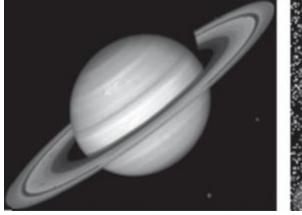
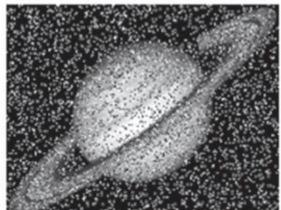
# Computer Vision

Image Filtering

Dr. Pratik Mazumder





### **Image Noise**

- Image noise refers to random variations of brightness or color information in images often caused by
  - imperfections in the imaging system,
    - Camera Electronics
    - Quality of Lens
  - environmental conditions,
    - Light Variations
    - Surface Reflectance
  - transmission errors
- Unwanted noise has to be removed or filtered out.

### **Image Noise**

- I<sub>original</sub>(x,y): true pixel value at (x,y)
- n(x,y): noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) + n(x,y)$  {additive noise}







### Image Noise

- I<sub>original</sub>(x,y): true pixel value at (x,y)
- n(x,y): noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) * n(x,y)$  {multiplicative noise}





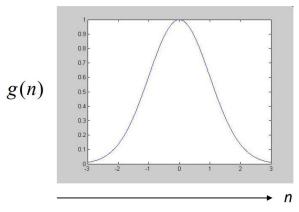


#### Noise

Noise can be assumed to be from a distribution, e.g., a Gaussian  $ho(n)=rac{1}{\sigma\sqrt{2\pi}}e^{-(n-\mu)^2/(2\sigma^2)}$ 

Gaussian distribution with mean 0

$$n(x,y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$



Probability Distribution *n* is a random variable



### Salt and pepper noise

Pixels are randomly made black or white with a uniform probability distribution.







Salt-pepper













### Image filtering

Computes a function of the local neighborhood at each position in the image

#### Enhance images

- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching

### Image filtering

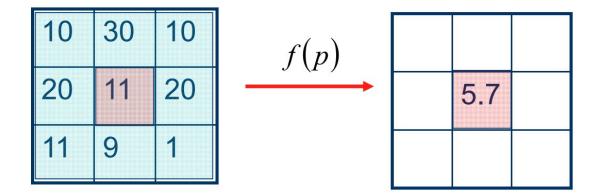
Computes a function of the local neighborhood at each position in the image.

h=output f=filter I=image 
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

| -8 | 6  | <u>ğ</u> | -0- | - 0 _ | <br><i>K</i> | (u, v | )  |   |     |  |
|----|----|----------|-----|-------|--------------|-------|----|---|-----|--|
| 5  | 5  | 7        | 6   | 5     | 0            | 3     | -3 |   | -29 |  |
| 1  | -5 | 2        | -1  | 8     | -3           | 1     | -2 |   |     |  |
| -4 | 0  | -6       | 3   |       | <br>2_       | 0     | 3  |   |     |  |
| 9  | 2  | -5       | -2  | -2    |              |       |    | • | No. |  |

### Filtering

Output value at a pixel is based on some function of the neighborhood



### Linear Filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.
- Linear filtering is shift-invariant
  - The filter will produce a similar output for similar neighbours
  - o Can be considered as a pattern identifier **USEFUL**

### **Linear Filtering**

• The output is the linear combination of the neighborhood pixels

| 1     | 3  | 0 |           | 1 | 0      | -1 |   |     |        |       |
|-------|----|---|-----------|---|--------|----|---|-----|--------|-------|
| 2     | 10 | 2 | $\otimes$ | 1 | 0.1    | -1 | = |     | 5      |       |
| 4     | 1  | 1 |           | 1 | 0      | -1 |   |     |        |       |
| Image |    |   |           | K | Cernel |    |   | Fil | ter Oı | ıtput |

#### Convolution and Correlation

Definition of filtering as convolution:

$$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$

notice the flip

notice the lack of a flip

Definition of filtering as correlation:

$$(f * I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$

#### **Convolution and Correlation**

Convolution is associative.

$$F*(G*I) = (F*G)*I$$

Convolution is commutative.

What about correlation?

$$(f * I)(x,y) = \sum_{i,j} f(i,j)I(x-i,y-j)$$

$$(I * f)(x,y) = \sum_{i,j} I(i,j)f(x-i,y-j)$$

Let 
$$u = x - i$$
,  $v = y - j$ 

Therefore, 
$$i = x - u$$
,  $j = y - v$ 

$$(I * f)(x, y) = \sum_{u,v} I(x - u, y - v)f(u, v)$$
  
= identical to  $(f * I)(x, y)$ 

#### Correlation

$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(k, l)$$

f = Image

h = Kernel

f

| $\mathbf{f}_1$ | $f_2$          | $f_3$ |
|----------------|----------------|-------|
| $f_4$          | $f_5$          | $f_6$ |
| $\mathbf{f}_7$ | f <sub>8</sub> | $f_9$ |

h

| 1 | $h_1$          | $h_2$          | $h_3$          | $f$ $\otimes$ |
|---|----------------|----------------|----------------|---------------|
| 1 | $h_4$          | $h_5$          | $h_6$          | <b></b>       |
| 1 | h <sub>7</sub> | h <sub>8</sub> | h <sub>9</sub> |               |

 $f \otimes h = f_1 h_1 + f_2 h_2 + f_3 h_3$  $+ f_4 h_4 + f_5 h_5 + f_6 h_6$  $+ f_7 h_7 + f_8 h_8 + f_9 h_9$ 

### Convolution

$$f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l)$$

$$f = \text{Image}$$

$$h_{2} \quad h_{3} \quad h_{4} \quad h_{5} \quad h_{6}$$

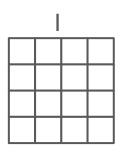
$$h_{1} \quad h_{2} \quad h_{3}$$

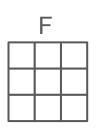
$$f \quad Y - f lip$$

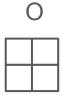
$$f \quad Y - f lip$$

$$f * h = f_{1}h_{9} + f_{2}h_{8} + f_{3}h_{7} + f_{4}h_{6} + f_{5}h_{5} + f_{6}h_{4} + f_{7}h_{3} + f_{8}h_{2} + f_{9}h_{1}$$

### Filtering



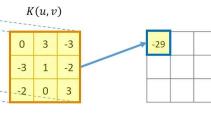




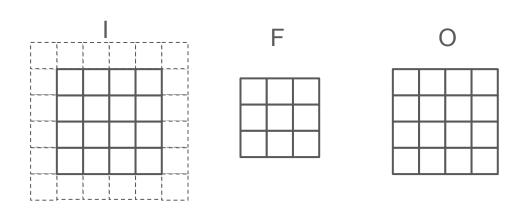
Output Height 
$$O_H = [(I_H - F + 2P)/S] + 1$$

Output Width 
$$O_w = [(I_W - F + 2P)/S] + 1$$

| -8 | 6  | 9- | - 0 - | - 0 |
|----|----|----|-------|-----|
| 5  | 5  | 7  | 6     | 5   |
| 1  | -5 | 2  | -1    | 8   |
| -4 | 0  | -6 | 3     | 5   |
| 9  | 2  | -5 | -2    | -2  |



### Filtering



Output Height 
$$O_H = [(I_H - F + 2P)/S] + 1$$

Output Width 
$$O_w = [(I_W - F + 2P)/S] + 1$$

- Pad with a constant
- Pad with reflection



| 1   |
|-----|
| 0.6 |
| 02  |
|     |
| 3 2 |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |



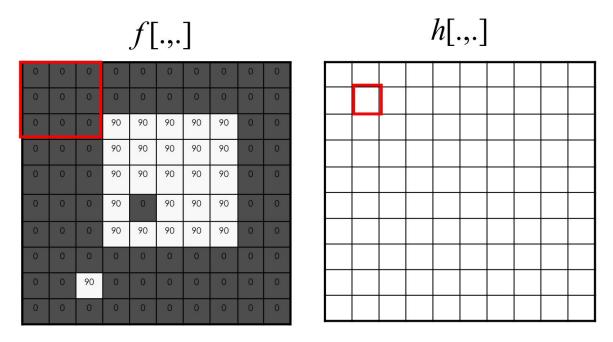
- also known as the 2D rect filter
- also known as the square mean filter

kernel 
$$g[\cdot, \cdot] = \frac{1}{9} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

- replaces pixel with local average
- has smoothing (blurring) effect

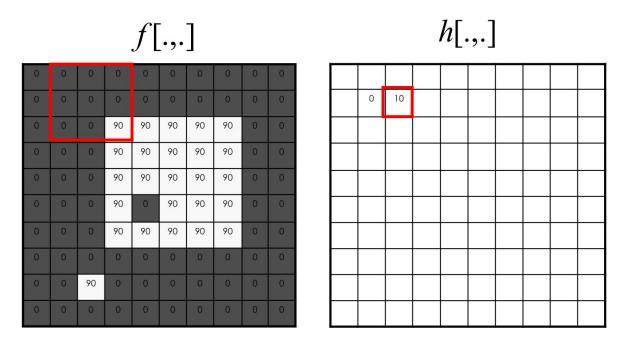


$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}}$$



$$h[m,n] = \sum_{l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}\frac{1}{1}}$$



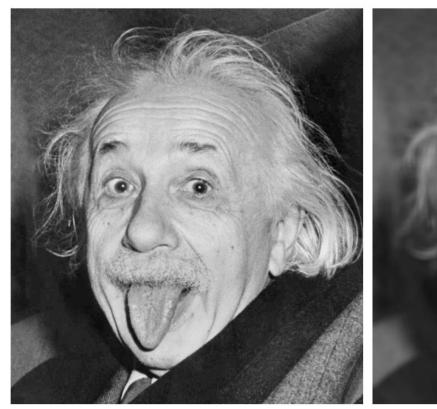
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

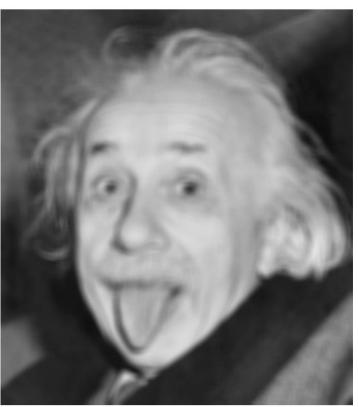
$$g[\cdot,\cdot]_{\frac{1}{9}\frac{1}{11}\frac{1}{1}}$$

|   | <i>f</i> [.,.] |    |    |    |    |    |    |   |   |  |  |  |  |
|---|----------------|----|----|----|----|----|----|---|---|--|--|--|--|
| 0 | 0              | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |  |  |  |
| 0 | 0              | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |  |  |  |
| 0 | 0              | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |  |  |  |

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|    |    |    |    |    |    |    |    |  |
|    |    |    |    |    |    |    |    |  |

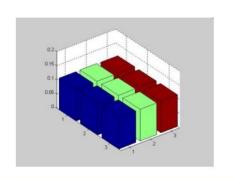
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$





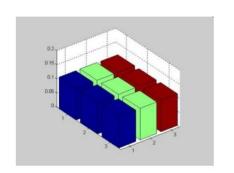






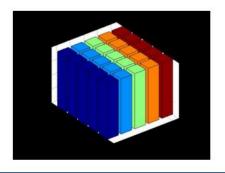
| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |





| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |



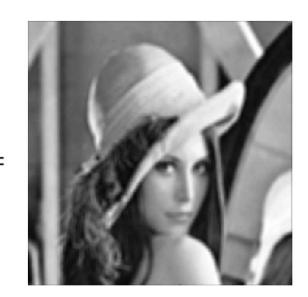


Any Change?



| 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

25



### Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

| example:<br>box filter | 1 | 1 | 1 |   | 1 |   | 1   | 1 | 1 |
|------------------------|---|---|---|---|---|---|-----|---|---|
|                        | 1 | 1 | 1 | = | 1 | * | row |   |   |
|                        | 1 | 1 | 1 |   | 1 |   |     |   |   |

column

### Background: Rank of a Matrix

- The maximum number of linearly independent row vectors of a matrix A, or
- The maximum number of linearly independent column vectors of a matrix A.
- Check each row vector.
  - If a row vector cannot be written as a linear combination of the other row vectors
    - Add 1 to the number of linearly independent row vectors.
- A matrix is of full rank if its rank is the same as its smaller dimension,
  - i.e., Suppose  $A \in \mathbb{R}^{n\times m}$  and n < m. If rank(A)=n, then it is full rank.
- A matrix that is not full rank is rank deficient, and the rank deficiency is the difference between its smaller dimension and the rank.
  - e.g. if rank(A)<n in the above example</li>

### Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

| example:<br>box filter | 1 | 1 | 1 |    | 1    |    | 1 | 1   | 1 |
|------------------------|---|---|---|----|------|----|---|-----|---|
|                        | 1 | 1 | 1 | =  | 1    | *  |   | row |   |
|                        | 1 | 1 | 1 |    | 1    |    |   |     |   |
|                        |   |   |   | cc | olum | nn |   |     |   |

- What is the rank of this filter matrix?
   Rank = 1
- Why is this important?
   A rank-1 matrix can be represented as the outer product of a column vector and a row vector.
- 2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters)

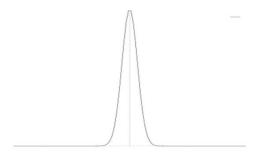
### Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

| example:<br>box filter | 1 | 1 | 1 |   | 1      |   | 1   | 1 | 1 |  |  |
|------------------------|---|---|---|---|--------|---|-----|---|---|--|--|
|                        | 1 | 1 | 1 | = | 1      | * | row |   |   |  |  |
|                        | 1 | 1 | 1 |   | 1      |   |     |   |   |  |  |
|                        |   |   |   |   | column |   |     |   |   |  |  |

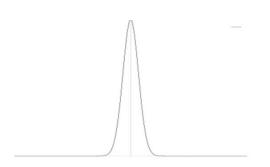
- If the image has M x M pixels and the filter kernel has size N x N:
  - What is the cost of convolution with a non-separable filter?
    - $\blacksquare$   $\approx$  M<sup>2</sup> x N<sup>2</sup>
  - What is the cost of convolution with a separable filter?
    - $\approx 2 \times M^2 \times N$

#### Gaussian Filter



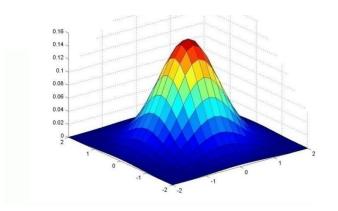
$$egin{align} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \ & \ \end{array}$$

#### Gaussian Filter



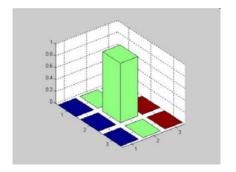
$$egin{split} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \end{split}$$

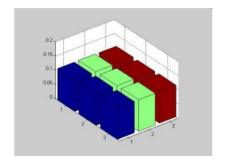
$$g(x) \,=\, rac{1}{\sigma\sqrt{2\pi}}e^{-x^2/(2\sigma^2)}$$

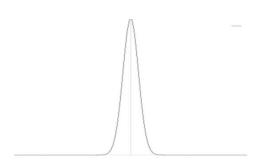


$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

#### Previously seen Filters

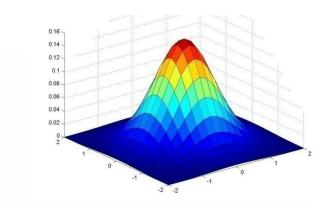




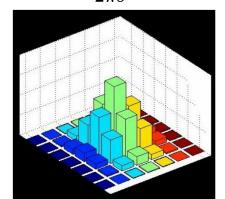


$$egin{split} g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/\left(2\sigma^2
ight)} \ & \ g(x) &= rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/\left(2\sigma^2
ight)} \end{split}$$

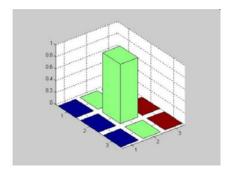
$$g(x) \, = \, rac{1}{\sigma \sqrt{2\pi}} e^{-x^2/(2\sigma^2)}$$

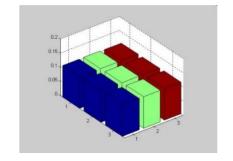


$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$



#### Previously seen Filters

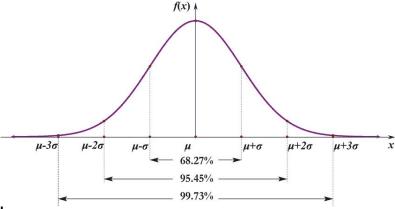




kernel values sampled from the 2D Gaussian function

$$g(x) \, = \, rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

- Weight falls off with distance from center pixel
- Theoretically infinite, in practice truncated to some maximum distance - usually at 2 to 3σ
- 3 sigma rule for normally distributed data, almost all observed data will fall within three standard deviations of the mean or average



kernel  $\frac{1}{16}$   $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$ 

Is this a separable filter?

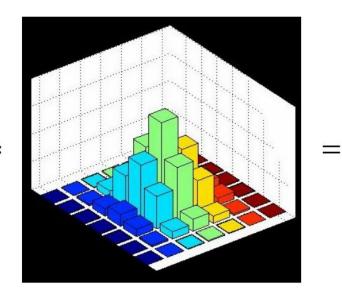
kernel  $\frac{1}{16}$   $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$ 

Is this a separable filter? Yes!

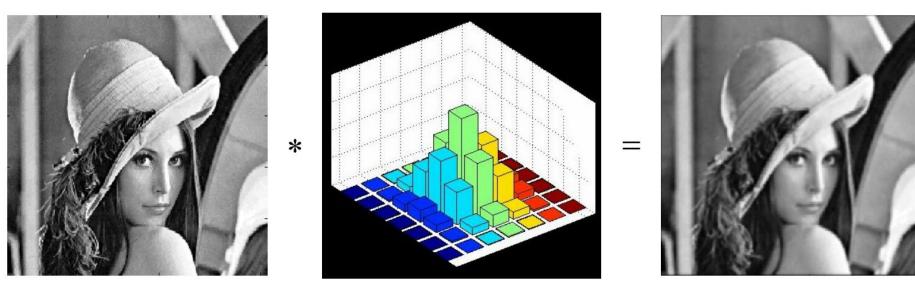
kernel  $\frac{1}{16}$   $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$ 

# Filtering Gaussian



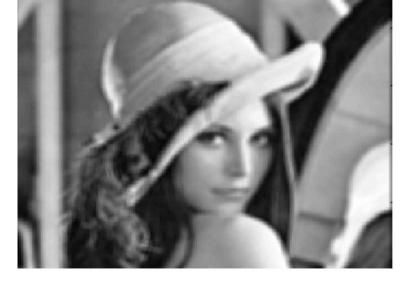


# Filtering Gaussian



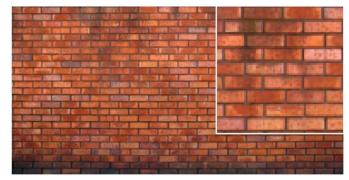
Gaussian smoothing





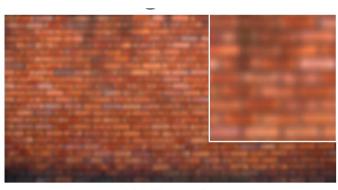
Gaussian Filter

**Box Filter** 

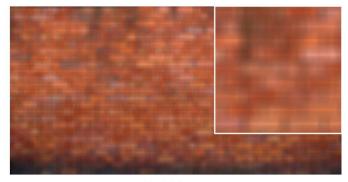


original

Which blur do you like better?



7x7 Gaussian



7x7 box

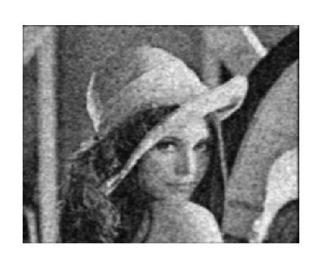
## Noise Filtering



After additive Gaussian Noise



After Averaging



After Gaussian Smoothing

input



filter

| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |

output



input



filter

| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |

output



shift to left by one

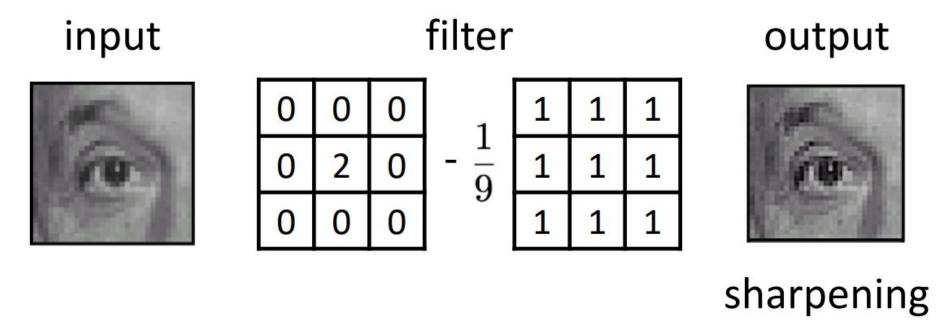
input

output



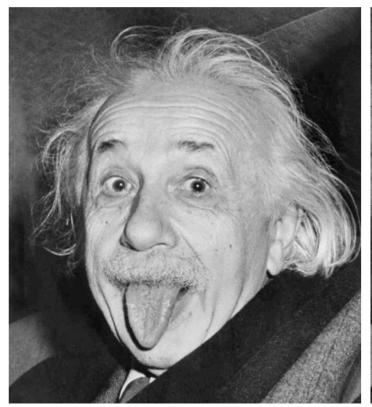
| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |

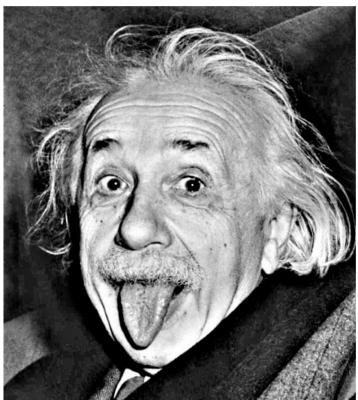




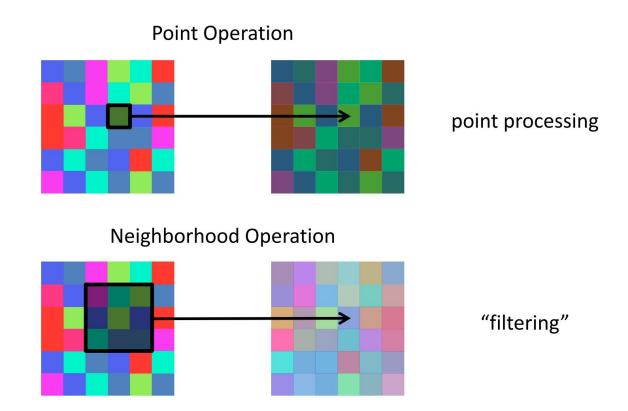
- do nothing for flat areas
- stress intensity peaks

# **Sharpening Examples**





## What types of image filtering can we do?

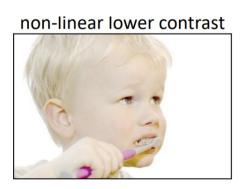


## Examples of point processing









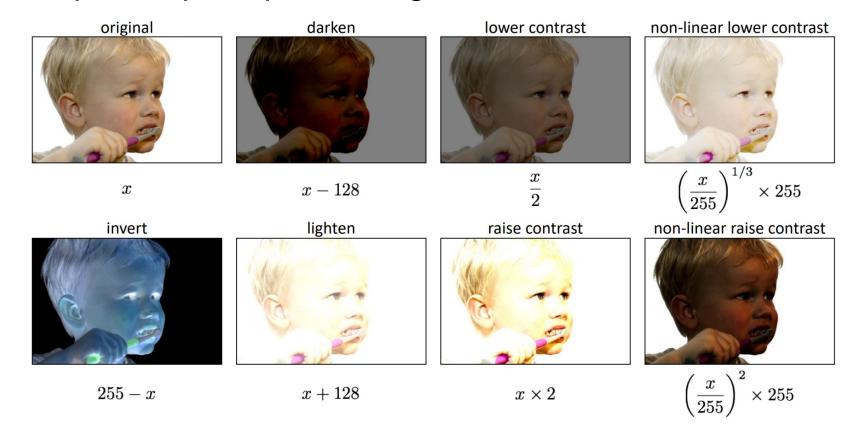








### Examples of point processing



#### Image Derivatives and Averages

- Derivative: Rate of change
  - Speed is a rate of change of a distance
  - Acceleration is a rate of change of speed
- Average (Mean)
  - Dividing the sum of N values by N

#### **Derivative**

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$v = \frac{ds}{dt}$$
 speed  $a = \frac{dv}{dt}$  acceleration

## **Examples**

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

#### **Discrete Derivative**

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

#### **Discrete Derivative**

$$rac{df}{dx}=f(x)-f(x-1)=f'(x)$$
 Backward difference  $rac{df}{dx}=f(x+1)-f(x)=f'(x)$  Forward difference  $rac{df}{dx}=f(x+1)-f(x-1)=f'(x)$  Central difference

### Example

$$f(x) = 10$$
 15 10 10 25 20 20 20  $f'(x) = 0$  5 -5 0 15 -5 0 0  $f''(x) = 0$  5 -10 5 15 20 5

### Example

$$f(x) = 10$$
 15 10 10 25 20 20 20  $f'(x) = 0$  5 -5 0 15 -5 0 0  $f''(x) = 0$  5 -10 5 15 20 5

#### **Derivative Masks**

| Backward difference | [-1 1]   |
|---------------------|----------|
| Forward difference  | [1 -1]   |
| Central difference  | [-1 0 1] |

#### **Derivatives in 2 Dimensions**

Given function 
$$f(x, y)$$

Gradient vector 
$$\nabla f(x,y) = \begin{vmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{vmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude 
$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction 
$$\theta = \tan^{-1} \frac{f_y}{f_x}$$

### Derivatives of Images

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Derivative masks 
$$f_x \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$
  $f_y \Rightarrow \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}$ 

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

### Derivatives of Images

$$f_x \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

Derivative masks 
$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
  $f_y \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$ 

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

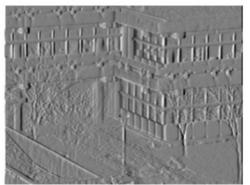
## **Derivatives of Images**

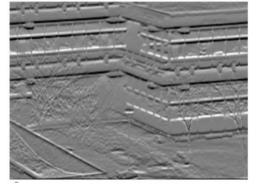
$$f_{y} \Rightarrow \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

## Effect on Images







f y

f

#### **Detecting edges**

How would you go about detecting edges in an image

✓ You take derivatives

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.