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Image Noise

e Image noise refers to random variations of brightness or color information in images often
caused by

o imperfections in the imaging system,
m Camera Electronics
m Quality of Lens
o environmental conditions,
m Light Variations
m Surface Reflectance

o transmission errors

e Unwanted noise has to be removed or filtered out.



Image Noise

(x,y) : true pixel value at (x,y)

Iorigina

e n(x,y): noise at (Xx,y)

| sorveg(XY) = Ioriginal(x,y) +n(x,y) {additive noise}




Image Noise

Ioriginal(x,y) : true pixel value at (x,y)
e n(x,y): noise at (Xx,y)

lopserved®Y) = lorgina(X:Y) *N(Xy)  {multiplicative noise}




Noise

Noise can be assumed to be from a distribution, e.g., a Gaussian #(r) = ——e "/
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Probability Distribution
n is a random variable



Salt and pepper noise

Pixels are randomly made black or white with a uniform probability distribution.

Salt-pepper




DeNoise







Image filtering

Computes a function of the local neighborhood at each position in the image

Enhance images

e Denoise, resize, increase contrast, etc.
Extract information from images
Texture, edges, distinctive points, etc.
Detect patterns
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e Template matching



Image filtering

Computes a function of the local neighborhood at each position in the image.

h=output f=filter I=image
hm,n]=Y" fTk, 11 I[m+k,n+I]
k.l

2d coords=k,1 2d coords=m,n
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Filtering

e Output value at a pixel is based on some function of the neighborhood
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Linear Filtering

Replace each pixel by a linear combination of its neighbors (and possibly itself).
The combination is determined by the filter’s kernel.

The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.

Linear filtering is shift-invariant
o The filter will produce a similar output for similar neighbours

o Can be considered as a pattern identifier - USEFUL



Linear Filtering

e The output is the linear combination of the neighborhood pixels
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Convolution and Correlation

Definition of filtering as convolution: notice the flip

&
(f*I)(z,y) Z fl, )1z — i,y — j)

,j_—OO

Definition of filtering as correlation: notice the lack of a flip

(f «1)(z,y) Z F NI+ 14,y + )



Convolution and Correlation

Convolution is associative.
Fx(GxIl)=(F*xG)x]

Convolution is commutative.

What about correlation?

(f*DCy) =2 fGDIx =Ly — )
LJ

U * ) =3 1GHfGx = by = )
LJ

Letu=x-i,v=y-j

Therefore,i=x-u,j=y-v

I *xy) =X Ix —uy —v)f(u,v)
= iaentical to(f * D(x,y)



Correlation

f®h= ;Z e, Dn(k,1)

f =Image
h = Kernel
/ h
£, |f, |f h, |h, |h f®h= fil+ foh, + f3h,
(B | ® hy |hs |hg | + fahy + fshs + fohg
f7 f8 f9 h7 h8 h9 + f.7h7 + -ff.ShS + f‘9h9




Convolution
frh=Y>" fk,D)h(—k,~1)

f - Image h; hg hy X — ﬂlp h, h, h,

h = Kemel h, hy hg h, hy hg
h, h, |h; 7 8 9
f Y — flip
f) f, f hy |hy |hy SFh= fihy+ fohg + fih,
f, |t |f # |hg |hs by [T + fuhg + f5hs + foh,
7 o 7 h h h
7 8 9 3 2 1 + fohy + foh, + foh,




Filtering

Output Height O, = | (I, - F + 2P)/S | + 1

Output Width O = (I, - F + 2P)/S | + 1
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Filtering

_________________________

Output Height O, = | (I, - F + 2P)/S | + 1

Output Width O = (I, - F + 2P)/S | + 1

e Pad with a constant
e Pad with reflection



Filtering Examples




Box Filter

also known as the 2D rectfilter

also known as the square mean filter

kernel g[-, ] = %

replaces pixel with local average

has smoothing (blurring) effect



Box Filter gl ] 1

O

151 A =5]

hlm,n] =Y glk,1] flm+k,n+I]



Box Filter

gl | :fps

O

/1] hl.,.]

hlm,n] =Y glk,I] flm+k,n+I]



Box Filter gl | 1

O

hlm,n] =Y glk,1] flm+k,n+I]

k.l



Box Filter
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Filtering Examples
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Filtering Examples




Filtering Examples

Any Change?




Separable filters

e A2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 — 1 *
box filter row
11111 1




Background: Rank of a Matrix

e The maximum number of linearly independent row vectors of a matrix A, or
e The maximum number of linearly independent column vectors of a matrix A.

e Check each row vector
o If a row vector cannot be written as a linear combination of the other row vectors
m Add 1 to the number of linearly independent row vectors.

e A matrix is of full rank if its rank is the same as its smaller dimension,
o i.e., Suppose A € R™and n<m. If rank(A)=n, then it is full rank.

e A matrix that is not full rank is rank deficient, and the rank deficiency is the difference
between its smaller dimension and the rank.
o e.g.ifrank(A)<n in the above example



Separable filters

e A2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 — 1 *
box filter row
11111 1
column

e \What is the rank of this filter matrix?
Rank = 1

e Why is this important?
A rank-1 matrix can be represented as the outer product of a column vector and a row vector.

e 2D convolution with a separable filter is equivalent to two 1D convolutions (with the “column”
and “row” filters)



Separable filters

e A2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 — 1 *
box filter row
11111 1
column

e If the image has M x M pixels and the filter kernel has size N x N:
o What is the cost of convolution with a non-separable filter?
m =M2xN?

o What is the cost of convolution with a separable filter?
m =2xM?*xN



Gaussian Filter
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g(x) = 1 e—ajz/(20'2)




GaUSSian Fllter Previously seen Filters

1 2/ (92 Y.
_ = o (@=p)/ (20 _ 2y
9@ = 0\/%6 e 9(z) 9702
o(z) = —— /)




GaUSSian Fllter Previously seen Filters

9(z) = 0—\/%
o) = —e */07)




Gaussian Filter

kernel values sampled from the 2D Gaussian function

1 _ 2?4y?

€T —= e 202
9(z) = 5—

Weight falls off with distance from center pixel

fix)

Theoretically infinite, in practice truncated to some
maximum distance - usually at 2 to 30

3 sigma rule - for normally distributed data, almost all
observed data will fall within three standard deviations of
the mean or average
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Gaussian Filter

1
k | =
ernel .




Gaussian Filter

Is this a separable filter?
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Gaussian Filter

Is this a separable filter? Yes!
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Filtering Gaussian




Filtering Gaussian

Gaussian smoothing



Filtering Examples

Gaussian Filter Box Filter



Filtering Examples

7x7 Gaussian

original

Which blur do you like better?

7x7 box



Noise Filtering

After additive After Averaging After Gaussian Smoothing
Gaussian Noise



Filtering Examples

input filter output
- 0olo]fo
v ofof1] ?
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Filtering Examples

input filter

ol olo

shift to left
by one



Filtering Examples

input filter output
0 0 . 11 [ I e |
0]2])0f-g|L1f2]1 ?
0 0 11111




Filtering Examples

input filter
e 0 U ESESE!
L 01210 '§ 11111
0|00 11111

sharpening

e do nothing for flat areas
e stress intensity peaks



Sharpening Examples




What types of image filtering can we do?

Point Operation

point processing

Neighborhood Operation

“filtering”




Examples of point processing

darken lower contrast non-linear lower contrast
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Examples of point processing
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Image Derivatives and Averages

e Derivative: Rate of change
o Speed is a rate of change of a distance
o Acceleration is a rate of change of speed

e Average (Mean)
o Dividing the sum of N values by N



Derivative

ﬂzhm f(X)—f(X—AX)

dx Ax—0 A)C

= '™ = 1,

ds dv :
v=— speed  a=-—acceleration
dt dt



Examples

p=% Lx° y=sinx+e

W ot ax’ dy

=cosx+(—=1e”
dx dx =D



Discrete Derivative

af J ()~ f(x—Ax)

E = 1imAx—>O Ax — f’(x)
df _ SO=SG=D

dx 1

df

o J(x)=f(x=1D=f(x)
X



Discrete Derivative

df
dr
af
T far) -
df (x+1) —



Example

fx)= 10 15 10 10 25 20 20 20
)= 0 5 =5 0 15 =5 0 0
f'x)= 0 5 —10 5 15 20 5 0



Example

f(x)= 10 15 10 10 25 20 20 20
flx)= 0 5 =5 0 15 =5 0 0
f'x)= 0 5 —10 5 15 20 5 0

Derivative Masks

Backward difference -1 1]
Forward difference [1 -1]

Central difference -1 0 1]



Derivatives in 2 Dimensions

Given function

Gradient vector

Gradient magnitude

Gradient direction

f(x,)

Vi(x,y)=

VI =L+ S

a1y

of (x,) |

Ox
of (x,)
Oy

0 =tan +=

X




Derivatives of Images

Derivative masks

f,=>=-1 0 1
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Derivatives of Images

Derivative masks
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Derivatives of Images
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Effect on Images




Detecting edges

How would you go about detecting edges in an image

v You take derivatives

How do you differentiate a discrete image (or any other discrete signal)?

v You use finite differences.



