Tutorial-I & II (Mathematical Background)

- **1.** Consider the groups $G1 = \langle Z_6, + \rangle$ and $G2 = \langle Z_{10}^*, x \rangle$
 - (i)Draw Group Operation table
 - (ii) Find the cyclic groups can be made from G1 and G2
- **2.** List all subgroups of \mathbb{Z}_9 and \mathbb{Z}_{13}^*
- **3**. Find the all primitive root of Z_{18}^* .
- **4**. Find the solution to the simultaneous equations using CRT.

$$x \equiv 2 \mod 3$$

$$x \equiv 3 \mod 5$$

$$x \equiv 2 \mod 7$$

Hint: Solution To Chinese Remainder Theorem

- 1. Find $M = m1 \times m2 \times ... \times mk$, where m_i represents modulo of different equation which are relatively prime. This is the common modulus.
- 2. Find M1 = M/m1, M2 = M/m2, ..., Mk = M/mk.
- 3. Find the multiplicative inverse of M1, M2, ..., Mk using the corresponding moduli (m1, m2, ..., mk). Call the inverses M1⁻¹, M2⁻¹, ..., Mk⁻¹.
- 4. The solution to the simultaneous equations is

$$x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + ... + a_k \times M_k \times M_k^{-1}) \mod M$$