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®Basic pros and cons of ECC vs.

RSA /DL schemes.

e What is an el:_iptic curve?

o Algorithms/ Protocols that can be
realized with elliptic curves.

® Current security estimations of
cryptosystems based on elliptic curves.
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Introduction
® Security of RSA and ElGamal depend on their large key

space .

® [t is estimated that certain conventional systems with a 4096
bits key size can be replaced by 313 bits elliptic curve

systems.

® The main attraction of ECC is that it appears to offer equal
security for a far smaller key size, thereby reducing

processing overhead.
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Contd...

° In DLP, we have observed B=0* mod P is computed by

repeated multiplication operation.

* In ECC, we basically performed addition over elliptic curve.

® For example: kP=(P+P+...+P k times) where the addition
is performed over an elliptic curve.

e need “hard” problem equivalent to discrete log
e O=kP, where Q,P belong to a prime curve
e 1s “easy’” to compute Q given k,P
e but “hard” to find k given Q,P
e known as the elliptic curve logarithm problem
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Elliptic Curves over Real Numbers

An elliptic curve E is the graph of an equation

E: y’+taxy+by=x’+cx’+dx+e

where a, b, ¢, d, and e are all real numbers.

In cryptography we use special class of elliptic curves of the form
E: y2:X3+aX+b

If we plot such equation then it will be symmetric about x-axis.

Since The left-hand side has a degree of 2 while the right—hand side
has a degree of 3.

This means that a horizontal line can intersects the curve in three
points if all roots are real.

However, a vertical line can intersects the curve at most in two
points.

It also represented as E(a,b)
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Contd...

® The graph E has two possible forms, depending on whether

the cubic polynomial has one real root or three real roots.

® For E: y’=x’+ax+b, if 4a’+27b’#0 the equation represents

non—singular EC.

* In non-singular EC, the equation x’+ax+b=0 has three

distinct roots (real or complex).

® Otherwise, when 4a3+27b’=0 then it is known as singular
EC.

* In singular EC, the equation x’+ax+b=0 has no three

distinct roots.
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Example

Following Figures show two EC with equations y2 = x3 — 4x and
y2 = x> — 1.
The first has three real roots (x = =2, x = 0, and x = 2)

But the second has only one real root (x = 1) and two imaginary
ones.
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a. Three real roots b. One real and two imaginary roots
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Example

~
\

vV =x —3x+3overR
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Group Operations on Elliptic Curves

* Given two points and their coordinates, say P = (x1,yl)

and Q = (x2,y2), we have to compute the coordinates of a
third point R such that: P+Q = R.

* Point Addition: P+Q (This is the case where we
compute R = P+Q and P #Q.)

* Point Doubling: 2P=P+P (This is the case where we
compute P+Q but P=Q.)

Dept. of CSE, IIT(ISM) Dhanbad January 25, 2025

™~

/




Addition
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Foint addition on an elliptic curve over the real numbers Point doubling on an elliptic curve over the real numbers
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Addition

a. (R=P+Q)
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b.(R=P+P)
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c. (O=P+ (- P))
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Formula

y2=x3+ax+b

A= (n-y)/(p-x)

=M -x -1 V3= A —x3) -y

(-
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Formula

y2=x3+a.x+b

L= (Bx+a)Q2y)

3= A =1 -1 v3=A (= x3) =y
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Example. Suppose £ is defined by 42 = z + 73. Let P, = (2,9) and
P, = (3,10). The line L through P, and P; is

Y=z +T.
Substituting into the equation for F yields
(z4+7)° =52+ 73,
which yields z* — 22 — 14z % 24 = 0. Since L intersects F in P; and P, we
already know two roots, namely z = 2 and £ = 3. Moreover, the sum of the
three roots is minus the coefficient of z° (Exercise 1) and therefore equals
1. If £ is the third root, then

2+34+rx=1,

so the third point of intersection hos £ = —4. Since ¥y = z + 7, we have
y =3, and (} = (—4,3). Reflect across the z-axis to obtain

(2,0) + (3,10) = A = (—4,-3).
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Contd...

Now suppose we want to add Ps to itself. The slope of the tangent line
to &£ at Py is obtained by implicitly differentiating the equation for E:

o d’[.r' 3:‘52
2ydy = Jz" dz, so iz = 2y = —8,

where we have substituted (z,y) = (—4, —3) from F;. In this case, the line
Lisy=—8(zx + 4) — 3. Substituting into the equation for F yields

(—8(z +4) - 3)* =2 + 73,

hence z° — (—=8)?z? 4 -- - = 0. The sum of the three roots is 64 {= minus the
coefficient of £%). Because the line L is tangent to E, it follows that z = —4
is a double root. Therefore,

(—=4) + (—4) + = =64,

so the third root is = = 72. The corresponding value of ¢ {use the equation
of L) is —611. Changing y to —y yields

Py + Py = {72,611).
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Third Case

If the first point is P=(x1,y1), and
the second point is Q=(x1,=yl),
then the two points are additive

inverse of each other.
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Elliptic Curves Mod P

If p Is a prime, we can work with elliptic curves mod p using the aforemen-
tioned ideas. For example, conaider

E:y’=z"+4z+4 (mod 5).

The points on E are the pairs {z,y) mod 5 that satisfy the equation, along
with the point at infinity. These can be listed asg follows. The possibilities
for z mod § are 0, 1, 2, 3, 4. Substitute each of these into the equation and
find the values of y that solve the equation:

z=0=>y’= = y=2,3 (mod 5)
r=l=y*=9=4 =—=y=23 (modb5)
z=2=1"=20=0 =y=0  (mod 5)
r=3=>1y*=43=3 == no solutions
z=d=y’=8l=4 ==y=2,3 (modH5)
T = 00 = 3 = 00.|

The points on E are (0,2), (0,3),(1,2),(1,3),(2,0),(4,2),(4,3), (c0,c0).
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Algorithm:

Pseudocode for finding points on an elliptic curve

ellipticCurve_points (p, a. b) /l p is the modulus
{
x«0
while (x < p)
{
w e (xX° +ax+ b) mod p Ifwis y*
if (w is a perfect square in Z,,}) output (x, Jw) (L= Aw)
Xée—x+1
{
}
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Example
Given Elliptic Curve: E 5(1,1)= y*> = x> + x + 1 then Points on

EC over GF(13) are:
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Elliptic Curves over GF(2™)

Elliptic Curves over GF(2™)

Recall that a finite field GF(2™) consists of 2™ elements, together
with addition and multiplication operations that can be defined over polynomials.
For elliptic curves over GF(2™). we use a cubic equation in which the variables and
coefficients all take on values in GF(2™) for some number m and in which calcula-

tions are performed using the rules of arithmetic in GF(2™).

Table 10.2  Points (other than @) on the
Elliptic Curve Ej«{g*, 1)

(0, 1) €.z @Y
(1, g% e e
(1.g"%) &g  (2"g9
(g% 5 e"eg" ("0
(g%2") €8  ("e")
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It turns out that the form of cubic equation appropriate for cryptographic
applications for elliptic curves is somewhat different for GF(2™) than for Z,. The

form is

Y +axy=x +ax> + b

(10.7)

where it i1s understood that the variables x and y and the coefficients @ and b are ele-

ments of GF(2") and that calculations are performed in GF(2™).

Now consider the set E,=(a. b) consisting of all pairs of integers (x, y) that sat-

isfy Equation (10.7). together with a point at infinity O.

For example. let us use the finite field GF(2*) with the irreducible polynomial
fix) = x* + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of

g* = g + 1.or in binary, g = 0010. We can develop the powers of g as follows.

2" = 0001 e* = o011 g® = 0101 g =111
e' = 0010 g = 0110 g® = 1010 e =—31m
g% = 0100 g® = 1100 g' = o111 g = 1001
g = 1000 271 ="101% a1 =1310 g = 0001

For example. 2° = (g*)g) = (g + 1)(g) = g°> + g = 0110.
Now consider the elliptic curve y> + xy =
and b = g" = 1. One point that satisfies this equation is (g°. 2°):

(2 L ()22 =& + @V +1
g%+ 85 =g + 2" +1

1100 + 0101 = 0001 + 1001 + 0001
1001 = 1001

+ 2'x> + 1. In thiscase.a = g

4

Table 10.2 lists the points (other than O) that are part of E-«(g®. 1). Figure 10.6 plots

the points of E«(g*. 1).
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Inverse point over GF(2™M)
e if P=(X,Y) then -P= (X, X+Y)
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Point Addition

.P+0=P.

. If P = (xp,yp), then P + (xp,xp + yp) = O. The point (xp,xp + yp) is the
negative of P, which is denoted as —P.

A P=(xp,yp) and Q = (x5,y0) With P# —Q and P # Q. then
R = P + Q = (x, yg) 1s determined by the following rules:

o—

e

o

h=f+k+ﬁ+@+a
Ve = AMxp + Xg) + xp + yp

where
Yot ¥p

§ —
XQ‘*'xp
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Elliptic Curve E,* ( g*,1)
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where
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Point Doubling

If P = (xp.yp) then R = 2P = (xg. yg) 1s determined by the following rules:

Xp = X+A+a
Y = Xp + (A + 1)y
Yp

A=Xp+—
¥ Xp




DL on EC

Definition Elliptic Curved Discrete Logarithm Problem
(ECDLP)

Given 15 an elliptic curve E. We consider a primitive element P
and anaother element T. The DL problem 15 finding the integer d.
where | < d < #E, such that:

P+P+---+P=dP=T.

d temes

@ Dept. of CSE, IIT(ISM) Dhanbad January 25, 2025

/




e

(-

Diffie-Hellman Key Exchange

Secrety
Bob

Secret X
Alice

The values of

LA e T

R, =¢g"modp

p and g are public.
o R, =g"modp
o 3
< R,
© K=®) modp
Shared secret key
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Elliptic Curve Diffie Hellman

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve
E:v'=x4+a-x+bmod p

2. Choose a primitive element P = (xp.vp)

The prime p. the curve given by its coefficients a, £, and the primitive ele-
ment P are the domain parameters.

Elliptic Curve Diffie—Hellman Keyv Exchange (ECDH)

Alice Bob
choose kped = a = {2.3,..., #E — 1] choose kprpg = b e {2,3. ..., #E — 1}
compute Kpugd = alP =4 = (x4.,34) compute Kpuelk — B = B = (x5 ve)
A

compute g = Typ compute bA — Typ

Joint secret between Alice and Bob: Tyg = (xam.van ).
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Example

Example We consider the ECDH with the following domain parameters. The
elliptic curve is v* = x° +2x + 2 mod 17, which forms a cyclic group of order #E =
19. The base pont 1s P = (5,1). The protocol proceeds as follows:

I lice Bob
choosea==4k 4 =3 choose b = kpo g = 10
A=kpgpa =3P =(10,6) B=kppp=10P=(T7,11)
A
M
Tag =aB =3{T7.11) = (13,10) Tap = bA = 10{10,6) = (13, 10)
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ElGamal cryptosystem using EC

Note:
Operations such as addition and multiplication Bob
are over an elliptic curve group. g

Alice
i

e —————

r (e]: ez: Ep)

Public key: (¢, e;, E,)

Ciphertext: (Cy, C))

Key generation

C2:P+rx 62

Encryption
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P—} C1=r><el ’fl \

Select £, (a, b)

Select e; = (xq, ¥1)

Select d

Calculate e, =(x,, ;) =d x ¢;

d

i

Y

P=Cy—(dxCy) |—>P

Decryption

January 25, 2025

/




4 N
Example
E(a, b) eXpy) d o ey)Xp Yo) =d X eyXy, Y,)
C1=FX€1 C2=P+FX€2
P=C, — dxCy) The minus sign here means adding with the inverse.
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Proof

e The P calculated by Bob Is the same as that
Intended by Alice.

P=C2(dXCl)

=P+r X
:]?-I-(r)(
=P+ O
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Security

Security ECC-based scheme RSA/DSA
(bits) (size of n in bits) (modulus size in bits)

56 112 512

80 160 1024
112 224 2048
128 256 3072

192 384 7680
256 512 15360
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ECC based Algorithms/Protocols
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Elliptic curve Diffie—Helman—Meerkle key—exchange
Ellijotic curve Massey—Omura three—pass protocol

Elliptic curve ElGamal cryptography

Ellijotic curve RSA cryptosystem
Menezes—Vanstone elliptic curve cryptography

Elliptic curve digital signature algorithm (ECDSA).
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