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Graphs

AN




Outlines

N

L/
#  Graph basics and definitions
s Vertices/nodes, edges, adjacency, incidence
m  Degree, in-degree, out-degree
m  Degree, in-degree, out-degree
= Subgraphs, unions, isomorphism
= Adjacency matrices

# Types of Graphs
n Trees
= Undirected graphs
+  Simple graphs, Multigraphs, Pseudographs
= Digraphs, Directed multigraph
= Bipartite
Complete graphs, cycles, wheels, cubes, complete bipartite
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Uses of Graph Theory in CS

\V

#Car navigation system

# Efficient database

#Build a bot to retrieve info off WWW
# Representing computational models
Many other applications.

This course we focus more on the
properties of algorithmic of graphs

L23




Graphs —Intuitive Notion

N

A graph is a bunch of vertices (or nodes)
represented by circles * which are connected
by edges, represented by line segments . .

Mathematically, graphs are binary-relations on
their vertex set (except for multigraphs).

In Data Structures one often starts with trees
and generalizes to graphs. In this course,
opposite approach: We start with graphs and
restrict to get trees.
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Trees

N

A

very important type of graph in CS is
called a free;

Real
Tree
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Trees
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very important type of graph in CS is
called a free;

Real |
Tree transformation >
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Trees
A very important type of graph in CS is

N
\J

called a tree:
Real Abstract

transformatlon

Tree Tree
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Simple Graphs

N

L

Different purposes require different types
of graphs.
EG: Suppose a local computer network
» IS bidirectional (undirected)
= Has no loops (no “self-communication”)
= Has unique connections between computers

Sensible to represent as follows:

L23 9




Simple Graphs

A
N

@ \/ertices are labeled to associate with
particular computers

#Each edge can be viewed as the set of
its two endpoints

L23 10



Simple Graphs

DEF: A simple graph G = (V,E)
consists of a non-empty set Vof
vertices (or nodes) and a set £
(possibly empty) of edges where each
edge is a subset of IVwith cardinality 2
(an unordered pair).

Q: For a set Vwith n elements, how
many possible edges there?
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Simple Graphs

A: The number of pairs in V
=C(n2)=n'(n-1)/2

Q: How many possible graphs are there
for the same set of vertices V/'?
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Simple Graphs

A: The num
possible ec

ner of subsets in the set of
ges. Therearen: (n-1)/2

possible ec
graphs on

L23

ges, therefore the number of
Vis 2mn-1)/2
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N

Multigraphs

If computers are connected via internet
instead of directly, there may be several
routes to choose from for each
connection. Depending on traffic, one
route could be better than another.
Makes sense to allow multiple edges,
but still no self-loops:
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Multigraphs

Edge-labels distinguish between edges
sharing same endpoints. Labeling can be
thought of as function:
el 2 {112}1 eZ > {112}1 63 2 {113}1
e4 2 {213}1 eS 2 {213}1 e6 2 {112}
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Multigraphs

DEF: A multigraph G = (V,E,f) consists
of a non-empty set Vof vertices (or
nodes), a set £ (possibly empty) of
edges and a function fwith domain £
and codomain the set of pairs in V.
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Pseudographs

If self-loops are allowed we get a
pseudograph: e.

Now edges may be associated with a single
vertex, when the edge is a loop

e > {1,2}, &> {1,2}, &> {1,3},
&> {23} &> {2}, &> {2}, > {4},




Multigraphs

DEF: A pseudograph G = (V,E,f)
consists of a non-empty set Vof
vertices (or nodes), a set £ (possibly
empty) of edges and a function £ with
domain £and codomain the set of pairs
and singletons in V.
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Undirected Graphs
Terminology

Vertices are adjacent if they are the
endpoints of the same edge.

Q: Which vertices are adjacent to 1?
How about adjacent to 2, 3, and 4?

L23
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Undirected Graphs
Terminology

L23

1 is adjacent to 2 and 3
2 is adjacent to 1 and 3
3 is adjacent to 1 and 2
4 is not adjacent to any vertex

20




Undirected Graphs
Terminology

A vertex is incident with an edge (and
the edge is incident with the vertex) if it
is the endpoint of the edge.

Q: Which edges are incident to 1? How
about incident to 2, 3, and 4?

L23 21




Undirected Graphs
Terminology

A. e, e, 6, & areincident with 2
2 is incident with ¢, &,, &, &, &
3 is incident with &;, &€,, &
4 is not incident with any edge

L23 22




Digraphs

“Last time introduced digraphs as a way of
representing relations:

Q: What type of pair should each edge be
_(multiple edges not allowed)?

23
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Digraphs

'A: Each edge is directed so an ordered pair
(or tuple) rather than unordered pair.

Thus the set of edges £'is just the
represented relation on V.

L2 24




Digraphs

DEF: A directed graph (or digraph)
G = (V,E) consists of a non-empty
set IVof vertices (or nodes) and a set £
of edges with EclV x V.

The edge (a,b) is also denoted by a 2> b
and ais called the sowurce of the edge
while b is called the target of the edge.

Q: For a set I/with nelements, how many
possible digraphs are there?
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Digraphs

A: The same as the number of relations
on I/, which is the number of subsets of
V/'xl/so 277,
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Directed Multigraphs

JIf also want to allow multiple edges in a
digraph, get a directed multigraph (or
multi-digraph).

Q: How to use sets and functions to deal
with multiple directed edges, loops?
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Directed Multigraphs

'A: Have function with domain the edge
set and codomain VxV.

€
619(112)1 629(112)1 63%(212)1 e4 2 (213)1
eS 2 (213)1 66 2 (313)1 & 2 (313)
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Degree

“The degree of a vertex counts the
number of edges that seem to be
sticking out if you looked under a
magnlfylng gla%s

1 é’2 e
€4

L23

29




Degree

“The degree of a vertex counts the
number of edges that seem to be
sticking out if you looked under a

magnifying glass:
ANInG Gop

1 % 65 magnify>

L23
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Degree

The degree of a vertex counts the
number of edges that seem to be
sticking out if you looked under a
magnifying glass: LT

magn ify>

hus deg(2) = 7 even though 2 only
incident with 5 edges.

@ How to define this formally? 31




Degree

A:

Add 1 for every regular edge incident

with vertex and 2 for every loop. Thus

L23

magn ify>
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Oriented Degree
when Edges Directed

The in-degree of a vertex (deg-) counts
the number of edges that stick /7 to the
vertex. The out-degree (degt) counts
the number sticking out.

Q: What are in-degrees and out-degrees
L of all the vertices?

L 33




Oriented Degree
when Edges Directed

L23

QO O O O o o

eg(1) =0
eg(2) =3
eg(3)=4
egt(1) =2
eg*(2) =3
eg*(3) = 2

e
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N

Handshaking Theorem

€

There are two ways to count the number of
edges in the above graph:

1. Just count the set of edges: 7

2. Count seeming edges vertex by vertex and
divide by 2 because double-counted edges:
( deg(1)+deg(2)+deg(3 +deg(4) )/2
= (3+7+2+2)/2 = 14/2 =

L23 35




Handshaking Theorem

" THM: In an undirected graph
1
[E| = EZdeg(e)

eck

In a directed graph
[E| = ). deg’(e) = ) deg (e)

eck eck

Q: In a party of 5 people can each person
be friends with exactly three others?

L23 36




Handshaking Theorem

" A: Imagine a simple graph with 5 people
as vertices and edges being undirected
edges between friends (simple graph
assuming friendship is symmetric and
irreflexive). Number of friends each
person has is the degree of the person.

Handshaking would imply that

|E| = (sum of degrees)/2 or

2| E| = (sum of degrees) = (5:3) = 15.
Impossible as 15 is not even. In general:

L23 37




Handshaking Theorem

Lemma: The number of vertices of odd
degree must be even in an undirected
graph.

Proof: Otherwise would have
2|E| = Sum of even no.’s
+ an odd number of odd no.’s
=»even = even + odd
—this is impossible.
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Graph Patterns
Complete Graphs - K,

A simple graph is complete if every pair
of distinct vertices share an edge. The
notation K, denotes the complete graph
on n vertices.

VX8

L23 39
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Graph Patterns
Cycles - C,

The cycle graph C, is a circular graph
with V={0,1,2,...,n1} where vertex /
is connected to /+1 mod nand to
/-1 mod n. They look like polygons:

o = N 10
G > G Gy &

C

L: What type of graph are ¢; and G, ?




Graph Patterns
Wheels - W

TA: Pseudographs

The wheel graph WV, is just a cycle graph
with an extra vertex in the middle:

9 = YV XK
W, oW, W, W, W

2

Usually consider wheels with 3 or more
spokes only.

L23 41




Graph Patterns
Cubes - @,

The n-cube @, is defined recursively. @,is
just a vertex. @, is gotten by taking 2
copies of @, and joining each vertex v of

@, with its copy v’: / 5
- —0OF =
2

v

@ @, (hypercube)

&

L23 P
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Bipartite Graphs

A simple graph is bipartite if I/can be
partitioned into V = V| ul, so that any
two adjacent vertices are in different
parts of the partition. Another way of
expressing the same idea is
bichromatic : vertices can be colored
using two colors so that no two vertices
of the same color are adjacent.
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EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

®

L23
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EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

CP

0

L23
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

[ ]
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

/]
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

el
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

1
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

—1
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

—=
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

—<
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

<
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Bipartite Graphs

EG: C, is a bichromatic:

And so is bipartite, if we redraw it:

=

L23
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Bipartite Graphs

EG: C, is a bichromatic:

@
And so is bipartite, if we redraw it:

=

Q: For which nis C, bipartite?

L23
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Bipartite Graphs

N
\J

A: C, is bipartite when nis even. For
even 17 color all odd numbers red and
all even numbers green so that vertices
are only adjacent to opposite color.

If nis odd, C,is not bipartite. If it were,
color O red. So 1 must be green, and 2
must be red. This way, all even
numbers must be red, including vertex
n-1. But 71 connects to 0 - <.

L23 56




Graph Patterns
Complete Bipartite - X, ,

When all possible edges exist in a simple
bipartite graph with m red vertices and
n green vertices, the graph is called
complete bipartite and the notation
K, nis used. EG:

=

A°%

/
L23 57




Subgraphs

‘Notice that the 2-cube occurs

inside the 3-cube [l . In other

words, @, is a subgraph of ¢ :

DEF:. Let G=(V,E)and H= (W,F) be
graphs. His said to be a subgraph of G,
if Wc Vand Fc E

Q: How many @, subgraphs does ¢; have?

L23




Subgraphs

"A: Each face of @, is a Q, subgraph so the
answer is 6, as this is the number of faces
on a 3-cube:

L23 59




Unions

In previous example can actually

L23

reconstruct the 3-cube from its 6 2-
cube faces:

ﬁ
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Unions

If we assign the 2-cube faces (aka Squares)
the names S, S, S5, S, S, S, then @ is
the union of its faces:

s J IQg, SUSUSUSUSUS,

o=

61




Unions

DEF: Let Gi=(V, £ )and G = (V, ) be
two simple graphs (and V4, , may or may
not be disjoint). The wnmion of G, G, is
formed by taking the union of the vertices
and edges. LE: GUG, = (LU, EUE ).

A similar definitions can be created for
unions of digraphs, multigraphs,
pseudographs, etc.

L23 62




Adjacency Matrix

N

L

We already saw a way of representing

relations on a set with a Boolean

matrix:
R

;\;
3\3
N

L23

digraph(R)

A

Mg

o O B B

O R L B
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Adjacency Matrix

N

Since digraphs are relations on their vertex
sets, can adopt the concept to represent
digraphs. In the context of graphs, we call
the representation an adjacency matrix .

For a digraph G = (V,£) define matrix A by:
#Rows, Columns —one for each vertex in V

#Value at 7/t row and jt column is
= 1if /thvertex connects to jth vertex (/ > j)
= 0 otherwise

L23 64




Adjacency Matrix
-Directed Multigraphs

N

Can easily generalize to directed multigraphs
by putting in the number of edges between
vertices, instead of only allowing 0 and 1:

For a directed multigraph G = (I, £) define
the matrix Az by:

#Rows, Columns —one for each vertex in V

#Value at 7/t row and jt column is

= The number of edges with source the /th
vertex and target the jth vertex

L23 65




Adjacency Matrix
-Directed Multigraphs

Q: What is the adjacency matrix?
Vs .

@

L23 66




Adjacency Matrix
-Directed Multigraphs

b
0/ 9\9’

@

)
O Fr F W
O N N O
o

L23 67




Adjacency Matrix
-General

Undirected graphs can be viewed as directed
graphs by turning each undirected edge
into two oppositely oriented directed
edges, except when the edge is a self-loop
in which case only 1 directed edge is
/ntroguced. EG:

L23




Adjacency Matrix
-General

Q: What's the adjacency matrix?

L23
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Adjacency Matrix
-General

A 0 2 1 0)
2 2 1 0
1 1 0 O
0 0 0 1,

Notice that answer is symmetric.

L23




Adjacency Matrix
-General

For an undirected graph G = (V,E) define
the matrix Az by:

#Rows, Columns —one for each element of IV

#Value at 7/t row and jt column is the
number of edges incident with vertices /7
and J.

This is equivalent to converting first to a
directed graph as above. Or by allowing
undirected edges to take us from /7 to jcan

3 simply use definition for directed grapls.




Graph Isomorphism

N

opposed to equality:

Various mathematical notions come with
their own concept of eguivalence, as

# Equivalence for sets is bijectivity:

« EG{@® , . , "E.I:"= y={12, 23, 43}
# Equivalence for graphs is isomorphism:

IEG ><

L23
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Graph Isomorphism

N

can bend, stretch
of the first graph,

is formed. Etymo
means "'same sha

EG: Can twist or re

Q ®

to obtain:

¢ O

L23

Intuitively, two graphs are isomorphic if

and reposition vertices
until the second graph
ogically, isomorphic
ne”,

abel: ><
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Graph Isomorphism
Undirected Graphs

DEF: Suppose G, = (V, £) and G, = (14, £,
are pseudographs. Let 7:V;> V, be a
function s.t.:

1) fis bijective

2) for all vertices u,v in I, the number of
edges between v and vin G; is the same
as the number of edges between 7(v)
and £(v) in G.,.

Then fis called an isomorphism and G; is
said to be isomorphic to G,.
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Graph Isomorphism
Digraphs

N

DEF: Suppose G; = (Vi, £/)and G, = (1, £ ) are
directed multigraphs. Let 7: V=>4 be a
function s.t.:

1) fis bijective

2) for all vertices u,v in 1, the number of edges

from uto vin G is the same as the number of
edges between f(v)and F(v)in G.

Then fis called an isomorphism and G; is said to
be isomorphic to G.,.

Note: Only difference between two definitions is
the italicized “from” in no. 2 (was "between”).

L23 75




Graph Isomorphism
-Example

EG: Prove that Q
iS isomorphic to &

First label the vertices:
2 2

DA ¢

123 5 4

76




Graph Isomorphism
-Example

C’Next, set /(1) = 1 and try to walk around
clockwise on the star.

L23
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Graph Isomorphism
-Example

/’Next, set /(1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not2 so set 7(2) = 3.

L23 78




Graph Isomorphism
-Example

/”Next, set /(1) = 1 and try to walk around

L23

clockwise on the star. The next vertex seen
is 3, not2 so set F(2) = 3. Next vertex is 5
so set 7(3) = 5.

2 2
13 1 ii 3
2 4 H
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Graph Isomorphism
-Example

/”Next, set /(1) = 1 and try to walk around

L23

clockwise on the star. The next vertex seen
is 3, not2 so set F(2) = 3. Next vertex is 5
so set 7(3) = 5. In this fashion we get £ (4)
=2

2 2
1@3 1 f\ 3
4 54

80




Graph Isomorphism
-Example

‘Next, set /(1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not2 so set F(2) = 3. Next vertex is 5

so set 7(3) = 5. In this fashion we get 7(4)
=2, f(5) =4.

2 2
1@3 1 /E 3

L23

81




Graph Isomorphism
-Example

TNext, set 7(1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not2 so set F(2) = 3. Next vertex is 5
so set 7(3) = 5. In this fashion we get £ (4)
=2, f(5) =4. If we would continue, we
would get back to (1) =1 so this process is
well defined and fis a morphism.

2 2
13 1 ii 3
T 5 4
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Graph Isomorphism
-Example

‘Next, set /(1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not2 so set F(2) = 3. Next vertex is 5
so set 7(3) = 5. In this fashion we get £ (4)
=2, f(5) =4. If we would continue, we
would get back to (1) =1 so this process is
well defined and 7is a morphism. Finally
since fis bijective, fis an isomorphism.
2
3 1 /\ 3
- 5 4

L23 83




Properties of Isomorphims

N

Since graphs are completely defined by their
vertex sets and the number of edges
between each pair, isomorphic graphs must
have the same intrinsic propertles Ie.
isomorphic graphs have the same..

...number of vertices and edges
...degrees at corresponding vertices

...types of possible subgraphs

...any other property defined in terms of the
basic graph theoretic building blocks!

L23

84




Graph Isomorphism
-Negative Examples

Once you see that graphs are isomorphic,
easy to prove it. Proving the opposite,
is usually more difficult. To show that
two graphs are non-isomorphic need to
show that no function can exist that
satisfies defining properties of
isomorphism. In practice, you try to
find some intrinsic property that differs
between the 2 graphs in question.

L23 85




Graph Isomorphism
-Negative Examples

A: Why are the following non-
isomorphic?

L23
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Graph Isomorphism
-Negative Examples

A: 1st graph has more vertices than 2nd.

Q: Why are the following non-
isomorphic?

L23 87




Graph Isomorphism
-Negative Examples

Q: Why are the following non-
isomorphic?

L23

A: 1st graph has more edges than 29,
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Graph Isomorphism
-Negative Examples

A: 2" graph has vertex of degree 1, 1<t
graph doesn't.

Q: Why are the following non-
isomorphic?
by 4 G U s UV, Vq 5 Vg

U, Ug Ug V7 Vs Vg
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Graph Isomorphism

-Negative Examples

A: 1st graph has 2 degree 1 vertices, 4
degree 2 vertex and 2 degree 3 vertices.
2" graph has 3 degree 1 vertices, 3
degree 2 vertex and 3 degree 3 vertices.

Q: Why are the following non-isomorphic?

- R - e T T Vy 5 Vg
@ O O O O O O O O O O O
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Graph Isomorphism
-Negative Examples

'A: None of the previous approaches work as
there are the same no. of vertices, edges, and
same no. of vertices per degree.

N

b 4% 4 U U bV, W Vy V5

byttt REaatacs

4 Ug V7 Vs
LEMMA: If Gand H are isomorphic, then any
subgraph of G will be isomorphic to some
subgraph of A.
Q: Find a subgraph of 2" graph which isn't a
Lsubgraph of 15t graph. o1



Graph Isomorphism
-Negative Examples

graph.
u | U, U U, U
o I O O I
Yy Ug

"A: This subgraph is not a subgraph of the left

i B Vq V5

o I o I o

V7 Vs

Why not? Deg. 3 vertices must map to deg. 3
vertices. Since subgraph and left graph are
symmetric, can assume 1, maps to . Adjacent
deg. 1 vertices to 1, must map to degree 1
vertices, forcing the deg. 2 adjacent vertex 5 to
map to ;. This forces the other vertex adjacent
to 15, namely v, to map to u,. But then a deg. 3

92

yertex has mapped to a deg. 2 vertex—> &




Blackboard Exercise

Show that ¥ is not bipartite.

L23
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