ such that {C} is
satisfied ?



Theorem 8.2. 3SAT is NPC.

Proof. Clearly, 3SAT e NP just as SAT is. In order to complete the proof
we show that SAT oc 3SAT. Let C = {a,, ay, ..., aj} be any one of the
clauses in an instance of SAT. We shall show that C can be replaced by a
number of clauses, each containing three literals, in such a way that these
clauses are satisfied if and only if C is. We denote by C’ the set of clauses
replacing C. C’ will utilise a number, depending on /, of dummy variables.
We denote by ¥, this set of introduced variables. There are a number of
cases depending upon /:

@ I =1LV = {x, x}

C’ = {{ay, x3, X3}, {a1, X1, %o}, {@1, %y, %o}, {@y, %y, %o}}
B 1=2,¥%={x}

C'= {{av ag, xl}a {al’ a,, i:I}}
©@I=3V=2

¢ ={c}
@I1>3,V,={xj1 <i<I-3}

C' = {{ay, ag, X} U {{%y, ap40, Xa]l << 1-4Y

U {{%i_s> 11, ai}}

Let us consider these cases in turn. A truth assignment satisfying C under
the cases (a) and (b) will clearly satisfy each clause in C’ whatever assign-
ment is made to the dummy variable(s). Moreover, if C’ is satisfied then
so is C. In these cases we could arbitrarily assign the value true to each
member of V. Case (c) is trivially alright.

The outstanding case, (d), is a little more involved. If there is a satisfying
truth assignment for C then at least one literal in C is true. Let a, be such
a literal. If p = 1 or 2, then we let x; = false for 1 < i< /-3,ifp=1
or (/—1) then we let x; = true for 1 < i < /-3, otherwise we let x; = true
forl < i < p—2and x; = false for p—1 < i < I-3. Itis easy to see that
these assignments will cause C"’ to be satisfied if and only if C is.

Hence any instance of SAT is transformable to an instance of 3SAT.
Moreover, this transformation can be achieved in polynomial time. In
order to see this we just need observe that if an instance of SAT has m
clauses of maximum length /, then the corresponding instance of 3SAT
has at most Im clauses. Thus 3SAT is NPC. ]

We are now in a position to apply this introduction to the theory of
NP-completeness to some of the problems of graph theory. The remaining
part of this chapter is devoted to that end.



8.2 NP-complete graph problems

In this section we show that several important problems in graph
theory are NPC. A great number of problems in graph theory are NPC so
that our selection is a relatively small one. The interested reader might
consult the long list of NPC graph problems in Garey & Johnson.

The proof that a decision problem D is NPC would normally consist of
two steps:

(a) that D e NP,
and

(b) that D' oc D for some problem D’ that is NPC.

In all the proofs that follow (a) is relatively trivial so that we often adopt
the practice of omitting that step. The proofs shall therefore concentrate
on the more difficult step, (b). At present the only candidates for D’ are
SAT or 3SAT. As we proceed we expand our choice in this respect,
building up transformation chains of NPC problems.

We divide this section into a number of subsections each consisting of a
selection of closely related problems. Throughout G is a simple graph with
a vertex set ¥, where |V| = n.

8.2.1. Problems of vertex-cover, independent set and
clique
A vertex-cover of G consists of a subset ¥’ = ¥ such that for every
edge (1, v) of G, at least one of « and v is in V’. The size of a vertex-cover
is given by |V’|. We show that the following problem is NPC:

Vertex cover (VC):
Instance: A graph G and an integer k, 1 < k < n.
Question: Does G have a vertex-coger ¥’ such that |V’| < k?

Theorem 8.3. ¥C is NPC.

Proof. We show that 3SAT oc VC. Given an instance of 3SAT consisting
of a set of clauses C = {c,, ¢y, ..., ¢;} Over the set of variables

U= {ul, uz, coey uj}

we construct an instance of ¥C consisting of the graph G and an integer k&
as follows. For every variable u, € U, G contains two vertices v, and ,,
representing u, and its complement, and the edge (v,, 7,). For every clause
¢s = {l, I, I3} € C, G contains the vertices v§, v§ and v}, and the edges
(v}, v3), (v3, v3) and (v}, v§). The construction is completed by adding, for
each clause c,, the edges (v}, 1), (v, lp) and (v3, ly); finally we set k = j+2i.



Figure 8.3 shows an instance of ¥'C obtained by this construction from
this set of clauses:

{{“1’ Uy, “s}s {ﬁl’ aa’ “t} ’ {“21 Us, ’74}}
In this case, k = 10. Since G has (2j+ 3i) vertices and (j+6i) edges it
follows that our construction can be achieved in polynomial time. In

order to complete the proof we just need show that C is satisfiable if and
only if G has a vertex-cover of size k or less.

Fig. 8.3
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We first notice that any subset of vertices of G that is a vertex-cover,
must include at least one of the vertices v, and &, for each r, 1 < r < j,
and at least two of the vertices v, v§ and v§ for each s, 1 < s < i. In other
words, a vertex-cover contains af least j+ 2i vertices. Thus the instance of
VC constructed according to our rules can only be true if ¥’ contains
exactly one vertex from each pair, (v,, 5,) and exactly two vertices from
each triple (v4, v3, 1), because k = j+2i. Suppose V' is a vertex-cover of
G. A satisfactory truth assignment for C can then be obtained by setting
u,, = true if the vertex labelled v,, is in V’, otherwise we set u,, = false.
That C is satisfied can be seen as follows. Consider the three edges from
the vertex-set {1}, v§, v3} to those vertices representing the literals of 3SAT.
Precisely two of these edges will be covered by vertices in {2, v, v} n V’,
this means that the third must be covered by a vertex representing a literal
in ¢, = {l, L, I3}. According to our truth assignment this literal is true and
S0 ¢, is satisfied. We can apply the same argument to every clause in C
and so it follows that if a vertex-cover of size k exists for G then there is
a satisfying truth assignment for C.

Conversely, let T be a truth assignment satisfying C. We can construct
a vertex-cover V' for G, of size k, as follows. For each pair of vertices label-
led v, and #,,, V' includes v,, if T assigns the value true to u,,, otherwise



V' includes ¥,,. This ensures that at least one of the three edges from
each vertex-set {v§, v§, v§} to those vertices representing the literals of 3SAT
are covered. We can cover the other two by including their end-points
in ¥’ which are in {v}, v§, v§}. This clearly provides a vertex-cover. ]
The following two problems are very strongly related to ¥C so that
proofs of their NP-completeness easily follows.
Independent set (IS):
Instance: A graph G and an integer k, 1 < k < n.
Question: Does G contain an independent set of size greater than
or equal to k?
Theorem 8.4. IS is NPC.

Proof. We show that ¥'C cc IS. Given an instance of ¥C consisting of G
and the integer k', we can construct an instance of IS within polynomial
time which consists of G and k = n—k’. Clearly, V"’ is a vertex-cover of G
if and only if (V- V") is an independent set of G. It immediately follows
that VC cc IS and that IS is NPC. ]
CLIQUE:

Instance: A graph G and an integer k, 1 < k < n.

Question: Does G contain a clique of size greater than or equal

to k?
Theorem 8.5. CLIQUE is NPC.

Proof. We show that IS «c CLIQUE. Given an instance of IS consisting
of G and k, we can construct an instance of CLIQUE consisting of G’,
the complement of G with respect to the complete graph on n vertices,
and k. Clearly, G’ can be constructed within polynomial time. Now
V' < ¥, is an independent set of G if and only if the vertices of ¥’ form
a clique in G'. Thus IS oc CLIQUE and so CLIQUE is NPC. u

8.2.2. Problems of Hamiltonian paths and circuits and
the travelling salesman problem
The following set of problems, like the previous set, are strongly
related, so that having proved the first to be NPC, proofs for the others
follow easily. Our first relatively difficult proof concerns the existence of a
Hamiltonian path in a directed graph:
Directed Hamiltonian path (DHP)
Instance: A directed graph G with two distinguished vertices,
u and v.

Question: Does G contain a directed Hamiltonian path from
utov?
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Theorem 8.6. DHP is NPC.

Proof. We show that VC cc DHP. We first describe the construction of a
specific instance of DHP from a specific instance of ¥'C with the use of
figure 8.4. As we shall see, this construction is easily generalised. Figure
8.4(a) shows an instance of V'C comprised of the graph G and the integer
k = 2. Each edge (u, v) of G has two identifiers, e(u, I) and e(v, m) signi-
fying that (i, v) is the /th edge incident with ¥ and the mth edge incident
with v. We now construct the instance of DHP consisting of the directed
graph G’ and two distinguished vertices u, and u,. This is done in three
stages as follows.

Fig. 8.4
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For each vertex v of G, G’ contains 2 x d(v) vertices where d(v) is the
degree of v. These vertices are linked by a directed path, called v’s subpath.
To complete the first stage of our construction, which is shown in figure
8.4(b) we add to G, (k+1) vertices: u,, u; and u,. The second stage of the
construction consists of adding edges from u, and #, (that is, from u,, u,,
..., U,_,) to the tail of each v’s subpath and adding arcs from the head of
each v’s subpath to u, and u, (that is, to uy, u,, ..., #;). Af this stage the




construction of G’ is shown in figure 8.4(c). Finally, if e(u,!) and e(v, m)
identify the same edge in G, then the head(tail) of the (2/—1)th arcin u’s
subpath is linked in both directions to the head(tail) of the (2m—1)th
arc in v’s subpath. Figure 8.4(d) shows these additional arcs, where for
clarity, we have omitted those arcs introduced in the second stage of our
construction and the vertices ug, %, ..., #;. Again, for clarity, two oppo-
sitely directed arcs between the same pair of vertices have been merged into
a single line. Using this specific example as a guide we can now describe
the construction for an arbitrary case.

Let G and k denote an instance of ¥C and G’ be the graph in an instance
of DHP constructed from it. For every vertex v of G there are 2 x d(v)
vertices in G’, each denoted by a triple: (v, i, 1) and (v, i, 2) for all i,
1 < i < d(v). There is a directed path through each such set of vertices,
called v’s subpath, consisting of the following edges (directed from the first
to the second vertex):

(@ i,1),(»42) and ((v,,2), (v, i+1,1)
foralli,1 < i< d(v)

G’ also contains a set of vertices, {ug, 4y, ..., 4} and the edges:

(4, (0,1,1)) foralli,0 <i<k
(@, d(@v),2),u) foralli,0 <i<k

Finally, G’ also contains the edges:
3 1), (4, 1) and (@ 1,2), ,j,2)

for every edge in G which is identified by e(y, i) and e(v, j). In order to
complete the instance of DHP we simply specify #, to be the initial vertex
and u, the final vertex of the proposed path. It is easy to see that the
number of vertices and the number of ed@es in G’ are both bound by a
polynomial in n, the number of vertices in G. Hence the construction can
be achieved in polynomial time.

In order to complete the proof we need to show that G has a vertex-
cover of size k or less, if and only if there is a Hamiltonian path from u,
to u, in G'.

Let us first suppose that G has a vertex-cover of size < k, then it must
have a vertex-cover of size k. We denote such a cover by C = {v,, vy, ..., v3}.
A directed Hamiltonian path from #, to u; in G’ can then be constructed
as follows. The first edge in the path is (4, (vy, 1, 1)) followed by vy’s
subpath and then the edge ((v;, d(v,), 2), #;); we then similarly pass from
1, t0 uy via vy’s subpath and so on until vertex u,, is reached. The path from
u, to u;, we have described does not as yet include those vertices on any y



subpath where / > k. Suppose that (u, v) is an edge in G identified by
e(u, i) and e(v, j), and that u ¢ C. We can include (y, i, 1) and (i, i, 2) in
the path by making a detour from v’s subpath as follows: replace the edge
(v, 4, 1), (v, J, 2)) by the sequence ((v, j, 1), @, i, 1)), (w, §, 1), (4, i, 2)) and
((u, i, 2), (v, j, 2)). Every vertex on the unused ; subpaths can be included
in this way because our construction of G’ ensures that the appropriate
edges are present given that C is a vertex-cover.

Fig. 8.5
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Conversely, suppose that G’ has a directed Hamiltonian path from u,
to u,. Suppose that (i, v) is an edge in G identified by e(y, i) and e(y, j)
and consider the vertices (u, i, 1), (&, i, 2), (v,, 1) and (v, j, 2) in G’. These
are shown in figure 8.5(a). A Hamiltonian path passing through these
vertices can only approach them from U and/or V. In order that all these
vertices are included in such a path only three routes are possible for it,
these are shown as the heavily scored paths in figure 8.5(b). Thus a
Hamiltonian path entering from U must exit at ¥, and one entering from
V must exit at X. This means that if (v, 1, 1) is approached from some #;
on a directed Hamiltonian path, then every vertex on v’s subpath is visited
before another (different) u, is visited by traversing the edge (v, d(v), 2), ©y)).
In this circumstance the Hamiltonian path is said to use v’s subpath.
Given our supposition that G’ contains a Hamiltonian path, H, we
construct a vertex-cover C, of size k for G, by including in C all those
vertices whose subpaths are used in H. In order that all the vertices
(u, i, 1), (u, i, 2), (v, j, 1) and (v, j, 2) are included in H at least one of the
subpaths belonging to u# and » must be used, and so the edge (4, v) e G
is covered by this construction of C. This concludes our proof. =

Having proved that DHP is NPC we are now in a position to provide
quick proofs that the remaining problems in this section are also NPC.



Directed Hamiltonian Circuit (DHC)
Instance: A directed graph G.
Question: Does G contain a directed Hamiltonian circuit?

Theorem 8.7. DHC is NPC.

Proof. We can easily see that DHP cc DHC as follows. Given an instance
of DHP consisting of a digraph G’ and the vertices u and v, we construct
an instance of DHC, G, by adding the edge (v, #) to G’. Obviously there is
a directed Hamiltonian circuit in G if and only if there is a directed
Hamiltonian path in G’ from u to v. Thus DHP occ DHC and hence DHC
is NPC. |

Hamiltonian Path (HP)
Instance: A graph G with two distinguished vertices # and v.
Question: Does G contain a Hamiltonian path between u and v?

Theorem 8.8. HP is NPC.

Proof. We shall show that DHP cc HP. Let G’ and the two vertices v, and
v, be an instance of DHP. We construct an undirected graph G from G’
as follows. For every vertex v; of G’, G contains three vertices v}, v2 and v},
and the edges (v}, v3) and (v, v§). For each edge (v;, ;) of G', G contains
the edge (v3, v}). Our instance of HP then consists of G and the vertices
v} and v}. Figure 8.6 shows an instance of HP in (b) constructed in this
way from the instance of DHP shown in (a):

Fig. 8.6

(a) (b)

"

Va
Ve

v




We complete the proof by showing that G has a Hamiltonian path
between vl and o} if and only if G’ has a directed Hamiltonian path from
v, 10 v,

Let G’ have such a path, H'. G then has the Hamiltonian path con-
sisting of the edges (v}, vd), (v}, 1}), for all v, € G’, and the edges (v}, v}),
for all (v, v;) e H'. Conversely suppose G has a Hamiltonian path, H.
H must contain the edges (v}, v3) and (v3, v}), otherwise v3 could not be
reached. Moreover, if in following H from v} to v}, we visit the vertices
v}, v} and v} in the order of writing them, then for any other vertex v; € G',
we visit v}, v}, v} in G in the order that we have written them. It follows
that if H = v}, v3, v3, v}, v}, 3, ..., v}, v}, v}, then G’ contains a directed
Hamiltonian path, v, v,, ..., v;. u

The question as to whether or not an undirected graph G contains a
Hamiltonian circuit (HC) is, of course, easily shown to be NPC. A proof
would simply show that HP occ HC rather like theorem 8.7 shows that
DHP o« DHC.

We come now to the final problem of this section.
Travelling salesman (TS)
Instance: A weighted complete graph G and an integer k£ > 0.
Question: Does G contain a Hamiltonian circuit of length < k?
Theorem 8.9, TS is NPC.
Proof. We show that HC cc TS. Let G’ be an instance of HC with n
vertices. We construct an instance of 7'S consisting of a graph G and

k = n as follows. G is the complete graph on the vertices of G’ with edge-
weights w(e), for each edge e, as follows:

ww,v)) =1 if(@v)eG
ww,v) =2 if(w,0)¢G

Clearly, G has a Hamiltonian circuit of length n if and only if G’ has a
Hamiltonian circuit. Thus HC oc T'S and therefore T'S is NPC. n

and

Notice that the proof of theorem 8.9 still holds if we had defined TS
in such a way that the travelling salesman’s tour was notr necessarily
Hamiltonian, but that nevertheless each vertex (i.e., city) had to be visited
at least once. Of course, the transformation HC oc T'S described does
ensure that the tour in the constructed instance of T'S is Hamiltonian if
and only if it is of minimum length.



8.2.3. Problems concerning the colouring of graphs
The following problem is NPC:

k-colouring (KC)
Instance: A graph G and an integer k, 1 < k < n.
Question: Does there exist a (proper, vertex-)colouring of G
using < k colours?

We shall first show that a restriction of the problem (in which k = 3)
is NPC. Before doing so we note the following lemma:

Lemma 8.1. In a 3-colouring of the following graph:

41

Yy,

Vg
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using the colours 0, 1 and 2, v, must be coloured 0 if and only if all the
vertices vy, v, and vg are coloured 0.

Proof. We leave this as an easy exercise for the reader. From now on we
use the following shorthand to specify this graph:

Theorem 8.10. 3C is NPC.

Proof. We show that 3SAT oc 3C. Given an instance of 3SAT consisting
of the set of clauses C = {¢,, ¢, ..., ¢p} Over the set of variables

U={uy,u, ..., u,

we construct an instance G of 3C as follows. G contains vertices labelled
ug and &; for each u; € U, and the edges (u;, #;). For each clause,

Cj = {Il’ Ig, Is} € C,



L

o

G contains a subgraph of the type specified in the above lemma:

Notice that each of I, /, and /4 is one of the vertices u; or i, for some i.
G also contains a vertex labelled a and the edges (a, v;) forallj, 1 < j < p.
Finally, G contains a vertex b with incident edges (b, u,), (b, @) for all i,
1 < i < q. Figure 8.7 shows this construction of G from the following
instance of 3SAT:

C = {(iy, uy, tg), (1, U3, W), (i, g, )}
Fig. 8.7

Suppose that C has a satisfying truth assignment, 7. If »; = true then
the vertex u; € G is coloured 1 and #; is coloured 0, otherwise u, is coloured
0 and #; is coloured 1. Since T is a satisfying truth assignment, not all the
vertices labelled /;, I, and I for the subgraph g; of G, 1 <j < p, are
coloured 0. Thus by lemma 8.1, the vertices v; of g; can be labelled with 1
or with 2. Thus vertex a can be coloured 0. The only vertex as yet un-
coloured is b. This is adjacent only to vertices coloured O or 1, and so we
complete a 3-colouring by assigning the colour 2 to b.

Conversely suppose that G has a 3-colouring. Without loss of generality,
we can assume that b is coloured 2 and that a is coloured 0. This implies
that the vertices u; and #;, 1 < i < g, are coloured 0 or 1 and that the
vertices v, 1 < j < p, are coloured 1 or 2. By lemma 8.1, for each sub-
graph g; of G, it cannot be that all of /;, /; and /3 are coloured 0. A
satisfying truth assignment is then obtained by assigning the value true
to a literal if and only if its corresponding vertex in G is coloured 1.

Thus 3SAT o 3C and hence 3C is NPC. |



A proof that KC is NPC for any K > 3 can be established by a proof
similar to but generally more tedious than that for theorem 8.10. The
details include defining a special subgraph analogous to that described in
lemma 8.1 (notice that this has two complete subgraphs on K = 3 vertices)
and the replacement of the vertices a and b by a complete subgraph on
(K—1) vertices. The precise details are left to the interested reader (who
may wish to note exercise 8.13).

Thus KC remains NPC even if X is restricted to three. It is interesting
to note that 3C remains NPC even with the further restriction that G is
planar.

3-colouring Planar graphs (3CP)
Instance: A planar graph G.

Question: Does G have a (proper, vertex) colouring using three
colours?

Before proving that 3CP is NPC we require the following lemma:
Lemma 8.2. In a 3-colouring of the following graph:

Vs

we have:

(a) v, and vy are identically coloured as are v, and v,.
(b) v, and v, may or may not be similarly coloured.

Proof. As with lemma 8.1, we leave verification to the reader. It will be
convenient to use the following short-hand for this planar graph in what
follows. |

V1

A Vs

Vs
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Theorem 8.11. 3CP is NPC.

Proof. We show that 3C «c 3CP. Let G’ be an instance of 3C, we construct
an instance of 3CP, G, as follows. G’ is drawn on the plane in such a way
that edges may cross, but not so that any edge touches a vertex other than
its own end-points, also no more than two edges may cross at any one
point. In general any edge (u, v) will be crossed by other edges as indicated
in figure 8.8(a). We add new vertices along (i, v) one between each cross-
over and one between each end-point and the nearest cross-over as shown

Fig. 8.8

(a) (b) f
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in (b). The next step is to replace each cross-over by a copy of the graph
described in lemma 8.2. This is shown in (c). The result is clearly a planar
graph. The final step in our construction of G is to choose ore end-point
of each original edge (u, v) and to contract the edge between that end-point
and the nearest vertex along the old (i, v) edge. Thus (c) becomes (d), where
(u, «’) has been contracted.

Let ¥ be the vertex-set of G and ¥’ = V be the vertex set of G'. It is
easy to see that a 3-colouring of G is a 3-colouring when restricted to ¥’
in G'. Conversely, suppose that G’ has a 3-colouring. We can extend this to
a 3-colouring of G as follows. For each original edge (u, v) € G with cross-
overs, let u be the vertex which was coalesced with the nearest new vertex
on (u, v). Colour every new vertex along (u, v) with the same colour as u.
The interior vertices of each 4-subgraph can then, according to lemma 8.2,
be coloured using no more than our original three colours.

Thus 3C oc 3CP and hence 3CP is NPC. ]




Finally, we show that the problem of finding the edge-chromatic index
of a graph is NPC. In fact, we specifically prove the stronger result that
it is NP-complete to determine whether or not the edge-chromatic index
of a 3-regular graph is 3 or 4. Of course, the edge-chromatic index cannot
be less than 3 and by Vizing’s theorem (chapter 7) it cannot exceed 4.

Cubic graph edge-colouring (CGEC)
Instance: A 3-regular graph G.

Question: Does there exist a (proper, edge-)colouring of G using
three colours?

Theorem 8.12. CGEC is NPC.

Proof. Clearly CGEC oc NP. We complete the proof by outlining a trans-
formation: 3SAT oc CGEC. In other words, we show how to construct,
from an instance I of 3SAT, a 3-regular graph G which is 3-colourable if
and only if 7 is satisfiable.

G is constructed from a number of components each of which is designed
to perform a specific task. These components are connected by pairs of
edges such that, in a 3-edge-colouring of G, a pair represents the value true
if both edges are identically coloured and if they are differently coloured
then they represent the value false.

A key component of G is the inverting component shown in figure 8.9
along with its symbolic representation.

Fig. 8.9

a c

Representation

Inverting component

Lemma 8.3. In a 3-edge-colouring of an inverting component, the edges
in one of the pairs of edges (g, b) or (¢, d) are similarly coloured, whilst the
remaining three labelled edges have distinct colours.

Proof. Like the previous two lemmas we leave this an exercise. However,
the comment in exercise 8.9 may be of use. ]



If for the inverting component we look upon the pair of edges (a, b) as
input and the pair (c, 4) as output, then this component may be regarded
as turning a representation of true into one of false and vice-versa.

We next describe a variable-setting component of G. Such a component
exists for each variable v; of the instance of 3SA4T. An example of such a
component is shown in figure 8.10. This has four pairs of output edges. In
general, however, there should be as many output pairs as there are
appearances of v, or its complement #; in the clauses of the instance of
3SAT. If there are x such appearances, then we can make, in an obvious
way, a variable-setting component from 2x inverting components.

Fig. 8.10. A variable-setting component.

Lemma 8.4. In any 3-edge-colouring of a variable-setting component, all
output pairs are forced to represent the same value, true or false.

Proof. Again, this is straightforward and is left as an exercise. ]

Finally we describe a satisfaction-testing component of G. Such a
component is shown in figure 8.11. The required property of this com-
ponent is embodied in the following lemma.

Fig. 8.11. A satisfaction-testing component.




Lemma 8.5. A 3-edge-colouring of a satisfaction-testing component is
possible if and only if at least one of the input pairs of edges represents
the value true.

Proof. This is straightforward and is left as an exercise. ]

Given an instance I of 3SAT we now show how to construct the 3-
regular graph G which is 3-colourable if and only if I is satisfiable. For
each v;, we construct a variable-setting component ¥, which has an output
pair of edges for each appearance of the variable v; or its complement v,
amongst the clauses of 1. For each clause ¢; of I we have a satisfaction-
testing component C;. Let /; ; be the kth literal of ¢;. If I; ; is the variable
v, then identify the kth input pair of C; with one of the output pairs of ;.
Otherwise, if J; ,, is o, then place an inverting component between the kth
input pair of C; and the output pair of ¥;. Let H be the graph resulting
from this construction. H will have some unmatched connecting edges
from the C;. In order to construct the 3-regular graph G, we simply take
two copies of H and join them together by identifying the unmatched
edges.

It is easy to see that G can be constructed in polynomial time. We
complete the proof by noting that the properties of the components, as
described in lemmas 8.3, 8.4 and 8.5, ensure that G can be 3-edge-coloured
if and only if the instance I of 3SAT is satisfiable. ]

8.3 Concluding comments

Figure 8.12 shows the tree of transformations we have developed
through the theorems of this chapter which, along with Cook’s theorem,
establishes some members of the class of NP-complete problems. If
P # NP then, of course, no member of this elass has an efficient algorithmic
solution. On the other hand, if an efficient solution is found for one, then
there exists an efficient algorithm for any other. A great deal of effort has
been fruitlessly expended in the search for efficient algorithms so that there
is widespread belief that P # NP. Graph theory contains a large number
of problems that are NP-complete and the reader is referred to Garey &
Johnson™ for the complete list.

The number of problems in figure 8.12 is relatively small, although it
includes perhaps the best-known NP-complete graph problems and
certainly the most important regarding material in this book. In this
respect we might also have included problems of multicommodity flow,®
maximum cuts® in networks and the Steiner tree problem.

The establishment of NP-completeness for a problem need not be the
final point in consideration of its time-complexity. We can proceed in
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end of the chapter




several directions. First of all there might be a significant subclass of the
problem that can be solved in polynomial time. For example, if we
restrict the NP-complete problem of finding a maximum cut of a network
to planar graphs then it becomes a member of the set P.®! On the other
hand, as we have seen, restricting the 3-colouring problem to planar graphs
makes no difference to its NP-completeness. The point, however, is that
such investigations may be fruitful.

A second line of inquiry that might be followed involves approximation
algorithms: can we find an efficient (heuristic) algorithm which, within
known bounds, provides an approximate solution to the problem? In
chapter 6, for example, we approached the problem of finding feasible
solutions to the travelling salesman problem in this way. It is an interesting
fact that the theory of NP-completeness can be used to provide limits for
the best possible approximations obtainable in this way. If 4 is the result
acquired by an approximation algorithm (perhaps, for example, the length
of a travelling salesman’s tour) and if OPT denotes an exact solution, then
(crudely) these limits are often expressed for all instances of the problem
in hand, as a bound on the ratio 4/OPT and sometimes as a bound on the
difference |4—OPT|. A simple example of the latter is provided by
exercise 8.15. Garey & Johnson™ describe many results in this area.

Another approach to NP-complete problems which is of growing
interest concerns probabilistic analysis. This involves, rather than concen-
trating on the worst-case behaviour of algorithms, the study of average-
time performance or the evaluation of the exactness of approximation
algorithms made under particular probabilistic assumptions. It can often
be argued that knowledge of worst-case behaviour is of restricted value for
practical purposes. It then makes sense to analyse the complexity and
exactness as averaged over some distributian of instances of the problems.
There will then be probabilistic guarantees for the results of such analysis.
Slominski®® provides a bibliography of such work.

The inefficiency of deterministic algorithms for NP-complete problems
arises from (see exercise 8.6) the exponentially large number of solution
‘guesses’ that have to be handled sequentially. Whilst accepting an
exponential-time complexity, it is nevertheless possible to minimise this
expense by making a better definition of the objects to be searched than
that implied by the entirely free description of an NDTM which was
described earlier. Such an approach has been used for example for the
problems of independent set!® and K-colourability.



8.4 Summary and references

In this chapter we have shown that a number of important graph
problems belong to the large equivalence class of NP-complete problems
which are widely believed to be intractable. Garey & Johnson™! is an
excellent general guide to the theory of NP-completeness while chapter 10
of Even,® which deals with graph problems, is also recommended reading.
Aho, Hopcroft & Ullman'® is a good general introduction to algorithmic
design and complexity.

Cook laid the foundations for the theory of NP-completeness in a
seminal paper® published in 1971. In that paper he stressed the importance
of polynomial transformations, the class NP and proved that every problem
in NP is polynomially transformable to satisfiability (SAT). Cook also
showed that CLIQUE shared this property of being a hardest problem in
NP and anticipated that many other problems would fall into the same
category. Karp¥ shortly afterwards published such a collection of
problems. These included 3-satisfiability and K-colourability. Since then
a very large number of problems have been shown to be NP-complete,
many of them in graph theory. Theorem 8.12 which establishes the NP-
completeness of edge-colouring, is taken from Holyer.n%
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8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

EXERCISES

In order to solve a problem Q, we have one hour of computing time on
a machine which operates at 2!° steps per second. Suppose that two
algorithms are available for Q: A; of complexity n* and 4, of com-
plexity 2", where n is the problem size. Show that for any problem
size, n (> 1), A; is more efficient than A4, for problems that can be
solved within the available time.

What is the maximum problem size that can be handled by each
algorithm within an hour? Above what value of n is 4, more efficient
than A4,?

(There are ~ 2 computational steps available in an hour.)
Show that the following problems (defined in the text) are in NP:
vertex-cover (VC)
directed Hamiltonian path (DHP)
3-colouring (3C)
and show that the transformations: 3SAT «c VC (theorem 8.3),
VC o« DHP (theorem 8.6) and 3SAT oc 3C (theorem 8.10) are indeed
polynomial.
Prove that MDS is NPC:
Minimum dominating set (MDS)

Instance: A graph G and an integer k.

Question: Does G contain a dominating set of size < k?
(It is easy to show that ¥'C < MDS. Let G’ and k be an instance of V'C,
then an instance of M DS consists of G (constructed from G’ by adding,
for every edge e; = (1, v) € G’, a new vertex x; and edges (i, x),
(x4, v)) and k.)
Show (directly) that

CLIQUE o IS cVC

where the problems CLIQUE, IS and KC are defined in the text.
(a) Show that the DTM of figure 8.1 wiould verify that M divides N in
p(N) computational steps (i.e., movements of the tape head) where:

t
PN) = (MM+1) N,_'_((M;;Z)) N—1= O(N®)
(b) Redesign the quintuple set of figure 8.1 so that the same problem is
solved but on an input tape which is the same as that shown in the
diagram except that the tape cells containing 4 and B are blank. That is,
remove 4 and B from T and model the original computation with the
introduction of some new states and a modification of the quintuple set.
This need not affect p(N).
(c) Show that the NDTM of figure 8.2 solves a problem that is in P.
Suppose that no efficient algorithm is known for the decision problem
Q, but that Q € NP. Show that an exponential-time deterministic
algorithm exists for Q.




8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

(Let the NDTM which verifies Q in time p(n) be changed into a DTM
which checks all possible guesses in series. The time required for this
DTM is of order p(n)| T|**™ where T is the set of tape symbols.)

Given a polynomial time algorithm to factorise an integer N, in unary
representation, show that this does not imply that a polynomial time
algorithm exists to factorise N in binary representation.

(Simply show that the length of N in a unary representation is expo-
nential in terms of its length in binary representation.)

Let an arbitrary decision problem D, be: Given an instance 7 of the
problem, is A true for I? The complementary decision problem, D¢, is
then: Given I is A4 false for I?

Show that if D is a member of P then so is D% In contrast show that if
D is a member of NP then we cannot necessarily draw the conclusion
that D¢ € NP.

(If D € P then a DTM exists for D which halts within polynomial time
for all 1. D° can then be solved by the same DTM by simply inter-
changing the states gr and gx. On the other hand consider the case
where D¢ is the problem: Is it true that there does not exist a travelling
salesman’s tour of length < k?)

Justify the lemmas 8.1-8.5. For lemma 8.3, exercise 7.9 may be of
assistance.

Show that the following problem is NPC:

Subgraph Isomorphism (ST)

Instance: Two graphs G; and G,.

Question: Does G, contain a subgraph isomorphic to G,?
(Consider the case that G, is a complete graph. In other words show
that CLIQUE « SI.)

Show that the following problem is NPC:
Bounded degree spanning-tree (BDST)

Instance: A graph G and an integer k.

Question: Does G contain a spanning-tree for which no vertex

has degree = k?

(Consider the case k = 2. In other words show that HP «c BDST.)

In chapter 1 we saw that the problem of finding the shortest path
between two vertices in a graph can be solved in polynomial time. Show,
in contrast, that the following problem is NPC:

Longest Path (LP)

Instance: A graph G with two distinguished vertices  and v,

and an integer k, 1 < k < n.

Question: Does G contain a simple path from « to v of length

= k?

(Show that HP oc LP.)



8.13.

In analogy with lemma 8.1 let

Vs

V.
1 v

e ; be shorthand for Ve AN
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8.14.

Justify the claim that in a 4-vertex-colouring of g’ using the colour set
{0, 1, 2, 3}, v, must be coloured 0 if and only if all of v,, v, and v, are
coloured 0. Use g’ in a proof, similar to that for theorem 8.10, that
4C is NPC.

Notice that if we restrict 4C to planar graphs then, in view of the
Appel-Haken proof of the four-colour conjecture, the problem is in P.
Consider the following problem:

Minimum Tardiness Sequencing (M7S)
Instance: A set of tasks T = {t,, t,, ..., Iy} each requiring one
unit of execution time, a set of deadlines D = {d(t,), d(zy), ...,
d(t,)}, a partial order < on T and an integer K, 0 < K< |T|.
Question: Is there a schedule (i.e., an order of execution of the
t) such that if #; < #;then ¢ is executed before ¢, and such that
no more than K tasks are completed after their deadlines?

Given an instance of CLIQUE, I, we can construct an instance F(I)
of MTS. Let I consist of G = (¥, E) and an integer L. F(I) then con-
sists of':

T= {00 ...,0mp €, 8, ...,a}, € Vand ;€ E

Vg < vy if in G, v, is an end-point of €y

d@) = $LL+1), d(e) = |V|+|E|

K = |E|-GLL-1)

This construction can clearly be carrier out in polynomial time. Show
that I'has a clique of size L if and only if F(I) has no more than K tasks
completed after their deadlines. This will prove that MTS is NPC. (The
partial order requires that in every schedule any ‘edge’ task is com-
pleted after its own ‘end-point’ tasks. The deadlines are such that only
‘edge’ tasks can be late. If the answer to MTS for F(I) is ‘yes’, then at
least $L(L—2) of these tasks must be completed before their deadline,
$L(L+2). In order that the schedule does not violate the partial
ordering, the corresponding ‘vertex’ tasks must also be executed before
this deadline. The minimum possible number of these is L (when the
corresponding vertices in G form a clique) so that the total number of
tasks now performed before the time $L(L+1) is

L(L-1)+L = 3L(L+1)

This just exhausts the available time before the ‘edge’-task deadline.)



8.15. Let A(G) denote the number of vertices that an arbitrary approximation
algorithm A assigns to a maximum independent set for the graph G. We
denote by OPT(G) the exact number in this set. Show that if NP # P,
then the proposition that for all instances G that:
|4(G)—-OPT(G)| < K
for some integer constant K, is false.

(Suppose that the proposition is true. Given G we can apply 4 to the
(disconnected) graph G’ which consists of (KX+ 1) copies of G. Then
|4(G")-OPT(G)| < K

and clearly OPT(G’) = (K+1) OPT(G"). This also defines an algorithm
B which assigns at least [A(G")/ (K+1)] vertices to the maximum
independent set of G — obtained by finding the largest set of vertices
that A assigns to any of the components of G’. It follows that:
|B(G)-OPT(G)| < K/(K+1)

In other words, B(G) must be equal to OPT(G) so that B would be an
exact algorithm. With theorem 8.4 this provides a contradiction.)



Appendix

On linear programming

Several problems in this text can be formulated as linear programming
problems. For example, the minimum-cost flow algorithm of chapter 4 was
described in this way. We present here just enough insight into linear
programming theory for an understanding of its application within this
text. Readers who require an extensive treatment should consult one of
the numerous texts ([1], for example) devoted to the subject.

A linear programming problem is any problem that can be described as
follows:

n
maximise 3 ¢;x, @
i=1
subject to the constraints:

7
iz]_ aﬁx‘ = b’, l Sj < k

@)
n
izlaﬂx‘ < bj’ k+1 Sj <m
and the non-negativity conditions:
x20,l+1<i<n (iii)

where for 1 < i < I, x,; is unrestricted in sign. Within (i), (ii) and (iii) the
ay,, b, and ; are given constants while the x; are variables.

The above definition of a linear programming problem is in one of a
number of standardised forms in common use. Many linear programming
problems have a natural description in statements similar to, but not
immediately identical to (i), (ii) and (iii). Fairly trivial adjustments can cast
such problems into our standardised form. For example, a problem of
minimising 3, c; x, is the same as maximising 3,(— ¢;) x;, a linear constraint
of the form X,a,x; < b; is the same as X (—a,;)x; > (—b;), and so on.



In order to provide motivation for the above abstractions we briefly
describe one of the problems (first published in [2]) which led to the
development of linear programming theory. This problem, known as the
dietician’s problem, is to determine a week’s diet for a hospitalised patient
who needs a predetermined minimum weight of each of the nutrients
Ny, N, ..., N,,. There are n different foods available F, F,, ..., F,, and the
nutritional content of each is known. The difficulty is that the cost of the
diet has to be minimised. With the following definitions:

a;; is the number of units of N; in one unit of F;
b, is the minimum number of units of N; to be consumed
¢; is the unit cost of F;

The dietician’s problem can then be simply stated as follows:
minimise i C;x; @
i=1

where x; is the number of units of F; consumed, and the weekly consump-
tion of N; must be at least b; units:

n
Sk by l<j<m ®)

while the consumed amount of each food must be non-negative:
x20,1<i<n ()

It is an easy matter to convert (a), (b) and (c) into our standard form by the
means indicated earlier. What is obtained has k = 0 for (ji) so that all the
constraints are inequalities, and has / = 0 for (iii) so that every variable
is restricted in sign.

In general a linear programming problem has n variables x,, an objective
Junction (i), m constraints (ii) and a set of non-negativity conditions (iii).
For any such problem we can construct a dual problem with m variables y;
(one corresponding to each constraint of the original problem) and »
constraints (one for each variable of the original problem) as follows:

m
minimise 3, b,J; @
subject to the constraints:
m
jEl apy;=c, 1 i<l
m @)
j2}1 agy; 2 ¢ l+1<1<n

and non-negativity conditions:
420k+l<j<sm (iii)



while for 1 < j < k, y; is unrestricted in sign. Notice that the coefficients
ay; in the constraining relations are the transpose of those in (ii). The
coefficients ay, by, ¢;, | and k are fixed as in (i), (ii) and (iii). The dual
problem can easily be written in the standard form (i), (i) and (iii) and so
is itself a linear programming problem. In order to distinguish it from the
dual, the original problem is called the primal. If the dual is written in the
form of the primal and its dual constructed according to the above recipe,
then it is easy to see that the dual of the dual is the primal.

Given the meaning of the parameters a;;, b; and ¢; afforded by a specific
primal problem, useful insight can be gained from an interpretation of its
dual. The dual of the dietician’s problem (a), (b) and (c) is:

m
maximisejz1 by, (@)
subject to:
n .
121 apy; < ¢l <ign ®)
and
»201<j<m CY)

which can be interpreted as follows. Knowing of the dietician’s problem
a chemist plans to manufacture pills which can be used as a substitute for
food in a diet. The chemist can only hope to sell his pills if they provide a
cheaper alternative to the food, but at the same time he must maximise his
profit. If y; is the price of one unit of the N; pills, then the price of the pill
equivalent of a week’s minimum nutritional intake, which has to be
maximised, is precisely expressed by (a”). Moreover (') is the requirement
that the pills be cheaper than the food and t’) states that the prices of the
pills must not be negative.

A set of values for the variables of a linear programming problem which
satisfies the constraints and non-negativity conditions is called a feasible
solution. If a feasible solution optimises the objective function then it is
called an optimal solution. The value of the objective function obtained
with an optimal solution is called the value of the linear program.

Given a feasible solution to a linear programming problem, we need to
know whether or not it is an optimal solution. We shall now see how this
might be ascertained. If the sets of values {x;} and {y,} are, respectively,
feasible solutions for a primal and its dual then from (ii) and (ii") we see
that:

m b m n n g n (. )
> a = X, a 2 X;C, v,
j§1 1Y /1§1 y’4§1 1% 4§1 12 nh /iz:l L
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where the objective function for the primal is on the right aid for the dual
is on the left. From (iv) we see that the value of a maximisation problem
cannot exceed the value of its dual. For the dietician’s problem this means
that the diet in pill form cannot be more expensive than if the food is used.
If feasible solutions can be found for both the primal and the dual such
that equality holds throughout (iv), then, clearly, optimal solutions have
been found. This is the case if and only if

n
(b,—‘_z1 aﬁxi) y=01<j<m )
and o
m
(’zl aj‘y¢—c‘)x¢ = 0, 1 ign (Vi)

For problems of interest to us we obtain solutions which satisfy (v) and (vi)
and which must therefore be optimal. The important relations (v) and (vi)
are often expressed in the following form:

n
yj9é0=>bj=¢zlaj{xbl <jsm
and

m
x‘¢0=>c¢ =’21a“y‘,l <i<n

and are known as the complementary slackness conditions.

The standard method of solving linear programming problems is called
the simplex method (see [1], for example). Starting from one feasible solution
this method generates a sequence of others such that each subsequent
solution produces a better value for the objective function. Eventually an
optimal solution is produced. Where we need to apply the theory in this
text, we describe specific means for generating a sequence of feasible
solutions and we show that this terminates with an optimal solution.

Linear Programming is a good example of a problem which is more
effectively.solved by an exponential-time algorithm (in this case the simplex
method) than by a known polynomial time algorithm (in this case the
ellipsoid method). Klee & Minty™® have shown that the simplex method is
exponential-time in worst-case performance, yet in practice it has, as
McCall¥ shows, exhibited linear-time behaviour. Smale’s'® goal is to
provide a theoretical explanation. The ellipsoid method is due to
Khachian.|®
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adjacency list, 17

adjacency matrix, 17

adjacent, 2
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ancestor, 7.

approximation algorithm, 178
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augmenting path, flow, 98
augmenting path, M-, 127, 136
auxiliary graph, 76

back edge 20, 23
balanced digraph, 6
balanced tree, 36
basis
for circuit-space, 54
for cut-set space, 59
BDTS, 246
BFS, 35
bipartite graph, 4
binary tree, 7
block, 5, 24
blossom, 130
bottleneck edge, 98

bounded degree spanning tree problem,
246

branching, 40, 42
maximum, 40, 42
minimum, 40, 42, 47

breadth first index, 35

breadth first search, 35

breadth first tree, 35

capacity
of an edge, 96
of a cut, 97
CGEC, 239
Chinese Postman problem, 161
for graphs, 163
for digraphs, 165
chord, 54
chromatic index
edge, 195
vertex, 195

chromatic polynomial, 201

Church’s thesis, 216

circuit, 5, 6
Eulerian, 153, 156
Hamiltonian, 153, 169, 173, 229,
simple, 5,6 ~ -

circuit space, 54

clique, 192, 229

CLIQUE, 229

colouring, 190, 195
edge, 195, 239
face, 204
vertex, 195, 198, 235
complement graph, 94
complete bipartite graph, 4
complete graph, 3
complexity, 8
component, 5
condensation of a digraph, 34
connected graph, 5
2-connected, 5
h-edge-connected, 60
h-vertex-connected, 60
connected vertices, 5
connectivity, 106
edge, 60
vertex, 60
connector problem, 40, 65
Cook’s theorem, 223
co-tree, 54
covering, edge, 147, 151
minimum cardinality, 151
cubic graph, 3
cut edge, 5
cut of a network, 97
maximum, 124
minimum, 100, 124
cut-set, 57

space, 59
critical path method, 122
cross-edge, 24
crossing number, 71
cycle, see circuit

de Bruijn sequence, 186

233




decision problem, 221
complementary, 246

degree, of a face 69

degree, of a vertex, 2.

degree majorised, 193

degree sequence, 193

depth-first forest, 20
index, 20.

search, 20; for blocks, 24; for strongly

connected components, 27

tree, 20
depth, in a tree, 7.
descendant, 7.
deterministic Turing machine, 218
DFS, 20
DHC, 233
DHP, 229
digraph, 3.

PERT, 121
Dijkstra’s algorithm, 13, 33, 36
directed edge, 5.
directed graph, see digraph
disconnected graph, 5.
domination number, 189
dominating set, 189

minimum, 189, 245
dual graph, 81

combinatorial, 83

geometric, 81

edge, 1
capacity, 96
colouring, 195, 239
connectivity, 60
directed, 5
parallel, 2
weighted, 7
edge-set, 2
edge-disjoint paths, 5
efficient algorithm, 11
ellipsoid method, 252
embedded graph, 67
end-points, 2.
Eulerian circuits and paths, 153, 156
counting circuits, 162
Eulers formula
planar graphs, 69
non-planar graphs, 72
excursion problem, 121
expected-time complexity, 9
exterior face, 68

face, 68
face colouring, 204
factors
2-factors, 182
K-factors, 182
father, 7
finite gl‘aPh. 2
five-colour theorem, 206
flow augmenting path, 98

flow in a network, 96
forest, 7.
forward edge, 24, 98
fundamental
circuits, 54
cut-sets, 58

G-admissible subgraph, 86
genus, 71
geometric dual, 81
graph, 1
amenities, 93
auxiliary, 76
bipartite, 4
complete, 3
complete bipartite, 4
cubic, 3.
dual, 81
directed, 5.
finite, 2.
homeomorphic, 76
induced, 4.
isomorphic, 4
multi, 3
Petersen, 93, 173, 186
planar, 67
separable, 5
simple, 2.
sparse, 17
sub, 4
super, 4
Tutte, 215
weighted, 7.
guess, 220

Hamiltonian circuits and paths, 153,
169, 173, 229, 233

by matricial products, 173
existence theorems, 169

HC, 234

homesmorphic graph, 76

HP,233

Hungarian tree, 130

incident, from, 6
incident, to, 6
incompatible bridges, 76
in-degree, 6
in-degree matrix, 50
independence number, 189
independent set, 189
maximum, 189, 229
induced graph, 4
IS, 229
isolated vertex, 2
isomorphic graph, 4
2-isomorphic, 82, 95
intractable problem, 12
in-tree, 7

job assignment problem, 149



join, 193

KC, 235

Kempe-chain argument, 195
Kirchoff matrix, 50

knapsack problem, 122
Knight’s tour, 169

Konigsberg bridge problem, 185
Kruskal’s algorithm, 63
Kuratowski’s theorem, 77

Latin square, 212

leaf, 7

length of a circuit, path, 5, 8
level, 7

linear programming, 249
longest path, 15, 246

LP, 246

marriage problems, 149, 150
matching, 125
maximum-cardinality, 125, 126
maximum-weight 126, 136
minimum-weight perfect 164
perfect, 125, 134
M-augmenting path, 127, 136
max-flow, min-cut theorem, 100
maximum

branching, 40
cardinality matching, 125, 126
flow, 98

independent set, 189, 229
length simple path, 15, 246
weight spanning tree, 40
MDS, 245
Menger’s theorems, 106
minimum
branching, 40, 47
cost flow, 106
dominating set, 189, 245
length path, 12, 32, 36
tardiness sequencmg, 247
weight spanning tree, 39, 40, 63, 65
MTS, 247
multigraph, 3.

network, 96

cut, 97.

flow, 96
non-deterministic polynomial time

complete, 16, 222

non-deterministic Turing machine, 220
NP, 217
NPC, see NP-complete
NP-complete, 16, 222

graph problems, 227

out-degree, 6
out-tree, 7
order of a function, 9

P,217
parallel edge, 2
partially ordered tree, 36
partite
bipartite, 4
k-partite, 4
path, 5,6
augmenting, 98, 127, 136
Eulerian,
Hamiltonian, 153, 169, 173, 229, 233
length, 5, 8
longest simple, 15, 246
shortest, 12, 32,'3'6
simple, 5
Petersen graph 93, 173, 186
PERT digraph, 121
piece of a graph, 75
planar
graph, 67
triangulation, 93, 205
plananty charactensatlon of, 75
points of contact of a bndge, 5
polynomial-time verifiable, 219
polynomial transformation, 222
postman problems, 161
Prim’s algorithm, 40, 65
priority queue, 36, 65
probabilistic analysis, 243
problem-size, 9.

reducible configuration, 207
regular graph, 3

reverse edge, 98

ring-sum, 54

ring size, 207

root, 7

rooted-tree, 7.

SAT, 223
3SAT, 225
satisfiability, 223
3-satisfiability, 225
self-loop, 2.
separable graph, 5
sequential colouring, 200, 213
shortest path, 12, 32,36
S1, 246
simple
circuit, 5
graph, 2.
path, 5
simplex method, 252
sink, 96
son, 7.
source, 96
space-complexity, 8
spanning subgraph, 5.
spanning trees, 39
enumeration, 49
maximum weight, 42, 64
minimum weight, 40




sparse graph, 17

stable marriage problem, 150

Steiner tree, 42

stereographic projection, 68

strongly connected, 7
component, 7, 27
digraph, 7

subgraph, 4

subgraph isomorphism, 246

supergraph, 4

symmetric digraph, 6

teleprinter’s problem, 186

thickness, 71, 73

three-colouring (3C), 235
planar graphs (3CP), 237

time-complexity, 8

timetable problem, 101

toroidal graph, 71

torus, 67

tournament, 185

travelling salesman problem, 169, 175,

234

transport network, 96

tree, 7, 39

triangle inequality, 176

TS, 234

Turing machine, 216, 217
Tutte graph, 215
two-processor scheduling, 150

unavoidable set, 207
underlying graph, 2, 6
union of graphs, 73

VC, 221

vertex, 1
colouring, 195, 198, 235
connectivity, 60
cover, 191, 227
degree, 2
isolated, 2
Set, ;

weakly connected, 7
component, 7
digraph, 7

weighted graph, 7

weight
of an edge, 7
of a subgraph, 7

worst-case complexity, 9





