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Outlines 

•  Finding templates by convolution 
•  What is Texture 
•  Co-occurrence matrices for texture 
•  Spatial Filtering approach 
•  Multiresolution processing, Gaussian Pyramids and 

Laplacian Pyramids 
•  Gabor filters and oriented pyramids 
•  Texture Synthesis 



CS 534  A. Elgammal,  
Rutgers University 

2 

CS 534  – Texture - 3  

Texture 

•  What is texture ? Easy to recognize hard to define 
–  Views of large number of small objects: grass, foliage, brush, 

pebbles, hair 
–  Surfaces with patterns: spots, stripes, wood, skin 

•  Texture consists of organized patterns of quite regular sub-
elements. 

•  Whether an effect is referred to as texture or not depends 
on the scale at which it is viewed.  

CS 534  – Texture - 4  

Texture 

Problems related to Texture: 
•  Texture analysis: how to represent and model texture 
•  Texture segmentation: segmenting the image into 

components within which the texture is constant 
•  Texture synthesis: construct large regions of texture from 

small example images 
•  Shape from texture: recovering surface orientation or 

surface shape from image texture. 
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Shape from Texture 

•  Texture looks different depending on the viewing angle. 
•  Texture is a good cue for shape and orientation 
•  Humans are very good at that. 

Notice how the change in  
pattern elements and  

repetitions is the main 
difference between 

different 
textured surfaces  

(the plants, the ground, 
etc.) 
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Representing Texture 

•  What we should look for ? 
•  Texture consists of organized patterns of quite regular 

subelements. “Textons” 
•  Find the subelements, and represent their statistics 
•  Reason about their spatial layout. 
•  Problem: There is no known canonical set of textons. 
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Texture Analysis 

Different approaches: 
•  Co-occurrence matrices (classical) 
•  Spatial Filtering  
•  Random Field Models 



CS 534  A. Elgammal,  
Rutgers University 

5 

CS 534  – Texture - 9  

Co-occurrence Matrix Features 

Objective: Capture spatial relations 

A co-occurrence matrix is a 2D array C in which 

•  Both the rows and columns represent a set of possible 
   image values 

•  C  (i,j) indicates how many times value i co-occurs with 
   value j in a particular spatial relationship d. 

•  The spatial relationship is specified by a vector d = (dr,dc). 

d 
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From Cd  we can compute Nd  , the normalized co-occurrence matrix, 
where each value is divided by the sum of all the values. 
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Co-occurrence Features 

From Co-occurrence matrices extract some quantitative features: 
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Disadvantages: 
•  Computationally expensive 
•  Sensitive to gray scale distortion (co-occurrence matrices 

depend on gray values) 
•  May be useful for fine-grain texture. Not suitable for 

spatially large textures. 
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Spatial Filtering Approaches 

•  Look for the subelements 
•  But what are the subelements, and how do we find them? 
•  Find subelements by applying filters, looking at the 

magnitude of the response 
•  Spots and bars detectors at various scales and orientations. 
Typically:  

–  “Spot” filters are Gaussians or weighted sums of concentric 
Gaussians. 

–  “Bar” filters are differentiating oriented Gaussians 
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Image Filter bank 

Filter responses 

Texture Representation 

Collect Statistics (mean, var, etc.) 
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•  How many filters and at what orientations ? 
•  Filter responses are not unique 
•  Tradeoff: using more filters leads to a more detailed and 

more redundant representation of the image 
•  How to control the amount of redundant information? 
•  At what scale? 
•  There are two scales: 

–  The scale of the filter 
–  The scale over which we consider the distributions of the filters. 

•  What statistics should be collected from filters responses. 
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Classification:  
•  Texture is classified into four categories: 
vertical, horizontal, both or neither.  
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Scaled representations: Multiresolution 

Use a multiresolution representation (Image Pyramid) 
•  Search over scale 
•  Spatial Search 
•  Feature Tracking 
Examples: 
•  Search for correspondence 

–  look at coarse scales, then refine with finer scales 

•  Edge tracking 
–  a “good” edge at a fine scale has parents at a coarser scale 

•  Control of detail and computational cost in matching 
–  e.g. finding stripes 
–  terribly important in texture representation 
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Gaussian Filter and Smoothing 
Gaussian Filter is Low-Pass Filter: 
•  Recall: Convolution in the image domain is equivalent to 

multiplication in the Frequency domain. 
•  Recall: FT of a Gaussian with sd=σ is a Gaussian with sd=1/σ 
•  Therefore, convolving an image with a Gaussian with sd=σ is 

equivalent to multiplying it’s FT with a Gaussian with sd=1/σ 
•  Therefore we will get rid of high frequencies. 
•  Smoothing with a Gaussian with a very small σ ⇒ get rid of highest 

spatial frequencies 
•  Smoothing with a Gaussian with a very large σ ⇒ averaging 

u 

v 
FT 

Frequency Domain 
Image: Spatial Domain 
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The Gaussian pyramid 

•  Smooth with gaussians, because 
–  a gaussian*gaussian=another gaussian  

•  Forming a Gaussian Pyramid: 
–  Set the finest scale layer to the image 
–  For each layer going up (coarser) 

•  Obtain this layer by smoothing the previous layer with a Gaussian and 
subsampling it 
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The Laplacian Pyramid 

•  Gaussians are low pass filters, so response is redundant 
•  A coarse level layer of the Gaussian pyramid predicts the 

appearance of the next finer layer 
•  Laplacian Pyramid 

–  preserve differences between upsampled Gaussian pyramid level 
and Gaussian pyramid level 

–  band pass filter - each level represents spatial frequencies (largely) 
unrepresented at other levels 
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Laplacian Pyramid 

•  Building a Laplacian Pyramid: 
–  Form a Gaussian pyramid 
–  Set the coarsest layer of the Laplacian pyramid to be the coarsest 

level of the Laplacian pyramid 
–  For each layer going from next to coarsest to finest (top to 

bottom): 
•  Obtain this layer by upsampling the coarser layer and subtracting it 

from this layer of the Gaussian pyramid. 

k 

k+1 
upsample 

k 

k+1 

Gaussian Pyramid Laplacian Pyramid 
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•  Synthesis: Obtaining an Image from a Laplacian Pyramid: 
–  Start at the coarsest layer 
–  For each layer from next to coarsest to finest 

•  Upsample the current image and add the current layer to the result 

k 

k+1 
upsample 

k 

k+1 

Laplacian Pyramid 
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•  Laplacian pyramid layers are band-pass filters. 
•  Laplacian pyramid is orientation independent 
•  Apply an oriented filter to determine orientations at each 

layer 
•  Look into spatial frequency domain: 
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions	


on Information Theory, 1992, copyright 1992, IEEE	



Oriented Pyramids 

Analysis	



Synthesis	
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Gabor Filters 

•  Fourier coefficients depend on the entire image (Global): We lose 
spatial information. 

•  Objective: Local Spatial Frequency Analysis 
•  Gabor kernels: look like Fourier basis multiplied by a Gaussian 

–  The product of a symmetric Gaussian with an oriented sinusoid 
–  Gabor filters come in pairs: symmetric and antisymmetric 
–  Each pair recover symmetric and antisymmetric components in a 

particular direction. 
–  (kx,ky) :the spatial frequency to which the filter responds strongly 
–  σ: the scale of the filter. When σ = infinity, similar to FT 

•  We need to apply a number of Gabor filters at different scales, 
orientations, and spatial frequencies.  
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Texture synthesis 

•  Variety of approaches. 
•  Example: Synthesis by Sampling Local Models: Efros and 

Leung 1999 (Nonparametric texture matching) 
–  Use image as a source of probability model 
–  Choose pixel values by matching neighborhood, then filling in 

? 
Neighborhood 

Example Image Synthesized Image 

Find Matching Image Neighborhood and chose value uniformly randomly from these matches 
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Figure from Texture Synthesis by Non-parametric Sampling, A. Efros and T.K. Leung, Proc. Int. Conf. Computer 
Vision, 1999 copyright 1999, IEEE	
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Figure from Texture Synthesis by Non-parametric Sampling, A. Efros and T.K. Leung, Proc. Int. Conf. Computer 
Vision, 1999 copyright 1999, IEEE	



CS 534  – Texture - 45  

•  The size of the image neighborhood to be matched makes a 
significant difference 
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Fill in holes by  
looking for example 
patches in the image. 

If needed, rectify  
faces (lower images). 
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State of the art in  
image fill-in is very 

good.  This uses 
texture synthesis 

and other methods. 
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Sources 

•  Forsyth and Ponce, Computer Vision a Modern approach 
(2nd ed): chapter 6. 

•  L. G. Shapiro and G. C. Stockman “Computer Vision”, 
Prentice Hall 2001. 

•  R. Gonzalez and R.E. Woods, “Digital Image Processing”, 
2002. 

•  Slides by 
–  D. Forsyth @ UC Berkeley 
–  G.C. Stockman @MSU 


