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Outlines

* Finding templates by convolution
* What is Texture

* Co-occurrence matrices for texture
 Spatial Filtering approach

* Multiresolution processing, Gaussian Pyramids and
Laplacian Pyramids

* Gabor filters and oriented pyramids
* Texture Synthesis
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Texture

* What is texture ? Easy to recognize hard to define

— Views of large number of small objects: grass, foliage, brush,
pebbles, hair

— Surfaces with patterns: spots, stripes, wood, skin
» Texture consists of organized patterns of quite regular sub-
elements.

* Whether an effect is referred to as texture or not depends
on the scale at which it is viewed.
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Texture

Problems related to Texture:
» Texture analysis: how to represent and model texture

+ Texture segmentation: segmenting the image into
components within which the texture is constant

» Texture synthesis: construct large regions of texture from
small example images

» Shape from texture: recovering surface orientation or
surface shape from image texture.
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Shape from Texture

» Texture looks different depending on the viewing angle.
» Texture is a good cue for shape and orientation
* Humans are very good at that.
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FIGURE 6.1: Although texture is difficult to define, it has some important and valuable
properties. In this image, there are many repeated elements (some leaves form repeated
“spots”; others, and branches, form “bars” at various scales; and so on). Our perception
of the material is quite intimately related to the texture (what would the surface feel like
if you ran your fingers over it? what is soggy? what is prickly? what is smooth?). Notice
how much information you are getting about the type of plants, their shape, the shape
of free space, and so on, from the textures. Geoff Brightling © Dorling Kindersley, used
with permission.
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Representing Texture

* What we should look for ?

» Texture consists of organized patterns of quite regular
subelements. “Textons”

* Find the subelements, and represent their statistics
* Reason about their spatial layout.
* Problem: There is no known canonical set of textons.
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Texture Analysis

Different approaches:

» Co-occurrence matrices (classical)
+ Spatial Filtering

* Random Field Models
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Co-occurrence Matrix Features

Objective: Capture spatial relations

A co-occurrence matrix is a 2D array C in which

* Both the rows and columns represent a set of possible
image values

* C4(1,j) indicates how many times value i co-occurs with
value j in a particular spatial relationship d.

* The spatial relationship is specified by a vector d = (dr,dc).
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From C; we can compute N, , the normalized co-occurrence matrix,
where each value is divided by the sum of all the values.
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Co-occurrence Features

From Co-occurrence matrices extract some quantitative features:

Energy = ZE‘V;;(IJ) (7.7)
i

Entropy = —Y_ Y Nali,j)log2Na(i, j) (7.8)

i

Contrast = ZZ(: —§)2Na(i, 5) (7.9

i
. Na(i, j) -
Homogeneity = —_— 7.10
geneity Z:ZJ: T licg] (7.10)
(i = 1) (G — ;) Nali, §
Correlation = 2 Z"(l ﬂ(j(; #i)Na(i, ) (7.11)
195

where i, pi; are the means and oy, o; are the standard deviations of the row and column
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Disadvantages:
+ Computationally expensive

+ Sensitive to gray scale distortion (co-occurrence matrices
depend on gray values)

* May be useful for fine-grain texture. Not suitable for
spatially large textures.
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Spatial Filtering Approaches

* Look for the subelements

* But what are the subelements, and how do we find them?

* Find subelements by applying filters, looking at the
magnitude of the response

* Spots and bars detectors at various scales and orientations.

Typically:

— “Spot” filters are Gaussians or weighted sums of concentric
Gaussians.

— “Bar” filters are differentiating oriented Gaussians
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FIGURE 6.4: Left shows a set of 48 oriented filters used for expanding images into a series
of responses for texture representation. Each filter is shown on its own scale, with zero
represented by a mid-gray level, lighter values being positive, and darker values being
negative. The left three columns represent edges at three scales and six orientations; the
center three columns represent stripes; and the right two represent two classes of spots
(with and without contrast at the boundary) at different scales. This is the set of filters
used by Leung and Malik (2001). Right shows a set of orientation-independent filters,
used by Schmid (2001), using the same representation (there are only 13 filters in this set,
so there are five empty slots in the image). The orientation-independence property means
that these filters look like complicated spots.

Filter bank

Filter responses Collect Statistics (mean, var, etc.)

Texture Representation
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FIGURE 6.3: Local texture representations can be obtained by filtering an image with a
set of filters at various scales, and then preparing a summary. Summaries ensure that, at
a pixel, we have a representation of what texture appears near that pixel. The filters are
typically spots and bars (see Figure 6.4). Filter outputs can be enhanced by rectifying
them (so that positive and negative responses do not cancel), then computing a local
summary of the rectified filter outputs. Rectifying by taking the absolute value means
that we do not distinguish between light spots on a dark background and dark spots
on a light background; the alternative, half-wave rectification (described in the text),
preserves this distinction at the cost of a fuller representation. One can summarize either
by smoothing (which will tend to suppress noise, as in the schematic example above) or
by taking the maximum over a neighborhood. Compare this figure to Figure 6.7, which
shows a representation for a real image.

FIGURE 6.5: Filter responses for the oriented filters of Figure 6.4, applied to an image of
a wall. At the center, we show the filters for reference (but not to scale, because they
would be too small to resolve). The responses are laid out in the same way that the filters
are (i.e., the response map on the top left corresponds to the filter on the top left, and
so on). For reference, we show the image at the left. The image of the wall is small, so
that the filters respond to str that are relatively large; compare with Figure 6.6,
which shows responses to a larger image of the wall, where the filters respond to smaller
structures. These are filters of a fixed size, applied to a small version of the image, and
so are equivalent to large-scale filters applied to the original version. Notice the strong
response to the vertical and horizontal lines of mortar between the bricks, which are at
about the scale of the bar filters. All response values are shown on the same intensity
scale: lighter is positive, darker is negative, and mid-gray is zero.
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FIGURE 6.6: Filter responses for the oriented filters of Figure 6.4, applied to an image
of a wall. At the center, we show the filters for reference (not to scale). The responses
are laid out in the same way that the filters are (i.e., the response map on the top left
corresponds to the filter on the top left, and so on). For reference, we show the image at
the left. Although there is some response to the vertical and horizontal lines of mortar
between the bricks, it is not as strong as the coarse scale (Figure 6.5); there are also quite
strong responses to texture on individual bricks. All response values are shown on the
same intensity scale: lighter is positive, darker is negative, and mid-gray is zero.

Summarized

Vertical stripes

Light stripes
Dark background

Positive response

Light stripes
Dark background

Positive response

Dark stripes
Light background

Negative response

FIGURE 6.7: Filter-based texture representations look for pattern subelements such as
oriented bars. The brick image on the left is filtered with an oriented bar filter (shown as
a tiny inset on the top left of the image at full scale) to detect bars, yielding stripe responses
(center left; negative is dark, positive is light, mid-gray is zero). These are rectified (here
we use half-wave rectification) to yield response maps (center right; dark is zero, light
is positive). In turn, these are summarized (here we smoothed over a neighborhood twice
the filter width) to yield the texture representation on the right. In this, pixels that have
strong vertical bars nearby are light, and others are dark; there is not much difference
between the dark and light vertical structure for this image, but there is a real difference
between dark and light horizontal structure.

11



CS 534 A. Elgammal,
Rutgers University

* How many filters and at what orientations ?
* Filter responses are not unique

* Tradeoff: using more filters leads to a more detailed and
more redundant representation of the image

* How to control the amount of redundant information?
* At what scale?

e There are two scales:
— The scale of the filter
— The scale over which we consider the distributions of the filters.

» What statistics should be collected from filters responses.
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squared responses

smoothed mean

vertical

classification

horizontal

Classification:
* Texture is classified into four categories:
vertical, horizontal, both or neither.
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Scaled representations: Multiresolution

Use a multiresolution representation (Image Pyramid)
» Search over scale
* Spatial Search
* Feature Tracking
Examples:
 Search for correspondence
— look at coarse scales, then refine with finer scales

» Edge tracking

— a“good” edge at a fine scale has parents at a coarser scale

» Control of detail and computational cost in matching
— e.g. finding stripes
— terribly important in texture representation
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Image:

Gaussian Filter and Smoothing

Gaussian Filter is Low-Pass Filter:

* Recall: Convolution in the image domain is equivalent to
multiplication in the Frequency domain.

e Recall: FT of a Gaussian with sd=0 is a Gaussian with sd=1/c

» Therefore, convolving an image with a Gaussian with sd=0 is
equivalent to multiplying it’s FT with a Gaussian with sd=1/o

* Therefore we will get rid of high frequencies.

*  Smoothing with a Gaussian with a very small o = get rid of highest
spatial frequencies

* Smoothing with a Gaussian with a very large o = averaging

u

[ \

Frequency Domain

Spatial Domain
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The Gaussian pyramid

* Smooth with gaussians, because
— a gaussian*gaussian=another gaussian
* Forming a Gaussian Pyramid:
— Set the finest scale layer to the image
— For each layer going up (coarser)

* Obtain this layer by smoothing the previous layer with a Gaussian and
subsampling it

PGaussian (I)n+1 = S‘I’ (Go g PGaussian (])n)
PGaussian (1)1 = ]
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The Laplacian Pyramid

» Gaussians are low pass filters, so response is redundant

* A coarse level layer of the Gaussian pyramid predicts the
appearance of the next finer layer

* Laplacian Pyramid

— preserve differences between upsampled Gaussian pyramid level
and Gaussian pyramid level

— band pass filter - each level represents spatial frequencies (largely)
unrepresented at other levels

PLaplacian (I)m = PGaussian (I)m
PLap]acian (])k = PGaussian ([)k - S7\ (PGaussian ([)k+l )

CS 534 — Texture - 30

Laplacian Pyramid

* Building a Laplacian Pyramid:
— Form a Gaussian pyramid

— Set the coarsest layer of the Laplacian pyramid to be the coarsest
level of the Laplacian pyramid

— For each layer going from next to coarsest to finest (top to
bottom):

* Obtain this layer by upsampling the coarser layer and subtracting it

from this layer of the Gaussian pyramid.
PLapIacian (I)m = PGaussian (])m

PLapIacian (I)k = PGaussian (I)k -s! (PGaussian (I)k+l )

=
: upsample :
L B e 1 = k+1
O —— — m O ———
k - (1) k
Gaussian Pyramid Laplacian Pyram lf{ 534 — Texture - 31
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» Synthesis: Obtaining an Image from a Laplacian Pyramid:

— Start at the coarsest layer

— For each layer from next to coarsest to finest
» Upsample the current image and add the current layer to the result

=
: upsample :
k+l] = Py 1 —— k+1
O —— r\ O ———
k : (1 E k
I I I Laplacian Pyramid I

CS 534 — Texture - 34

» Laplacian pyramid layers are band-pass filters.

+ Laplacian pyramid is orientation independent

* Apply an oriented filter to determine orientations at each

layer

» Look into spatial frequency domain:

A,

‘ . First component of
v layer 1

y

Laplacian Pyramid

Layer |
Layer 2
Layer3 Layer 3
-t > >
>
/ u “

N A
Oriented Pyramid
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Oriented Pyramids
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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Gabor Filters

* Fourier coefficients depend on the entire image (Global): We lose
spatial information.
» Objective: Local Spatial Frequency Analysis
* Gabor kernels: look like Fourier basis multiplied by a Gaussian
— The product of a symmetric Gaussian with an oriented sinusoid
— Gabor filters come in pairs: symmetric and antisymmetric
— Each pair recover symmetric and antisymmetric components in a
particular direction.
(k,,k,) :the spatial frequency to which the filter responds strongly
o: the scale of the filter. When o = infinity, similar to FT
*  We need to apply a number of Gabor filters at different scales,
orientations, and spatial frequencies.

X+’

X+’

n m W G,,n,,‘,w,,,»c(x,y>=sin<kxx+kvy)exp—{ ) }
- o
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Texture synthesis

* Variety of approaches.
» Example: Synthesis by Sampling Local Models: Efros and
Leung 1999 (Nonparametric texture matching)
— Use image as a source of probability model

— Choose pixel values by matching neighborhood, then filling in

]

Example Image Synthesized Image
<= ?

Neighborhood

Find Matching Image Neighborhood and chose value uniformly randomly from these matches
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Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score
Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods
end
end

Algorithm 6.4: Non-parametric Texture Synthesis.

Figure from Texture Synthesis by Non-parametric Sampling, A. Efros and T.K. Leung, Proc. Int. Conf. Computer
Vision, 1999 copyright 1999, IEEE
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Figure from Texture Synthesis by Non-parametric Sampling, A. Efros and T.K. Leung, Proc. Int. Conf. Computer

Vision, 1999 copyright 1999,

IEEE
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» The size of the image neighborhood to be matched makes a
significant difference
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Fill in holes by
looking for examplg
patches in the image
| Ifneeded, rectify
| faces (lower images

FIGURE 6.13: If an image contains repeated structure, we have a good chance of finding
examples to fill a hole by searching for patches that are compatible with its boundaries.
Top left: An image with a hole in it (black pixels in a rough pedestrian shape). The
pixels on the region outside the hole, but inside the boundary marked on the image,
match pixels near the other curve, which represents a potentially good source of hole-
filling pixels. Top right: The hole filled by placing the patch over the hole, then using
a segmentation method (Chapter 9) to choose the right boundary between patch and
image. This procedure can work for apparently unpromising images, such as the one on
the bottom left, an image of the facade of a house, seen at a significant slant. This
slant means that distant parts of the facade are severely foreshortened. However, if we
rectify the facade using methods from Section 1.3, then there are matching patches. On
the bottom right, the hole has been filled in using a patch from the rectified image,
that is then slanted again. This figure was originally published as Figures 3 and 6 of
“Hole Filling through Photomontage,” by M. Wilczkowiak, G. Brostow, B. Tordoff, and
R. Cipolla, Proc. BMVC, 2005 and is reproduced by kind permission of the authors.

Onionskin order

' ' = ‘ .

FIGURE 6.14: Texture synthesis methods can fill in holes accurately, but the order in
which pixels are synthesized is important. In this figure, we wish to remove the sign,
while preserving the signpost. Generally, we want to fill in pixels where most of the
neighbors are known first. This yields better matching patches. One way to do so is to fill
in from the boundary. However, if we simply work our way inwards (onionskin filling), long
scale image structures tend to disappear. It is better to fill in patches close to edges first.
This figure was originally published as Figure 11 of “Region Filling and Object Removal
by Ezemplar-Based Image Inpainting,” by A. Criminisi, P. Perez, and K. Toyama, IEEE
Transactions on Image Processing, 2004 © IEEE, 200j.

Boundary edges
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State of the art in
image fill-in is very|
good. This uses
texture synthesis
and other methods.

Initial lge Hole

FIGURE 6.15: Modern hole-filling methods get very good results using a combination of
texture synthesis, coherence, and smoothing. Notice the complex, long-scale structure
in the background texture for the example on the top row. The center row shows an
example where a subject was removed from the image and replaced in a different place.
Finally, the bottom row shows the use of hole-filling to resize an image. The white block
in the center mask image is the “hole” (i.e., unknown pixels whose values are required to
resize the image). This block is filled with a plausible texture. This figure was originally
published as Figures 9 and 15 of “A Comprehensive Framework for Image Inpainting,”
by A. Bugeau, M. Bertalmio, V. Caselles, and G. Sapiro, Proc. IEEE Transactions on

Image Processing, 2010 © IEEE, 2010.

Sources

* Forsyth and Ponce, Computer Vision a Modern approach
(2" ed): chapter 6.

* L. G. Shapiro and G. C. Stockman “Computer Vision”,
Prentice Hall 2001.

* R. Gonzalez and R.E. Woods, “Digital Image Processing”,
2002.

 Slides by
— D. Forsyth @ UC Berkeley
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