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Outlines
Graph basics and definitions

◼ Vertices/nodes, edges, adjacency, incidence
◼ Degree, in-degree, out-degree
◼ Degree, in-degree, out-degree
◼ Subgraphs, unions, isomorphism
◼ Adjacency matrices

Types of Graphs
◼ Trees
◼ Undirected graphs

 Simple graphs, Multigraphs, Pseudographs

◼ Digraphs, Directed multigraph
◼ Bipartite
◼ Complete graphs, cycles, wheels, cubes, complete bipartite
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Uses of Graph Theory in CS

Car navigation system

Efficient database 

Build a bot to retrieve info off WWW

Representing computational models

Many other applications.  

This course we focus more on the 
properties of algorithmic of graphs
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Graphs –Intuitive Notion

A graph is a bunch of vertices (or nodes) 
represented by circles      which are connected 
by edges, represented by line segments         . 

Mathematically, graphs are binary-relations on 
their vertex set (except for multigraphs).

In Data Structures one often starts with trees 
and generalizes to graphs.  In this course, 
opposite approach:  We start with graphs and 
restrict to get trees.
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Trees

A very important type of graph in CS is 
called a tree:

Real 

Tree
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Trees

A very important type of graph in CS is 
called a tree:

Real 

Tree
transformation
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Trees

A very important type of graph in CS is 
called a tree:
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transformation
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Trees

A very important type of graph in CS is 
called a tree:

Real Abstract

Tree Tree
transformation
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Simple Graphs

Different purposes require different types 
of graphs.

EG:  Suppose a local computer network

◼ Is bidirectional (undirected)

◼ Has no loops (no “self-communication”)

◼ Has unique connections between computers

Sensible to represent as follows:
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Simple Graphs

Vertices are labeled to associate with 
particular computers

Each edge can be viewed as the set of 
its two endpoints

1 2

3 4

{1,2}

{3,4}

{2,4}{1,3} {2,3}

{1,4}
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Simple Graphs

DEF:  A simple graph G = (V,E ) 
consists of a non-empty set V of 
vertices (or nodes) and a set E
(possibly empty) of edges where each 
edge is a subset of V with cardinality 2 
(an unordered pair).

Q:  For a set V with n elements, how 
many possible edges there?
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Simple Graphs

A:  The number of pairs in V

= C (n,2) = n · (n -1) / 2

Q:  How many possible graphs are there 
for the same set of vertices V ?
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Simple Graphs

A:  The number of subsets in the set of 
possible edges.  There are n · (n -1) / 2 
possible edges, therefore the number of 
graphs on V is 2n(n -1)/2
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Multigraphs

If computers are connected via internet 
instead of directly, there may be several 
routes to choose from for each 
connection.  Depending on traffic, one 
route could be better than another.  
Makes sense to allow multiple edges, 
but still no self-loops:
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Multigraphs

Edge-labels distinguish between edges 
sharing same endpoints.  Labeling can be 
thought of as function:

e1 → {1,2}, e2 → {1,2}, e3 → {1,3}, 
e4 → {2,3}, e5 → {2,3}, e6 → {1,2}

1 2

3 4

e1

e3

e2

e4e5

e6
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Multigraphs

DEF:  A multigraph G = (V,E,f ) consists 
of a non-empty set V of vertices (or 
nodes), a set E (possibly empty) of 
edges and a function f with domain E
and codomain the set of pairs in V.
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Pseudographs

If self-loops are allowed we get a 
pseudograph:

Now edges may be associated with a single 
vertex, when the edge is a loop

e1 → {1,2}, e2 → {1,2}, e3 → {1,3}, 

e4 → {2,3}, e5 → {2}, e6 → {2}, e7 → {4}

1 2

3 4

e1

e3

e2

e4
e5

e6

e7
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Multigraphs

DEF:  A pseudograph G = (V,E,f ) 
consists of a non-empty set V of 
vertices (or nodes), a set E (possibly 
empty) of edges and a function f with 
domain E and codomain the set of pairs 
and singletons in V.
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Undirected Graphs
Terminology

Vertices are adjacent if they are the 
endpoints of the same edge.

Q:  Which vertices are adjacent to 1?  
How about adjacent to 2, 3, and 4?

1 2

3 4

e1

e3

e2

e4e5

e6



L23 20

Undirected Graphs
Terminology

A: 1 is adjacent to 2 and 3

2 is adjacent to 1 and 3

3 is adjacent to 1 and 2

4 is not adjacent to any vertex

1 2

3 4

e1

e3

e2

e4e5

e6
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Undirected Graphs
Terminology

A vertex is incident with an edge (and 
the edge is incident with the vertex) if it 
is the endpoint of the edge.

Q:  Which edges are incident to 1?  How 
about incident to 2, 3, and 4?

1 2

3 4

e1

e3

e2

e4e5

e6
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Undirected Graphs
Terminology

A: e1, e2, e3, e6 are incident with 2

2 is incident with e1, e2, e4, e5, e6

3 is incident with e3, e4, e5

4 is not incident with any edge

1 2

3 4

e1

e3

e2

e4e5

e6
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Digraphs
Last time introduced digraphs as a way of 

representing relations:

Q:  What type of pair should each edge be 
(multiple edges not allowed)?

1

2

3

4
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Digraphs
A:  Each edge is directed so an ordered pair 

(or tuple) rather than unordered pair.

Thus the set of edges E is just the 
represented relation on V.

1

2

3

4

(1,2)

(1,1)

(2,2)

(2,4)

(1,3)

(2,3)

(3,4)

(3,3)

(4,4)
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Digraphs

DEF:  A directed graph (or digraph)  
G = (V,E ) consists of a non-empty 

set V of vertices (or nodes) and a set E
of edges with E V V.

The edge (a,b) is also denoted by a →b 
and a is called the source of the edge 
while b is called the target  of the edge.

Q:  For a set V with n elements, how many 
possible digraphs are there?
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Digraphs

A:  The same as the number of relations 
on V, which is the number of subsets of 
V V so 2n·n.
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Directed Multigraphs

If also want to allow multiple edges in a 
digraph, get a directed multigraph (or 
multi-digraph).

Q:  How to use sets and functions to deal 
with multiple directed edges, loops?

1

2

3
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Directed Multigraphs

A:  Have function with domain the edge 
set and codomain V V .

e1→(1,2), e2→(1,2), e3→(2,2), e4 → (2,3),

e5 → (2,3), e6 → (3,3), e7 → (3,3)

1

2

3

e1

e3

e2

e4
e5

e7

e6
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Degree
The degree of a vertex counts the 

number of edges that seem to be 
sticking out if you looked under a 
magnifying glass:

1 2

3

e1

e3

e2
e4

e5

e6
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Degree
The degree of a vertex counts the 

number of edges that seem to be 
sticking out if you looked under a 
magnifying glass:

1 2

3

e1

e3

e2
e4

e5

e6

magnify
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Degree
The degree of a vertex counts the 

number of edges that seem to be 
sticking out if you looked under a 
magnifying glass:

Thus deg(2) = 7 even though 2 only 
incident with 5 edges.

Q:  How to define this formally?

1 2

3

e1

e3

e2
e4

e5

e6

magnify
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Degree
A:  Add 1 for every regular edge incident 

with vertex and 2 for every loop.  Thus 
deg(2) = 1 + 1 + 1 + 2 + 2 = 7

1 2

3

e1

e3

e2
e4

e5

e6

magnify
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Oriented Degree
when Edges Directed

The in-degree of a vertex (deg-) counts 
the number of edges that stick in to the 
vertex.  The out-degree (deg+) counts 
the number sticking out.

Q:  What are in-degrees and out-degrees 
of all the vertices?

1

2

3
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Oriented Degree
when Edges Directed

A: deg-(1) = 0

deg-(2) = 3

deg-(3) = 4

deg+(1) = 2

deg+(2) = 3

deg+(3) = 2

1

2

3
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Handshaking Theorem

There are two ways to count the number of 
edges in the above graph:

1. Just count the set of edges:  7
2. Count seeming edges vertex by vertex and 

divide by 2 because double-counted edges: 
( deg(1)+deg(2)+deg(3)+deg(4) )/2 

= (3+7+2+2)/2 = 14/2 = 7

1 2

3 4

e1

e3

e2

e4
e5

e6

e7
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Handshaking Theorem

THM: In an undirected graph

In a directed graph 

Q: In a party of 5 people can each person 
be friends with exactly three others?




=
Ee

eE )deg(
2

1
    ||




−



+ ==
EeEe

eeE )(deg    )(deg    ||
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Handshaking Theorem
A: Imagine a simple graph with 5 people 

as vertices and edges being undirected 
edges between friends (simple graph 
assuming friendship is symmetric and 
irreflexive).  Number of friends each 
person has is the degree of the person.

Handshaking would imply that 

|E | = (sum of degrees)/2 or

2|E | = (sum of degrees) = (5·3) = 15.

Impossible as 15 is not even.  In general:
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Handshaking Theorem

Lemma:  The number of vertices of odd 
degree must be even in an undirected 
graph.

Proof :  Otherwise would have 

2|E | =  Sum of even no.’s

+ an odd number of odd no.’s

➔even = even + odd 

–this is impossible.  •
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Graph Patterns
Complete Graphs - Kn

A simple graph is complete if every pair 
of distinct vertices share an edge.  The 
notation Kn denotes the complete graph 
on n vertices.

K1 K2 K3 K4 K5



L23 40

Graph Patterns
Cycles - Cn

The cycle graph Cn is a circular graph 
with V = {0,1,2,…,n-1} where vertex i
is connected to i +1 mod n and to 
i -1 mod n.  They look like polygons:

C1 C2 C3 C4 C5

Q:  What type of graph are C1 and C2 ?
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Graph Patterns
Wheels - Wn

A:  Pseudographs

The wheel graph Wn is just a cycle graph 
with an extra vertex in the middle:

W1 W2 W3 W4 W5

Usually consider wheels with 3 or more 
spokes only.
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Graph Patterns
Cubes - Qn

The n-cube Qn is defined recursively. Q0 is 
just a vertex. Qn+1 is gotten by taking 2 
copies of Qn  and joining each vertex v of 
Qn  with its copy v’ :

Q0 Q1 Q2 Q3     Q4 (hypercube)
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Bipartite Graphs

A simple graph is bipartite if V can be 
partitioned into V = V1  V2  so that any 
two adjacent vertices are in different 
parts of the partition.  Another way of 
expressing the same idea is 
bichromatic :  vertices can be colored 
using two colors so that no two vertices 
of the same color are adjacent.
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:



L23 45

Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:



L23 52

Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:
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Bipartite Graphs

EG: C4 is a bichromatic: 

And so is bipartite, if we redraw it:

Q:  For which n is Cn bipartite?
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Bipartite Graphs

A:  Cn is bipartite when n is even.  For 
even n color all odd numbers red and 
all even numbers green so that vertices 
are only adjacent to opposite color.

If n is odd, Cn is not bipartite.  If it were, 
color 0 red.  So 1 must be green, and 2 
must be red.  This way, all even 
numbers must be red, including vertex 
n-1.  But n-1 connects to 0 →.
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Graph Patterns
Complete Bipartite - Km,n

When all possible edges exist in a simple 
bipartite graph with m red vertices and 
n green vertices, the graph is called 
complete bipartite and the notation 
Km,n is used.  EG: 

K2,3 K4,5
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Subgraphs

Notice that the 2-cube           occurs 

inside the 3-cube             .  In other 

words, Q2 is a subgraph of Q3 :

DEF:  Let G = (V,E ) and H = (W,F ) be 
graphs.  H is said to be a subgraph of G, 
if W  V and F  E.

Q:  How many Q2 subgraphs does Q3  have?
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Subgraphs
A:  Each face of Q3 is a Q2 subgraph so the 

answer is 6, as this is the number of faces 
on a 3-cube:
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Unions
In previous example can actually 

reconstruct the 3-cube from its 6 2-
cube faces:
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Unions
If we assign the 2-cube faces (aka Squares) 

the names S1, S2, S3, S4, S5, S6 then Q3 is 
the union of its faces:

Q3 = S1S2S3S4S5S6
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Unions
DEF:  Let G1 = (V1, E1 ) and G2 = (V2, E2 ) be 

two simple graphs (and V1,V2 may or may 
not be disjoint).  The union of G1, G2  is 
formed by taking the union of the vertices 
and edges.  I.E: G1G2 = (V1V2, E1E2 ).

A similar definitions can be created for 
unions of digraphs, multigraphs, 
pseudographs, etc.
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Adjacency Matrix

We already saw a way of representing 
relations on a set with a Boolean 
matrix:

R digraph(R) MR

1 1

2 2

3 3

4 4

1

2

3

4




















1000

1100

1110

1111
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Adjacency Matrix

Since digraphs are relations on their vertex 
sets, can adopt the concept to represent 
digraphs.  In the context of graphs, we call 
the representation an adjacency matrix :

For a digraph G = (V,E ) define matrix AG by:

Rows, Columns –one for each vertex in V

Value at i th row and j th column is

◼ 1 if i th vertex connects to j th vertex (i → j )

◼ 0 otherwise
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Adjacency Matrix
-Directed Multigraphs

Can easily generalize to directed multigraphs 
by putting in the number of edges between 
vertices, instead of only allowing 0 and 1:

For a directed multigraph G = (V,E ) define 
the matrix AG by:

Rows, Columns –one for each vertex in V

Value at i th row and j th column is

◼ The number of edges with source the i th 

vertex and target the j th vertex
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Adjacency Matrix
-Directed Multigraphs

Q:  What is the adjacency matrix?

1

2

34
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Adjacency Matrix
-Directed Multigraphs

A:

1

2

3





















0000

0210

0210

1030

4
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Adjacency Matrix
-General

Undirected graphs can be viewed as directed 
graphs by turning each undirected edge 
into two oppositely oriented directed 
edges, except when the edge is a self-loop 
in which case only 1 directed edge is 
introduced. EG:

1 2

3 4

1 2

3 4
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Adjacency Matrix
-General

Q: What’s the adjacency matrix?

1 2

3 4
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Adjacency Matrix
-General

A:

Notice that answer is symmetric.

1 2

3 4





















1000

0011

0122

0120
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Adjacency Matrix
-General

For an undirected graph G = (V,E ) define 
the matrix AG by:

Rows, Columns –one for each element of V

Value at i th row and j th column is the 
number of edges incident with vertices i 
and j.

This is equivalent to converting first to a 
directed graph as above.  Or by allowing 
undirected edges to take us from i to j can 
simply use definition for directed graphs.
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Graph Isomorphism

Various mathematical notions come with 
their own concept of equivalence, as 
opposed to equality:

Equivalence for sets is bijectivity:

◼ EG {      ,       ,     }  {12, 23, 43}

Equivalence for graphs is isomorphism:

◼ EG 


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Graph Isomorphism

Intuitively, two graphs are isomorphic if 
can bend, stretch and reposition vertices 
of the first graph, until the second graph 
is formed.  Etymologically, isomorphic
means “same shape”.

EG:  Can twist or relabel:

to obtain:
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Graph Isomorphism
Undirected Graphs

DEF: Suppose G1 = (V1, E1 ) and G2 = (V2, E2 ) 
are pseudographs.  Let f :V1→V2  be a 
function s.t.:

1) f is bijective

2) for all vertices u,v  in V1, the number of 
edges between u and v in G1 is the same 
as the number of edges between  f (u) 
and f (v ) in G2.

Then f is called an isomorphism and G1 is 
said to be isomorphic  to G2.
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Graph Isomorphism
Digraphs

DEF: Suppose G1 = (V1, E1 ) and G2 = (V2, E2 ) are 
directed multigraphs.  Let f :V1→V2  be a 
function s.t.:

1) f is bijective

2) for all vertices u,v  in V1, the number of edges 
from u to v in G1 is the same as the number of 
edges between  f (u) and f (v ) in G2.

Then f is called an isomorphism and G1 is said to 
be isomorphic  to G2.

Note: Only difference between two definitions is 
the italicized “from” in no. 2 (was “between”).
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Graph Isomorphism
-Example

EG:  Prove that         

is isomorphic to .

First label the vertices:

1
2

3

5 4

1
2

3

5 4
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Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  

1
2

3

5 4

1
2

3

5 4



L23 78

Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.   

2
3

5 4

2
3

5 4

1 1



L23 79

Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 
so set f (3) = 5.   

3

5 4

2

5 4

2
31 1
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Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 
so set f (3) = 5.  In this fashion we get f (4) 
= 2

5
4

2

4

3

5

2
31 1
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Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 
so set f (3) = 5.  In this fashion we get f (4) 
= 2,  f (5) = 4.   

4

2
3

5

2
31 1

5
4
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Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 
so set f (3) = 5.  In this fashion we get f (4) 
= 2,  f (5) = 4.  If we would continue, we 
would get back to f (1) =1 so this process is 
well defined and f is a morphism.   

1
2

3

5 4

1
2

3

5 4
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Graph Isomorphism
-Example

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 
so set f (3) = 5.  In this fashion we get f (4) 
= 2,  f (5) = 4.  If we would continue, we 
would get back to f (1) =1 so this process is 
well defined and f is a morphism.  Finally 
since f is bijective, f is an isomorphism.

1
2

3

5 4

1
2

3

5 4
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Properties of Isomorphims

Since graphs are completely defined by their 
vertex sets and the number of edges 
between each pair, isomorphic graphs must 
have the same intrinsic properties.  I.e. 
isomorphic graphs have the same…

…number of vertices and edges
…degrees at corresponding vertices
…types of possible subgraphs
…any other property defined in terms of the 

basic graph theoretic building blocks! 
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Graph Isomorphism
-Negative Examples

Once you see that graphs are isomorphic, 
easy to prove it.  Proving the opposite, 
is usually more difficult.  To show that 
two graphs are non-isomorphic need to 
show that no function can exist that 
satisfies defining properties of 
isomorphism.  In practice, you try to 
find some intrinsic property that differs 
between the 2 graphs in question.
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Graph Isomorphism
-Negative Examples

A:  Why are the following non-
isomorphic?

u1

u2
u3

u5
u4

v1

v2

v3

v4
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Graph Isomorphism
-Negative Examples

A:  1st graph has more vertices than 2nd.

Q:  Why are the following non-
isomorphic?

u1

u2
u3

u5
u4

v1

v2
v3

v5
v4
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Graph Isomorphism
-Negative Examples

A:  1st graph has more edges than 2nd.

Q:  Why are the following non-
isomorphic?

u1

u2
u3

u5
u4

v1

v2
v3

v5
v4
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Graph Isomorphism
-Negative Examples

A:  2nd graph has vertex of degree 1, 1st

graph doesn't. 

Q:  Why are the following non-
isomorphic?

u1 u2 u3 u6u4 u5

u7 u9

v1 v2 v3 v6v4 v5

v7 v8 v9u8
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Graph Isomorphism
-Negative Examples

A:  1st graph has 2 degree 1 vertices, 4 
degree 2 vertex and 2 degree 3 vertices.  
2nd graph has 3 degree 1 vertices, 3 
degree 2 vertex and 3 degree 3 vertices.

Q:  Why are the following non-isomorphic?

u1 u2 u3 u6u4 u5

u7 u8

v1 v2 v3 v6v4 v5

v7 v8
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Graph Isomorphism
-Negative Examples

A:  None of the previous approaches work as 
there are the same no. of vertices, edges, and 
same no. of vertices per degree.

LEMMA:  If G and H are isomorphic, then any 
subgraph of G will be isomorphic to some 
subgraph of H.

Q: Find a subgraph of 2nd graph which isn’t a 
subgraph of 1st graph.

u1 u2 u3 u6u4 u5

u7 u8

v1 v2 v3 v6v4 v5

v7 v8
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Graph Isomorphism
-Negative Examples

A:  This subgraph is not a subgraph of the left 
graph.

Why not?  Deg. 3 vertices must map to deg. 3 
vertices.  Since subgraph and left graph are 
symmetric, can assume v2 maps to u2. Adjacent 
deg. 1 vertices to v2 must map to degree 1 
vertices, forcing the deg. 2 adjacent vertex v3 to 
map to u3.  This forces the other vertex adjacent 
to v3, namely v4 to map to u4.  But then a deg. 3 
vertex has mapped to a deg. 2 vertex→ •

u1 u2 u3 u6u4 u5

u7 u8

v1 v2 v3 v6v4 v5

v7 v8
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Blackboard Exercise

Show that W6 is not bipartite.
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