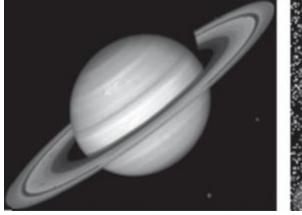
Computer Vision

Image Filtering

Dr. Pratik Mazumder



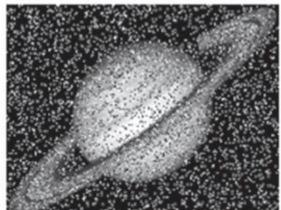


Image Noise

- Image noise refers to random variations of brightness or color information in images often caused by
 - imperfections in the imaging system,
 - Camera Electronics
 - Quality of Lens
 - environmental conditions,
 - Light Variations
 - Surface Reflectance
 - transmission errors
- Unwanted noise has to be removed or filtered out.

Image Noise

- I_{original}(x,y): true pixel value at (x,y)
- n(x,y): noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) + n(x,y)$ {additive noise}

Image Noise

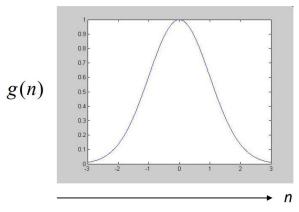
- I_{original}(x,y): true pixel value at (x,y)
- n(x,y): noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) * n(x,y)$ {multiplicative noise}

Noise

Noise can be assumed to be from a distribution, e.g., a Gaussian $ho(n)=rac{1}{\sigma\sqrt{2\pi}}e^{-(n-\mu)^2/(2\sigma^2)}$

Gaussian distribution with mean 0

$$n(x,y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$



Probability Distribution *n* is a random variable

Salt and pepper noise

Pixels are randomly made black or white with a uniform probability distribution.

Salt-pepper



Image filtering

Computes a function of the local neighborhood at each position in the image

Enhance images

- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching

Image filtering

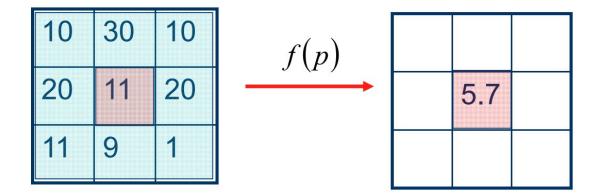
Computes a function of the local neighborhood at each position in the image.

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

-8	6	<u>ğ</u>	-0-	- 0 _	 <i>K</i>	(u, v)			
5	5	7	6	5	0	3	-3		-29	
1	-5	2	-1	8	-3	1	-2			
-4	0	-6	3		 2_	0	3			
9	2	-5	-2	-2				•	No.	

Filtering

Output value at a pixel is based on some function of the neighborhood



Linear Filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.
- Linear filtering is shift-invariant
 - The filter will produce a similar output for similar neighbours
 - o Can be considered as a pattern identifier **USEFUL**

Linear Filtering

• The output is the linear combination of the neighborhood pixels

1	3	0		1	0	-1				
2	10	2	\otimes	1	0.1	-1	=		5	
4	1	1		1	0	-1				
Image				K	Cernel			Fil	ter Oı	ıtput

Convolution and Correlation

Definition of filtering as convolution:

$$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$

notice the flip

notice the lack of a flip

Definition of filtering as correlation:

$$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$

Convolution and Correlation

Convolution is associative.

$$F*(G*I) = (F*G)*I$$

Convolution is commutative.

What about correlation?

$$(f * I)(x,y) = \sum_{i,j} f(i,j)I(x-i,y-j)$$

$$(I * f)(x,y) = \sum_{i,j} I(i,j)f(x-i,y-j)$$

Let
$$u = x - i$$
, $v = y - j$

Therefore,
$$i = x - u$$
, $j = y - v$

$$(I * f)(x, y) = \sum_{u,v} I(x - u, y - v)f(u, v)$$

= identical to $(f * I)(x, y)$

Correlation

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

f

\mathbf{f}_1	f_2	f_3
f_4	f_5	f_6
\mathbf{f}_7	f ₈	f_9

h

1	h_1	h_2	h_3	f \otimes
1	h_4	h_5	h_6	
1	h ₇	h ₈	h ₉	

 $f \otimes h = f_1 h_1 + f_2 h_2 + f_3 h_3$ $+ f_4 h_4 + f_5 h_5 + f_6 h_6$ $+ f_7 h_7 + f_8 h_8 + f_9 h_9$

Convolution

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

$$f = \text{Image}$$

$$h_{2} \quad h_{3} \quad h_{4} \quad h_{5} \quad h_{6}$$

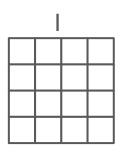
$$h_{1} \quad h_{2} \quad h_{3}$$

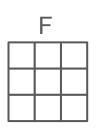
$$f \quad Y - f lip$$

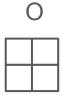
$$f \quad Y - f lip$$

$$f * h = f_{1}h_{9} + f_{2}h_{8} + f_{3}h_{7} + f_{4}h_{6} + f_{5}h_{5} + f_{6}h_{4} + f_{7}h_{3} + f_{8}h_{2} + f_{9}h_{1}$$

Filtering



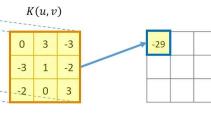




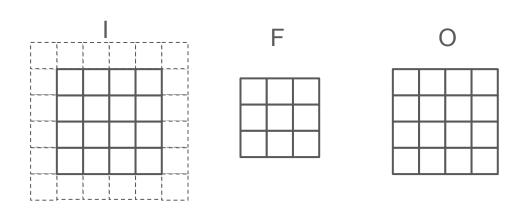
Output Height
$$O_H = [(I_H - F + 2P)/S] + 1$$

Output Width
$$O_w = [(I_W - F + 2P)/S] + 1$$

-8	6	9-	- 0 -	- 0
5	5	7	6	5
1	-5	2	-1	8
-4	0	-6	3	5
9	2	-5	-2	-2



Filtering



Output Height
$$O_H = [(I_H - F + 2P)/S] + 1$$

Output Width
$$O_w = [(I_W - F + 2P)/S] + 1$$

- Pad with a constant
- Pad with reflection

1
0.6
02
3 2

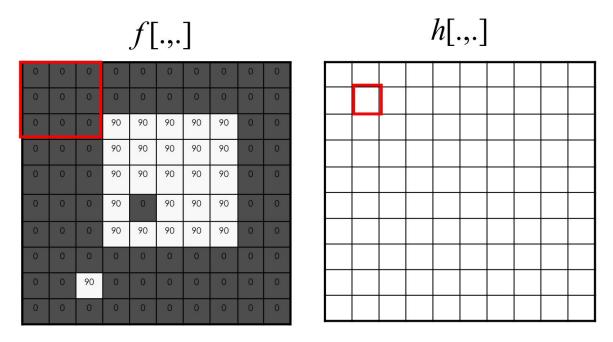
0	0	0
0	1	0
0	0	0

- also known as the 2D rect filter
- also known as the square mean filter

kernel
$$g[\cdot, \cdot] = \frac{1}{9} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

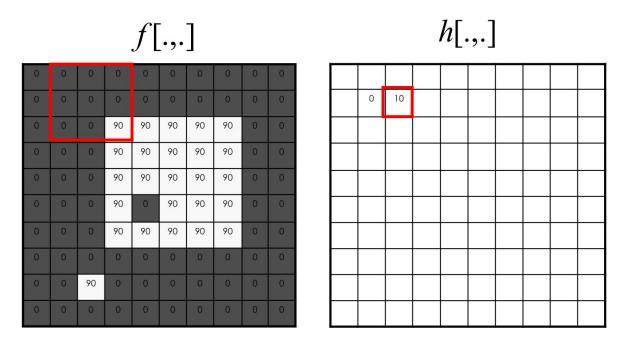
- replaces pixel with local average
- has smoothing (blurring) effect

$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}}$$



$$h[m,n] = \sum_{l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}\frac{1}{1}}$$



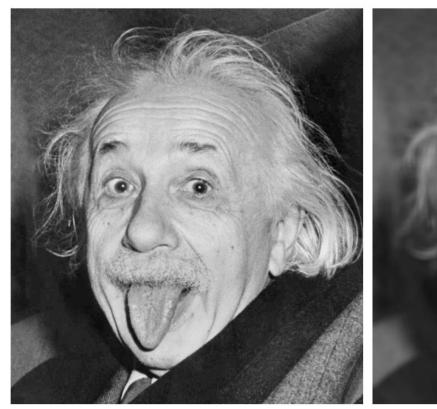
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

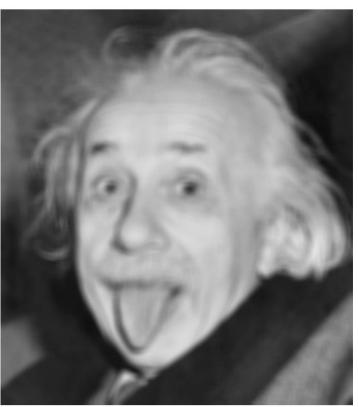
$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}}$$

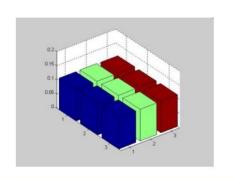
	<i>f</i> [.,.]												
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

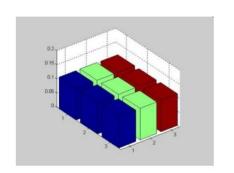
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$



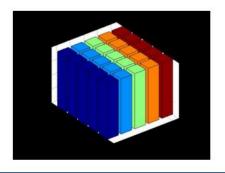




1	1	1
1	1	1
1	1	1



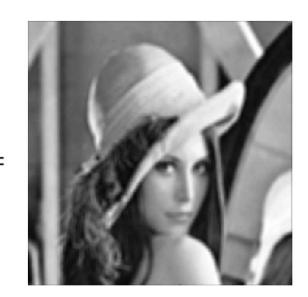
1	1	1
1	1	1
1	1	1



Any Change?

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

25



Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1	1		1		1	1	1
	1	1	1	=	1	*	row		
	1	1	1		1				

column

Background: Rank of a Matrix

- The maximum number of linearly independent row vectors of a matrix A, or
- The maximum number of linearly independent column vectors of a matrix A.
- Check each row vector.
 - If a row vector cannot be written as a linear combination of the other row vectors
 - Add 1 to the number of linearly independent row vectors.
- A matrix is of full rank if its rank is the same as its smaller dimension,
 - i.e., Suppose $A \in \mathbb{R}^{n\times m}$ and n < m. If rank(A)=n, then it is full rank.
- A matrix that is not full rank is rank deficient, and the rank deficiency is the difference between its smaller dimension and the rank.
 - e.g. if rank(A)<n in the above example

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1	1		1		1	1	1
	1	1	1	=	1	*		row	
	1	1	1		1				
				cc	olum	nn			

- What is the rank of this filter matrix?
 Rank = 1
- Why is this important?
 A rank-1 matrix can be represented as the outer product of a column vector and a row vector.
- 2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters)

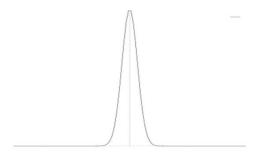
Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1	1		1		1	1	1		
	1	1	1	=	1	*	row				
	1	1	1		1						
					column						

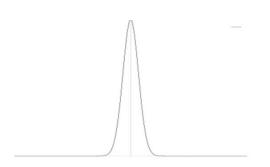
- If the image has M x M pixels and the filter kernel has size N x N:
 - What is the cost of convolution with a non-separable filter?
 - \blacksquare \approx M² x N²
 - What is the cost of convolution with a separable filter?
 - $\approx 2 \times M^2 \times N$

Gaussian Filter



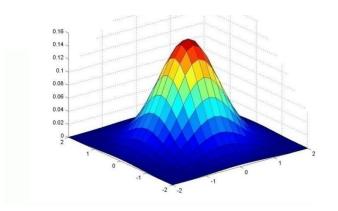
$$egin{align} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \ & \ \end{array}$$

Gaussian Filter



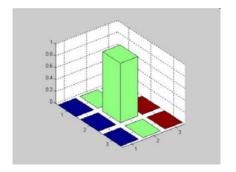
$$egin{split} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \end{split}$$

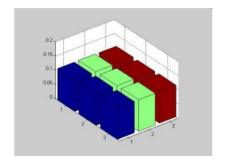
$$g(x) \,=\, rac{1}{\sigma\sqrt{2\pi}}e^{-x^2/(2\sigma^2)}$$

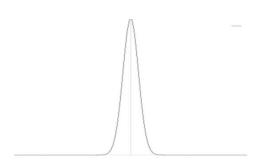


$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

Previously seen Filters

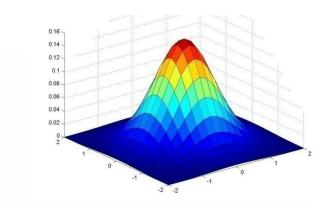




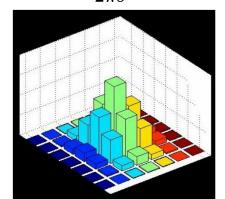


$$egin{split} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \end{split}$$

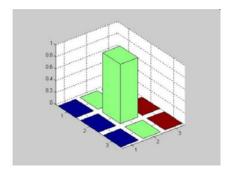
$$g(x) \, = \, rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/(2\sigma^2)}$$

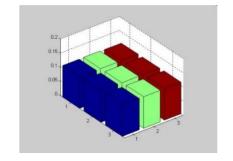


$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$



Previously seen Filters

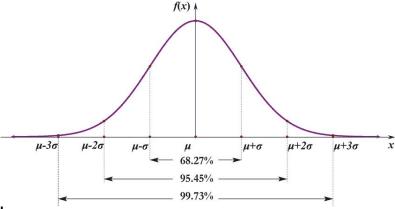




kernel values sampled from the 2D Gaussian function

$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

- Weight falls off with distance from center pixel
- Theoretically infinite, in practice truncated to some maximum distance - usually at 2 to 3σ
- 3 sigma rule for normally distributed data, almost all observed data will fall within three standard deviations of the mean or average



kernel $\frac{1}{16}$ $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$

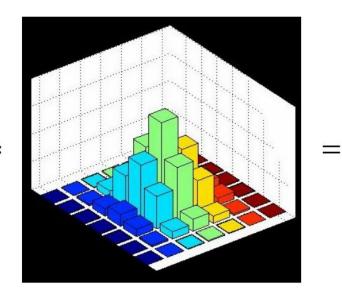
Is this a separable filter?

kernel $\frac{1}{16}$ $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$

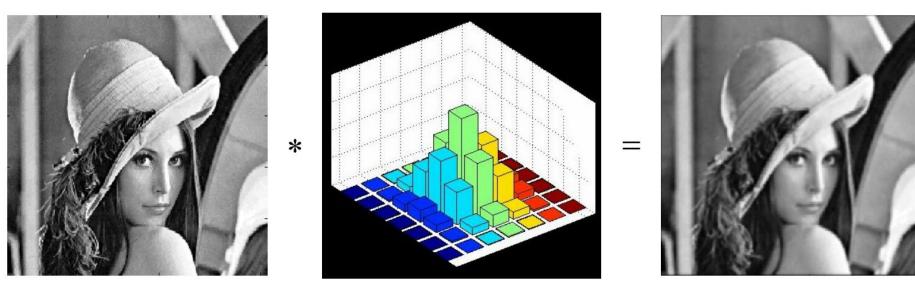
Is this a separable filter? Yes!

kernel $\frac{1}{16}$ $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$

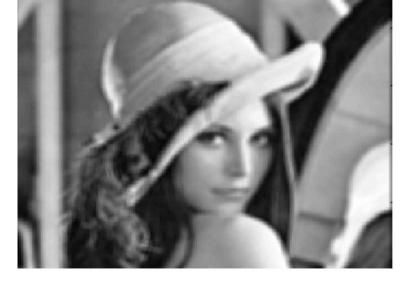
Filtering Gaussian



Filtering Gaussian

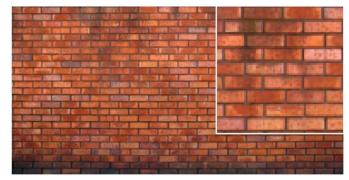


Gaussian smoothing



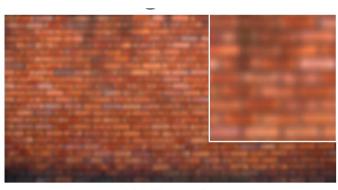
Gaussian Filter

Box Filter

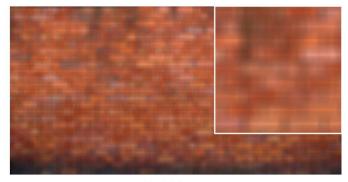


original

Which blur do you like better?



7x7 Gaussian

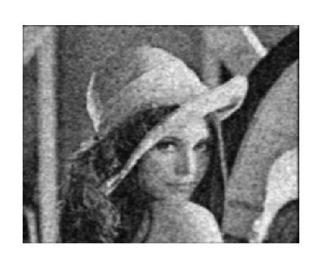


7x7 box

Noise Filtering

After additive Gaussian Noise

After Averaging



After Gaussian Smoothing

input

filter

0	0	0
0	0	1
0	0	0

output

input

filter

0	0	0
0	0	1
0	0	0

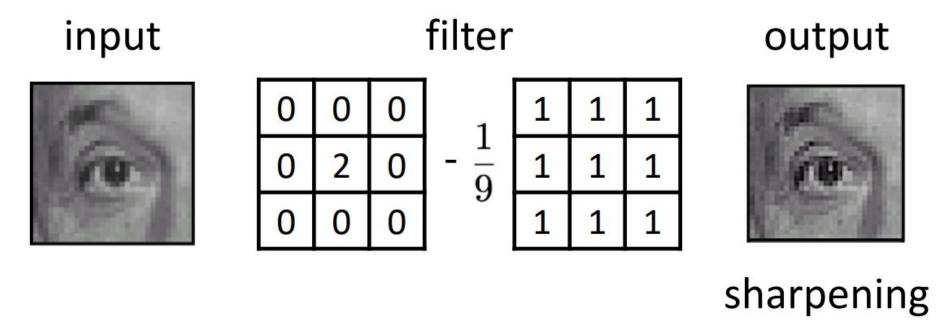
output

shift to left by one

input

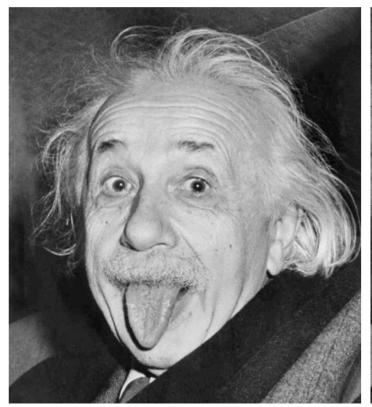
output

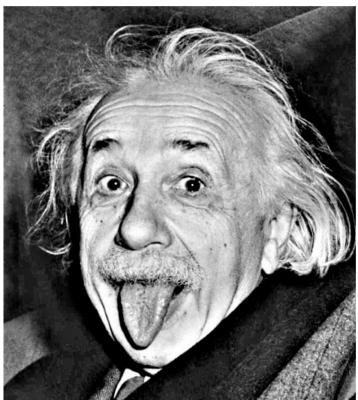
0	0	0
0	2	0
0	0	0



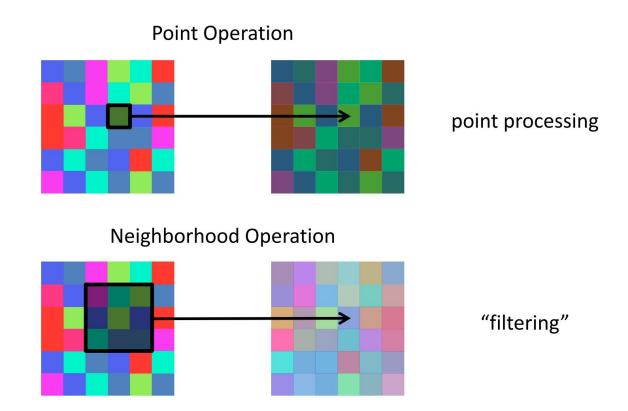
- do nothing for flat areas
- stress intensity peaks

Sharpening Examples

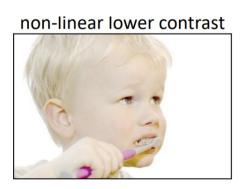




What types of image filtering can we do?



Examples of point processing



Examples of point processing

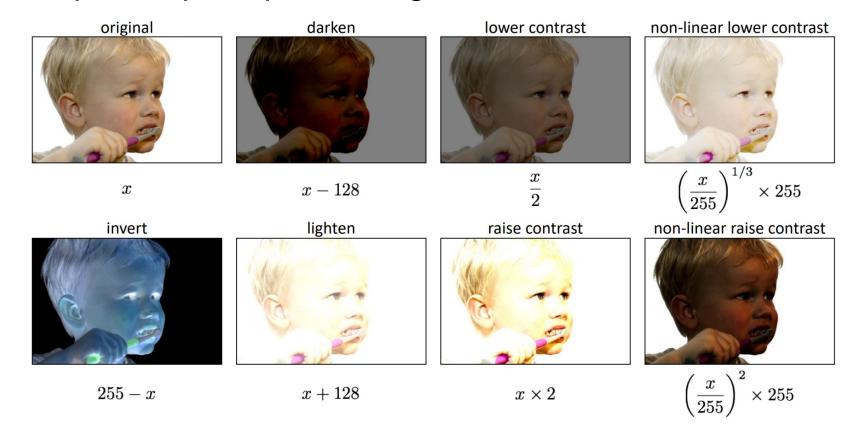


Image Derivatives and Averages

- Derivative: Rate of change
 - Speed is a rate of change of a distance
 - Acceleration is a rate of change of speed
- Average (Mean)
 - Dividing the sum of N values by N

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$v = \frac{ds}{dt}$$
 speed $a = \frac{dv}{dt}$ acceleration

Examples

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Discrete Derivative

$$rac{df}{dx}=f(x)-f(x-1)=f'(x)$$
 Backward difference $rac{df}{dx}=f(x+1)-f(x)=f'(x)$ Forward difference $rac{df}{dx}=f(x+1)-f(x-1)=f'(x)$ Central difference

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 -10 5 15 20 5

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 -10 5 15 20 5

Derivative Masks

Backward difference	[-1 1]
Forward difference	[1 -1]
Central difference	[-1 0 1]

Derivatives in 2 Dimensions

Given function
$$f(x, y)$$

Gradient vector
$$\nabla f(x,y) = \begin{vmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{vmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude
$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction
$$\theta = \tan^{-1} \frac{f_y}{f_x}$$

Derivatives of Images

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Derivative masks
$$f_x \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$
 $f_y \Rightarrow \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

Derivatives of Images

$$f_x \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

Derivative masks
$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $f_y \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

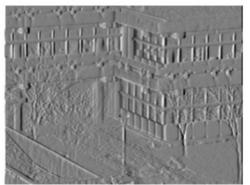
$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

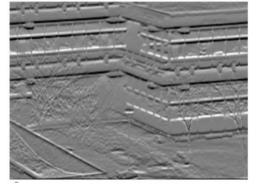
Derivatives of Images

$$f_{y} \Rightarrow \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

Effect on Images





f y

f

Detecting edges

How would you go about detecting edges in an image

✓ You take derivatives

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.