# Elliptic Curve Cryptography

### Sachin Tripathi

IIT(ISM), Dhanbad

## Outline

- Basic pros and cons of ECC vs. RSA/DL schemes.
- What is an elliptic curve?
- Algorithms/Protocols that can be realized with elliptic curves.
- Current security estimations of cryptosystems based on elliptic curves.

## Introduction

- Security of RSA and ElGamal depend on their large key space.
- It is estimated that certain conventional systems with a 4096 bits key size can be replaced by 313 bits elliptic curve systems.
- The main attraction of ECC is that it appears to offer equal security for a far smaller key size, thereby reducing processing overhead.

## Contd...

- In DLP, we have observed  $\beta = \alpha^x \mod P$  is computed by repeated multiplication operation.
- In ECC, we basically performed addition over elliptic curve.
- For example: kP=(P+P+...+P k times) where the addition is performed over an elliptic curve.
- need "hard" problem equivalent to discrete log
  - Q=kP, where Q,P belong to a prime curve
  - is "easy" to compute Q given k,P
  - but "hard" to find k given Q,P
  - known as the elliptic curve logarithm problem

## Elliptic Curves over Real Numbers

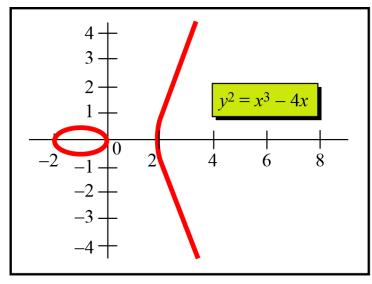
- An elliptic curve E is the graph of an equation E:  $y^2+axy+by=x^3+cx^2+dx+e$  where a, b, c, d, and e are all real numbers.
- In cryptography we use special class of elliptic curves of the form  $E: y^2 = x^3 + ax + b$
- If we plot such equation then it will be symmetric about x-axis. Since The left-hand side has a degree of 2 while the right-hand side has a degree of 3.
- This means that a horizontal line can intersects the curve in three points if all roots are real.
- However, a vertical line can intersects the curve at most in two points.
- It also represented as E(a,b)

## Contd...

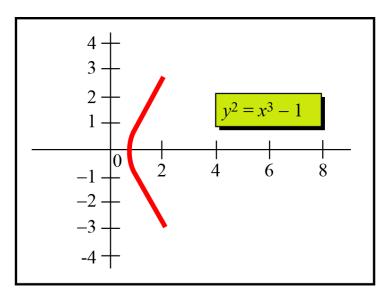
- The graph E has two possible forms, depending on whether the cubic polynomial has one real root or three real roots.
- For E:  $y^2=x^3+ax+b$ , if  $4a^3+27b^2\neq 0$  the equation represents non-singular EC.
- In non-singular EC, the equation  $x^3+ax+b=0$  has three distinct roots (real or complex).
- Otherwise, when  $4a^3+27b^2=0$  then it is known as singular EC.
- In singular EC, the equation  $x^3+ax+b=0$  has no three distinct roots.

## Example

- Following Figures show two EC with equations  $y^2 = x^3 4x$  and  $y^2 = x^3 1$ .
- The first has three real roots (x = -2, x = 0, and x = 2)
- But the second has only one real root (x = 1) and two imaginary ones.

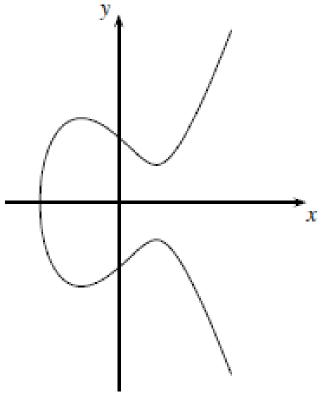


a. Three real roots



b. One real and two imaginary roots

# Example

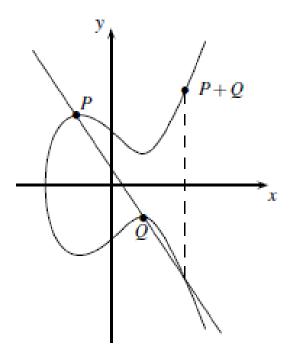


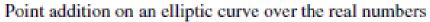
$$y^2 = x^3 - 3x + 3$$
 over  $\mathbb{R}$ 

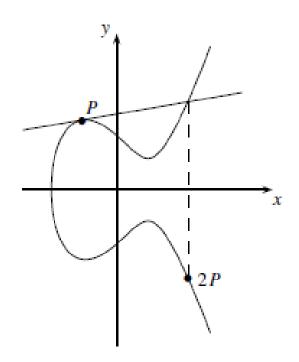
# Group Operations on Elliptic Curves

- Given two points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we have to compute the coordinates of a third point R such that: P+Q=R.
- Point Addition: P+Q (This is the case where we compute R = P+Q and  $P \neq Q$ .)
- **Point Doubling: 2P=P+P** (This is the case where we compute P+Q but P=Q.)

## Addition

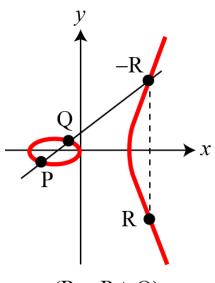


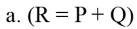


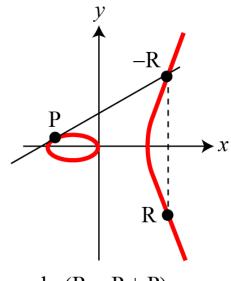


Point doubling on an elliptic curve over the real numbers

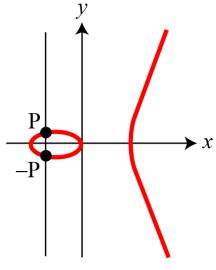
## Addition







b. 
$$(R = P + P)$$



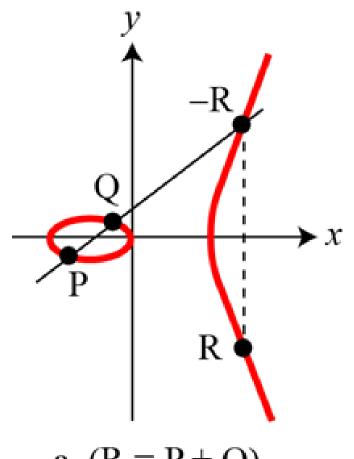
c. 
$$(O = P + (-P))$$

## Formula

$$y^2 = x^3 + ax + b$$

$$\lambda = (y_2 - y_1) / (x_2 - x_1)$$

$$x_3 = \lambda^2 - x_1 - x_2 \qquad y_3 = \lambda (x_1 - x_3) - y_1$$



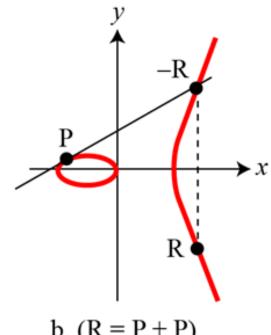
a. 
$$(R = P + Q)$$

## Formula

$$y^2 = x^3 + ax + b$$

$$\lambda = (3x_1^2 + a)/(2y_1)$$

$$x_3 = \lambda^2 - x_1 - x_2$$
  $y_3 = \lambda (x_1 - x_3) - y_1$ 



b. 
$$(R = P + P)$$

**Example.** Suppose E is defined by  $y^2 = x^3 + 73$ . Let  $P_1 = (2, 9)$  and  $P_2 = (3, 10)$ . The line L through  $P_1$  and  $P_2$  is

$$y = x + 7$$
.

Substituting into the equation for E yields

$$(x+7)^2 = x^3 + 73,$$

which yields  $x^3 - x^2 - 14x + 24 = 0$ . Since L intersects E in  $P_1$  and  $P_2$ , we already know two roots, namely x = 2 and x = 3. Moreover, the sum of the three roots is minus the coefficient of  $x^2$  (Exercise 1) and therefore equals 1. If x is the third root, then

$$2+3+x=1$$

so the third point of intersection has x = -4. Since y = x + 7, we have y = 3, and Q = (-4,3). Reflect across the x-axis to obtain

$$(2,0)+(3,10)\approx P_3=(-4,-3).$$

## Contd...

Now suppose we want to add  $P_3$  to itself. The slope of the tangent line to E at  $P_3$  is obtained by implicitly differentiating the equation for E:

$$2y \, dy = 3x^2 \, dx$$
, so  $\frac{dy}{dx} = \frac{3x^2}{2y} = -8$ ,

where we have substituted (x, y) = (-4, -3) from  $P_3$ . In this case, the line L is y = -8(x + 4) - 3. Substituting into the equation for E yields

$$(-8(x+4)-3)^2 = x^3+73,$$

hence  $x^3 - (-8)^2 x^2 + \cdots = 0$ . The sum of the three roots is 64 (= minus the coefficient of  $x^2$ ). Because the line L is tangent to E, it follows that x = -4 is a double root. Therefore,

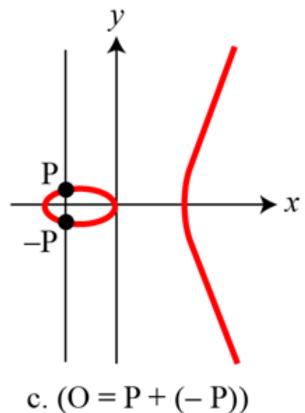
$$(-4) + (-4) + x = 64$$

so the third root is x = 72. The corresponding value of y (use the equation of L) is -611. Changing y to -y yields

$$P_3 + P_3 = (72,611).$$

## Third Case

• If the first point is P=(x1,y1), and the second point is Q=(x1,=y1), then the two points are additive inverse of each other.



# Elliptic Curves Mod P

If p is a prime, we can work with elliptic curves mod p using the aforementioned ideas. For example, consider

$$E: y^2 \equiv x^3 + 4x + 4 \pmod{5}.$$

The points on E are the pairs (x, y) mod 5 that satisfy the equation, along with the point at infinity. These can be listed as follows. The possibilities for  $x \mod 5$  are 0, 1, 2, 3, 4. Substitute each of these into the equation and find the values of y that solve the equation:

$$x \equiv 0 \Longrightarrow y^2 \equiv 4 \Longrightarrow y \equiv 2,3 \pmod{5}$$
  
 $x \equiv 1 \Longrightarrow y^2 \equiv 9 \equiv 4 \Longrightarrow y \equiv 2,3 \pmod{5}$   
 $x \equiv 2 \Longrightarrow y^2 \equiv 20 \equiv 0 \Longrightarrow y \equiv 0 \pmod{5}$   
 $x \equiv 3 \Longrightarrow y^2 \equiv 43 \equiv 3 \Longrightarrow \text{no solutions}$   
 $x \equiv 4 \Longrightarrow y^2 \equiv 84 \equiv 4 \Longrightarrow y \equiv 2,3 \pmod{5}$   
 $x \equiv \infty \Longrightarrow y \equiv \infty.$ 

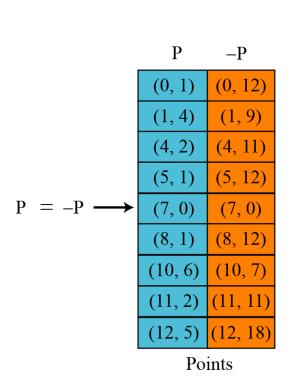
The points on E are (0,2), (0,3), (1,2), (1,3), (2,0), (4,2), (4,3),  $(\infty,\infty)$ .

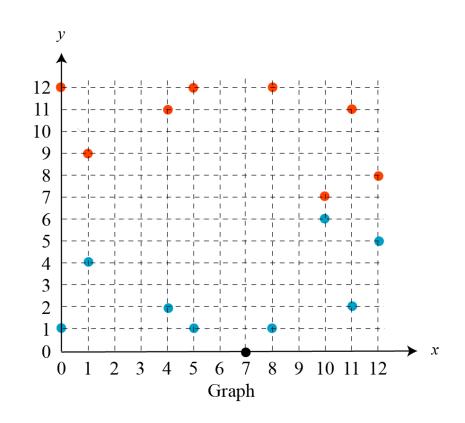
## Algorithm:

Pseudocode for finding points on an elliptic curve

## Example

Given Elliptic Curve:  $E_{13}(1,1) = y^2 = x^3 + x + 1$  then Points on EC over GF(13) are:





# Elliptic Curves over GF(2<sup>m</sup>)

#### Elliptic Curves over GF(2m)

Recall that a **finite field**  $GF(2^m)$  consists of  $2^m$  elements, together with addition and multiplication operations that can be defined over polynomials. For elliptic curves over  $GF(2^m)$ , we use a cubic equation in which the variables and coefficients all take on values in  $GF(2^m)$  for some number m and in which calculations are performed using the rules of arithmetic in  $GF(2^m)$ .

Table 10.2 Points (other than O) on the Elliptic Curve  $E_{2^4}(g^4, 1)$ 

| (0, 1)          | $(g^5, g^3)$    | $(g^9, g^{13})$    |
|-----------------|-----------------|--------------------|
| $(1, g^6)$      | $(g^5, g^{11})$ | $(g^{10}, g)$      |
| $(1, g^{13})$   | $(g^6, g^8)$    | $(g^{10}, g^8)$    |
| $(g^3, g^8)$    | $(g^6, g^{14})$ | $(g^{12},0)$       |
| $(g^3, g^{13})$ | $(g^9, g^{10})$ | $(g^{12}, g^{12})$ |



It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for  $GF(2^m)$  than for  $Z_p$ . The form is

$$y^2 + xy = x^3 + ax^2 + b ag{10.7}$$

where it is understood that the variables x and y and the coefficients a and b are elements of  $GF(2^m)$  and that calculations are performed in  $GF(2^m)$ .

Now consider the set  $E_{2^m}(a, b)$  consisting of all pairs of integers (x, y) that satisfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(24) with the irreducible polynomial  $f(x) = x^4 + x + 1$ . This yields a generator g that satisfies f(g) = 0 with a value of  $g^4 = g + 1$ , or in binary, g = 0010. We can develop the powers of g as follows.

| $g^0 = 0001$ | $g^4 = 0011$ | $g^8 = 0101$    | $g^{12} = 1111$ |
|--------------|--------------|-----------------|-----------------|
| $g^1 = 0010$ | $g^5 = 0110$ | $g^9 = 1010$    | $g^{13} = 1101$ |
| $g^2 = 0100$ | $g^6 = 1100$ | $g^{10} = 0111$ | $g^{14} = 1001$ |
| $g^3 = 1000$ | $g^7 = 1011$ | $g^{11} = 1110$ | $g^{15} = 0001$ |

For example,  $g^5 = (g^4)(g) = (g+1)(g) = g^2 + g = 0110$ . Now consider the elliptic curve  $y^2 + xy = x^3 + g^4x^2 + 1$ . In this case,  $a = g^4$ and  $b = g^0 = 1$ . One point that satisfies this equation is  $(g^5, g^3)$ :

$$(g^3)^2 + (g^5)(g^3) = (g^5)^3 + (g^4)(g^5)^2 + 1$$
  
 $g^6 + g^8 = g^{15} + g^{14} + 1$   
 $1100 + 0101 = 0001 + 1001 + 0001$   
 $1001 = 1001$ 

Table 10.2 lists the points (other than O) that are part of  $E_{2^4}(g^4, 1)$ . Figure 10.6 plots the points of  $E_{24}(g^4, 1)$ .



# Inverse point over GF(2<sup>m</sup>)

• if P=(X,Y) then -P=(X,X+Y)



## Point Addition

- 1. P + O = P.
- 2. If  $P = (x_P, y_P)$ , then  $P + (x_P, x_P + y_P) = O$ . The point  $(x_P, x_P + y_P)$  is the negative of P, which is denoted as -P.
- 3. If  $P = (x_P, y_P)$  and  $Q = (x_Q, y_Q)$  with  $P \neq -Q$  and  $P \neq Q$ , then  $R = P + Q = (x_R, y_R)$  is determined by the following rules:

$$x_R = \lambda^2 + \lambda + x_P + x_Q + a$$
  
$$y_R = \lambda(x_P + x_R) + x_R + y_P$$

where

$$\lambda = \frac{y_Q + y_P}{x_Q + x_P}$$



# Elliptic Curve $E_2^4$ ( $g^4$ ,1)





# Point Doubling

If  $P = (x_P, y_P)$  then  $R = 2P = (x_R, y_R)$  is determined by the following rules:

$$x_R = \lambda^2 + \lambda + a$$

$$y_R = x_P^2 + (\lambda + 1)x_R$$

where

$$\lambda = x_P + \frac{y_P}{x_P}$$

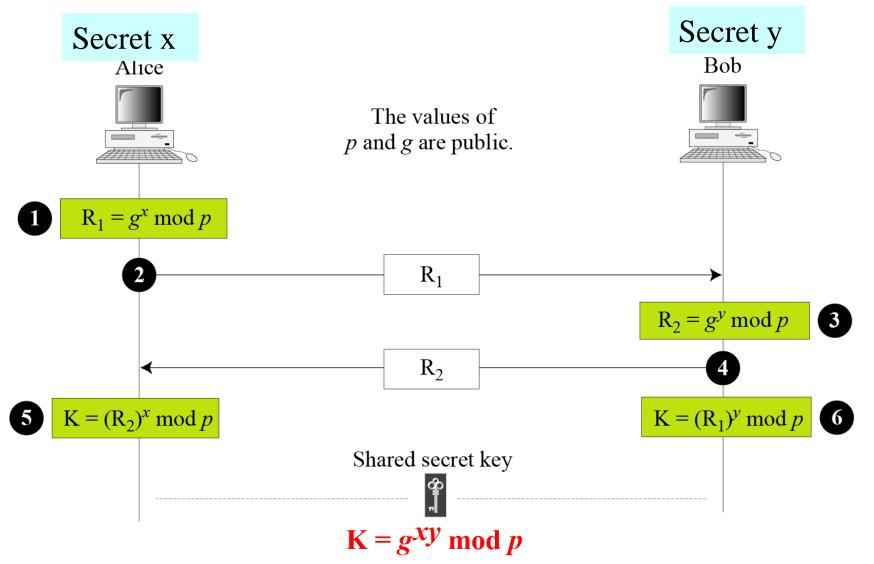
## DL on EC

Definition Elliptic Curved Discrete Logarithm Problem (ECDLP)

Given is an elliptic curve E. We consider a primitive element P and another element T. The DL problem is finding the integer d, where  $1 \le d \le \#E$ , such that:

$$\underbrace{P + P + \dots + P}_{d \text{ times}} = dP = T.$$

# Diffie-Hellman Key Exchange



# Elliptic Curve Diffie Hellman

#### ECDH Domain Parameters

Choose a prime p and the elliptic curve

$$E: y^2 \equiv x^3 + a \cdot x + b \mod p$$

2. Choose a primitive element  $P = (x_P, y_P)$ The prime p, the curve given by its coefficients a, b, and the primitive element P are the domain parameters.

#### Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

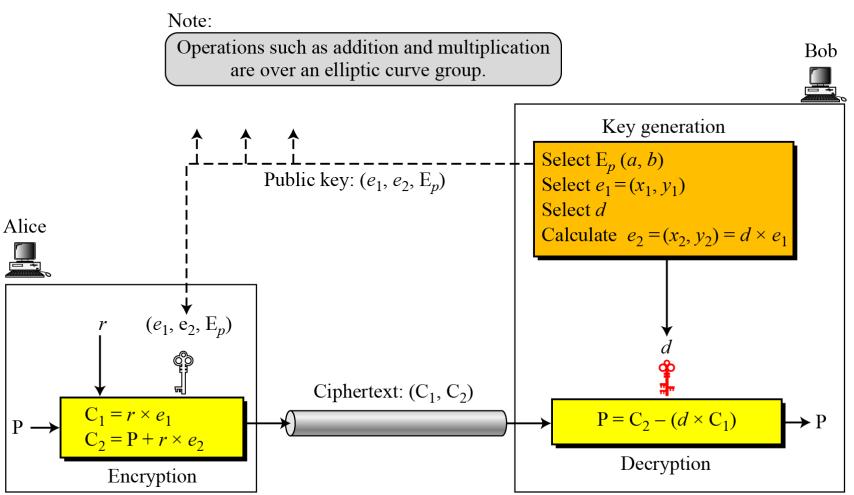
# choose $k_{prA} = a \in \{2,3,\ldots,\#E-1\}$ compute $k_{pubA} = aP = A = (x_A,y_A)$ choose $k_{prB} = b \in \{2,3,\ldots,\#E-1\}$ compute $k_{pubB} = bP = B = (x_B,y_B)$ compute $aB = T_{AB}$ compute $aB = T_{AB}$

# Example

Example We consider the ECDH with the following domain parameters. The elliptic curve is  $y^2 \equiv x^3 + 2x + 2 \mod 17$ , which forms a cyclic group of order #E = 19. The base point is P = (5,1). The protocol proceeds as follows:

| choose $a = k_{pr,A} = 3$<br>$A = k_{pub,A} = 3P = (10,6)$ |   | Choose $b = k_{pr,B} = 10$<br>$B = k_{pub,B} = 10P = (7,11)$ |
|------------------------------------------------------------|---|--------------------------------------------------------------|
|                                                            | A |                                                              |
|                                                            | B |                                                              |
| $T_{AB} = aB = 3(7,11) = (13,10)$                          |   | $T_{AB} = bA = 10(10,6) = (13,10)$                           |

# ElGamal cryptosystem using EC



# Example

Generating Public and Private Keys

$$e_1(x_1, y_1)$$

$$E(a, b)$$
  $e_1(x_1, y_1)$   $d$   $e_2(x_2, y_2) = d \times e_1(x_1, y_1)$ 

Encryption 
$$C_1 = r \times e_1$$

$$C_1 = r \times e_1$$

$$C_2 = P + r \times e_2$$

Decryption

$$\mathbf{P} = \mathbf{C}_2 - (d \times \mathbf{C}_1)$$

The minus sign here means adding with the inverse.

## Proof

• The P calculated by Bob is the same as that intended by Alice.

$$P = C2 - (d \times C1)$$

$$= P + r \times e2 - (d \times r \times e1)$$

$$= P + (r \times d \times e1) - (r \times d \times e1)$$

$$= P + O$$

# Security

| Security (bits) | ECC-based scheme (size of n in bits) | RSA/DSA<br>(modulus size in bits) |
|-----------------|--------------------------------------|-----------------------------------|
| 56              | 112                                  | 512                               |
| 80              | 160                                  | 1024                              |
| 112             | 224                                  | 2048                              |
| 128             | 256                                  | 3072                              |
| 192             | 384                                  | 7680                              |
| 256             | 512                                  | 15360                             |

# ECC based Algorithms/Protocols

- Elliptic curve Diffie-Helman-Meerkle key-exchange
- Elliptic curve Massey—Omura three-pass protocol
- Elliptic curve ElGamal cryptography
- Elliptic curve RSA cryptosystem
- Menezes—Vanstone elliptic curve cryptography
- Elliptic curve digital signature algorithm (ECDSA).