Assignment 1: SQL-Based Conversion from 3NF to 2NF

Objective: Identify and eliminate partial dependencies in a SQL schema that is in 3NF and convert it to 2NF.

Scenario: Consider the following table that is in 3NF:

```
CREATE TABLE Employee_Courses (
    EmpID INT,
    CourseID INT,
    EmpName VARCHAR(50),
    CourseName VARCHAR(50),
    InstructorName VARCHAR(50),
    PRIMARY KEY (EmpID, CourseID)
);
```

Where:

- EmpID is the Employee ID.
- CourseID is the Course ID.
- EmpName is the name of the employee.
- CourseName is the name of the course.
- InstructorName is the name of the course instructor.

Instructions:

- 1. Identify the functional dependencies and determine the partial dependencies.
- 2. Explain why this table is in 3NF but violates 2NF.
- 3. Using SQL, decompose this table into smaller tables that eliminate the partial dependency and make the schema comply with 2NF.
- 4. Provide the SQL commands to create the decomposed tables.
- 5. Illustrate the SQL commands needed to insert data into these decomposed tables.
- 6. Provide the SQL commands to query data from these new tables.

Assignment 2: Converting a Multi-Table 3NF Schema to 2NF Using SQL

Objective: Decompose a multi-table schema in 3NF into a schema that adheres to 2NF.

Scenario: Consider the following set of tables in 3NF:

```
sql
Copy code
CREATE TABLE Orders (
    OrderID INT PRIMARY KEY,
    CustomerID INT,
    OrderDate DATE
);
CREATE TABLE Products (
    ProductID INT PRIMARY KEY,
    ProductName VARCHAR(50),
```

```
Price DECIMAL(10, 2)
);

CREATE TABLE OrderDetails (
    OrderID INT,
    ProductID INT,
    Quantity INT,
    PRIMARY KEY (OrderID, ProductID),
    FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
    FOREIGN KEY (ProductID) REFERENCES Products(ProductID)
);
```

Instructions:

- 1. Identify the functional dependencies and explain why this schema is in 3NF.
- 2. Determine if there are any partial dependencies in the OrderDetails table.
- 3. Convert the OrderDetails table to a 2NF-compliant schema by eliminating partial dependencies.
- 4. Provide the SQL commands to modify the schema and create the new tables after decomposition.
- 5. Provide sample SQL INSERT statements for the new tables.
- 6. Provide SQL SELECT queries to retrieve order details, showing how the new structure is beneficial.

Assignment 3: SQL Query-Based Approach to Detect and Remove Partial Dependencies

Objective: Write SQL queries that help identify and resolve partial dependencies in a given schema.

Scenario: Given a table in 3NF that contains partial dependencies:

```
sql
Copy code
CREATE TABLE Student_Courses (
    StudentID INT,
    CourseID INT,
    InstructorName VARCHAR(50),
    InstructorEmail VARCHAR(50),
    StudentName VARCHAR(50),
    PRIMARY KEY (StudentID, CourseID)
);
```

Instructions:

- 1. Write a SQL query to detect partial dependencies in the Student_Courses table. Explain the concept of partial dependency and identify where it occurs.
- 2. Decompose the table into two or more smaller tables to remove partial dependencies.
- 3. Write SOL commands to:
 - o Create the new tables.
 - o Insert data into the decomposed tables.

4. Demonstrate how the new structure eliminates partial dependencies and results in a more efficient schema by querying the data.

Assignment 4: Hands-On SQL Decomposition to 2NF

Objective: Apply normalization techniques by decomposing a schema in 3NF into 2NF using SQL.

Scenario: Consider the following table in 3NF:

```
sql
Copy code
CREATE TABLE Library (
    BookID INT,
    ISBN VARCHAR(20),
    Title VARCHAR(100),
    AuthorName VARCHAR(50),
    PublisherName VARCHAR(50),
    Price DECIMAL(10, 2),
    PRIMARY KEY (BookID)
);
```

Where:

- BookID is the primary key.
- ISBN is the unique identifier for books.
- Title is the name of the book.
- AuthorName is the name of the author.
- PublisherName is the name of the publisher.
- Price is the price of the book.

Instructions:

- 1. Identify the functional dependencies and explain the partial dependencies that exist in this table.
- 2. Decompose the table into smaller tables in SQL that remove partial dependencies and make the schema 2NF-compliant.
- 3. Provide the SQL code to create these new tables.
- 4. Write SQL INSERT statements to populate the new tables.
- 5. Show how to query the normalized schema for data about books, authors, and publishers.

Assignment 5: Decomposing Complex SQL Schema to 2NF

Objective: Convert a complex schema in 3NF to 2NF while using SQL.

Scenario: Consider the following set of tables in 3NF:

```
sql
Copy code
CREATE TABLE Employee (
    EmpID INT PRIMARY KEY,
    EmpName VARCHAR(50),
    EmpRole VARCHAR (50)
);
CREATE TABLE Department (
    DeptID INT PRIMARY KEY,
    DeptName VARCHAR (50)
);
CREATE TABLE Assignment (
    EmpID INT,
    DeptID INT,
    AssignmentDate DATE,
    PRIMARY KEY (EmpID, DeptID),
    FOREIGN KEY (EmpID) REFERENCES Employee (EmpID),
    FOREIGN KEY (DeptID) REFERENCES Department(DeptID)
);
```

Instructions:

- 1. Identify any partial dependencies present in the schema.
- 2. Decompose the tables in SQL to remove partial dependencies and move the schema to 2NF.
- 3. Provide the SQL code to create new tables after decomposition.
- 4. Provide SQL INSERT statements to insert data into the new tables.
- 5. Demonstrate how the decomposition results in improved schema design by running SQL SELECT queries to retrieve data.

Assignment 6: Advanced SQL Normalization: Identifying and Correcting Partial Dependencies

Objective: Demonstrate the ability to analyze, identify, and correct partial dependencies in a complex schema using SQL.

Scenario: You are given the following database schema in 3NF:

```
sql
Copy code
CREATE TABLE Sales (
    SaleID INT PRIMARY KEY,
    ProductID INT,
    SaleDate DATE,
    SalePrice DECIMAL(10, 2),
    CustomerName VARCHAR(50),
    CustomerEmail VARCHAR(50),
    PRIMARY KEY (SaleID)
);

CREATE TABLE Products (
    ProductID INT PRIMARY KEY,
```

```
ProductName VARCHAR(50),
    Category VARCHAR(50)
);
```

Instructions:

- 1. Identify the functional dependencies in the given schema.
- 2. Check for partial dependencies and explain why they violate 2NF.
- 3. Write the SQL code to decompose the Sales table to eliminate partial dependencies, ensuring it follows 2NF.
- 4. Show the updated SQL schema and provide examples of INSERT and SELECT statements to demonstrate how the new schema works.