
293

CHAPTER 10

Asymmetric-Key Cryptography

Objectives

This chapter has several objectives:

❏ To distinguish between symmetric-key and asymmetric-key cryptosystems

❏ To introduce trapdoor one-way functions and their use in asymmetric-
key cryptosystems

❏ To introduce the knapsack cryptosystem as one of the first ideas in
asymmetric-key cryptography

❏ To discuss the RSA cryptosystem

❏ To discuss the Rabin cryptosystem

❏ To discuss the ElGamal cryptosystem

❏ To discuss the elliptic curve cryptosystem

This chapter discusses several asymmetric-key cryptosystems: RSA,
Rabin, ElGamal, and ECC. Discussion of the Diffie-Hellman cryptosys-
tem is postponed until Chapter 15 because it is mainly a key-exchange
algorithm rather than an encryption/decryption algorithm.

10.1 INTRODUCTION

In Chapters 2 through 8, we emphasized the principles of symmetric-key cryptography.

In this chapter, we start the discussion of asymmetric-key cryptography. Symmetric-
and asymmetric-key cryptography will exist in parallel and continue to serve the com-
munity. We actually believe that they are complements of each other; the advantages of
one can compensate for the disadvantages of the other.

The Diffie-Hellman cryptosystem is discussed in Chapter 15.

294 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

The conceptual differences between the two systems are based on how these sys-
tems keep a secret. In symmetric-key cryptography, the secret must be shared between
two persons. In asymmetric-key cryptography, the secret is personal (unshared); each
person creates and keeps his or her own secret.

In a community of n people, n(n − 1)/2 shared secrets are needed for symmetric-key
cryptography; only n personal secrets are needed in asymmetric-key cryptography. For
a community with a population of 1 million, symmetric-key cryptography would require
half a billion shared secrets; asymmetric-key cryptography would require 1 million
personal secrets.

There are some other aspects of security besides encipherment that need asymmetric-
key cryptography. These include authentication and digital signatures. Whenever an appli-
cation is based on a personal secret, we need to use asymmetric-key cryptography.

Whereas symmetric-key cryptography is based on substitution and permutation of
symbols (characters or bits), asymmetric-key cryptography is based on applying mathe-
matical functions to numbers. In symmetric-key cryptography, the plaintext and cipher-
text are thought of as a combination of symbols. Encryption and decryption permute
these symbols or substitute a symbol for another. In asymmetric-key cryptography, the
plaintext and ciphertext are numbers; encryption and decryption are mathematical
functions that are applied to numbers to create other numbers.

Keys

Asymmetric key cryptography uses two separate keys: one private and one public. If
encryption and decryption are thought of as locking and unlocking padlocks with keys,
then the padlock that is locked with a public key can be unlocked only with the corre-
sponding private key. Figure 10.1 shows that if Alice locks the padlock with Bob’s public
key, then only Bob’s private key can unlock it.

General Idea

Figure 10.2 shows the general idea of asymmetric-key cryptography as used for enci-
pherment. We will see other applications of asymmetric-key cryptography in future chap-
ters. The figure shows that, unlike symmetric-key cryptography, there are distinctive
keys in asymmetric-key cryptography: a private key and a public key. Although some
books use the term secret key instead of private key, we use the term secret key only for
symmetric-key and the terms private key and public key for asymmetric key cryptogra-
phy. We even use different symbols to show the three keys. One reason is that we
believe the nature of the secret key used in symmetric-key cryptography is different

Symmetric-key cryptography is based on sharing secrecy;

asymmetric-key cryptography is based on personal secrecy.

In symmetric-key cryptography, symbols are permuted or substituted; in asymmetric-

key cryptography, numbers are manipulated.

SECTION 10.1 INTRODUCTION 295

from the nature of the private key used in asymmetric-key cryptography. The first is

normally a string of symbols (bits for example), the second is a number or a set of num-

bers. In other words, we want to show that a secret key is not exchangeable with a

private key; there are two different types of secrets.

Figure 10.2 shows several important facts. First, it emphasizes the asymmetric

nature of the cryptosystem. The burden of providing security is mostly on the shoulders

of the receiver (Bob, in this case). Bob needs to create two keys: one private and one

public. Bob is responsible for distributing the public key to the community. This can be

done through a public-key distribution channel. Although this channel is not required to

provide secrecy, it must provide authentication and integrity. Eve should not be able to

advertise her public key to the community pretending that it is Bob’s public key. Issues

regarding public-key distribution are discussed in Chapter 15. For the moment, we

assume that such a channel exists.

Figure 10.1 Locking and unlocking in asymmetric-key cryptosystem

Figure 10.2 General idea of asymmetric-key cryptosystem

Encryption
algorithm

Bob’s
public key

Communication direction

Alice Bob

The public key locks; the private key unlocks.

Bob’s
private key

Decryption
algorithm

Alice

Bob

To public

Insecure channel

Public-key distribution
channel

Plaintext PlaintextCiphertextCiphertext

Public key

Encryption

Private key

Decryption

Key-generation
procedure

296 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Second, asymmetric-key cryptography means that Bob and Alice cannot use the
same set of keys for two-way communication. Each entity in the community should
create its own private and public keys. Figure 10.2 shows how Alice can use Bob’s pub-
lic key to send encrypted messages to Bob. If Bob wants to respond, Alice needs to
establish her own private and public keys.

Third, asymmetric-key cryptography means that Bob needs only one private key to
receive all correspondence from anyone in the community, but Alice needs n public
keys to communicate with n entities in the community, one public key for each entity.
In other words, Alice needs a ring of public keys.

Plaintext/Ciphertext

Unlike in symmetric-key cryptography, plaintext and ciphertext are treated as integers
in asymmetric-key cryptography. The message must be encoded as an integer (or a set
of integers) before encryption; the integer (or the set of integers) must be decoded into
the message after decryption. Asymmetric-key cryptography is normally used to
encrypt or decrypt small pieces of information, such as the cipher key for a symmetric-
key cryptography. In other words, asymmetric-key cryptography normally is used for
ancillary goals instead of message encipherment. However, these ancillary goals play a
very important role in cryptography today.

Encryption/Decryption

Encryption and decryption in asymmetric-key cryptography are mathematical functions
applied over the numbers representing the plaintext and ciphertext. The ciphertext can be
thought of as C = f (Kpublic, P); the plaintext can be thought of as P = g(Kprivate, C). The
decryption function f is used only for encryption; the decryption function g is used only
for decryption. Next we show that the function f needs to be a trapdoor one-way function

to allow Bob to decrypt the message but to prevent Eve from doing so.

Need for Both

There is a very important fact that is sometimes misunderstood: The advent of asymmetric-
key (public-key) cryptography does not eliminate the need for symmetric-key (secret-
key) cryptography. The reason is that asymmetric-key cryptography, which uses mathe-
matical functions for encryption and decryption, is much slower than symmetric-key
cryptography. For encipherment of large messages, symmetric-key cryptography is still
needed. On the other hand, the speed of symmetric-key cryptography does not eliminate
the need for asymmetric-key cryptography. Asymmetric-key cryptography is still
needed for authentication, digital signatures, and secret-key exchanges. This means
that, to be able to use all aspects of security today, we need both symmetric-key and
asymmetric-key cryptography. One complements the other.

Trapdoor One-Way Function

The main idea behind asymmetric-key cryptography is the concept of the trapdoor one-
way function.

SECTION 10.1 INTRODUCTION 297

Functions

Although the concept of a function is familiar from mathematics, we give an
informal definition here. A function is a rule that associates (maps) one element
in set A, called the domain, to one element in set B, called the range, as shown in
Figure 10.3.

An invertible function is a function that associates each element in the range
with exactly one element in the domain.

One-Way Function

A one-way function (OWF) is a function that satisfies the following two properties:

1. f is easy to compute. In other words, given x, y = f (x) can be easily computed.

2. f −1 is difficult to compute. In other words, given y, it is computationally infeasible
to calculate x = f −1(y).

Trapdoor One-Way Function

A trapdoor one-way function (TOWF) is a one-way function with a third property:

3. Given y and a trapdoor (secret), x can be computed easily.

Example 10.1

When n is large, n = p × q is a one-way function. Note that in this function x is a tuple (p, q) of
two primes and y is n. Given p and q, it is always easy to calculate n; given n, it is very difficult to
compute p and q. This is the factorization problem that we saw in Chapter 9. There is not a poly-
nomial time solution to the f −1 function in this case.

Example 10.2

When n is large, the function y = xk mod n is a trapdoor one-way function. Given x, k, and n, it is
easy to calculate y using the fast exponential algorithm we discussed in Chapter 9. Given y, k, and n,
it is very difficult to calculate x. This is the discrete logarithm problem we discussed in Chapter 9.
There is not a polynomial time solution to the f −1 function in this case. However, if we know the
trapdoor, k′ such that k × k′ = 1 mod φ(n), we can use x = yk′ mod n to find x. This is the famous
RSA, which will be discussed later in this chapter.

Figure 10.3 A function as rule mapping a domain to a range

x
y

y = f (x)

Set A Set B

Domain Range

f

f –1

298 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Knapsack Cryptosystem

The first brilliant idea of public-key cryptography came from Merkle and Hellman, in
their knapsack cryptosystem. Although this system was found to be insecure with
today’s standards, the main idea behind this cryptosystem gives an insight into recent
public-key cryptosystems discussed later in this chapter.

If we are told which elements, from a predefined set of numbers, are in a knapsack,
we can easily calculate the sum of the numbers; if we are told the sum, it is difficult to
say which elements are in the knapsack.

Definition

Suppose we are given two k-tuples, a = [a1, a2, …, ak] and x = [x1, x2, …, xk]. The
first tuple is the predefined set; the second tuple, in which xi is only 0 or 1, defines
which elements of a are to be dropped in the knapsack. The sum of elements in the
knapsack is

s = knapsackSum (a, x) = x1a1 + x2a2 + … + xkak

Given a and x, it is easy to calculate s. However, given s and a it is difficult to find
x. In other words, s = knapsackSum (x, a) is easy to calculate, but x = inv_knapsackSum

(s, a) is difficult. The function knapsackSum is a one-way function if a is a general
k-tuple.

Superincreasing Tuple

It is easy to compute knapsackSum and inv_knapsackSum if the k-tuple a is super-

increasing. In a superincreasing tuple, ai ≥ a1 + a2 + … + ai−1. In other words,
each element (except a1) is greater than or equal to the sum of all previous elements. In
this case we calculate knapsackSum and inv_knapsackSum as shown in Algorithm 10.1.
The algorithm inv_knapsackSum starts from the largest element and proceeds to
the smallest one. In each iteration, it checks to see whether an element is in the
knapsack.

Algorithm 10.1 knapsacksum and inv_knapsackSum for a superincreasing k-tuple

knapsackSum (x [1 … k], a [1 … k])
{
 s ← 0
 for (i = 1 to k)
 {
 s ← s + ai × xi

 }
 return s
}

inv_knapsackSum (s, a [1 … k])
{
 for (i = k down to 1)
 {
 if s ≥ ai
 {
 xi ← 1
 s ← s − ai

 }
 else xi ← 0
 }
 return x [1 … k]
}

SECTION 10.1 INTRODUCTION 299

Example 10.3

As a very trivial example, assume that a = [17, 25, 46, 94, 201,400] and s = 272 are given.
Table 10.1 shows how the tuple x is found using inv_knapsackSum routine in Algorithm 10.1.

In this case x = [0, 1, 1, 0, 1, 0], which means that 25, 46, and 201 are in the knapsack.

Secret Communication with Knapsacks

Let us see how Alice can send a secret message to Bob using a knapsack cryptosystem.
The idea is shown in Figure 10.4.

Key Generation

a. Create a superincreasing k-tuple b = [b1, b2, …, bk]

b. Choose a modulus n, such that n > b1 + b2 + … + bk

Table 10.1 Values of i, ai, s, and xi in Example 10.3

i ai s s ≥ ai xi s ← s − ai × xi

6 400 272 false x6 = 0 272

5 201 272 true x5 = 1 71

4 94 71 false x4 = 0 71

3 46 71 true x3 = 1 25

2 25 25 true x2 = 1 0

1 17 0 false x1 = 0 0

Figure 10.4 Secret communication with knapsack cryptosystem

Alice

Bob

Key generation

Ciphertext, s

To public

Private

Encryption Decryption

(b, r, n)

(a)

x
Plaintext

x
Plaintext

s = knapsackSum (x, a)

s′ = r −1 × s mod n
x′ = inv_knapsackSum (s′, b)
x = permute (x′)

Select b = [b1, b2, . . . , bk]
Select modulus n and r

Calculate a = [a1, a2, . . . , ak]

300 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

c. Select a random integer r that is relatively prime with n and 1 ≤ r ≤ n −1.

d. Create a temporary k-tuple t = [t1, t2, … , tk] in which ti = r × bi mod n.

e. Select a permutation of k objects and find a new tuple a = permute (t).

f. The public key is the k-tuple a. The private key is n, r, and the k-tuple b.

Encryption

Suppose Alice needs to send a message to Bob.

a. Alice converts her message to a k-tuple x = [x1, x2, … , xk] in which xi is either
0 or 1. The tuple x is the plaintext.

b. Alice uses the knapsackSum routine to calculate s. She then sends the value of s as
the ciphertext.

Decryption

Bob receives the ciphertext s.

a. Bob calculates s′ = r−1 × s mod n.

b. Bob uses inv_knapsackSum to create x′.

c. Bob permutes x′ to find x. The tuple x is the recovered plaintext.

Example 10.4

This is a trivial (very insecure) example just to show the procedure.

1. Key generation:

a. Bob creates the superincreasing tuple b = [7, 11, 19, 39, 79, 157, 313].

b. Bob chooses the modulus n = 900 and r = 37, and [4 2 5 3 1 7 6] as permutation table.

c. Bob now calculates the tuple t = [259, 407, 703, 543, 223, 409, 781].

d. Bob calculates the tuple a = permute (t) = [543, 407, 223, 703, 259, 781, 409].

e. Bob publicly announces a; he keeps n, r, and b secret.

2. Suppose Alice wants to send a single character “g” to Bob.

a. She uses the 7-bit ASCII representation of “g”, (1100111)2, and creates the tuple x =
[1, 1, 0, 0, 1, 1, 1]. This is the plaintext.

b. Alice calculates s = knapsackSum (a, x) = 2165. This is the ciphertext sent to Bob.

3. Bob can decrypt the ciphertext, s = 2165.

a. Bob calculates s′ = s × r−1 mod n = 2165 × 37−1 mod 900 = 527.

b. Bob calculates x′ = Inv_knapsackSum (s′, b) = [1, 1, 0, 1, 0, 1, 1].

c. Bob calculates x = permute (x′) = [1, 1, 0, 0, 1, 1, 1]. He interprets the string (1100111)2
as the character “g”.

Trapdoor

Calculating the sum of items in Alice’s knapsack is actually the multiplication of the
row matrix x by the column matrix a. The result is a 1 × 1 matrix s. Matrix multiplica-
tion, s = x × a, in which x is a row matrix and a is a column matrix, is a one-way func-
tion. Given s and x, Eve cannot find a easily. Bob, however, has a trapdoor. Bob uses
his s′ = r−1 × s and the secret superincreasing column matrix b to find a row matrix x′
using the inv_knapsackSum routine. The permutation allows Bob to find x from x′.

SECTION 10.2 RSA CRYPTOSYSTEM 301

10.2 RSA CRYPTOSYSTEM

The most common public-key algorithm is the RSA cryptosystem, named for its

inventors (Rivest, Shamir, and Adleman).

Introduction

RSA uses two exponents, e and d, where e is public and d is private. Suppose P is the

plaintext and C is the ciphertext. Alice uses C = Pe mod n to create ciphertext C from

plaintext P; Bob uses P = Cd mod n to retrieve the plaintext sent by Alice. The modulus n,

a very large number, is created during the key generation process, as we will discuss later.

 Encryption and decryption use modular exponentiation. As we discussed in

Chapter 9, modular exponentiation is feasible in polynomial time using the fast expo-

nentiation algorithm. However, modular logarithm is as hard as factoring the modu-

lus, for which there is no polynomial algorithm yet. This means that Alice can

encrypt in polynomial time (e is public), Bob also can decrypt in polynomial time

(because he knows d), but Eve cannot decrypt because she would have to calculate

the eth root of C using modular arithmetic. Figure 10.5 shows the idea.

In other words, Alice uses a one-way function (modular exponentiation) with a

trapdoor known only to Bob. Eve, who does not know the trapdoor, cannot decrypt the

message. If some day, a polynomial algorithm for eth root modulo n calculation is

found, modular exponentiation is not a one-way function any more.

Procedure

Figure 10.6 shows the general idea behind the procedure used in RSA.

Figure 10.5 Complexity of operations in RSA

RSA uses modular exponentiation for encryption/decryption;

To attack it, Eve needs to calculate mod n.

Alice

Exponential
complexity

Insecure channel

Polynomial
complexity

Polynomial
complexity

Bob
Eve

P P

C CC

?

C = Pe mod n P = Cd mod n

P = mod n C
e

C
e

302 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Two Algebraic Structures

RSA uses two algebraic structures: a ring and a group.

Encryption/Decryption Ring Encryption and decryption are done using the com-

mutative ring R = <Zn, +, × > with two arithmetic operations: addition and multiplica-

tion. In RSA, this ring is public because the modulus n is public. Anyone can send a

message to Bob using this ring to do encryption.

Key-Generation Group RSA uses a multiplicative group G = <Zφ(n)∗, × > for

key generation. This group supports only multiplication and division (using multi-

plicative inverses), which are needed for generating public and private keys. This

group is hidden from the public because its modulus, φ(n), is hidden from the pub-

lic. We will see shortly that if Eve can find this modulus, she can easily attack the

cryptosystem.

Key Generation

Bob uses the steps shown in Algorithm 10.2 to create his public and private key. After

key generation, Bob announces the tuple (e, n) as his public key; Bob keeps the integer

d as his private key. Bob can discard p, q, and φ(n); they will not be needed unless Bob

needs to change his private key without changing the modulus (which is not recom-

mended, as we will see shortly). To be secure, the recommended size for each prime, p

or q, is 512 bits (almost 154 decimal digits). This makes the size of n, the modulus,

1024 bits (309 digits).

Figure 10.6 Encryption, decryption, and key generation in RSA

RSA uses two algebraic structures:

a public ring R = <Zn, ++++, ×××× > and a private group G = <Zφφφφ(n)∗∗∗∗, ×××× >.

Key calculation in
G = < Zφ(n)*, × >

C: Ciphertext

To public

Private

Encryption in
R = < Z

n
, +, × >

Decryption in
R = < Z

n
, +, × >

(d)

(e, n)

(e, n)

C = Pe mod n

P
Plaintext

P
Plaintext

Select p, q

n = p × q

Select e and d

P = Cd mod n

Alice

Bob

SECTION 10.2 RSA CRYPTOSYSTEM 303

Encryption

Anyone can send a message to Bob using his public key. Encryption in RSA can be
done using an algorithm with polynomial time complexity, as shown in Algorithm 10.3.
The fast exponentiation algorithm was discussed in Chapter 9. The size of the plaintext
must be less than n, which means that if the size of the plaintext is larger than n, it
should be divided into blocks.

Decryption

Bob can use Algorithm 10.4 to decrypt the ciphertext message he received. Decryption
in RSA can be done using an algorithm with polynomial time complexity. The size of
the ciphertext is less than n.

Algorithm 10.2 RSA Key Generation

RSA_Key_Generation

{

 Select two large primes p and q such that p ≠ q.

 n ← p × q

 φ(n) ← (p − 1) × (q − 1)

 Select e such that 1 < e < φ(n) and e is coprime to φ(n)

 d ← e −1 mod φ(n) // d is inverse of e modulo φ(n)

 Public_key ← (e, n) // To be announced publicly

 Private_key ← d // To be kept secret

 return Public_key and Private_key
}

In RSA, the tuple (e, n) is the public key; the integer d is the private key.

Algorithm 10.3 RSA encryption

RSA_Encryption (P, e, n) // P is the plaintext in Zn and P < n

{

 C ← Fast_Exponentiation (P, e, n) // Calculation of (Pe mod n)

 return C
}

Algorithm 10.4 RSA decryption

RSA_Decryption (C, d, n) //C is the ciphertext in Zn

{

 P ← Fast_Exponentiation (C, d, n) // Calculation of (Cd mod n)

 return P

}

In RSA, p and q must be at least 512 bits; n must be at least 1024 bits.

304 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Proof of RSA

We can prove that encryption and decryption are inverses of each other using the sec-
ond version of Euler’s theorem discussed in Chapter 9:

Assume that the plaintext retrieved by Bob is P1 and prove that it is equal to P.

Some Trivial Examples

Following are some trivial (insecure) examples of the RSA procedure. The criteria that
make the RSA system secure will be discussed in the later sections.

Example 10.5

Bob chooses 7 and 11 as p and q and calculates n = 7 × 11 = 77. The value of φ(n) = (7 − 1)(11 − 1)
or 60. Now he chooses two exponents, e and d, from Z60∗. If he chooses e to be 13, then d is 37.
Note that e × d mod 60 = 1 (they are inverses of each other). Now imagine that Alice wants to
send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5.

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

Example 10.6

Now assume that another person, John, wants to send a message to Bob. John can use the same
public key announced by Bob (probably on his website), 13; John’s plaintext is 63. John calcu-
lates the following:

 Bob receives the ciphertext 28 and uses his private key 37 to decipher the ciphertext:

If n = p × q, a < n, and k is an integer, then ak×φ(n)+1 ≡ a (mod n).

P1 = Cd mod n = (Pe mod n)d mod n = Ped mod n
ed = kφ(n) + 1 // d and e are inverses modulo φ(n)
P1 = Ped mod n → P1 = Pkφ(n)+1 mod n
P1 = Pkφ(n)+1 mod n = P mod n // Euler’s theorem (second version)

Plaintext: 5 C = 513 = 26 mod 77 Ciphertext: 26

Ciphertext: 26 P = 2637 = 5 mod 77 Plaintext: 5

Plaintext: 63 C = 6313 = 28 mod 77 Ciphertext: 28

Ciphertext: 28 P = 2837 = 63 mod 77 Plaintext: 63

SECTION 10.2 RSA CRYPTOSYSTEM 305

Example 10.7

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates
n = 397 × 401= 159197. She then calculates φ(n) = 396 × 400 = 158400. She then chooses
e = 343 and d = 12007. Show how Ted can send a message to Jennifer if he knows e and n.

Solution

Suppose Ted wants to send the message “NO” to Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext is 1314. Ted then uses e and n to encrypt
the message. The ciphertext is 1314343 = 33677 mod 159197. Jennifer receives the message
33677 and uses the decryption key d to decipher it as 3367712007 = 1314 mod 159197. Jennifer
then decodes 1314 as the message “NO”. Figure 10.7 shows the process.

Attacks on RSA

No devastating attacks on RSA have been yet discovered. Several attacks have been
predicted based on the weak plaintext, weak parameter selection, or inappropriate
implementation. Figure 10.8 shows the categories of potential attacks.

Figure 10.7 Encryption and decryption in Example 10.7

Figure 10.8 Taxonomy of potential attacks on RSA

Ted Jennifer

C = 33677

(12007)(343, 159197)

C = 1314343 mod 159197 P = 3367712007 mod 159197
P = 1314 P = 1314

"NO""NO"

Encode Decode

Potential attacks
on RSA

Factorization

Chosen-ciphertext

Plaintext

Modulus

Decryption exponent Revealed and low exponent

Short message, cyclic, and unconcealed

Common modulus

Timing and powerImplementation

Encryption exponent
Coppersmith, broadcast,
related messages, and short pad

306 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Factorization Attack

The security of RSA is based on the idea that the modulus is so large that it is infeasi-
ble to factor it in a reasonable time. Bob selects p and q and calculates n = p × q.
Although n is public, p and q are secret. If Eve can factor n and obtain p and q, she
can calculate φ(n) = (p − 1) (q − 1). Eve then can calculate d = e−1 mod φ(n) because
e is public. The private exponent d is the trapdoor that Eve can use to decrypt any
encrypted message.

As we learned in Chapter 9, there are many factorization algorithms, but none of
them can factor a large integer with polynomial time complexity. To be secure, RSA
presently requires that n should be more than 300 decimal digits, which means that the
modulus must be at least 1024 bits. Even using the largest and fastest computer avail-
able today, factoring an integer of this size would take an infeasibly long period of
time. This means that RSA is secure as long as an efficient algorithm for factorization
has not been found.

Chosen-Ciphertext Attack

A potential attack on RSA is based on the multiplicative property of RSA. Assume that
Alice creates the ciphertext C = Pe mod n and sends C to Bob. Also assume that Bob
will decrypt an arbitrary ciphertext for Eve, other than C. Eve intercepts C and uses the
following steps to find P:

a. Eve chooses a random integer X in Zn*.

b. Eve calculates Y = C × Xe mod n.

c. Eve sends Y to Bob for decryption and get Z = Yd mod n; This step is an instance
of a chosen-ciphertext attack.

d. Eve can easily find P because

Eve uses the extended Euclidean algorithm to find the multiplicative inverse of X
and eventually the value of P.

Attacks on the Encryption Exponent

To reduce the encryption time, it is tempting to use a small encryption exponent e. The
common value for e is e = 3 (the second prime). However, there are some potential
attacks on low encryption exponent that we briefly discuss here. These attacks do not
generally result in a breakdown of the system, but they still need to be prevented. To
thwart these kinds of attacks, the recommendation is to use e = 216 + 1 = 65537 (or a
prime close to this value).

Coppersmith Theorem Attack The major low encryption exponent attack is referred
to as the Coppersmith theorem attack. This theorem states that in a modulo-n polyno-
mial f(x) of degree e, one can use an algorithm of the complexity log n to find the
roots if one of the roots is smaller than n1/e. This theorem can be applied to the RSA

Z = Yd mod n = (C × Xe)d mod n = (Cd × Xed) mod n = (Cd × X) mod n = (P × X) mod n
Z = (P × X) mod n → P = Z × X−1 mod n

SECTION 10.2 RSA CRYPTOSYSTEM 307

cryptosystem with C = f (P) = Pe mod n. If e = 3 and only two thirds of the bits in the
plaintext P are known, the algorithm can find all bits in the plaintext.

Broadcast Attack The broadcast attack can be launched if one entity sends the
same message to a group of recipients with the same low encryption exponent. For
example, assume the following scenario: Alice wants to send the same message to three
recipients with the same public exponent e = 3 and the moduli n1, n2, and n3.

Applying the Chinese remainder theorem to these three equations, Eve can find
an equation of the form C′ = P3 mod n1n2n3. This means that P3< n1n2n3. This
means C′= P3 is in regular arithmetic (not modular arithmetic). Eve can find the
value of C′ = P1/3.

Related Message Attack The related message attack, discovered by Franklin Reiter,
can be briefly described as follows. Alice encrypts two plaintexts, P1 and P2, and
encrypts them with e = 3 and sends C1 and C2 to Bob. If P1 is related to P2 by a linear
function, then Eve can recover P1 and P2 in a feasible computation time.

Short Pad Attack The short pad attack, discovered by Coppersmith, can be briefly
described as follows. Alice has a message M to send to Bob. She pads the message with
r1, encrypts the result to get C1, and sends C1 to Bob. Eve intercepts C1 and drops it.
Bob informs Alice that he has not received the message, so Alice pads the message again
with r2, encrypts it, and sends it to Bob. Eve also intercepts this message. Eve now has
C1 and C2, and she knows that they both are ciphertexts belonging to the same plaintext.
Coppersmith proved that if r1 and r2 are short, Eve may be able to recover the original
message M.

Attacks on the Decryption Exponent

Two forms of attacks can be launched on the decryption exponent: revealed decryp-

tion exponent attack and low decryption exponent attack. They are discussed
briefly.

Revealed Decryption Exponent Attack It is obvious that if Eve can find the
decryption exponent, d, she can decrypt the current encrypted message. However, the
attack does not stop here. If Eve knows the value of d, she can use a probabilistic
algorithm (not discussed here) to factor n and find the value of p and q. Consequently,
if Bob changes only the compromised decryption exponent but keeps the same mod-
ulus, n, Eve will be able to decrypt future messages because she has the factorization
of n. This means that if Bob finds out that the decryption exponent is compromised,
he needs to choose new value for p and q, calculate n, and create totally new private
and public keys.

C1 = P3 mod n1 C2 = P3 mod n2 C3 = P3 mod n3

In RSA, if d is comprised, then p, q, n, e, and d must be regenerated.

308 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Low Decryption Exponent Attack Bob may think that using a small private-key d,
would make the decryption process faster for him. Wiener showed that if d < 1/3 n1/4, a
special type of attack based on continuous fraction, a topic discussed in number theory,
can jeopardize the security of RSA. For this to happen, it must be the case that q < p < 2q.
If these two conditions exist, Eve can factor n in polynomial time.

Plaintext Attacks

Plaintext and ciphertext in RSA are permutations of each other because they are inte-
gers in the same interval (0 to n − 1). In other words, Eve already knows something
about the plaintext. This characteristic may allow some attacks on the plaintext. Three
attacks have been mentioned in the literature: short message attack, cycling attack, and
unconcealed attack.

Short Message Attack In the short message attack, if Eve knows the set of possible
plaintexts, she then knows one more piece of information in addition to the fact that the
ciphertext is the permutation of plaintext. Eve can encrypt all of the possible messages
until the result is the same as the ciphertext intercepted. For example, if it is known that
Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from
0000 to 9999 to find the plaintext. For this reason, short messages must be padded with
random bits at the front and the end to thwart this type of attack. It is strongly recom-
mended that messages be padded with random bits before encryption using a method
called OAEP, which is discussed later in this chapter.

Cycling Attack The cycling attack is based on the fact that if the ciphertext is a
permutation of the plaintext, the continuous encryption of the ciphertext will eventu-
ally result in the plaintext. In other words, if Eve continuously encrypts the inter-
cepted ciphertext C, she will eventually get the plaintext. However, Eve does not
know what the plaintext is, so she does not know when to stop. She needs to go one
step further. When she gets the ciphertext C again, she goes back one step to find the
plaintext.

Is this a serious attack on RSA? It has been shown that the complexity of the algo-
rithm is equivalent to the complexity of factoring n. In other words, there is no efficient
algorithm that can launch this attack in polynomial time if n is large.

Unconcealed Message Attack Another attack that is based on the permutation rela-
tionship between plaintext and ciphertext is the unconcealed message attack. An

In RSA, the recommendation is to have d ≥≥≥≥ 1/3 n1/4 to prevent low decryption

exponent attack.

Intercepted ciphertext: C
C1 = Ce mod n
C2 = C1

e mod n
…
Ck = Ck−1

e mod n → If Ck = C, stop: the plaintext is P = Ck−1

SECTION 10.2 RSA CRYPTOSYSTEM 309

unconcealed message is a message that encrypts to itself (cannot be concealed). It has
been proven that there are always some messages that are encrypted to themselves.
Because the encryption exponent normally is odd, there are some plaintexts that are
encrypted to themselves such as P = 0 and P = 1. Although there are more, if the
encrypting exponent is selected carefully, the number of these message is negligible.
The encrypting program can always check if the calculated ciphertext is the same as
the plaintext and reject the plaintext before submitting the ciphertext.

Attacks on the Modulus

The main attack on RSA, as discussed previously, is the factorization attack. The fac-
torization attack can be considered an attack on the low modulus. However, because we
have already discussed this attack, we will concentrate on another attack on the modu-
lus: the common modulus attack.

Common Modulus Attack The common modulus attack can be launched if a com-
munity uses a common modulus, n. For example, people in a community might let a
trusted party select p and q, calculate n and φ(n), and create a pair of exponents (ei, di)
for each entity. Now assume Alice needs to send a message to Bob. The ciphertext to
Bob is C = PeB mod n. Bob uses his private exponent, dB, to decrypt his message, P =
CdB mod n. The problem is that Eve can also decrypt the message if she is a member of
the community and has been assigned a pair of exponents (eE and dE), as we learned in
the section “Low Decryption Exponent Attack”. Using her own exponents (eE and dE),
Eve can launch a probabilistic attack to factor n and find Bob’s dB. To thwart this type
of attack, the modulus must not be shared. Each entity needs to calculate her or his own
modulus.

Attacks on Implementation

Previous attacks were based on the underlying structure of RSA. As Dan Boneh has
shown, there are several attacks on the implementation of RSA. We mention two of
these attacks: the timing attack and the power attack.

Timing Attack Paul Kocher elegantly demonstrated a ciphertext-only attack, called
the timing attack. The attack is based on the fast-exponential algorithm discussed in
Chapter 9. The algorithm uses only squaring if the corresponding bit in the private
exponent d is 0; it uses both squaring and multiplication if the corresponding bit is 1. In
other words, the timing required to do each iteration is longer if the corresponding bit is
1. This timing difference allows Eve to find the value of bits in d, one by one.

Assume that Eve has intercepted a large number of ciphertexts, C1 to Cm. Also
assume that Eve has observed how long it takes for Bob to decrypt each ciphertext, T1
to Tm. Eve, who knows how long it takes for the underlying hardware to calculate a
multiplication operation, calculated t1 to tm, where ti is the time required to calculate
the multiplication operation Result = Result × Ci mod n.

Eve can use Algorithm 10.5, which is a simplified version of the algorithm used in
practice, to calculate all bits in d (d0 to dk−1).

The algorithm sets d0 = 1 (because d should be odd) and calculates new values for
Ti’s (decryption time related to d1 to dk−1). The algorithm then assumes the next bit is 1

310 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

and finds some new values D1 to Dm based on this assumption. If the assumption is
correct, each Di is probably smaller than the corresponding Ti. However, the algorithm
uses the variance (or other correlation criteria) to consider all variations of Di and Ti.
If the difference in variance is positive, the algorithm assumes that the next bit is 1;
otherwise, it assumes that the next bit is 0. The algorithm then calculates the new Ti’s to
be used for remaining bits.

There are two methods to thwart timing attack:

1. Add random delays to the exponentiations to make each exponentiation take the
same amount of time.

2. Rivest recommended blinding. The idea is to multiply the ciphertext by a random
number before decryption. The procedure is as follows:

a. Select a secret random number r between 1 and (n − 1).

b. Calculate C1 = C × re mod n.

c. Calculate P1 = C1
d mod n.

d. Calculate P = P1 × r−1 mod n.

Power Attack The Power attack is similar to the timing attack. Kocher showed that
if Eve can precisely measure the power consumed during decryption, she can launch a
power attack based on the principle discussed for timing attack. An iteration involving
multiplication and squaring consumes more power than an iteration that uses only
squaring. The same kind of techniques used to prevent timing attacks can be used to
thwart power attacks.

Recommendations

The following recommendations are based on theoretical and experimental results.

1. The number of bits for n should be at least 1024. This means that n should be
around 21024, or 309 decimal digits.

Algorithm 10.5 Timing attack on RSA

RSA_Timing_Attack ([T1 … Tm])

{

 d0 ← 1 // Because d is odd

 Calculate [t1 … tm]

 [T1 … Tm] ← [T1 … Tm] − [t1 … tm] // Update Ti for the next bit

 for (j from 1 to k − 1)
 {

 Recalculate [t1 … tm] // Recalculate ti assuming the next bit is 1
 [D1 … Dm] ← [T1 … Tm] − [t1 … tm]
 var ← variance ([D1 … Dm]) − variance ([T1 … Tm])

 if (var > 0) dj ← 1 else dj ← 0
 [T1 … Tm] ← [T1 … Tm] − dj × [t1 … tm] // Update Ti for the next bit
 }
}

SECTION 10.2 RSA CRYPTOSYSTEM 311

2. The two primes p and q must each be at least 512 bits. This means that p and q
should be around 2512 or 154 decimal digits.

3. The values of p and q should not be very close to each other.

4. Both p − 1 and q − 1 should have at least one large prime factor.

5. The ratio p/q should not be close to a rational number with a small numerator or
denominator.

6. The modulus n must not be shared.

7. The value of e should be 216 + 1 or an integer close to this value.

8. If the private key d is leaked, Bob must immediately change n as well as both e and
d. It has been proven that knowledge of n and one pair (e, d) can lead to the dis-
covery of other pairs of the same modulus.

9. Messages must be padded using OAEP, discussed later.

Optimal Asymmetric Encryption Padding (OAEP)

As we mentioned earlier, a short message in RSA makes the ciphertext vulnerable to
short message attacks. It has been shown that simply adding bogus data (padding) to
the message might make Eve’s job harder, but with additional efforts she can still attack
the ciphertext. The solution proposed by the RSA group and some vendors is to apply a
procedure called optimal asymmetric encryption padding (OAEP). Figure 10.9

Figure 10.9 Optimal asymmetric encryption padding (OAEP)

M

P1 P2

Message

r

m bits

m bits

(m + k) bits

(m + k) bits (m + k) bits

(m + k) bits

m bits

< m bits

k bits

k bits

G

H

Encryption

rm bits

m bits

k bits

k bits

H

G

P1 P2

Message

m bits

< m bits

Decryption

M

M: Padded message P: Plaintext (P1 || P2)

C: Ciphertext

G: Public function (k-bit to m-bit)

H: Public function (m-bit to k-bit) r: One-time random number

C C

Sender Receiver

312 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

shows a simple version of this procedure; the implementation may use a more sophisti-
cated version.

The whole idea in Figure 10.9 is that P = P1 || P2, where P1 is the masked version
of the padded message, M; P2 is sent to allow Bob to find the mask.

Encryption The following shows the encryption process:

1. Alice pads the message to make an m-bit message, which we call M.

2. Alice chooses a random number r of k bits. Note that r is used only once and is
then destroyed.

3. Alice uses a public one-way function, G, that takes an r-bit integer and creates an
m-bit integer (m is the size of M, and r < m). This is the mask.

4. Alice applies the mask G(r) to create the first part of the plaintext P1 = M ⊕ G(r).
P1 is the masked message.

5. Alice creates the second part of the plaintext as P2 = H(P1) ⊕ r. The function H is
another public function that takes an m-bit input and creates an k-bit output. This
function can be a cryptographic hash function (see Chapter 12). P2 is used to allow
Bob to recreate the mask after decryption.

6. Alice creates C = Pe = (P1 || P2)e and sends C to Bob.

Decryption The following shows the decryption process:

1. Bob creates P = Cd = (P1 || P2).

2. Bob first recreates the value of r using H(P1) ⊕ P2 = H(P1) ⊕ H(P1) ⊕ r = r.

3. Bob uses G(r) ⊕ P = G(r) ⊕ G(r) ⊕ M = M to recreate the value of the padded
message.

4. After removing the padding from M, Bob finds the original message.

Error in Transmission

If there is even a single bit error during transmission, RSA will fail. If the received
ciphertext is different from what was sent, the receiver cannot determine the original
plaintext. The plaintext calculated at the receiver site may be very different from the
one sent by the sender. The transmission media must be made error-free by adding
error-detecting or error-correcting redundant bits to the ciphertext.

Example 10.8

Here is a more realistic example. We choose a 512-bit p and q, calculate n and φ(n), then choose
e and test for relative primeness with φ(n). We then calculate d. Finally, we show the results of
encryption and decryption. The integer p is a 159-digit number.

p = 961303453135835045741915812806154279093098455949962158225831508796
479404550564706384912571601803475031209866660649242019180878066742
1096063354219926661209

SECTION 10.2 RSA CRYPTOSYSTEM 313

The integer q is a 160-digit number.

The modulus n = p × q. It has 309 digits.

 φ(n) = (p − 1)(q − 1) has 309 digits.

Bob chooses e = 35535 (the ideal is 65537) and tests it to make sure it is relatively prime
with φ(n). He then finds the inverse of e modulo φ(n) and calls it d.

Alice wants to send the message “THIS IS A TEST”, which can be changed to a numeric
value using the 00−26 encoding scheme (26 is the space character).

The ciphertext calculated by Alice is C = Pe, which is

q = 120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871
45524969000359660045617

n = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656772727460097082714127730434960500556347274566
628060099924037102991424472292215772798531727033839381334692684137
327622000966676671831831088373420823444370953

φ(n) = 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664128

e = 35535

d = 580083028600377639360936612896779175946690620896509621804228661113
805938528223587317062869100300217108590443384021707298690876006115
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
0760033708533328853214470885955136670294831

P = 1907081826081826002619041819

C = 475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
148354103361657898467968386763733765777465625079280521148141844048
14184430812773059004692874248559166462108656

314 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Bob can recover the plaintext from the ciphertext using P = Cd, which is

The recovered plaintext is “THIS IS A TEST” after decoding.

Applications

Although RSA can be used to encrypt and decrypt actual messages, it is very slow if the
message is long. RSA, therefore, is useful for short messages. In particular, we will see
that RSA is used in digital signatures and other cryptosystems that often need to
encrypt a small message without having access to a symmetric key. RSA is also used
for authentication, as we will see in later chapters.

10.3 RABIN CRYPTOSYSTEM

The Rabin cryptosystem, devised by M. Rabin, is a variation of the RSA cryptosys-
tem. RSA is based on the exponentiation congruence; Rabin is based on quadratic con-
gruence. The Rabin cryptosystem can be thought of as an RSA cryptosystem in which
the value of e and d are fixed; e = 2 and d = 1/2. In other words, the encryption is C ≡ P2

(mod n) and the decryption is P ≡ C1/2 (mod n).
The public key in the Rabin cryptosystem is n; the private key is the tuple (p, q).

Everyone can encrypt a message using n; only Bob can decrypt the message using p
and q. Decryption of the message is infeasible for Eve because she does not know the
values of p and q. Figure 10.10 shows the encryption and decryption.

P = 1907081826081826002619041819

Figure 10.10 Encryption, decryption, and key generation in the Rabin cryptosystem

Eve

Infeasible ?

C

Public

Private

Encryption in
< Zn*, × >

Decryption in
< Zn*, × >

C = P2 mod n

(p, q)

(n)

P = mod n C

Quadratic
residues

Key generation

Alice

Bob

P
Plaintext

P
Plaintext

 Select p, q
 n = p × q

SECTION 10.3 RABIN CRYPTOSYSTEM 315

We need to emphasize a point here. If Bob is using RSA, he can keep d and n and

discard p, q, and φ(n) after key generation. If Bob is using Rabin cryptosystem, he

needs to keep p and q.

Procedure

Key generation, encryption, and decryption are described below.

Key Generation

Bob uses the steps shown in Algorithm 10.6 to create his public key and private key.

Although the two primes, p and q, can be in the form 4k + 1 or 4k + 3, the decryption pro-

cess becomes more difficult if the first form is used. It is recommended to use the second

form, 4k + 3, to make the decryption for Alice much easier.

Encryption

Anyone can send a message to Bob using his public key. The encrypting process is

shown in Algorithm 10.7.

Although the plaintext P can be chosen from the set Zn, we have defined the set

to be in Zn* to make the decryption easier.

Encryption in the Rabin cryptosystem is very simple. The operation needs only one

multiplication, which can be done quickly. This is beneficial when resources are limited.

For example, smart cards have limited memory and need to use short CPU time.

Decryption

Bob can use Algorithm 10.8 to decrypt the received ciphertext.

Algorithm 10.6 Key generation for Rabin cryptosystem

Rabin_Key_Generation

{

 Choose two large primes p and q in the form 4k + 3 and p ≠ q.

 n ← p × q

 Public_key ← n // To be announced publicly

 Private_key ← (p, q) // To be kept secret

 return Public_key and Private_key

}

Algorithm 10.7 Encryption in Rabin cryptosystem

Rabin_Encryption (n, P) // n is the public key; P is the ciphertext from Zn*

{

 C ← P2 mod n // C is the ciphertext

 return C

}

316 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Several points should be emphasized here. The decryption is based on the solution

of quadratic congruence, discussed in Chapter 9. Because the received ciphertext is the

square of the plaintext, it is guaranteed that C has roots (quadratic residues) in Zn*. The

Chinese remainder algorithm is used to find the four square roots.

The most important point about the Rabin system is that it is not deterministic. The

decryption has four answers. It is up to the receiver of the message to choose one of the

four as the final answer. However, in many situations, the receiver can easily pick up

the right answer.

Example 10.9

Here is a very trivial example to show the idea.

1. Bob selects p = 23 and q = 7. Note that both are congruent to 3 mod 4.

2. Bob calculates n = p × q = 161.

3. Bob announces n publicly; he keeps p and q private.

4. Alice wants to send the plaintext P = 24. Note that 161 and 24 are relatively prime; 24 is in

Z161*. She calculates C = 242 = 93 mod 161, and sends the ciphertext 93 to Bob.

5. Bob receives 93 and calculates four values:

a. a1 = +(93(23+1)/4) mod 23 = 1 mod 23

b. a2 = −(93(23+1)/4) mod 23 = 22 mod 23

c. b1 = +(93(7+1)/4) mod 7 = 4 mod 7

d. b2 = −(93(7+1)/4) mod 7 = 3 mod 7

6. Bob takes four possible answers, (a1, b1), (a1, b2), (a2, b1), and (a2, b2), and uses the Chinese

remainder theorem to find four possible plaintexts: 116, 24, 137, and 45 (all of them rela-

tively prime to 161). Note that only the second answer is Alice’s plaintext. Bob needs to

make a decision based on the situation. Note also that all four of these answers, when

squared modulo n, give the ciphertext 93 sent by Alice.

Algorithm 10.8 Decryption in Rabin cryptosystem

Rabin_Decryption (p, q, C) // C is the ciphertext; p and q are private keys

{

 a1 ← +(C(p+1)/4) mod p

 a2 ← −(C(p+1)/4) mod p

 b1 ← +(C(q+1)/4) mod q
 b2 ← −(C(q+1)/4) mod q

 // The algorithm for the Chinese remainder theorem is called four times.

 P1 ← Chinese_Remainder (a1, b1, p, q)

 P2 ← Chinese_Remainder (a1, b2, p, q)

 P3 ← Chinese_Remainder (a2, b1, p, q)

 P4 ← Chinese_Remainder (a2, b2, p, q)

 return P1, P2, P3, and P4

}

The Rabin cryptosystem is not deterministic: Decryption creates four equally

probable plaintexts.

SECTION 10.4 ELGAMAL CRYPTOSYSTEM 317

Security of the Rabin System

The Rabin system is secure as long as p and q are large numbers. The complexity of the

Rabin system is at the same level as factoring a large number n into its two prime fac-

tors p and q. In other words, the Rabin system is as secure as RSA.

10.4 ELGAMAL CRYPTOSYSTEM

Besides RSA and Rabin, another public-key cryptosystem is ElGamal, named after its

inventor, Taher ElGamal. ElGamal is based on the discrete logarithm problem dis-

cussed in Chapter 9.

ElGamal Cryptosystem

Recall from Chapter 9 that if p is a very large prime, e1 is a primitive root in the group

G = <Zp*, × > and r is an integer, then e2 = e1
r mod p is easy to compute using the fast

exponential algorithm (square-and-multiply method), but given e2, e1, and p, it is infea-

sible to calculate r = loge1e2 mod p (discrete logarithm problem).

Procedure

Figure 10.11 shows key generation, encryption, and decryption in ElGamal.

1162 = 93 mod 161 242 = 93 mod 161 1372 = 93 mod 161 452 = 93 mod 161

Figure 10.11 Key generation, encryption, and decryption in ElGamal

Encryption

Ciphertext: (C1, C2)

P P
Plaintext Plaintext

Public key: (e1, e2, p)

(e1, e2, p)

Private key: d

d

Decryption

C1 = e1
r mod p

C1 = (e2
r ⋅ P) mod p

Key generation

Select p (very large prime)
Select e1

(primitive root)
Select d
e2 = e1

d mod p

P = [C2 ⋅ (C1
d)−1] mod p

Alice

Bob

318 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Key Generation

Bob uses the steps shown in Algorithm 10.9 to create his public and private keys.

Encryption

Anyone can send a message to Bob using his public key. The encryption process is shown
in Algorithm 10.10. If the fast exponential algorithm (see Chapter 9) is used, encryption
in the ElGamal cryptosystem can also be done in polynomial time complexity.

Decryption

Bob can use Algorithm 10.11 to decrypt the ciphertext message received.

Algorithm 10.9 ElGamal key generation

ElGamal_Key_Generation

{

 Select a large prime p

 Select d to be a member of the group G = < Zp*, × > such that 1 ≤ d ≤ p − 2

 Select e1 to be a primitive root in the group G = < Zp*, × >

 e2 ← e1
d mod p

 Public_key ← (e1, e2, p) // To be announced publicly

 Private_key ← d // To be kept secret

 return Public_key and Private_key
}

Algorithm 10.10 ElGamal encryption

ElGamal_Encryption (e1, e2, p, P) // P is the plaintext

{

 Select a random integer r in the group G = < Zp*, × >
 C1 ← e1

r mod p

 C2 ← (P × e2
r) mod p // C1 and C2 are the ciphertexts

 return C1 and C2

}

Algorithm 10.11 ElGamal decryption

ElGamal_Decryption (d, p, C1, C2) // C1 and C2 are the ciphertexts

{

 P ← [C2 (C1
d) −1] mod p // P is the plaintext

 return P
}

The bit-operation complexity of encryption or decryption in ElGamal

cryptosystem is polynomial.

SECTION 10.4 ELGAMAL CRYPTOSYSTEM 319

Proof

The ElGamal decryption expression C2 × (C1
d)−1 can be verified to be P through

substitution:

Example 10.10

Here is a trivial example. Bob chooses 11 as p. He then chooses e1 = 2. Note that 2 is a primitive

root in Z11* (see Appendix J). Bob then chooses d = 3 and calculates e2 = e1
d = 8. So the public

keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C1 and C2 for the

plaintext 7.

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.

Example 10.11

Instead of using P = [C2 × (C1
d) −1] mod p for decryption, we can avoid the calculation of multi-

plicative inverse and use P = [C2 × C1
p−1−d] mod p (see Fermat’s little theorem in Chapter 9). In

Example 10.10, we can calculate P = [6 × 5 11−1−3] mod 11 = 7 mod 11.

Analysis

A very interesting point about the ElGamal cryptosystem is that Alice creates r and

keeps it secret; Bob creates d and keeps it secret. The puzzle of this cryptosystem can

be solved as follows:

a. Alice sends C2 = [e2
r

× P] mod p = [(e1
rd) × P] mod p. The expression (e1

rd) acts as a

mask that hides the value of P. To find the value of P, Bob must remove this mask.

b. Because modular arithmetic is being used, Bob needs to create a replica of the

mask and invert it (multiplicative inverse) to cancel the effect of the mask.

c. Alice also sends C1 = e1
r to Bob, which is a part of the mask. Bob needs to calcu-

late C1
d to make a replica of the mask because C1

d = (e1
r)d = (e1

rd). In other words,

after obtaining the mask replica, Bob inverts it and multiplies the result with C2 to

remove the mask.

d. It might be said that Bob helps Alice make the mask (e1
rd) without revealing the

value of d (d is already included in e2 = e1
d); Alice helps Bob make the mask (e1

rd)

without revealing the value of r (r is already included in C1 = e1
r).

 [C2 × (C1
d)−1] mod p = [(e2

r
× P) × (e1

rd)−1] mod p = (e1
dr) × P × (e1

rd)−1 = P

Plaintext: 7

C1 = e1
r mod 11 = 16 mod 11 = 5 mod 11

C2 = (P × e2
r) mod 11 = (7 × 4096) mod 11 = 6 mod 11

Ciphertext: (5, 6)

[C2 × (C1
d) −1] mod 11= 6 × (53)−1 mod 11 = 6 × 3 mod 11 = 7 mod 11

Plaintext: 7

320 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Security of ElGamal

Two attacks have been mentioned for the ElGamal cryptosystem in the literature:
attacks based on low modulus and known-plaintext attacks.

Low-Modulus Attacks

If the value of p is not large enough, Eve can use some efficient algorithms (see Chapter 9)
to solve the discrete logarithm problem to find d or r. If p is small, Eve can easily find
d = loge1 e2 mod p and store it to decrypt any message sent to Bob.This can be done
once and used as long as Bob uses the same keys. Eve can also use the value of C1 to find
random number r used by Alice in each transmission r = loge1C1 mod p. Both of these
cases emphasize that security of the ElGamal cryptosystem depends on the infeasibility
of solving a discrete logarithm problem with a very large modulus. It is recommended
that p be at least 1024 bits (300 decimal digits).

Known-Plaintext Attack

If Alice uses the same random exponent r, to encrypt two plaintexts P and P′, Eve
discovers P′ if she knows P. Assume that C2 = P × (e2

r) mod p and C′2 = P′ × (e2
r) mod p.

Eve finds P′ using the following steps:

1. (e2
r) = C2 × P−1 mod p

2. P′ = C′2 × (e2
r)−1 mod p

It is recommended that Alice use a fresh value of r to thwart the known-plaintext
attacks.

Example 10.12

Here is a more realistic example. Bob uses a random integer of 512 bits (the ideal is 1024 bits).
The integer p is a 155-digit number (the ideal is 300 digits). Bob then chooses e1, d, and
calculates e2, as shown below: Bob announces (e1, e2, p) as his public key and keeps d as his
private key.

For the ElGamal cryptosystem to be secure, p must be at least 300 digits and r must be

new for each encipherment.

p = 115348992725616762449253137170143317404900945326098349598143469219
056898698622645932129754737871895144368891765264730936159299937280
61165964347353440008577

e1 = 2

d = 1007

e2 = 978864130430091895087668569380977390438800628873376876100220622332
554507074156189212318317704610141673360150884132940857248537703158
2066010072558707455

SECTION 10.5 ELLIPTIC CURVE CRYPTOSYSTEMS 321

Alice has the plaintext P = 3200 to send to Bob. She chooses r = 545131, calculates C1 and
C2, and sends them to Bob.

Bob calculates the plaintext P = C2 × ((C1)d)−1 mod p = 3200 mod p.

Application

ElGamal can be used whenever RSA can be used. It is used for key exchange, authenti-
cation, and encryption and decryption of small messages.

10.5 ELLIPTIC CURVE CRYPTOSYSTEMS

Although RSA and ElGamal are secure asymmetric-key cryptosystems, their secu-
rity comes with a price, their large keys. Researchers have looked for alternatives
that give the same level of security with smaller key sizes. One of these promising
alternatives is the elliptic curve cryptosystem (ECC). The system is based on the
theory of elliptic curves. Although the deep involvement of this theory is beyond
the scope of this book, this section first gives a very simple introduction to three
types of elliptic curves and then suggests a flavor of a cryptosystem that uses some
of these curves.

Elliptic Curves over Real Numbers

Elliptic curves, which are not directly related to ellipses, are cubic equations in two
variables that are similar to the equations used to calculate the length of a curve in the
circumference of an ellipse. The general equation for an elliptic curve is

P ==== 3200

r ==== 545131

C1 = 887297069383528471022570471492275663120260067256562125018188351429
417223599712681114105363661705173051581533189165400973736355080295
736788569060619152881

C2 = 708454333048929944577016012380794999567436021836192446961774506921
244696155165800779455593080345889614402408599525919579209721628879
6813505827795664302950

P = 3200

y2 + b1xy + b2y = x3 + a1x2 + a2x + a3

322 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Elliptic curves over real numbers use a special class of elliptic curves of the form

In the above equation, if 4a3 + 27b2 ≠ 0, the equation represents a nonsingular

elliptic curve; otherwise, the equation represented a singular elliptic curve. In a non-
singular elliptic curve, the equation x3 + ax + b = 0 has three distinct roots (real or com-
plex); in a singular elliptic curve the equation x3 + ax + b = 0 does not have three
distinct roots.

Looking at the equation, we can see that the left-hand side has a degree of 2 while
the right-hand side has a degree of 3. This means that a horizontal line can intersects
the curve in three points if all roots are real. However, a vertical line can intersects the
curve at most in two points.

Example 10.13

Figure 10.12 shows two elliptic curves with equations y2 = x3 − 4x and y2 = x3 − 1. Both are non-
singular. However, the first has three real roots (x = −2, x = 0, and x = 2), but the second has only
one real root (x = 1) and two imaginary ones.

An Abelian Group

Let us define an abelian (commutative) group (see Chapter 4) using points on an elliptic
curve. A tuple P = (x1, y1) represents a point on the curve if x1 and y1 are the coordinates
of a point on the curve that satisfy the equation of the curve. For example, the points
P = (2.0, 0.0), Q = (0.0, 0.0), R = (−2.0, 0.0), S = (10.0, 30.98), and T = (10.0, −30.98)
are all points on the curve y2 = x3 − 4x. Note that each point is represented by two real
numbers. Recall from Chapter 4 that to create an abelian group we need a set, an oper-
ation on the set, and five properties that are satisfied by the operation. The group in this
case is G = <E, +>.

y2 = x3 + ax + b

Figure 10.12 Two elliptic curves over a real field

y2 = x3 − 4x

0−2

−2

−1

−3

−4

2 4

2

1

4

3

6 8 0

−2

−1

−3

−4

2 4

2

1

4

3

6 8

y2 = x3 − 1

a. Three real roots b. One real and two imaginary roots

SECTION 10.5 ELLIPTIC CURVE CRYPTOSYSTEMS 323

Set We define the set as the points on the curve, where each point is a pair of real

numbers. For example, the set E for the elliptic curve y2 = x3 − 4x is shown as

E = {(2.0, 0.0), (0.0, 0.0), (−2.0, 0.0), (10.0, 30.98), (10.0, −30.98), …}

Operation The specific properties of a nonsingular elliptic curve allows us to define

an addition operation on the points of the curve. However, we need to remember that

the addition operation here is different from the operation that has been defined for

integers. The operation is the addition of two points on the curve to get another point on

the curve

To find R on the curve, consider three cases as shown in Figure 10.13.

1. In the first case, the two points P = (x1, y1) and Q = (x2, y2) have different x-coordinates

and y-coordinates (x1 ≠ y1 and x2 ≠ y2), as shown in Figure 10.13a. The line con-

necting P and Q intercepts the curve at a point called −R. R is the reflection of −R

with respect to the x-axis. The coordinates of the point R, x3 and y3, can be found

by first finding the slope of the line, λ, and then calculating the values of x3 and y3,

as shown below:

2. In the second case, the two points overlap (R = P + P), as shown in Figure 10.13b.

In this case, the slope of the line and the coordinates of the point R can be found as

shown below:

R = P + Q, where P = (x1, y1), Q = (x2, y2), and R = (x3, y3)

Figure 10.13 Three adding cases in an elliptic curve

λ = (y2 − y1) / (x2 − x1)

x3 = λ2 − x1 − x2 y3 = λ (x1 − x3) − y1

λ = (3x1
2 + a)/(2y1)

x3 = λ2 − x1 − x2 y3 = λ (x1 − x3) − y1

a. (R = P + Q) b. (R = P + P) c. (O = P + (− P))

P

−R −R

R

y y y

xxx

Q

R

P

−P

P

324 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

3. In the third case, the two points are additive inverses of each other as shown in
Figure 10.13c. If the first point is P = (x1, y1), the second point is Q = (x1, −y1).
The line connecting the two points does not intercept the curve at a third point.
Mathematicians say that the intercepting point is at infinity; they define a point O
as the point at infinity or zero point, which is the additive identity of the group.

Properties of the Operation The following are brief definitions of the properties of
the operation as discussed in Chapter 4:

1. Closure: It can be proven that adding two points, using the addition operation
defined in the previous section, creates another point on the curve.

2. Associativity: It can be proven that (P + Q) + R = P + (Q + R).

3. Commutativity: The group made from the points on a non-singular elliptic curve is
an abelian group; it can be proven that P + Q = Q + P.

4. Existence of identity: The additive identity in this case is the zero point, O. In other
words P = P + O = O + P.

5. Existence of inverse: Each point on the curve has an inverse. The inverse of a point
is its reflection with respect to the x-axis. In other words, the point P = (x1, y1) and
Q = (x1, −y1) are inverses of each other, which means that P + Q = O. Note that the
identity element is the inverse of itself.

A Group and a Field

Note that the previous discussion refers to two algebraic structures: a group and a field.
The group defines the set of the points on the elliptic curve and the addition operation on
the points. The field defines the addition, subtraction, multiplication, and division using
operations on real numbers that are needed to find the addition of the points in the group.

Elliptic Curves over GF(p)

Our previous elliptic curve group used a real field for calculations involved in adding
points. Cryptography requires modular arithmetic. We have defined an elliptic curve
group with an addition operation, but the operation on the coordinates of the point are
over the GF(p) field with p > 3. In modular arithmetic, the points on the curve do not
make nice graphs as seen in the previous figures, but the concept is the same. We use
the same addition operation with the calculation done in modulo p. We call the result-
ing elliptic curve Ep(a, b), where p defines the modulus and a and b are the coefficient
of the equation y2 = x3 + ax + b. Note that although the value of x in this case ranges
from 0 to p, normally not all points are on the curve.

Finding an Inverse

The inverse of a point (x, y) is (x, −y), where −y is the additive inverse of y. For example,
if p = 13, the inverse of (4, 2) is (4, 11).

Finding Points on the Curve

Algorithm 10.12 shows the pseudocode for finding the points on the curve Ep(a, b).

SECTION 10.5 ELLIPTIC CURVE CRYPTOSYSTEMS 325

Example 10.14

Define an elliptic curve E13(1, 1). The equation is y2 = x3 + x + 1 and the calculation is done

modulo 13. Points on the curve can be found as shown in Figure 10.14.

Note the following:

a. Some values of y2 do not have a square root in modulo 13 arithmetic. These are not

points on this elliptic curve. For example, the points with x = 2, x = 3, x = 6, and x = 9 are

not on the curve.

b. Each point defined for the curve has an inverse. The inverses are listed as pairs. Note that

(7, 0) is the inverse of itself.

c. Note that for a pair of inverse points, the y values are additive inverses of each other

in Zp. For example, 4 and 9 are additive inverses in Z13. So we can say that if 4 is y, then

9 is −y.

d. The inverses are on the same vertical lines.

Algorithm 10.12 Pseudocode for finding points on an elliptic curve

ellipticCurve_points (p, a, b) // p is the modulus

{

 x ← 0

 while (x < p)

 {

 w ← (x3 + ax + b) mod p // w is y2

 if (w is a perfect square in Zp) output (x,) (x, −)

 x ← x + 1

 {

}

Figure 10.14 Points on an elliptic curve over GF(p)

w w

x

y

0 1 2 3 4 5 86 7 9 121110
0

1

2

3

4

5

8

6

7

9

12

11

10

Graph

(0, 1)

(1, 4)

(4, 2)

(1, 9)

(4, 11)

(5, 1) (5, 12)

(7, 0) (7, 0)

(8, 1) (8, 12)

(10, 6) (10, 7)

(11, 2) (11, 11)

Points

(12, 5) (12, 8)

(0, 12)

326 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Adding Two Points

We use the elliptic curve group defined earlier, but calculations are done in GF(p).

Instead of subtraction and division, we use additive and multiplicative inverses.

Example 10.15

Let us add two points in Example 10.14, R = P + Q, where P = (4, 2) and Q = (10, 6).

a. λ = (6 − 2) × (10 − 4)−1 mod 13 = 4 × 6−1 mod 13 = 5 mod 13.

b. x = (52 − 4 −10) mod 13 = 11 mod 13.

c. y = [5 (4 −11) − 2] mod 13 = 2 mod 13.

d. R = (11, 2), which is a point on the curve in Example 10.14.

Multiplying a Point by a Constant

In arithmetic, multiplying a number by a constant k means adding the number to itself k

times. The situation here is the same. Multiplying a point P on an elliptic curve by a

constant k means adding the point P to itself k times. For example, in E13 (1, 1), if the

point (1, 4) is multiplied by 4, the result is the point (5, 1). If the point (8, 1) is multi-

plied by 3, the result is the point (10, 7).

Elliptic Curves over GF(2n)

Calculation in the elliptic curve group can be defined over the GF(2n) field. Recall

from Chapter 4 that elements of the set in this field are n-bit words that can be inter-

preted as polynomials with coefficient in GF(2). Addition and multiplication on the

elements are the same as addition and multiplication on polynomials. To define an

elliptic curve over GF(2n), one needs to change the cubic equation. The common

equation is

y2 + xy = x3 + ax2 + b

where b ≠ 0. Note that the value of x, y, a, and b are polynomials representing n-bit

words.

Finding Inverses

If P = (x, y), then −P = (x, x + y).

Finding Points on the Curve

We can write an algorithm to find the points on the curve using generators for polyno-

mials discussed in Chapter 4. This algorithm is left as an exercise. Following is a very

trivial example.

Example 10.16

We choose GF(23) with elements {0, 1, g, g2, g3, g4, g5, g6} using the irreducible polynomial of

f(x) = x3 + x + 1, which means that g3 + g + 1 = 0 or g3 = g + 1. Other powers of g can be calcu-

lated accordingly. The following shows the values of the g’s.

SECTION 10.5 ELLIPTIC CURVE CRYPTOSYSTEMS 327

Using the elliptic curve y2 + xy = x3 + g3x2 + 1, with a = g3 and b = 1, we can find the points on
this curve, as shown in Figure 10.15.

Adding Two Points

The rules for adding points in GF(2n) is slightly different from the rules for GF(p).

1. If P = (x1, y1), Q = (x2, y2), Q ≠ −P, and Q ≠ P, then R = (x3, y3) = P + Q can be
found as

2. If Q = P, then R = P + P (or R = 2P) can be found as

Example 10.17

Let us find R = P + Q, where P = (0, 1) and Q = (g2, 1). We have λ = 0 and R = (g5, g4).

Example 10.18

Let us find R = 2P, where P = (g2, 1). We have λ = g2 + 1/g2 = g2 + g5 = g + 1 and R = (g6, g5).

Multiplying a Point by a Constant

To multiply a point by a constant, the points must be added continuously with attention
to the rule for R = 2P.

0 000 g3 = g + 1 011

 1 001 g4 = g2 + g 110

g 010 g5 = g2 + g + 1 111

g2 100 g6 = g2 + 1 101

Figure 10.15 Points on an elliptic curve over GF(2n)

λ = (y2 + y1) / (x2 + x1)

x3 = λ2 + λ + x1 + x2 + a y3 = λ (x1 + x3) + x3 + y1

λ = x1 + y1 / x1

x3 = λ2 + λ + a y3 = x1
2 + (λ + 1) x3

x

Points
Graph

y

0
0

1

1

g

g

g2

g2

g3

g3

g4

g4

g5

g5

g6

g6(0, 1)

(g2, 1) (g2, g6)

(g3, g2)

(g5, 1)

(g3, g5)

(g5, g4)

(g6, g) (g6, g5)

(0, 1)

328 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Elliptic Curve Cryptography Simulating ElGamal

Several methods have been used to encrypt and decrypt using elliptic curves. The com-
mon one is to simulate the ElGamal cryptosystem using an elliptic curve over GF(p) or
GF(2n), as shown in Figure 10.16.

Generating Public and Private Keys

1. Bob chooses E(a, b) with an elliptic curve over GF(p) or GF(2n).

2. Bob chooses a point on the curve, e1(x1, y1).

3. Bob chooses an integer d.

4. Bob calculates e2(x2, y2) = d × e1(x1, y1). Note that multiplication here means mul-
tiple addition of points as defined before.

5. Bob announces E(a, b), e1(x1, y1), and e2(x2, y2) as his public key; he keeps d as his
private key.

Encryption

Alice selects P, a point on the curve, as her plaintext, P. She then calculates a pair of
points on the text as ciphertexts:

The reader may wonder how an arbitrary plaintext can be a point on the elliptic
curve. This is one of the challenging issues in the use of the elliptic curve for simulation.
Alice needs to use an algorithm to find a one-to-one correspondence between symbols
(or a block of text) and the points on the curve.

Figure 10.16 ElGamal cryptosystem using the elliptic curve

C1 = r ×××× e1 C2 = P + r ×××× e2

Encryption

Ciphertext: (C1, C2)

r

 P P

Public key: (e1, e2, Ep)

(e1, e2, Ep)
d

Decryption

C1 = r × e1

C2 = P + r × e2

Key generation

Select Ep (a, b)
Select e1

=

(x1, y1)

Select d
Calculate e2 =

(x2, y2) = d × e1

P = C2 − (d × C1)

Operations such as addition and multiplication
are over an elliptic curve group.

Note:

Alice

Bob

SECTION 10.5 ELLIPTIC CURVE CRYPTOSYSTEMS 329

Decryption

Bob, after receiving C1 and C2, calculates P, the plaintext using the following formula.

We can prove that the P calculated by Bob is the same as that intended by Alice, as
shown below:

P, C1, C2, e1, and e2 are all points on the curve. Note that the result of adding two
inverse points on the curve is the zero point.

Example 10.19

Here is a very trivial example of encipherment using an elliptic curve over GF(p).

1. Bob selects E67(2, 3) as the elliptic curve over GF(p).

2. Bob selects e1 = (2, 22) and d = 4.

3. Bob calculates e2 = (13, 45), where e2 = d × e1.

4. Bob publicly announces the tuple (E, e1, e2).

5. Alice wants to send the plaintext P = (24, 26) to Bob. She selects r = 2.

6. Alice finds the point C1 = (35, 1), where C1 = r × e1.

7. Alice finds the point C2 = (21, 44), where C2 = P + r × e2.

8. Bob receives C1 and C2. He uses 2 × C1 (35, 1) to get (23, 25).

9. Bob inverts the point (23, 25) to get the point (23, 42).

10. Bob adds (23, 42) with C2 = (21, 44) to get the original plaintext P = (24, 26).

Comparison

The following shows a quick comparison of the original ElGamal algorithm with its
simulation using the elliptic curve.

a. The original algorithm uses a multiplicative group; the simulation uses an elliptic
group.

b. The two exponents in the original algorithm are numbers in the multiplicative
group; the two multipliers in the simulation are points on the elliptic curve.

c. The private key in each algorithm is an integer.

d. The secret numbers chosen by Alice in each algorithm are integers.

e. The exponentiation in the original algorithm is replaced by the multiplication of a
point by a constant.

f. The multiplication in the original algorithm is replaced by addition of points.

g. The inverse in the original algorithm is the multiplicative inverse in the multiplicative
group; the inverse in the simulation is the additive inverse of a point on the curve.

h. Calculation is usually easier in the elliptic curve because multiplication is simpler
than exponentiation, addition is simpler than multiplication, and finding the
inverse is much simpler in the elliptic curve group than in a multiplicative group.

P = C2 −−−− (d ×××× C1) The minus sign here means adding with the inverse.

P + r × e2 − (d × r × e1) = P + (r × d × e1) − (r × d × e1) = P + O = P

330 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

Security of ECC

To decrypt the message, Eve needs to find the value of r or d.

a. If Eve knows r, she can use P = C2 − (r × e2) to find the point P related to the plain-
text. But to find r, Eve needs to solve the equation C1 = r × e1. This means, given
two points on the curve, C1 and e1, Eve must find the multiplier that creates C1
starting from e1. This is referred to as the elliptic curve logarithm problem, and
the only method available to solve it is the Polard rho algorithm, which is infeasi-
ble if r is large, and p in GF(p) or n in GF(2n) is large.

b. If Eve knows d, she can use P = C2 − (d × C1) to find the point P related to the
plaintext. Because e2 = d × e1, this is the same type of problem. Eve knows the
value of e1 and e2; she needs to find the multiplier d.

Modulus Size

For the same level of security (computational effort), the modulus, n, can be smaller in
ECC than in RSA. For example, ECC over the GF(2n) with n of 160 bits can provide
the same level of security as RSA with n of 1024 bits.

10.6 RECOMMENDED READING

The following books and websites provide more details about subjects discussed in this
chapter. The items enclosed in brackets refer to the reference list at the end of the book.

Books

The RSA cryptosystem is discussed in [Sti06], [Sta06], [PHS03], [Vau06], [TW06], and
[Mao04]. The Rabin and ElGamal cryptosystems are discussed in [Sti06] and [Mao04].
Elliptic curve cryptography is discussed in [Sti06], [Eng99], and [Bla99].

WebSites

The following websites give more information about topics discussed in this chapter.

The security of ECC depends on the difficulty of solving the elliptic curve

logarithm problem.

http://www1.ics.uci.edu/~mingl/knapsack.html

www.dtc.umn.edu/~odlyzko/doc/arch/knapsack.survey.pdf

http://en.wikipedia.org/wiki/RSA

citeseer.ist.psu.edu/boneh99twenty.html

www.mat.uniroma3.it/users/pappa/SLIDES/RSA-HRI_05.pdf

http://en.wikipedia.org/wiki/Rabin_cryptosystem

http://en.wikipedia.org/wiki/ElGamal_encryption

ww.cs.purdue.edu/homes/wspeirs/elgamal.pdf

http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

www.cs.utsa.edu/~rakbani/publications/Akbani-ECC-IEEESMC03.pdf

SECTION 10.8 SUMMARY 331

10.7 KEY TERMS

10.8 SUMMARY

❏ There are two ways to achieve secrecy: symmetric-key cryptography and asymmetric-
key cryptography. These two will exist in parallel and complement each other; the
advantages of one can compensate for the disadvantages of the other.

❏ The conceptual differences between the two systems are based on how they keep a
secret. In symmetric-key cryptography, the secret needs to be shared between two
entities; in asymmetric-key cryptography, the secret is personal (unshared).

❏ Symmetric-key cryptography is based on substitution and permutation of symbols;
asymmetric-key cryptography is based on applying mathematical functions to
numbers.

❏ Asymmetric-key cryptography uses two separate keys: one private and one public.
Encryption and decryption can be thought of as locking and unlocking padlocks
with keys. The padlock that is locked with a public key can be unlocked only with
the corresponding private key.

❏ In asymmetric-key cryptography, the burden of providing security is mostly on the
shoulder of the receiver (Bob), who needs to create two keys: one private and one
public. Bob is responsible for distributing the private key to the community. This
can be done through a public-key distribution channel.

asymmetric-key cryptography

blinding

broadcast attack

common modulus attack

Coppersmith theorem attack

cycling attack

ElGamal cryptosystem

elliptic curve

elliptic curve cryptosystem (ECC)

elliptic curve logarithm problem

function

invertible function

knapsack cryptosystem

low decryption exponent attack

low encryption exponent attack

nonsingular elliptic curve

one-way function (OWF)

optimal asymmetric encryption padding
(OAEP)

power attack

private key

public key

Rabin cryptosystem

random fault attack

related message attack

revealed decryption exponent attack

RSA (Rivest, Shamir, Adleman)
cryptosystem

short message attack

short pad attack

singular elliptic curve

superincreasing tuple

symmetric-key cryptography

timing attack

trapdoor

trapdoor one-way function (TOWF)

unconcealed message attack

332 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

❏ Unlike in symmetric-key cryptography, in asymmetric-key cryptography plaintexts
and ciphertexts are treated as integers. The message must be encoded as an integer
(or a set of integers) before encryption; the integer (or the set of integers) must
be decoded into the message after decryption. Asymmetric-key cryptography is
normally used to encrypt or decrypt small messages, such as a cipher key for
symmetric-key cryptography.

❏ The main idea behind asymmetric-key cryptography is the concept of the trapdoor
one-way function (TOWF), which is a function such that f is easy to compute, but
f−1 is computationally infeasible unless a trapdoor is used.

❏ A brilliant idea of public-key cryptography came from Merkle and Hellman in
their knapsack cryptosystem. If we are told which elements, from a predefined set
of numbers, are in a knapsack, we can easily calculate the sum of the numbers; if
we are told the sum, it is difficult to say which elements are in the knapsack unless
the knapsack is filled with elements from a superincreasing set.

❏ The most common public-key algorithm is the RSA cryptosystem. RSA uses two
exponents, e and d, where e is public and d is private. Alice uses C = Pe mod n to
create ciphertext C from plaintext P; Bob uses P = Cd mod n to retrieve the plain-
text sent by Alice.

❏ RSA uses two algebraic structures: a ring and a group. Encryption and decryption
are done using the commutative ring R = <Zn, +, × > with two arithmetic operations:
addition and multiplication. RSA uses a multiplicative group G = <Zn*, × > for
key generation.

❏ No devastating attacks have yet been discovered on RSA. Several attacks have
been predicted based on factorization, chosen-ciphertext, decryption exponent,
encryption exponent, plaintext, modulus, and implementation.

❏ The Rabin cryptosystem is a variation of the RSA cryptosystem. RSA is based on
the exponentiation congruence; Rabin is based on quadratic congruence. We can
think of Rabin as the RSA in which the value of e = 2 and d = 1/2. The Rabin
cryptosystem is secure as long as p and q are large numbers. The complexity of the
Rabin cryptosystem is at the same level as factoring a large number n into its two
prime factors p and q.

❏ The ElGamal cryptosystem is based on the discrete logarithm problem. ElGamal
uses the idea of primitive roots in Zp*. Encryption and decryption in ElGamal use
the group G = <Zp*, × >. The public key is two exponents e1 and e2; the private
key is an integer d. The security of ElGamal is based on the infeasibility of solving
discrete logarithm problems. However, an attack based on low modulus and a
known-plaintext attack have been mentioned in the literature.

❏ Another cryptosystem discussed in this chapter is based on elliptic curves.
Elliptic curves are cubic equations in two variables. Elliptic curves over real
numbers use a special class of elliptic curves y2 = x3 + ax + b where 4a3 + 27b2 ≠ 0.
An abelian group has been defined over the elliptic curve with an addition
operation that shows how two points on the curve can be added to get another
point on the curve.

SECTION 10.9 PRACTICE SET 333

❏ Elliptic curve cryptography (ECC) uses two algebraic structures, an abelian group
and a field. The field can be the nonfinite field of real numbers, GF(p) and
GF(2n).We have been shown how the ElGamal cryptosystem can be simulated
using elliptic curves over finite fields. The security of the ECC depends on the
elliptic curve logarithm problem, a solution which is infeasible if the modulus
is large.

10.9 PRACTICE SET

Review Questions

1. Distinguish between symmetric-key and asymmetric-key cryptosystems.

2. Distinguish between public and private keys in an asymmetric-key cryptosystem.
Compare and contrast the keys in symmetric-key and asymmetric-key cryptosystems.

3. Define a trapdoor one-way function and explain its use in asymmetric-key cryptography.

4. Briefly explain the idea behind the knapsack cryptosystem.

a. What is the one-way function in this system?

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

5. Briefly explain the idea behind the RSA cryptosystem.

a. What is the one-way function in this system?

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

6. Briefly explain the idea behind the Rabin cryptosystem.

a. What is the one-way function in this system?

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

7. Briefly explain the idea behind the ElGamal cryptosystem.

a. What is the one-way function in this system?

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

8. Briefly explain the idea behind ECC.

a. What is the one-way function in this system?

b. What is the trapdoor in this system?

c. Define the public and private keys in this system.

d. Describe the security of this system.

334 CHAPTER 10 ASYMMETRIC-KEY CRYPTOGRAPHY

9. Define elliptic curves and explain their applications in cryptography.

10. Define the operation used in the abelian group made of points on an elliptic curve.

Exercises

11. Given the superincreasing tuple b = [7, 11, 23, 43, 87, 173, 357], r = 41, and modulus
n = 1001, encrypt and decrypt the letter “a” using the knapsack cryptosystem. Use
[7 6 5 1 2 3 4] as the permutation table.

12. In RSA:

a. Given n = 221 and e = 5, find d.

b. Given n =3937 and e =17, find d.

c. Given p = 19, q = 23, and e = 3, find n, φ(n), and d.

13. To understand the security of the RSA algorithm, find d if you know that e = 17
and n = 187.

14. In RSA, given n and φ(n), calculate p and q.

15. In RSA, given e = 13 and n = 100

a. encrypt the message “HOW ARE YOU” using 00 to 25 for letters A to Z and 26
for the space. Use different blocks to make P < n.

16. In RSA, given n = 12091 and e = 13, Encrypt the message “THIS IS TOUGH” using
the 00 to 26 encoding scheme. Decrypt the ciphertext to find the original message.

17. In RSA:

a. Why can’t Bob choose 1 as the public key e?

b. What is the problem in choosing 2 as the public key e?

18. Alice uses Bob’s RSA public key (e = 17, n = 19519) to send a four-character mes-
sage to Bob using the (A ↔ 0, B ↔ 1, … Z ↔ 25) encoding scheme and encrypt-
ing each character separately. Eve intercepts the ciphertext (6625 0 2968 17863)
and decrypts the message without factoring the modulus. Find the plaintext and
explain why Eve could easily break the ciphertext.

19. Alice uses Bob’s RSA public key (e = 7, n = 143) to send the plaintext P = 8
encrypted as ciphertext C = 57. Show how Eve can use the chosen-ciphertext
attack if she has access to Bob’s computer to find the plaintext.

20. Alice uses Bob’s RSA public key (e = 3, n = 35) and sends the ciphertext 22 to
Bob. Show how Eve can find the plaintext using the cycling attack.

21. Suggest how Alice can prevent a related message attack on RSA.

22. Using the Rabin cryptosystem with p = 47 and q = 11:

a. Encrypt P = 17 to find the ciphertext.

b. Use the Chinese remainder theorem to find four possible plaintexts.

23. In ElGamal, given the prime p = 31:

a. Choose an appropriate e1 and d, then calculate e2.
b. Encrypt the message “HELLO”; use 00 to 25 for encoding. Use different blocks

to make P < p.

c. Decrypt the ciphertext to obtain the plaintext.

SECTION 10.9 PRACTICE SET 335

24. In ElGamal, what happens if C1 and C2 are swapped during the transition?

25. Assume that Alice uses Bob’s ElGamal public key (e1 = 2 and e2 = 8) to send two
messages P = 17 and P′ = 37 using the same random integer r = 9. Eve intercepts
the ciphertext and somehow she finds the value of P = 17. Show how Eve can use a
known-plaintext attack to find the value of P′.

26. In the elliptic curve E(1, 2) over the GF(11) field:

a. Find the equation of the curve.

b. Find all points on the curve and make a figure similar to Figure 10.14.

c. Generate public and private keys for Bob.

d. Choose a point on the curve as a plaintext for Alice.

e. Create ciphertext corresponding to the plaintext in part d for Alice.

f. Decrypt the ciphertext for Bob to find the plaintext sent by Alice.

27. In the elliptic curve E(g4, 1) over the GF(24) field:

a. Find the equation of the curve.

b. Find all points on the curve and make a figure similar to Figure 10.15.

c. Generate public and private keys for Bob.

d. Choose a point on the curve as a plaintext for Alice.

e. Create ciphertext corresponding to the plaintext in part d for Alice.

f. Decrypt the ciphertext for Bob to find the plaintext sent by Alice.

28. Using the knapsack cryptosystem:

a. Write an algorithm for encryption.

b. Write an algorithm for decryption.

29. In RSA:

a. Write an algorithm for encryption using OAEP.

b. Write an algorithm for decryption using OAEP.

30. Write an algorithm for a cycling attack on RSA.

31. Write an algorithm to add two points on an elliptic curve over GF(p).

32. Write an algorithm to add two points on an elliptic curve over GF(2n).

