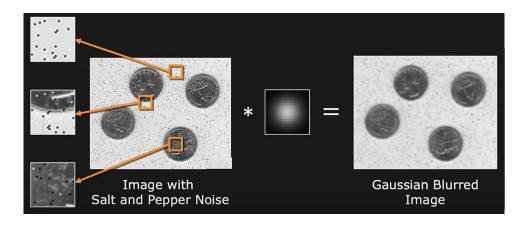
Computer Vision

Lec 4: Image Filtering (contd.), Canny Edge Detector

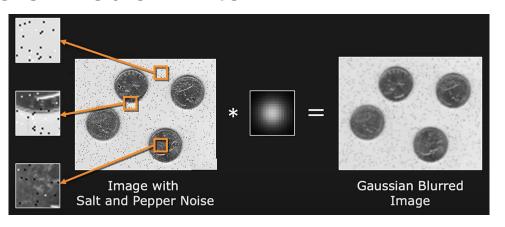
Dr. Pratik Mazumder

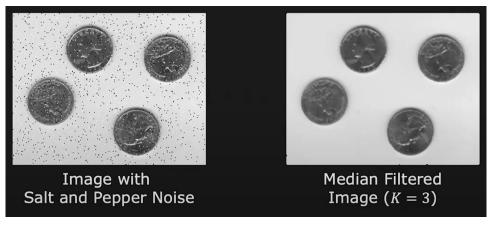


Non Linear Filters: Median Filter

- For a region of size KxK centered around each pixel in the image (except those where a KxK region is not possible)
 - Sort the K² values in the region of the image
 - The output for this filter is the middle value of the sorted list [MEDIAN]

Non Linear Filters: Median Filter

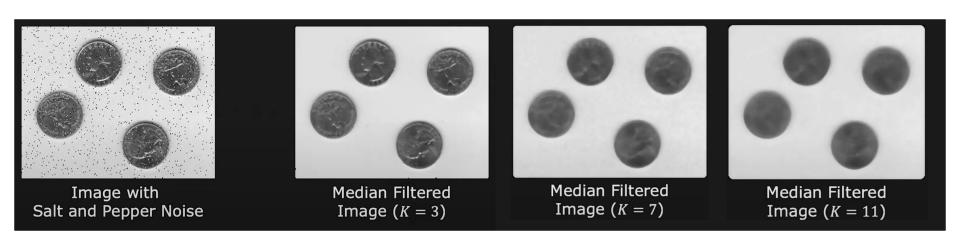




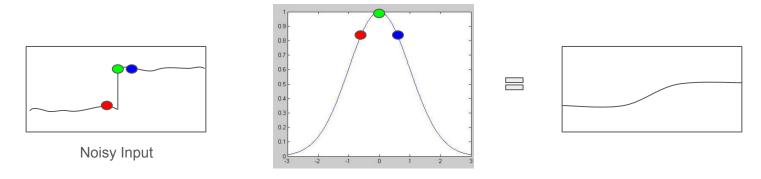
Non Linear Filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- A Min Filter operates over a window by selecting the minimum intensity in the window.
- A Max Filter operates over a window by selecting the maximum intensity in the window.
- Cannot be implemented using convolution/correlation.

Non Linear Filters: Median Filter

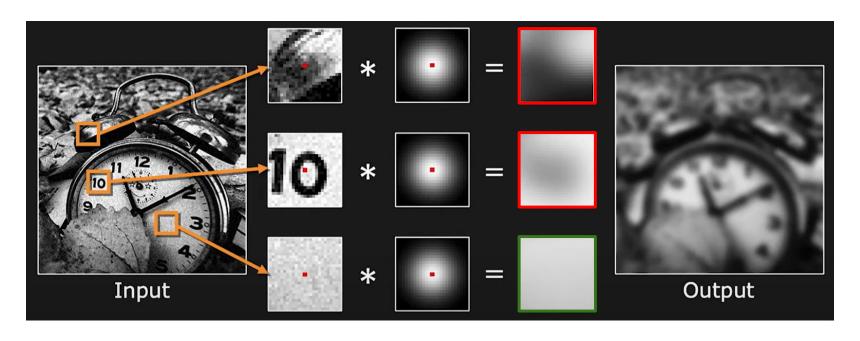


Gaussian Blurring Effect



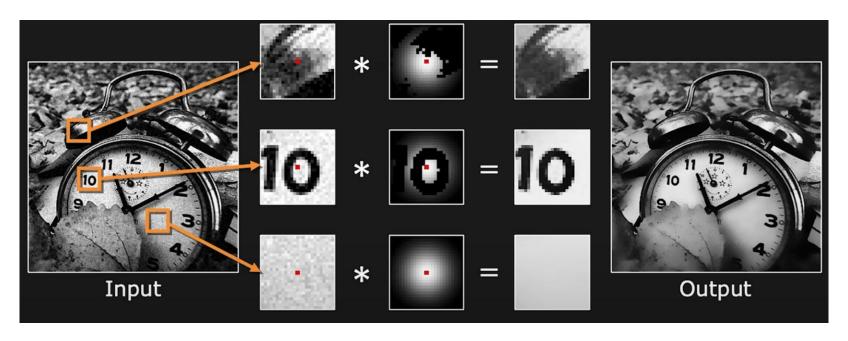
Gaussian blurring often blurs out the edges

Gaussian Blurring Effect



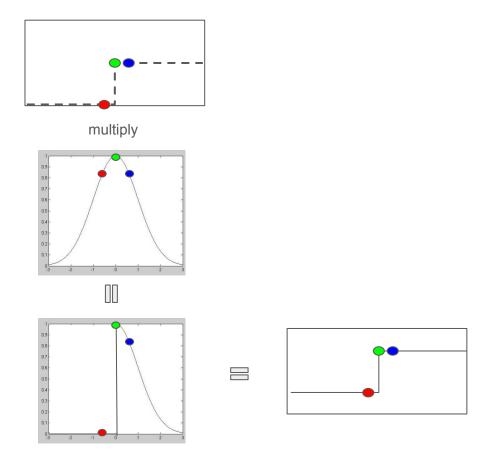
Gaussian smoothing: Same Filter Applied at all Positions

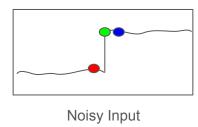
Gaussian Blurring: A slight modification

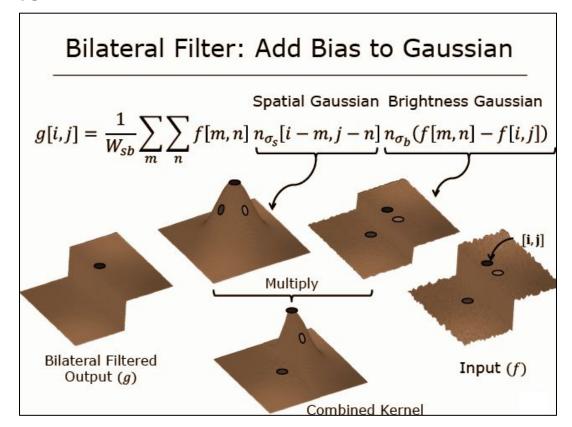


Modified Gaussian Blurring: Pixels in the window very different from the central pixel in terms of intensity are given a lower weight, effectively restricting the operation to similar pixels.

- The bilateral filter is also defined as a weighted average of nearby pixels, in a manner very similar to Gaussian smoothing.
- The difference is that the bilateral filter takes into account the difference in value with the neighbors to preserve edges while smoothing.
- The key idea of the bilateral filter is that for a pixel to influence another pixel, it should not only occupy a nearby location but also have a similar value.







$$g[i,j] = \frac{1}{W_{sb}} \sum_{m} \sum_{n} f[m,n] \, n_{\sigma_s} [i-m,j-n] n_{\sigma_b} (f[m,n] - f[i,j])$$

Where:

$$n_{\sigma_s}[m,n] = \frac{1}{2\pi\sigma_s^2} e^{-\frac{1}{2}\left(\frac{m^2+n^2}{\sigma_s^2}\right)}$$
 $n_{\sigma_b}(k) = \frac{1}{\sqrt{2\pi}\sigma_b} e^{-\frac{1}{2}\left(\frac{k^2}{\sigma_b^2}\right)}$

$$W_{sb} = \sum_{m} \sum_{n} n_{\sigma_s} [i - m, j - n] n_{\sigma_b} (f[m, n] - f[i, j])$$

Non-linear Operation (Cannot be implemented using convolution)

Noisy Image Gaussian BiLateral $\sigma_{_{\rm S}} = 2 \qquad \qquad \sigma_{_{\rm S}} = 2, \, \sigma_{_{\rm D}} = 10$

Noisy Image Gaussian BiLateral $\sigma_{_{\rm S}} = 4 \qquad \qquad \sigma_{_{\rm S}} = 4, \, \sigma_{_{\rm D}} = 10$

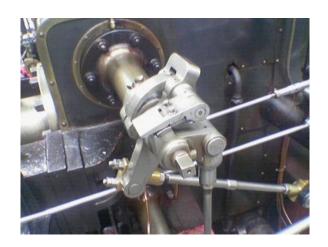
Noisy Image Gaussian BiLateral $\sigma_{\rm g} = 8 \qquad \qquad \sigma_{\rm g} = 8, \, \sigma_{\rm b} = 10$

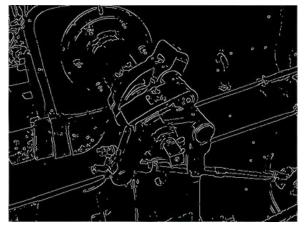
 $\begin{array}{l} \text{BiLateral} \\ \sigma_{\text{s}} = 6, \, \sigma_{\text{b}} = 10 \end{array}$

 $\begin{array}{l} \text{BiLateral} \\ \sigma_{\text{s}} = 6, \, \sigma_{\text{b}} = 20 \end{array}$

BiLateral $\sigma_{\rm s}$ = 6, $\sigma_{\rm b}$ = ∞

- Canny edge detector is indeed one of the most widely used edge detection techniques in computer vision.
- Developed by John F. Canny in 1986.





- Smooth Image with Gaussian filter
- Compute Derivative of filtered image
- Find Magnitude and Orientation of gradient
- Apply Non-max suppression: To refine edges
- Apply double thresholding: To classify edges into strong, weak, and non-edges.
- Edge tracking by hysteresis: To connect weak edges to strong edges.

Smoothing

$$S = I * g(x, y) = g(x, y) * I$$

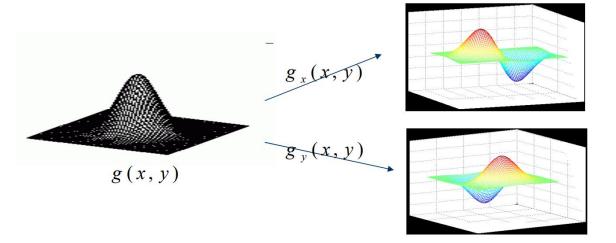
Derivative

$$\nabla S = \nabla (g * I) = (\nabla g) * I$$

$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

$$g(x,y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$



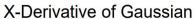
Instead of applying Gaussian Blurring and then Derivative Filtering to the Image, we can apply the Derivative Filtering to the Gaussian Kernel/Filtering first and then apply the resulting Filter to the Image

Gradient magnitude and gradient direction

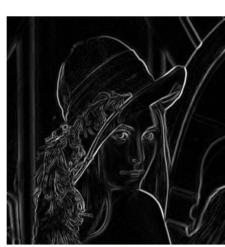
$$(S_x, S_y)$$
 Gradient Vector magnitude $= \sqrt{(S_x^2 + S_y^2)}$ direction $= \theta = \tan^{-1} \frac{S_y}{S_x}$

image

gradient magnitude

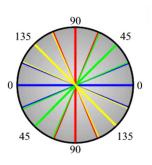


Y-Derivative of Gaussian



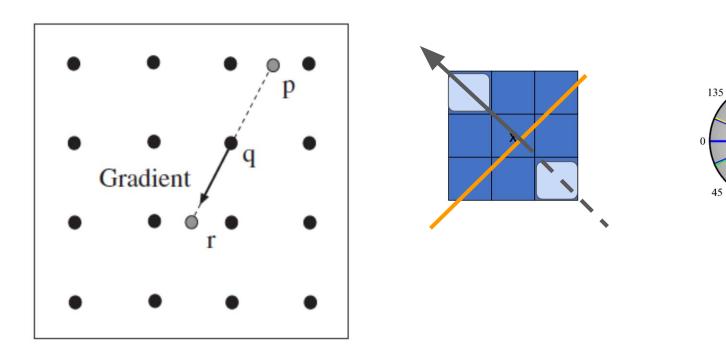
Gradient Magnitude

Canny Edge Detector: Gradient Orientation



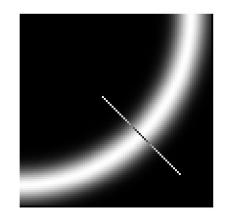
- Obtain the gradient orientation [$\tan^{-1}(g_y/g_x)$]. For visualization, assign a color to various angles and map the orientation to these colors
- The above color wheel is just an example may not match the orientation image
- Observe that edges having similar orientations have similar color

Canny Edge Detector: Non-maximum suppression

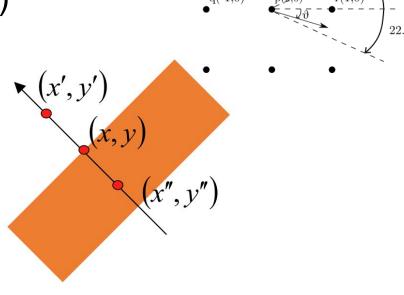


If gradient responses at r and p are smaller than q, q is an edge

Non-maximum suppression (NMS)



$$M(x,y) = \begin{cases} |\nabla S|(x,y) & \text{if } |\nabla S|(x,y) > |\Delta S|(x',y') \\ & \& |\Delta S|(x,y) > |\Delta S|(x'',y'') \\ 0 & \text{otherwise} \end{cases}$$



 \mathbf{x} ' and \mathbf{x} '' are the neighbors of \mathbf{x} along normal direction to an edge

Non-maximum suppression

Before Non-Max Suppression

Edge Thinning and Localization

After Non-Max Suppression

Non-maximum suppression

By retaining only the significant local maxima, NMS plays a key role in producing clean, meaningful outputs for edge detection tasks.

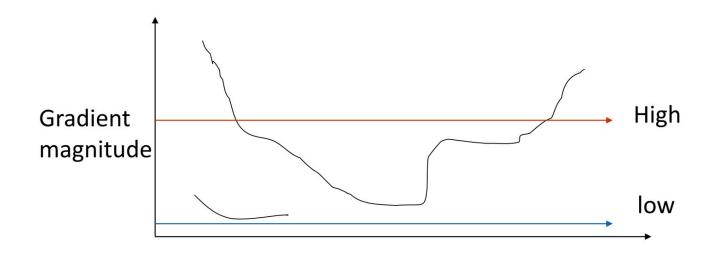
Edge Thinning and Localization

After Non-Max Suppression

Double Thresholding [L, H]

- After NMS, the remaining edge pixels provide a more accurate representation of real edges in an image.
- However, some edge pixels remain that are caused by noise and color variation.
- It is essential to filter out edge pixels with a weak gradient value and preserve edge pixels with a high gradient value.
- Achieved by selecting high and low threshold values for the gradient magnitude.
- If an edge pixel's gradient magnitude
 - o is higher than the high threshold: **strong edge** pixel.
 - o is smaller than the high threshold and larger than the low threshold: weak edge pixel.
 - o is smaller than the low threshold: it will be suppressed.

Double Thresholding [L, H]



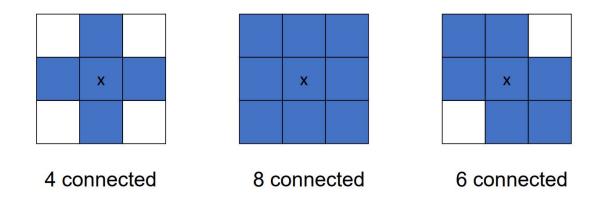
Edge tracking by Hysteresis

- The strong edge pixels are deemed to come from true edges in the image and should certainly be involved in the final edge image.
- However, there will be some debate on the weak edge pixels.
 - We want to determine whether these pixels come from a true edge or are caused by noise/color variations.
- This algorithm uses the idea that weak edge pixels from true edges will (usually) be connected to a strong edge pixel while noise responses are unconnected.
- To track the edge connection, look at the 8-connected neighborhood pixels of any edge pixel.
 - As long as there is one strong edge pixel that is involved in the blob, that weak edge point can be identified as one that should be preserved.
 - Or, in other words, all weak edge pixels in the neighborhood of a strong edge pixel are marked as strong edge pixels.

Edge tracking by Hysteresis

- Iterative Approach:
 - □ Identify all strong edge pixels (gradient mag ≥T_H) and place them in a queue.
 - For each strong edge pixel in the queue:
 - Check all its 8-connected neighbors.
 - If a neighbor is a weak edge pixel (T₁≤gradient mag<T₁):</p>
 - Promote it to a strong edge pixel.
 - Add it to the queue for further processing.
 - Repeat until the queue is empty.
 - Discard all remaining weak edge pixels as noise.

Edge tracking by Hysteresis



- Threshold at low/high levels to get non/strong edge pixels
- Do connected components check, starting from strong edge pixels

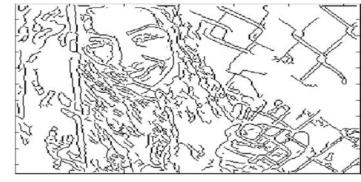
Hysteresis Thresholding [L, H]

regular $M \ge 25$

Hysteresis

$$High = 35$$

$$Low = 15$$

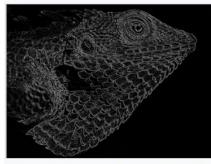


M

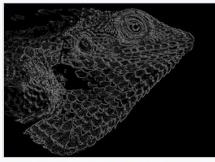
The original image

Image has been reduced to grayscale, and a 5x5 Gaussian filter with σ=1.4 has been applied.

The intensity gradient of the previous image. The edges of the image have been handled by replicating.

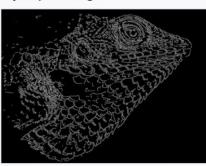


Non-maximum suppression applied to the previous image



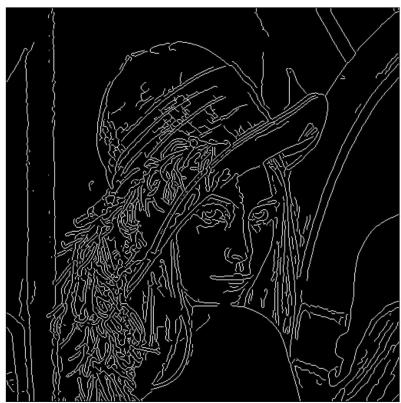
Double thresholding applied to the previous image. Weak pixels are those with a gradient value between 0.1 and 0.3. Strong pixels have a gradient

value greater than 0.3.

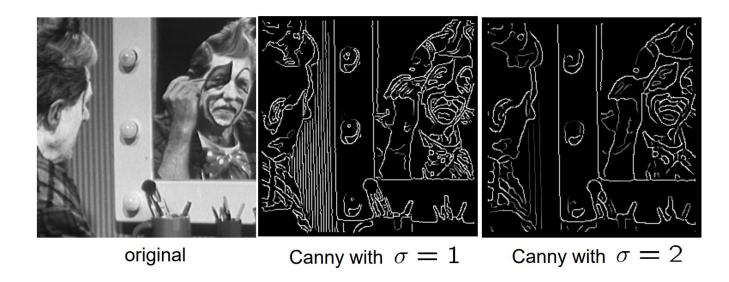


Hysteresis applied to the previous image

Final Canny Edges



Effect of Gaussian Kernel (smoothing)



- The choice of depends on desired behavior
 - \circ large σ detects large scale edges
 - \circ small σ detects fine features