Computer Vision

Image Filtering (contd.)

Dr. Pratik Mazumder

Content derived from multiple sources



Filtering
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Effect of Derivative Filters on Images

Edge = Rapid Change in Image
Intensity in a small region




Detecting edges

How would you go about detecting edges in an image

v You take derivatives

How do you differentiate a discrete image (or any other discrete signal)?

v You use finite differences.



Sobel filter

Sobel filter: A separable combination of a horizontal central difference and a vertical tent
filter (to smooth the results)

Tent filter: It is characterized by its shape, which resembles a tent or a triangle, and its
response decreases linearly from the center to the edges
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Sobel filter
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Sobel filter Blurring

Does this filter return large responses on vertical or horizontal lines?



Sobel filter

Horizontal Sober filter:

Vertical Sobel filter:




Sobel filter example
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Sobel filter example
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Derivative filters

Sobel

Prewitt
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Computing image gradients

1. Select your favorite derivative filters.
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2. Convolve with the image to compute derivatives.
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3. Form the image gradient, and compute its direction and amplitude.
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Edge Detection Derivative filters

Smoothing
Compute derivatives
Find gradient magnitude

Threshold gradient magnitude



Sobel Edge Detector

(1 0 —1]
2 0 -2
% 1 0 -1

\ 4

Image /

Threshold — Edges

N\ [1 2
0 0 0
[ =5 =4




Image gradient example
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Image gradient example
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Sobel Edge Detector




Sobel Edge Detector
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Intensity Profile to Detect Edge locations

* An edge is a place of rapid change in the image intensity function

intensity function
image (along horizontal scanline) first derivative
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edges correspond to
extrema of derivative



Intensity Profile to Detect Edge locations

Intensity

Intensity derivative




With a little Gaussian noise
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Derivative filters

Prewitt Filter Sobel Filter Scharr Filter




Derivative filters

Prewitt Filter Sobel Filter Scharr Filter




Edge Detection in the Presence of Noise

* Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal

f(x)
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Edge Detection in the Presence of Noise

intensity plot
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Edge Detection in the Presence of Noise

intensity plot
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Using a derivative filter:



Edge Detection in the Presence of Noise

intensity plot
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Using a derivative filter:

derivative plot
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Edge Detection in the Presence of Noise

e Difference filters respond strongly to noise
e Image noise results in pixels that look very different from their neighbors

e Generally, the larger the noise the stronger the response



Edge Detection in the Presence of Noise

When using derivative filters, it is critical to blur first!
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Edge Detection in the Presence of Noise

When using derivative filters, it is critical to blur first!

input

Gaussian

blurred
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Edge Detection in the Presence of Noise

When using derivative filters, it is critical to blur first!
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Derivative of Gaussian (DoG) filter
Derivative theorem of convolution: ~ 2-(h* f) = (h) * f

Sigma = 50
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Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

input

derivative of
Gaussian

output (same
as before)
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Second Derivative

Edges can be identified by tracking:
e Maxima minima of first derivative

e Zero-crossings of second derivative




Laplace filter

Basically a second derivative filter.
* We can use finite differences to derive it, as with first derivative filter.

first-order , . f(z+0.5h) — f(z —0.5h) 1D derivative filter
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Laplace filter

Basically a second derivative filter.
* We can use finite differences to derive it, as with first derivative filter.
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Laplacian of Gaussian (LoG) filter

Smooth image by Gaussian filter e Gaussian smoothing
Apply Laplacian smoothfgimage Gaussianfilter imige
S = g *1]

Find zero crossings

_ * Find Laplacian
o Scan along each row, record an edge point at the

second order second order

location of zero-crossing. de”_vazi‘ve‘”x defivazi‘ve‘”y
ps= L5+ Lg
o Repeat above step along each column ox oy

Does not provide the orientation/direction of the edge



Laplacian of Gaussian (LoG) filter

Four cases of zero-crossings :

© {+,-}
o {+,O1-}
© {-1+}
o {-,0,+}

Slope of zero-crossing {a, -b} is |a+b]|.
To mark an edge
o Compute slope of zero-crossing

o Apply a threshold to slope



Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering
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Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

input
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Laplace and LoG filtering examples

Laplacian of Gaussian filtering Laplace filtering



Laplace and LoG filtering examples




Laplace and LoG filtering examples

Zero-crossing

Laplacian of Gaussian filtering Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges



LoG

e Itis quite susceptible to noise, particularly if the standard deviation of the smoothing
Gaussian is small.

e Thus itis common to see lots of spurious edges detected away from any obvious
edges.

e One solution to this is to increase the smoothing of the Gaussian to preserve only
strong edges.



2D Gaussian filters

R
‘Q:‘\‘R\\\\\\
BN

e

TIRRES
KNGS %
SN
oﬁ'oﬁ‘o.".,'::':.:::‘:‘t“.\“:: Wl

Gaussian

S A
SRR

Derivative of Gaussian

Laplacian of Gaussian



