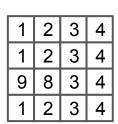
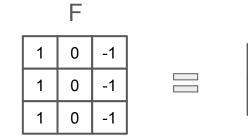
Computer Vision

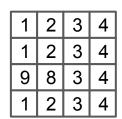
Image Filtering (contd.)

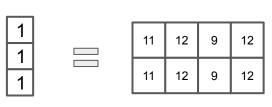
Dr. Pratik Mazumder

Filtering



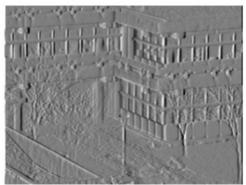


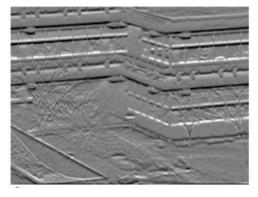




Effect of Derivative Filters on Images

Edge = Rapid Change in Image Intensity in a small region





f

f y

Detecting edges

How would you go about detecting edges in an image

✓ You take derivatives

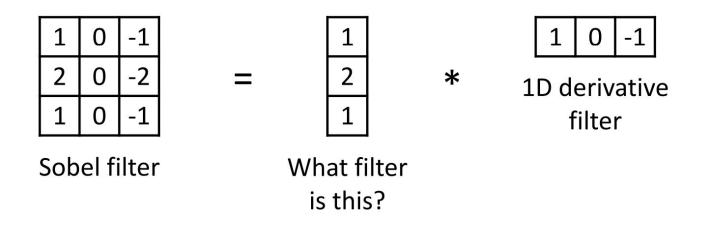
How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.

Sobel filter

Sobel filter: A separable combination of a horizontal central difference and a vertical tent filter (to smooth the results)

Tent filter: It is characterized by its shape, which resembles a tent or a triangle, and its response decreases linearly from the center to the edges



Sobel filter

1	0	-1		1		1 0 -1
2	0	-2	=	2	*	1D derivative
1	0	-1		1		filter
Sol	oel f	ilter	В	Blurring		

Does this filter return large responses on vertical or horizontal lines?

Sobel filter

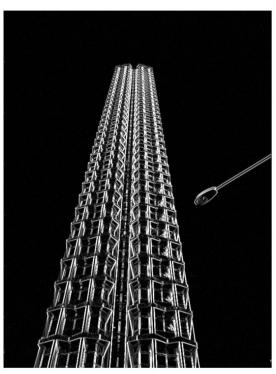
Horizontal Sober filter:

Vertical Sobel filter:

1	2	1
---	---	---

Sobel filter example

original

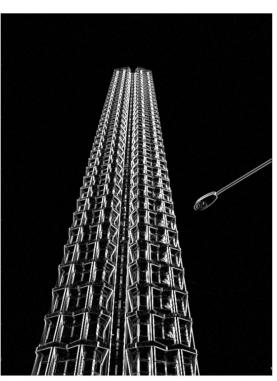


which Sobel filter?

which Sobel filter?

Sobel filter example

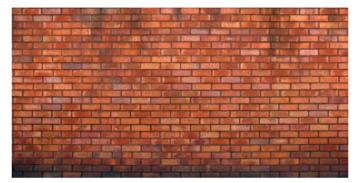
original



horizontal Sobel filter

vertical Sobel filter

Sobel filter example



original

horizontal Sobel filter



vertical Sobel filter

Derivative filters

Denva	uve)	ters
	1	0	-1

Sobel

Prewitt

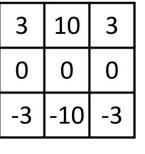
1	0	-
2	0	-

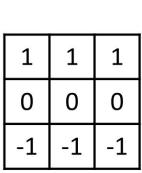
1	2	1
0	0	0
-1	-2	-1

Scharr

Roberts

30-3100-1030-3





1	0
0	-1

Computing image gradients

Select your favorite derivative filters.

$$m{S}_x = egin{bmatrix} 1 & 0 & -1 \ 2 & 0 & -2 \ 1 & 0 & -1 \end{bmatrix} \hspace{1cm} m{S}_y = egin{bmatrix} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

$$m{S}_y = egin{array}{c|cccc} 1 & 2 & 1 \ \hline 0 & 0 & 0 \ \hline -1 & -2 & -1 \ \hline \end{array}$$

Convolve with the image to compute derivatives.

$$rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Edge Detection Derivative filters

- Smoothing
- Compute derivatives
- Find gradient magnitude
- Threshold gradient magnitude

Sobel Edge Detector

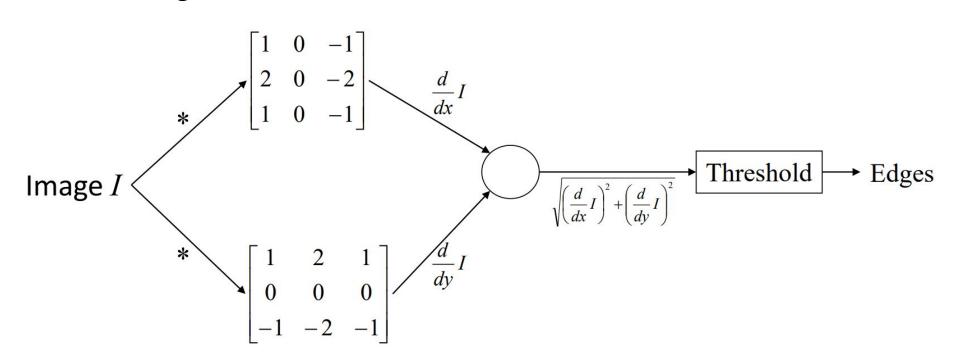
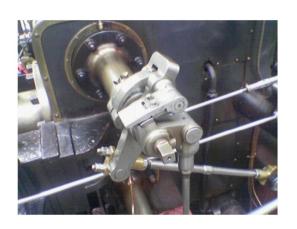


Image gradient example

original



vertical derivative

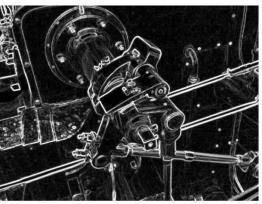
horizontal derivative

Image gradient example

original

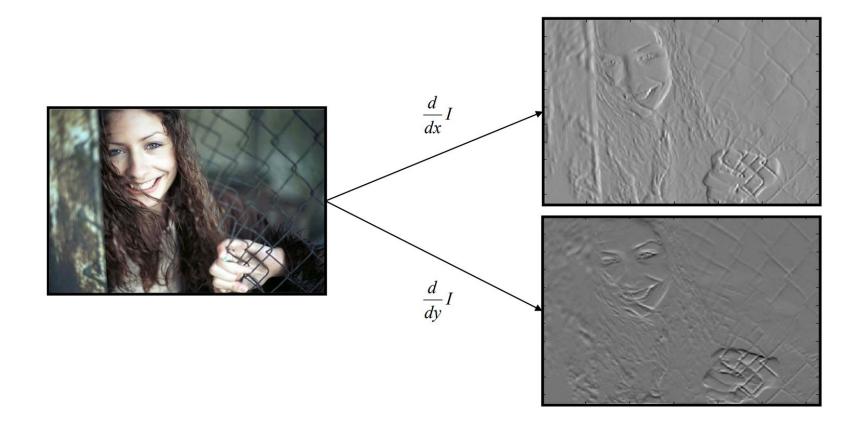
vertical derivative

gradient amplitude

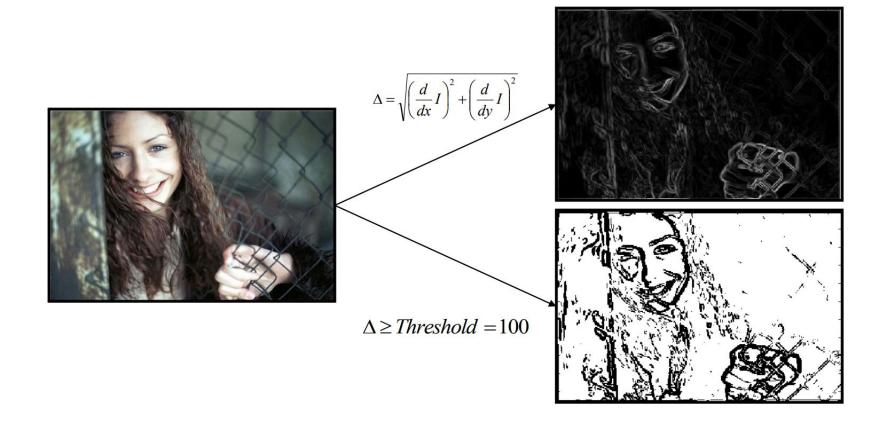


horizontal derivative

Sobel Edge Detector

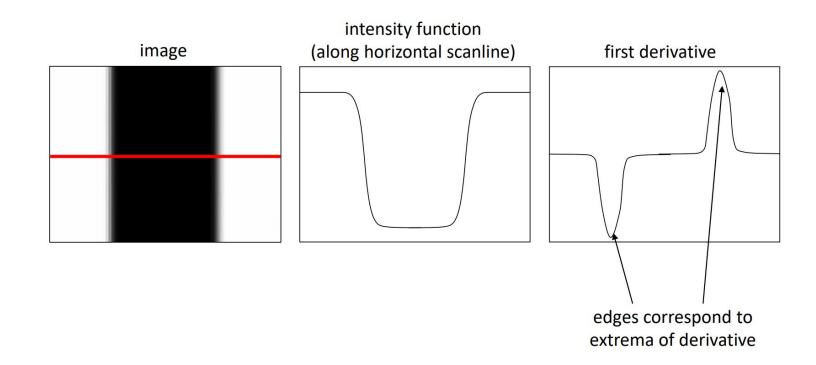


Sobel Edge Detector

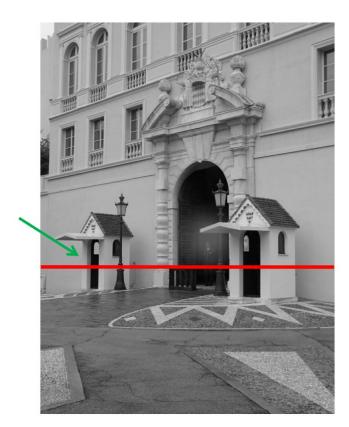


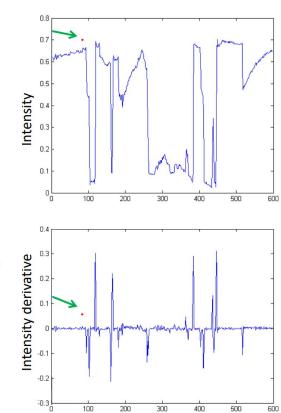
Intensity Profile to Detect Edge locations

An edge is a place of rapid change in the image intensity function

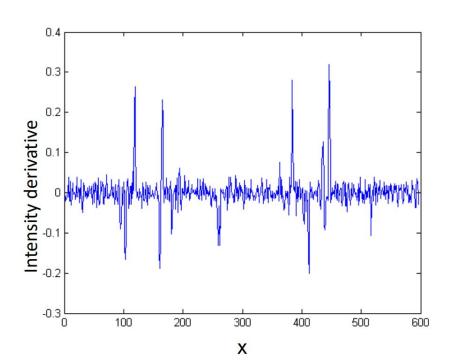


Intensity Profile to Detect Edge locations





With a little Gaussian noise



Derivative filters

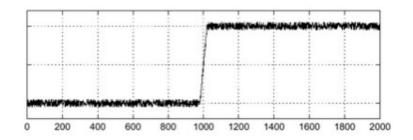
Derivative filters



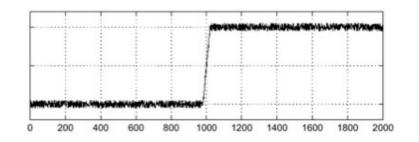
- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal



intensity plot

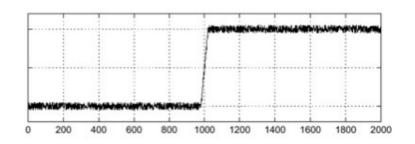


intensity plot



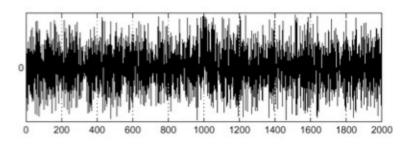
Using a derivative filter:

intensity plot



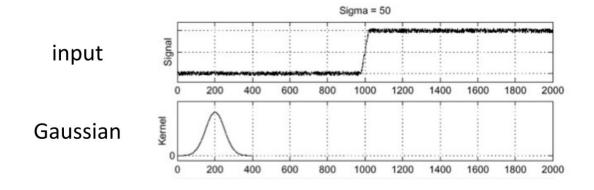
Using a derivative filter:

derivative plot

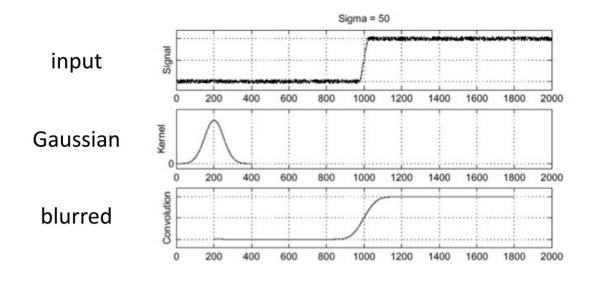


- Difference filters respond strongly to noise
- Image noise results in pixels that look very different from their neighbors
- Generally, the larger the noise the stronger the response

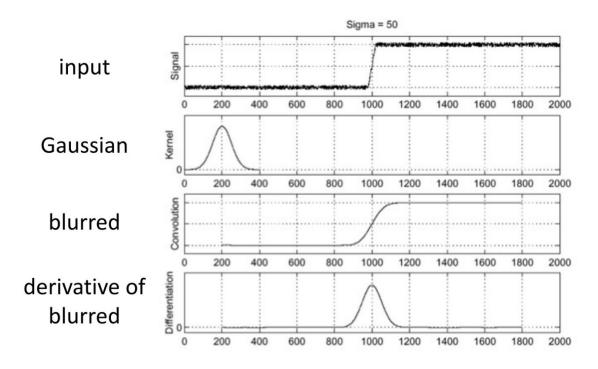
When using derivative filters, it is critical to blur first!



When using derivative filters, it is critical to blur first!



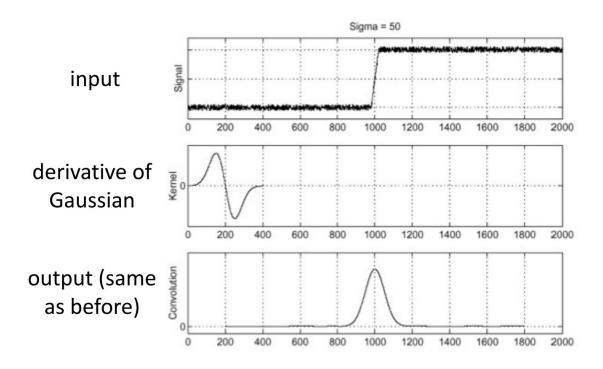
When using derivative filters, it is critical to blur first!



Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

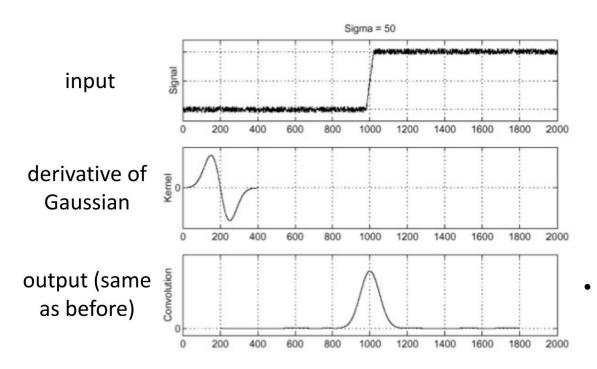
$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

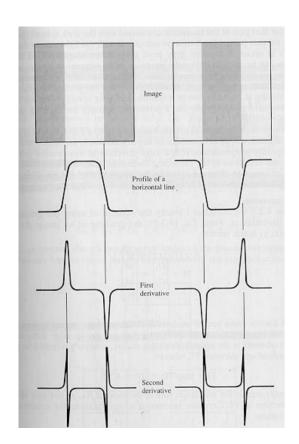


How many operations did we save?

Second Derivative

Edges can be identified by tracking:

- Maxima minima of first derivative
- Zero-crossings of second derivative



Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$
 \longrightarrow 1D derivative filter 1 0 -1

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 Laplace filter ?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$
 \longrightarrow 1D derivative filter 1 0 -1

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow \begin{array}{c|c} \text{Laplace filter} \\ \hline 1 & -2 & 1 \\ \hline \end{array}$$

- Smooth image by Gaussian filter
- Apply Laplacian
- Find zero crossings
 - Scan along each row, record an edge point at the location of zero-crossing.
 - Repeat above step along each column
- Does not provide the orientation/direction of the edge

Gaussian smoothing

smoothed image Gaussian filter image
$$\vec{S} = \vec{g} * \vec{I}$$

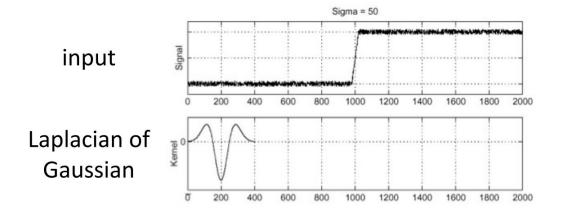
Find Laplacian

second order derivative in
$$x$$
 second order derivative in x

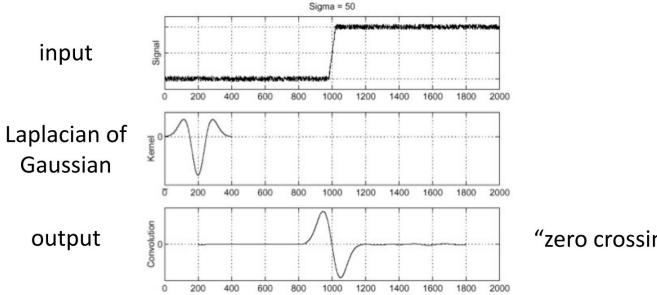
$$\Delta^2 S = \frac{\partial^2}{\partial x^2} S + \frac{\partial^2}{\partial y^2} S$$

- Four cases of zero-crossings :
 - (+,-)
 - o {+,0,-}
 - o {-,+}
 - o {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
 - Compute slope of zero-crossing
 - Apply a threshold to slope

As with derivative, we can combine Laplace filtering with Gaussian filtering



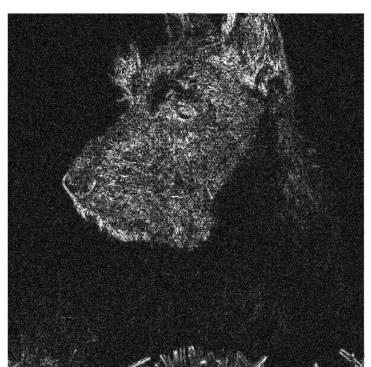
As with derivative, we can combine Laplace filtering with Gaussian filtering



"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering



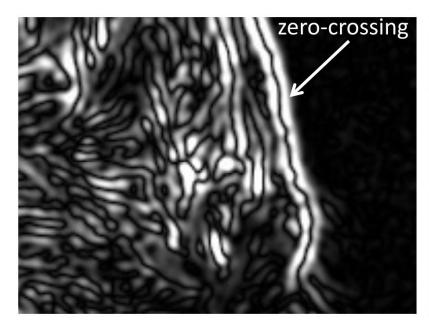
Laplace filtering

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplace and LoG filtering examples



peak

Laplacian of Gaussian filtering

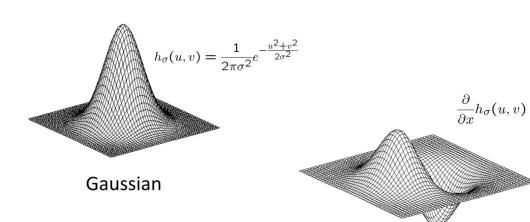
Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges

LoG

- It is quite susceptible to noise, particularly if the standard deviation of the smoothing Gaussian is small.
- Thus it is common to see lots of spurious edges detected away from any obvious edges.
- One solution to this is to increase the smoothing of the Gaussian to preserve only strong edges.

2D Gaussian filters



Derivative of Gaussian

Laplacian of Gaussian