VII SEMESTER ELECTRONICS Elective - I : Digital Image Processing

Unit 3: Image Transforms (08)
2D-DFT, FFT, DCT, the KL Transform, Walsh / Hadamard Transform,

Haar Transform, slant Transform , Basics of wavelet transform.
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BASIC GEOMETRIC TRANSFORMATIONS

Transform theory plays a fundamental role in image processing, as working with
the transform of an image instead of the image itself may give us more insight into
the properties of the image. Two dimensional transforms are applied to image

enhancement, restoration, encoding and description.

UNITARY TRANSFORMS

One dimensional signals
For a one dimensional sequence {f(x),0<x<N-1} represented as a vector

f=[f@s) s&v-0]¥ ofsize N, a transformation may be written as

N-1

g=T-fog)=XTw.x)f(x).0<u<N 1

x=0

where g(u) is the transform (or transformation) of f( x) , and T (u, x) is the so called

forward transformation kernel. Similarly, the inverse transform is the relation
N-1

f)=2T(xu)g(u), 0<Sx<N-1

u=0

or written in a matrix form

i=£—;=l_l~g

where I (x.u) is the so called inverse transformation kernel.

If
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the matrix T is called unitary, and the transformation is called unitary as well. It can be

proven (how?) that the columns (or rows) of an N x N unitary matrix are orthonormal and
therefore, form a complete set of basis vectors in the V- dimensional vector space. In
that case

N-1

T
g =f)=2T" (u. )g)

=

*

f=I

The columns of T *7 | that is, the vectors T * = [T .0y T *(u.1) T *(u. N—l)]r are called the
basis vectors of T

Two dimensional signals (images)
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As a one dimensional signal can be represented by an orthonormal set of basis
vectors, an image can also be expanded in terms of a discrete set of basis arrays called
basis images through a two dimensional (image) transform.

For an N x N image f(x,y) the forward and inverse transforms are given below

N-1N-1

g, v) = L IT (u, v, x, 1) f (x,))
x=0y=0

N-1IN-1

fo =TI, y, u,V)gw,)

w=0v=0
where, again, T (u,v,x,)) and I(x,yu,v) are called the forward and inverse

transformation kernels, respectively.

If the kemel T (w.v. x.3) of an image transform is separable and symmetric, then the

W] Wl M=l N=l

transform giu, vi=% ET (. v, x, 1) f(x. ) = £ 1w, x)T1(v, ¥) fx.¥) can be written in

imll =l i md] ol

matrix form as follows

g=T1-fT17
The forward kernel is said to be separable if
T(u,v,x,y)=T1(u, x)T2 (v, y)

It is said to be symmetric if 77 is functionally equal to 7> such that

T(u,v,x,y)=T1 (u, x)T7 (v, ¥)

The same comments are valid for the inverse kernel.
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where fis the original image of size N = N, and T 15 an NV x N transformation matrix with
elements #; = Ty (7. 7) - If. in addition, T ; 15 a unitary matrix then the transform is called
separable unitary and the original image is recovered through the relationship

f=IL"" ¢

I

2D Discrete Fourier Transform

The independent variable (t,x.y) is discrete

Ny-1 Ny-1Np-1
F, =) flkle"™ Fluv]=Y Y flik]e %t ®
k=0 i=0 k=0
| Moot 1 Norl¥Np-
3 ,E.’ e —— F _J!ﬂgk i k = : .F v 0 (i +vic)
AGE R [ >/ lik] nE 2 2 Flue
2 27
= ' I icoh
Qo Nﬂ ; NU
Properties
= Linearity af (x,y)+bg(x,y) < aF(u,v)+bG(u,v)
= Shifting f(x ~Xys Y — xD) =5 e—jlxiiik'g+1j~g }F(H, 1,)
= Modulation eﬂﬂ”"“"ﬂv"}f(:r,'1-) < F(u—1uy,v—v,)

= Convolution f(e.v)*g(x.y)© Fu,v)Gu.v)
= Multiplication f(x,v)g(x,v) = F(uv)*G(u,v)

= Separability f(xy)=f(x)f(yv) & F(u,v)=F(u)F(v)
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Separability

1. Separability of the 2D Fourier transform

— 2D Fourier Transforms can be implemented as a sequence of 1D Fourier
Transform operations performed independently along the two axis

Flu,v)= j‘ f £ (x, y)e "M dxdy =

T ] fx,y)e ™ e 2™ dydy = T g™ :hT flx,y)e ™ dx =

—

= jF{u,_v)e'”""d_v=F[u__v}

1D DFT along 1D DFT along

2D DFT —> the rows the cols

= Separable functions can be writtenas f(x.v)= f(x)g(1)

2. The FT of a separable function is the product of the FTs of the two functions
F(u,v)= I [ £Cx, p)e 0= gy =

j[; Th{x)g (y)e ™ e ™ dxdy = fg [_1-}9'1'”“::3? h(x)e ™ dx =

—

=H(u)G(v)

f(x.y)=h(x)g(y)=F(uv)=H(u)G(v)
WALSH TRANSFORM:
We define now the 1-D Walsh transform as follows:

x=()

W(u):%Nff(x)[ﬁ(—l}*’f‘*}brl+(“’]

The above is equivalent to:
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n=1
Zb (I)bn—l—z (”}

W(u)=— Z J(x)(=D™

The transform kernel values are obtained from:

n-1 Zb ()b, (u)
T(H, x) = T(xq_u) = }%f"|:l—[ (_l)b;(x}bn-z—r(h'}] ( 1):—1
i=0

Therefore, the array formed by the Walsh matrix is a real symmetric matrix. It is easily shown

that it has orthogonal columns and rows

1-D Inverse Walsh Transform

f0=3 W{n)rﬂ_](_ 1}bft-v>bﬂ.f(u;}
x=0 i=0

The above is again equivalent to

Zb {"-}bpr l-r{“)

J(x)= Z W (u)(=1)"

The array formed by the inverse Walsh matrix is identical to the one formed by the forward
‘Walsh matrix apart from a nmltiplicative factor N.

2-D Walsh Transform

We define now the 2-D Walsh transform as a straightforward extension of the 1-D transform:

N-1N-1

)=+ T 510 y)[ (AR (”%ﬂ
Nx 0 y=0 i=0
*The above is equivalent to:
n-l

N-1N-1 > (b ()b, g, ()+b, (x)b, g, ()
== % Brepnc-)=

r—O y=0
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Inverse Walsh Transform
We define now the Inverse 2-D Walsh transform. It is identical to the forward 2-D Walsh

transform

Fxy)= (=12 b @b (,»)b,ﬂ.m}

% g %W(u v)[

=0

*The above is equivalent to:

n-l

N-1N-1 2. (B ()b ()b, ()b g, ()
S(x, y)—— > W (uv) (-
r 0 y=0
HADAMARD TRANSFORM:
We define now the 2-D Hadamard transform. It is similar to the 2-D Walsh transform.
N-1N-1 B ()b, b, ()b,
Huy) =~ > WISV} [I(-DH R b8 0)
N x=0 y= i=0
The above is equivalent to:
1
N-1N-1 > (B (x)b, (u)+b, (x)by (u))
H(u, 1’)—— > S y(EDH
x =0 y=0

We define now the Inverse 2-D Hadamard transform. It is identical to the forward 2-D Hadamard

transform.
R by ()b )+, (B (V)
S(x, V)‘—Z > H(u,v) H( 1)” g
N x=0 y=0

The above is equivalent to:

N=1N-1 ZU’ (x)b; (u)+b; (x)b; (u))

f(x,y) = Z 2 H@u.v)(-1)"
x=0 y=0
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DISCRETE COSINE TRANSFORM (DCT) :

The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands)
of differing importance (with respect to the image's visual quality). The DCT is similar to the
discrete Fourier transform: it fransforms a signal or image from the spatial domain to the
frequency domain.

The general equation for a 1D (V data items) DCT is defined by the following equation:

F(u) = (2),51\231\:)(1}3[—;\ 2:+l}]f

=0
and the corresponding inverse 1D DCT transform is simple F/(u), i.e.:
where
1 —
AGi) = 7 forg —'E)
1 otherwise

The general equation for a 2D (IV by M image) DCT is defined by the following equation:

F(rgT-u):(%) ( )’E\Z_H!Zl (,a.a[ ’\'21+1}](m[2ﬂ4 2j+1 ]fl_',t

=0 j=0

and the corresponding inverse 2D DCT transform is simple F/(u,v), i.e.:

where

L forf =0
AD) = { 175 Utli:rwise
The basic operation of the DCT is as follows:
+ The input image is N by M
« f{i,j) is the intensity of the pixel in row i and column j;
« F(u,v) is the DCT coefficient in row k1l and column k2 of the DCT matrix.
« For most images, much of the signal energy lies at low frequencies; these appear in the
upper left corner of the DCT.
e Compression is achieved since the lower right values represent higher frequencies, and
are often small - small enough to be neglected with little visible distortion.
e The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale

level;

+ 8 bif pixels have levels from 0 to 255.
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DISCRETE WAVELET TRANSFORM (DWT):

There are many discrete wavelet transforms they are Coiflet, Daubechies, Haar, Symmlet
ete.
Haar Wavelet Transform

The Haar wavelet is the first known wavelet. The Haar wavelet is also the simplest

possible wavelet. The Haar Wavelet can also be described as a step function fix) shown in Eq

1 0<x<1/2,
f(x)={-1 1/2<x<1,
0 otherwise.

Each step in the one dimensional Haar wavelet transform calculates a set of wavelet
coefficients (Hi-D) and a set of averages (Lo-D). If a data set so, s1,..., sn.1 contains N elements,
there will be N/2 averages and N/2 coefficient values. The averages are stored in the lower half
of the N element array and the coefficients are stored in the upper half.

The Haar equations to calculate an average ( a,) and a wavelet coefficient ( ¢, ) from the
data set are shown below Eq
S+ S Si—Si+1
) 2

In wavelet terminology the Haar average is calculated by the scaling function. The

(45

coefficient is calculated by the wavelet function.

Two-Dimensional Wavelets

The two-dimensional wavelet transform is separable, which means we can apply a one-
dimensional wavelet transform to an image. We apply one-dimensional DWT to all rows and
then one-dimensional DWTs to all columns of the result. This is called the standard

decomposition and it is illustrated in figure 4.8.

f(x.y) -

Original Image DWT of rows DWT of columns

Figure The standard decomposition of the two-dimensional DWT.
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We can also apply a wavelet transform differently. Suppose we apply a wavelet transform
to an image by rows, then by columns, but using our transform at one scale only. This technique
will produce a result in four quarters: the top left will be a half-sized version of the image and the
other quarter’s high-pass filtered images. These quarters will contain horizontal, vertical, and

diagonal edges of the image. We then apply a one-scale DWT to the top-left quarter, creating

smaller images. and so on. This is called the nonstandard decomposition, and is illustrated in

figure 4.9.

f(x.y)

Original Image 1 scale DWT 2scaleDWT 3scaleDWT
Figure 4.9 The nonstandard decomposition of the two-dimensional DWT.

Steps for performing a one-scale wavelet transform are given below:
Step 1: Convolve the image rows with the low-pass filter.
Step 2 : Convolve the columns of the result of step 1 with the low-pass filter and rescale this to
half its size by sub-sampling.
Step 3 : Convolve the result of step 1 with high-pass filter and again sub-sample to obtain an
image of half the size.
Step 4 : Convolve the original image rows with the high-pass filter.
Step 5: Convolve the columns of the result of step 4 with the low-pass filter and recycle this to
half its size by sub-sampling.
Step 6 :Convolve the result of step 4 with the high-pass filter and again sub-sample to obtain an
image of half the size.

At the end of these steps there are four images, each half the size of original. They are

1. The low-pass / low-pass image (LL), the result of step 2,

The low-pass / high-pass image (LH), the result of step 3,
The high-pass / low-pass image (HL), the result of step 5, and
The high-pass / high-pass image (HH), the result of step 6

T

These images can be placed into a single image grid as shown in the figure 4.10.
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LL LH

Figure 4.10 the one-scale wavelet transforms in terms of filters.

Figure 4.11 describes the basic dwt decomposition steps for an image in a block diagram
form. The two-dimensional DWT leads to a decomposition of image into four components CA,
CH, CV and CD, where CA are approximation and CH, CV, CD are details in three orientations
(horizontal, vertical, and diagonal), these are same as LL, LH, HL, and HH. In these coefficients
the watermark can be embedded.

Two-Dimensional DWT

Decomposition siep P
rows Lo D 142 CAju
Lo D 2+1 columns (h
. Hi D 142 CI?;H
CA horizontal
/ columns i
rows Lo D 1+2 CDy.s
(1 . vertical
Hi_D 2r 1 columns )
Hi D 1+ 2}— €D

diagonal

Where | 2t 1| Downsample columns: keep the even indexed columns

1+ 2| Downsample rows: keep the even indexed rows

Figure 4.11 DWT decomposition steps for an image.

Original image and DWT decomposed image
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An example of a discrete wavelet transform on an image is shown in Figure above. On
the left is the original image data, and on the right are the coefficients after a single pass of
the wavelet transform. The low-pass data is the recognizable portion of the image in the
upper left corner. The high-pass components are almost invisible because image data contains

mostly low frequency information.

The Kronecker Product

The Kronecker product has some of the same properties as conventional matrix
multiplication. Both products follow the same properties for multiplication with a scalar.
Also, both products are associative and they share the distributive property with conventional
matrix addition. Furthermore, multiplying any matrix by the zero matrix yields the zero
matrix. However, these two types of multiplication have many distinctions, such as results
associated with taking transposes and inverses. Specifically, when taking the transpose or
inverse of a conventional product of two matrices, the order of the matrices is reversed. In
contrast, the transpose or inverse of a Kronecker product preserves the order of the two

matrices.

Definition 1: Let IF be a field. The Kronecker product of A= [au ] eM, , (F) and

B= [bu] e M, (F) is denoted by A® B and is defined to be the block matrix

aB ... q,B
A®B=| : EMWM(F).
a,B a,B
0 5 2 1 5
Example 2: Lt.:tzi=(3 JandB= —4 -2 6 3|. Then,
-3 2 -1 4
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2 1 5 O (2 1 5 0
0o-|4 -2 6 3| -2.|4 2 6 3
_ -3 2 -1 4] -3 2 -1 4
2 1 5 0) 2 1 5 0
304 -2 6 3| -1./-4 2 6 3
-3 2 -1 4 -3 2 -1 4))
(0 0 0 0 —4 -2 —-10 0))
0 0 0 0 8 4 -12 -6
~ 0 0 0 O 6 4 2 -8
6 3 15 0 2 -1 -5 0
~-12 —6 18 9 4 2 —6 -3
-9 6 -3 12 3 -2 1 -4,
"0 0O 0 0 —4 -2 —10 0
0 0O 0O 0 8 4 —-12 -6
|l o O 0O 0O 6 -4 2 -8
1 6 3 15 0 -2 -1 =5 0
—12 —6 18 Q 4 2 —6 -3
L9 6 -3 12 3 -2 1 -4,

Ingeneral,A®B *-B®A, eventhough both products resultin matrices of
the same size. This is seen in the next example where B ® A is calculated

using the same matrices A and B from Example 2.
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8
—12 4 —6 2 18 —H —3
0 6 o —4 0 2 —8
. -9 3 6 -2 -3 1 12 -4}
The Haar functions

T fony of ¥ Hast fuetions Dl (k= 00+ N = 1) s defned o the inerval 0 € £ < 1. The shapeofthe seciic faetion by ) ofa

give index k depends on two parameters ptand
k=2"49-1

Forany salieof & 2 0, p and § are umnguely dﬂﬂmmudmﬁmiﬁuﬂulugul potver of 2 contamed a k(¥ ¢ b = | 1the remunde

g=1= k=2 Forexample, when N lfi,1htu1d:r:£wuhlht+:mﬁpmdmg i  are shovws i the table

k(012345678901 10811
pf0 011222233333 3373
g0 112123412345 678
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Now the Haar functions can be defined recursively as

v When H the Haar function & defined as 2 constant

o When k> 0, the Hoar fncion s defn by

| (P (-1 <t<(g-03)2
hit) = —=1{ " (q-03]/F <t g
‘/NKU otherwise

The Haar Transform Matrix

The N Haar fonctions can be sampled at £ = m/ N wherem =0, N=Ttoformm N by N matrix for discrete Haar transform. For

example, when N = 2, we have
1111
h=0 {1 -1]

when N =4, we have

1 1 1]
H11 I -1 -1
VI 0 0

LR
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and when N =8

|
)

I

-r:-‘f\-\[.—.—n
|
::m::{WHH
B
|
= = —_—
=

T 1
| o} — o Emeri —_ — [N
=

( -1
( I -2 Uy
0 0 ( -2 ] Uy
i i i i
. . g
— | L
i i i i
| g I I |
|_| |_| |_| |_|

We see that all Haar functions /1 (:ﬁ) , [:k > {]) contains a single prototype shape composed of a square wave and its negative version, and the

parameters

* D specifies the magnitude and width (or scale) of the shape;

¢ (] specifies the postion (or shift) of the shape.

Note that the functions /i [:ﬁ) of Haar trnasform can represent not only the details in the signal of different scales (corresponding to different freq

but also their locations m time.

Prof. Vijay V. Chakole, Department of Electronics Engineering, KDKCE, Nagpur Page 17



VII SEMESTER ELECTRONICS Elective - I : Digital Image Processing

The Haar transform matrix is real and orthogonal:

H=-H'

where I is identity matrix. For example, when N = 4,

11 v2 o 1 1 1 1 1000
111 1 —v2 0 11 -1 -1 0100

iy Ty & -
HeH=HH=2 VZIIIV2 =20 0| 0010
L -1 0 =210 0 V2 -2 0001

In general, an N by N Haar matrix can be expressed i1 terms of 1ts row vectors:

hy
b )
H-= . ! H_I_H _[hu,‘“,hN_]_]

;
by,
where h: is the nth row vector of the matrix. The Haar tansform of a given signal vector X = ’2:[{]], N J:[N - 1]]T is

X-=Hx~= [hDa = 'ahN—llx

A Haar Transform Example:

The Haar transform coefficients of a N = 4 -point signal [I[D]. T [1]1 I[Ql. I[3”T Il_, 2,3, 4"1‘ can be found as

1 1 1 1 1 5

1] 1 1 -1 -1 2 -2

2 V2 —v2 0 3 -1/V2
0 0 V2 -2 | —1|/\/§

The inverse transform will express the signal as the linear combination of the basis functions:

1 1 v2 o] 5
11 =2 0| -2
1
|

[

-1 0 V2 —U\/i
~1 0 -2 || —1/v2

Prof. Vijay V. Chakole, Department of Electronics Engineering, KDKCE, Nagpur Page 18



VII SEMESTER ELECTRONICS Elective - I : Digital Image Processing

1 1 V2 0 1

111 | 1| =2 | 1 0 2
= =[5 -2 [ |-F& = 5l

271 1| 2 0 V2| V2 3

1 -1 0 | —V2 | 4

Note that coefficients X [2] = —1/ V2and X 3] =-1/ V2 indicate not only there exist some detailed changes I

the signal, but also where in the signal such changes take place (first and second halves). This kind of position informa
is not available in any other orthogonal transforms.

SLANT TRANSFORM

Slant transform 18 developed by Pratt et al and introduced by Enomoto and Shibata in
1971,

(V1= SIS,

It1s a 2D slant transform. Where, U 15 the original image of size N X N. and S, 1s the
unitary slant matrix.

Thas transform 1z a member of orthogonal transtorm. And for the first row 1t has a
constant function and for the second row 1t has a linear function of the column index.
Properties of slant transform:

Real and orthogonal

Fast transtorm

Good energy compaction
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Unitary kemmel matrix starting with:

And iterating it according to the schema: s _ :

1 o : 0 : 1 LF] o i

a, E}.'l —I, b\. 5.-. #3 i 0

1 0 I{ NIT}=2 0 I{.x.l:}-.:
B £
N ﬁ'

0 1 a g -1 o

A By L,

$ o o S.‘u o
ke 0 I{ N T2 o —}(_‘ £33—2 |

“?he:re_f 1S ?]:ie identity matrix of Dr{ia‘ _’h?_"—__“ and
[ 3N ]’ﬂ e T
ay = ———— " R e
4 LN -1 : 4N —1)

For example: N=4

1 1 1 1

o < 0 AN B T o TRt B

R Y 1 =1 =% -1

Y ds o =l RS g s

For example: N=§

B 1 1 1 1 1 1 1
gAY R A 7 URRRER: ¥ P 5T WS 20 5T URN V2 [T R, v N T RS, Y ST, N

1 ] =1 1 1 -1 i | 1
M P e 8 PR R D S e R L R Pl o m Rl e
RN Y S T o SRS T s e S Y P R T SR ¥ 4
7/105 =1/4105 =9/4105 =17/4105 17/4105 9/4105 1/4105 =7/4/105

1 £ 2y 1 5 1 1 =
B TRV AT VAV T VA TS V2V ST VAV S VAV ST VOV R VAV 11

Prof. Vijay V. Chakole, Department of Electronics Engineering, KDKCE, Nagpur Page 20




VII SEMESTER ELECTRONICS Elective - I : Digital Image Processing

The 2-D Slant transform basis functions for N=4
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