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CHAPTER 1

Introduction
(Solution to Practice Set) 

Review Questions
1. The three security goals are confidentiality, integrity, and availability.

Confidentiality means protecting confidential information. 

Integrity means that changes to the information need to be done only by
authorized entities.

Availability means that information needs to be available to authorized enti-
ties.

2.

In a passive attack, the attacker’s goal is just to obtain information. This
means that the attack does not modify data or harm the system. Examples of
passive attacks are snooping and traffic analysis. 

An active attack may change the data or harm the system. Attacks that
threaten the integrity and availability are active attacks. Examples of active
attacks are modification, masquerading, replaying, repudiation, and denial of
service. 

3. We mentioned five security services: data confidentiality, data integrity, authenti-
cation, nonrepudiation, and access control. 

Data confidentiality is to protect data from disclosure attack. 

Data integrity is to protect data from modification, insertion, deletion, and
replaying. 

Authentication means to identify and authenticate the party at the other end of
the line. 

Nonrepudiation protects against repudiation by either the sender or the
receiver of the data. 

Access control provides protection against unauthorized access to data.
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4. Eight security mechanisms were discussed in this chapter. encipherment, data
integrity, digital signature, authentication exchange, traffic padding, routing con-
trol, notarization, and access control. 

Encipherment provides confidentiality. 

The data integrity mechanism appends a short checkvalue to the data. The
checkvalue is created by a specific process from the data itself. 

A digital signature is a means by which the sender can electronically sign the
data and the receiver can electronically verify the signature. 

In authentication exchange, two entities exchange some messages to prove
their identity to each other. 

Traffic padding means inserting some bogus data into the data traffic to thwart
the adversary’s attempt to use the traffic analysis.

Routing control means selecting and continuously changing different avail-
able routes between the sender and the receiver to prevent the opponent from
eavesdropping on a particular route.

Notarization means selecting a third trusted party to control the communica-
tion between two entities. 

Access control uses methods to prove that a user has access right to the data or
resources owned by a system. 

5.

Cryptography, a word with origin in Greek, means “secret writing.” We used
the term to refer to the science and art of transforming messages to make them
secure and immune to attacks. 

Steganography, a word with origin in Greek, means "covered writing." Stega-
nography refers to concealing the message itself by covering it with some-
thing else.

Exercises
6.

a. A regular mail guarantees no security services. It is the best-effort delivery ser-
vice. The mail can be lost, altered in the mail, opened by somebody other than
the intended recipient. 

b. A regular mail with delivery confirmation can only show that the mail has been
delivered. This can only give peace of mind to the sender that the packet is not
lost. However, since there is no signature from the recipient, it does not guaran-
tee any of the security services.

c. A regular mail with delivery confirmation and the recipient signature can pro-
vide nonrepudiation service only at the mail level, not the contents level. In
other words, the recipient of the mail cannot deny that she has not received the
mail, but she can deny that the mail contained some specific information. For
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example, if Alice sends a mail with $100 cash inside to Bob via this type of
mail, Bob cannot deny that he has received the mail, but he can deny that the
mail contained some cash inside. In some cases, the sender is an authority and it
is enough that Bob accepts he has received the mail. In this case, if there is a
dispute, the court accept the testimony of the sender about the contents. 

d. A certified mail is actually the same as the regular mail with delivery confirma-
tion and the recipient signature. 

e. A mail can be insured. However, this is not security in the sense we are talking
in this chapter. Secured mail can only provide compensation if the mail is lost. 

f. A registered mail is different from all of the previous delivery methods. A reg-
istered mail is carried by the post office under the tight security. This means that
the confidentiality and integrity of the mail is guaranteed. Since a registered
mail normally includes the signed receipt, the nonrepudiation is also guaran-
teed. However, nonrepudiation is only at the mail level, not the content level.
The recipient of the registered mail cannot deny that the mail has been deliv-
ered, but it can deny that it contained a special message or an item of some
value.    

7.

a. This is snooping (attack to the confidentiality of stored data). Although the con-
tents of the test is not confidential on the day of the test, it is confidential before
the test day.

b. This is modification (attack to the integrity of data). The value of the check is
changed (from $10 to $100).

c. This is denial of service (attack to availability). Sending so many e-mails may
crash the server and the service may be interrupted. 

8.

a. This provides access control mechanism. The process is to prove that the stu-
dent has right to access the school resources. 

b. This can provide routing control. The school may be doing this to prevent a stu-
dent from eavesdropping on a particular route. 

c. This can be authentication exchange mechanism. The professor needs to
authenticate the student before sending the grade. The preassigned identifica-
tion is a secret between the student and the professor. 

d. The mechanism is similar to digital signature. It can be used for two purposes.
If the signature of the customer is checked against a signature on the file, it can
provide authentication. The signature on the withdrawal document definitely is
served as the nonrepudiation. The customer cannot later denies that she has not
received the cash. 

9.

a. This is steganography. The answers to the test has not been changed; they have
been only hidden. 
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b. This is cryptography. The characters in the message are not hidden; they are
replaced by another characters. 

c. This is steganography. The special ink hides the actual writing on the check.
d. This is steganography. The water marks hides the actual contents of the thesis. 

10. A signature on a document is like a digital signature on a message. It protects the
integrity of the document, it provides authentication, and it protects non-repudia-
tion.   
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CHAPTER 2

Mathematics of Cryptography
Part I

(Solution to Practice Set) 
Review Questions
1. The set of integers is Z. It contains all integral numbers from negative infinity to

positive infinity. The set of residues modulo n is Zn. It contains integers from 0 to
n − 1. The set Z has non-negative (positive and zero) and negative integers; the set
Zn has only non-negative integers. To map a nonnegative integer from Z to Zn, we
need to divide the integer by n and use the remainder; to map a negative integer
from Z to Zn, we need to repeatedly add n to the integer to move it to the range 0 to
n − 1. 

2. We mentioned four properties:

Property 1: if a | 1, then a = ±1. 

Property 2: if a | b and b | a, then a = ±b.

Property 3: if a | b and b | c, then a | c. 

Property 4: if a | b and a | c, then a | (m × b + n × c), where m and n are arbi-
trary integers. 

3. The number 1 is an integer with only one divisor, itself. A prime has only two divi-
sors: 1 and itself. For example, the prime 7 has only two divisor 7 and 1. A com-
posite has more than two divisors. For example, the composite 42 has several
divisors: 1, 2, 3, 6, 7, 14, 21, and 42. 

4. The greatest common divisor of two positive integers, gcd (a, b), is the largest pos-
itive integer that divides both a and b. The Euclidean algorithm can find the great-
est common divisor of two positive integers. 

5. A linear Diophantine equation of two variables is of the form ax + by = c. We need
to find integer values for x and y that satisfy the equation. This type of equation has
either no solution or an infinite number of solutions. Let d = gcd (a, b). If d does
not divide c then the equation have no solitons. If d divides c, then we have an infi-
nite number of solutions. One of them is called the particular solution; the rest, are
called the general solutions. 

/.
1
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6. The modulo operator takes an integer a from the set Z and a positive modulus n.
The operator creates a nonnegative residue, which is the remainder of dividing a
by n. We mentioned three properties for the modulo operator: 

First: (a + b) mod n = [(a mod n) + (b mod n)] mod n

Second: (a − b) mod n = [(a mod n) − (b mod n)] mod n

Third: (a × b) mod n = [(a mod n) × (b mod n)] mod n

7. A residue class [a] is the set of integers congruent modulo n. It is the set of all inte-
gers such that x = a (mod n). In each set, there is one element called the least (non-
negative) residue. The set of all of these least residues is Zn.

8. The set Zn is the set of all positive integer between 0 and n − 1. The set Zn∗ is the
set of all integers between 0 and n − 1 that are relatively prime to n. Each element
in Zn has an additive inverse; each element in Zn∗ has a multiplicative inverse. The
extended Euclidean algorithm is used to find the multiplicative inverses in Zn∗. 

9. A matrix is a rectangular array of l × m elements, in which l is the number of rows
and m is the number of columns. If a matrix has only one row (l = 1), it is called a
row matrix; if it has only one column (m = 1), it is called a column matrix. A
square matrix is a matrix with the same number of rows and columns (l = m). The
determinant of a square matrix A is a scalar defined in linear algebra. The multipli-
cative inverse of a square matrix exists only if its determinant has a multiplicative
inverse in the corresponding set. 

10. A linear equation is an equation in which the power of each variable is 1. A linear
congruence equation is a linear equation in which calculations are done modulo n.
An equation of type ax = b (mod n) can be solved by finding the multiplicative
inverse of a. A set of linear equations can be solved by finding the multiplicative
inverse of a matrix. 

Exercises
11.

a. It is false because 26 = 2 × 13. 

b. It is true because 123 = 3 × 41.

c. It is true because 127 is a prime.

d. It is true because 21 = 3 × 7.

e. It is false because 96 = 25 × 3.

f. It is false because 8 is greater than 5.

12.
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a.  gcd (88, 220) = 44, as shown in the following table:

b.  gcd (300, 42) = 6, as shown in the following table: 

c.  gcd (24, 320) = 8, as shown in the following table: 

d.  gcd (401, 700) = 1 (coprime), as shown in the following table: 

13.

a. gcd (a, b, 16) = gcd (gcd (a, b), 16) = gcd (24, 16) = 8

b. gcd (a, b, c, 16) = gcd (gcd (a, b, c), 16) = gcd (12, 16) = 4

c. gcd (200, 180, 450) = gcd (gcd (200, 180), 450) = gcd (20, 450) = 10

d. gcd (200, 180, 450, 600) = gcd (gcd (200, 180, 450), 600) = gcd (10, 600) = 10

q r1         r2 r
0 88 220 88
2 220 88 44
2 88 44 0

44 0

q r1         r2 r
7 300 42 6
7 42 6 0

6 0

q r1         r2 r
0 24 320 24

13 320 24 8
3 24 8 0

8 0

q r1         r2 r
0 401 700 401
1 700 401 299
1 401 299 102
2 299 102 95
1 102 95 7

13 95 7 4
1 7 4 3
1 4 3 1
3 3 1 0

1 0
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14.

a. gcd (2n + 1, n) = gcd (n, 1) = 1

b.

gcd (201, 100) = gcd (2 × 100 + 1, 100) = 1

gcd (81, 40) = gcd (2 × 40 + 1, 40) = 1

gcd (501, 250) = gcd (2 × 250 + 1, 250) = 1 

15.

a. gcd (3n + 1, 2n + 1) = gcd (2n + 1, n) = 1

b.

gcd (301, 201) = gcd (3 × 100 + 1, 2 × 100 + 1) = 1
gcd (121, 81) = gcd (3 × 40 + 1, 2 × 40 + 1) = 1

16.

a. We use the following table:

   gcd (4, 7) = 1      →       (4)(2) + (7)(−1) = 1

b. We use the following table:

   gcd (291, 42) = 3      →       (291)(−1) + (42)(7) = 3

q r1      r2 r s1 s2 s t1 t2 t
0 4 7 4 1 0 1 0 1 0
1 7 4 3 0 1  −1 1 0 1
1 4 3 1 1 −1  2 0 1 −1
3 3 1 0 −1 2  −7 1 −1 4

1 0 2 −7 −1 4 
↑ ↑ ↑

gcd s t

q r1      r2 r s1 s2 s t1 t2 t
6 291 42 39 1 0 1 0 1 −6
1 42 39 3 0 1 −1 1 −6 7
13 39 3 0 1 −1 14 −6 7 −97

3 0 −1 14 7 −97
↑ ↑ ↑

gcd s t
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c. We use the following table:

   gcd (84, 320) = 4      →       (84)(−19) + (320)(5) = 4

d. We use the following table:

   gcd (400, 60) = 20      →       (400)(−1) + (60)(7) = 20   

17.

a. 22 mod 7 = 1

b. 291 mod 42 = 39

c. 84 mod 320 = 84

d. 400 mod 60 = 40 

18.

a. (273 + 147) mod 10 = (273 mod 10 + 147 mod 10) mod 10 = (3 + 7) mod 10 
= 0 mod 10 

b. (4223 + 17323) mod 10 = (4223 mod 10 + 17323 mod 10) mod 10 = (3 + 3)
mod 10 = 6 mod 10

c. (148 + 14432) mod 12 = (148 mod 12 + 14432 mod 12) mod 12 = (4 + 8) mod
12 = 0 mod 12

d. (2467 + 461) mod 12 = (2467 mod 12 + 461 mod 12) mod 12 = (7 + 5) mod 12
= 0 mod 12

q r1      r2 r s1 s2 s t1 t2 t
0 84 320 84 1 0 1 0 1 0
3 320 84 68 0 1 −3 1 0 1
1 84 68 16 1 −3 −4 0 1 −1
4 68 16 4 −3 4 −19 1 −1 5
4 16 4 0 4 −19 80 −1 5 −21

4 0 −19 80 5 −21
↑ ↑ ↑

gcd s t

q r1      r2 r s1 s2 s t1 t2 t
6 400 60 40 1 0 1 0 1 −6
1 60 40 20 0 1 −1 1 −6 7
2 40 20 0 1 −1 3 −6 7 −20

20 0 −1 4 7 −20
↑ ↑ ↑

gcd s t
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19.

a. (125 × 45) mod 10 = (125 mod 10 × 45 mod 10) mod 10 = (5 × 5) mod 10 
= 5 mod 10

b. (424 × 32) mod 10 = (424 mod 10 × 32 mod 10) mod 10 = (4 × 2) mod 10 
= 8 mod 10

c. (144 × 34) mod 10 = (144 mod 10 × 34 mod 10) mod 10 = (4 × 4) mod 10 
= 6 mod 10

d. (221 × 23) mod 10 = (221 mod 10 × 23 mod 10) mod 10 = (1 × 3) mod 10 
= 3 mod 10

20.

a. a mod 10 = (an × 10n  + … +  a1 × 101    +  a0) mod 10
= [(an × 10n) mod 10   + … +  (a1 × 101) mod 10   +  a0 mod 10] mod 10
= [0   + … +  0   +  a0 mod 10] = a0 mod 10 

b. a mod 100 = (an × 10n  + … +  a1 × 101    +  a0) mod 10
= [(an × 10n) mod 100   + … +  (a1 × 101) mod 100  +  a0 mod 10] mod 10
= [0   + … +  0   +  (a1 × 101) mod 100 +  a0 mod 100] 
=  (a1 × 101) mod 100 +  a0 mod 100  = [a1 × 101  +  a0] mod 100. 

c. Similarly a mod 1000 = [a2 × 102  +  a1 × 101  + a0] mod 1000. 

21. a mod 5 = (an × 10n  + … +  a1 × 101    +  a0) mod 5
= [(an × 10n) mod 5   + … +  (a1 × 101) mod 5   +  a0 mod 5] mod 5
= [0   + … +  0   +  a0 mod 5] = a0 mod 5

22. a mod 2 = (an × 10n  + … +  a1 × 101    +  a0) mod 2
= [(an × 10n) mod 2   + … +  (a1 × 101) mod 2  +  a0 mod 2] mod 2
= [0   + … +  0   +  a0 mod 2] = a0 mod 2

23. a mod 4 = (an × 10n  + … +  a1 × 101    +  a0) mod 4
= [(an × 10n) mod 4   + … +  (a1 × 101) mod 4  +  a0 mod 4] mod 4
= [0   + … +  0   +  (a1 × 101) mod 4 + a0 mod 4] = (a1 × 101 + a0) mod 4

24. a mod 8 = (an × 10n  + … + a2 × 102 +  a1 × 101    +  a0) mod 8
= [(an × 10n) mod 8   + … +  (a2 × 102) mod 8 +  (a1 × 101) mod 8 
      +  a0 mod 8] mod 8
= [0   + … +  0   +  (a1 × 102) mod 8 + (a1 × 101) mod 8+ a0 mod 8] 
= (a2 × 102  + a1 × 101 + a0) mod 4

25. a mod 9 = (an × 10n  + … +  a1 × 101    +  a0) mod 9
= [(an × 10n) mod 9   + … +  (a1 × 101) mod 9  +  a0 mod 9] mod 9
= (an + … + a1 + a0  ) mod 9

26. a mod 7 = (an × 10n  + … +  a1 × 101    +  a0) mod 7
= [(an × 10n) mod 7   + … +  (a1 × 101) mod 7  +  a0 mod 7] mod 7
=   …  +   a5 × (−2) +  a4 × (−3) + a3× (−1)  + a2 × (2) +  a1 × (3) + a0 × (1)] mod 7

For example, 631453672 mod 13 = [(−1)6 + (2)3 + (1)1 + (−2)4 + (−3)5 + (−1)3 
+ (2)6 + (3)7 + (1)2] mod 7 = 3 mod 7
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27. a mod 11 = (an × 10n  + … +  a1 × 101    +  a0) mod 11
= [(an × 10n) mod 11   + … +  (a1 × 101) mod 11  +  a0 mod 11] mod 11
=   …  + a3× (−1)  + a2 × (1) +  a1 × (−1) + a0 × (1)] mod 11

For example, 631453672 mod 11 = [(1)6 + (−1)3 + (1)1 + (−1)4 + (1)5 + (−1)3 +
(1)6 + (−1)7 + (1)2] mod 11 = −8 mod 11 = 5 mod 11

28. a mod 13 = (an × 10n  + … +  a1 × 101    +  a0) mod 13
= [(an × 10n) mod 13   + … +  (a1 × 101) mod 13  +  a0 mod 13] mod 13
=   …  +   a5 × (4) +  a4 × (3) + a3× (−1)  + a2 × (−4) +  a1 × (−3) + a0 × (1)] mod 13

For example, 631453672 mod 13 = [(−4)6 + (−3)3 + (1)1 + (4)4 + (3)5 + (−1)3 
+ (−4)6 + (−3)7 + (1)2] mod 13 = 3 mod 13   

29.

a. (A + N) mod 26 = (0 + 13) mod 26 = 13 mod 26 = N

b. (A + 6) mod 26 = (0 + 6) mod 26 = 6 mod 26 = G

c. (Y − 5) mod 26 = (24 −5) mod 26 = 19 mod 26 = T

d. (C − 10) mod 26 = (2 −10) mod 26 = −8 mod 26 =  18 mod 26 = S

30. (0, 0), (1, 19), (2, 18), (3, 17), (4, 16), (5, 15), (6, 14), (7, 13), (8, 12), (9, 11), (10,
10) 

31. (1, 1), (3, 7), (9, 9), (11, 11), (13, 17), (19, 19) 

32.

a. We use the following table:

   gcd (180, 38) = 2 ≠ 1       →     38 has no inverse in Z180.   

q r1      r2 r t1 t2 t
4 180 38 28 0 1 −4
1 18 28 10 1 −4 5
2 28 10 8 −4 5 −14
1 10 8 2 5 −14 19
4 8 2 0 −14 19 90

2 0 19
gcd t
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b. We use the following table:

gcd (180, 7) = 1     →   7−1 mod 180 = −77 mod 180 = 103 mod 180.

c. We use the following table:

   gcd (180, 132) = 12 ≠ 1       →     132 has no inverse in Z180.   

d. We use the following table:

e.    gcd (180, 24) = 12 ≠ 1       →     24 has no inverse in Z180. 

33.

a. We have a = 25, b = 10 and c = 15. Since d = gcd (a, b) = 5 divides c, there is an
infinite number of solutions. The reduced equation is 5x + 2y = 3. We solve the
equation 5s + 2t = 1 using the extended Euclidean algorithm to get s =1 and t =
−2. The particular and general solutions are 

b. We have a = 19, b = 13 and c = 20. Since d = gcd (a, b) = 1 and divides c, there
is an infinite number of solutions. The reduced equation is 19x + 13y = 20. We

q r1      r2 r t1 t2 t
25 180 7 5 0 1
1 7 5 2 1 −25
2 5 2 1 −25 26
2 2 1 0 26 −77

1 0 −77 180
gcd t

q r1      r2 r t1 t2 t
1 180 132 48 0 1 −1
2 132 48 36 1 −1 3
1 48 36 12 −1 3 −4
3 36 12 0 3 −4 15

12 0 −4 15
gcd t

q r1      r2 r t1 t2 t
7 180 24 12 0 1 −7
2 24 12 0 1 −7 15

12 0 −7 15
gcd t

Particular:     
General:                

x0 = (c/d) × s  = 3     
x = 3  + 2 × k                

y0 = (c/d) × t   = −6
y = −6  − 5 × k   (k is an integer)       
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solve the equation 19s + 13t =1 to get s = −2 and t = 3. The particular and gen-
eral solutions are 

c. We have a = 14, b = 21 and c = 77. Since d = gcd (a, b) = 7 divides c, there is an
infinite number of solutions. The reduced equation is 2x + 3y = 11. We solve the
equation 2s + 3t =1 to get s = −1 and t = 1. The particular and general solutions
are 

d. We have a = 40, b = 16 and c = 88. Since d = gcd (a, b) = 8 divides c, there is an
infinite number of solutions. The reduced equation is 5x + 2y = 11. We solve the
equation 5s + 2t =1 to get s = 1 and t = −2. The particular and general solutions
are 

34.

a. Since gcd (15, 12) = 3 and 3 does not divide 13, there is no solution.

b. Since gcd (18, 30) = 6 and 6 does not divide 20, there is no solution.

c. Since gcd (15, 25) = 5 and 5 does not divide 69, there is no solution.

d. Since gcd (40, 30) = 10 and 10 does not divide 98, there is no solution.

35. We have the equation 39x + 15y = 270. We have a = 39, b = 15 and c = 270. Since
d = gcd (a, b) = 3 divides c, there is an infinite number of solutions. The reduced
equation is 13x + 5y = 90. We solve the equation 13s + 5t =1: s = 2 and t = −5. The
particular and general solutions are

To find an acceptable solution (nonnegative values) for x and y, we need to start
with negative values for k. Two acceptable solutions are  

36. In each case, we follow three steps discussed in Section 2.4 of the textbook. 

Particular:     
General:                

x0 = (c/d) × s  = −40     
x =  −40  + 13 × k                

y0 = (c/d) × t   = 60
y = 60  − 19 × k   (k is an integer)       

Particular:     
General:                

x0 = (c/d) × s  = −11     
x =  −11  + 3 × k                

y0 = (c/d) × t   = 11
y = 11 − 2 × k   (k is an integer)       

Particular:     
General:                

x0 = (c/d) × s  = 11     
x = 11  + 2 × k                

y0 = (c/d) × t   = −22
y = −22  − 5 × k   (k is an integer)       

Particular:     
General:                

x0 = (c/d) × s  = 180     
x = 180 + 5 × k                

y0 = (c/d) × t  = −450
y = −450  − 13 × k      

k = −35      →     x = 5 and y = 5                      k = −36   →    x = 0 and y = 18 
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a.

b.

c.

d.

37.

a.

Step 1: a = 3, b = 4, n = 5   →    d = gcd (a, n) =  1                       
Since d divides b, there is only one solution.                         
Step 2: Reduction:  3x ≡ 4 (mod 5)                         
Step 3: x0 = (3−1 × 4) (mod 5) = 2                         

Step 1: a = 4, b = 4, n = 6     →    d = gcd (a, n) = 2                      
Since d divides b, there are two solutions.                         
Step 2: Reduction:   2x ≡ 2 (mod 3)                         
Step 3: x0 = (2−1 × 2) (mod 3) = 1            x1 = 1 + 6 / 2 = 4                       

Step 1: a = 9, b = 12, n = 7     →   d = gcd (a, n) = 1                    
Since d divides b, there is only one solution.                         
Step 2: Reduction:   9x ≡ 12 (mod 7)                         
Step 3: x0 = (9−1 × 12) (mod 7) = (2−1 × 5) (mod 7) = 4                      

Step 1: a = 256, b = 442, n = 60     →   d = gcd (a, n) = 4                    
Since d does not divide b, there is no solution.                         

3x + 5 ≡ 4 (mod 5)  →    3x ≡ (−5 + 4) (mod 5)  →   3x  ≡ 4 (mod 5)                       
a = 3, b = 4, n = 5   →    d = gcd (a, n) =  1                       
Since d divides b, there is only one solution.                         
Reduction:  3x ≡ 4 (mod 5)                         
x0 = (3−1 × 4) (mod 5) = 2                         
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b.

c.

d.

38.
a. The result of multiplying the first two matrices is a 1 × 1 matrix, as shown

below:

4x + 6 ≡ 4 (mod 6)  →    4x ≡ (−6 + 4) (mod 6)  →   4x  ≡ 4 (mod 6)                       
a = 4, b = 4, n = 6     →    d = gcd (a, n) = 2                      
Since d divides b, there are two solutions.                         
Reduction:   2x ≡ 2 (mod 3)                         
x0 = (2−1 × 2) (mod 3) = 1                        
x1 = 1 + 6 / 2 = 4                       

9x + 4 ≡ 12 (mod 7)  →  9x  ≡ (−4 + 12) (mod 7)  →  9x  ≡ 1 (mod 7)                       
a = 9, b = 1, n = 7   →    d = gcd (a, n) =  1                       
Since d divides b, there is only one solution.                         
Reduction:  9x ≡ 1 (mod 7)                         
x0 = (9−1 × 1) (mod 7) = 4                         

232x + 42 ≡ 248 (mod 50)   → 232x  ≡ 206 (mod 50)                       
a = 232, b = 206, n = 50   →    d = gcd (a, n) =  2                       
Since d divides b, there are two solutions.                         
Reduction:  116x ≡ 103 (mod 25)   → 16x ≡ 3 (mod 25)                         
x0 = (16−1 × 3) (mod 25) = 8                         
x1 = 8  + 50/2 = 33                         

+ ++ ++ +3 (3 7 7 10 10 
2 

2 4 4 
12 

12) mod 16 10 
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b. The result of multiplying the second two matrices is a 3 × 3 matrix, as shown
below:    

39.  
a. The determinant and the inverse of matrix A are shown below:

b. Matrix B has no inverse because det(B) = (4 × 1 − 2 × 1) mod = 2 mod 10,
which has no inverse in Z10.

c. The determinant and the inverse of matrix C are shown below:

In this case, det(C) = 3 mod 10; its inverse in Z10 is 7 mod 10. It can proved
that C × C−1 = I (identity matrix).

40. Although we give the general method for every case using matrix multiplication,
in cases a and c, there is no need for matrix multiplication because the coefficient
of y (in a) or x (in c) is actually 0 in these two cases. These cases can be solved
much easier. 

+
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1 

5 

1 

8 

8 

3 

4 6 2 
1 

5 

1 

2 

0 

4 

0 1 8 
11 

1 

1 

14 

 1 

 1 

0 11 

A 

adj(A) 

=  =  det(A)  
3 

3 
1 

mod 10   
1 
0 

1 
9 3 

0 

=  (det(A))−1  7 mod 10 

A−1 =  A−1 =  7 
7 
3 1 

0 
+

C =  =  det(C)  
3 

3 1 mod 10   1 
4 

8 
5 8 3 

6 

=  
3 
9 3 

2 
4 

1 2 3 

2 

=  (det(C))−1  7 mod 10 

C−1 
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a.  In this particular case, the answer can be found easier because the coefficient of
y is 0 in the first equation.The solution is shown below:  

b. The solution is shown below:

c. The solution is shown below:

d. The solution is shown below:

3 
2 1 

5 4 
3 

x 

x = 3 mod 5 
y = 2 mod 5 

y 

−1 

=  
3 
2 1 

5 4 
3 

x 
y =  

=  

+ +

2 
1 1 

0 4 
3 

x 
y =  +

3 
2 

3 
4 6 

2 5 
4 

x 

x = 5 mod 7 
y = 2 mod 7 

y 

−1 

=  
3 
4 6 

2 5 
4 

x 
y =  

=  

+ +

2 
1 1 

4 5 
4 

x 
y =  +

5 
2 

7 
4 2 

3 3 
5 

x 

x = 6 mod 7 
y = 1 mod 7 

y 

−1 

=  
7 
4 2 

3 3 
5 

x 
y =  

=  

+ +

1 
5 0 

2 3 
5 

x 
y =  +

6 
1 

2 
1 6 

3 5 
3 

x 

x = 5 mod 8 
y = 1 mod 8 

y 

−1 

=  
2 
1 6 

3 5 
3 

x 
y =  

=  

+ +

6 
7 2 

5 5 
3 

x 
y =  +

5 
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CHAPTER 3

Traditional Symmetric-Key
Ciphers

(Solution to Practice Set) 
Review Questions

1. Symmetric-key encipherment uses a single key for both encryption and decryp-
tion. In addition, the encryption and decryption algorithms are inverse of each
other.

2. Traditional symmetric-key ciphers can be divided into two broad categories: sub-
stitution ciphers and transposition ciphers. A substitution cipher replaces one char-
acter with another character. A transposition cipher reorders the symbols.

3. Substitution ciphers can be divided into two broad categories: monoalphabetic
ciphers and polyalphabetic ciphers. In monoalphabetic substitution, the relation-
ship between a character in the plaintext and the characters in the ciphertext is one-
to-one. In polyalphabetic substitution, the relationship between a character in the
plaintext and the characters in the ciphertext is one-to-many.

4. Symmetric-key ciphers can also be divided into two broad categories: stream
ciphers and block ciphers. In a stream cipher, encryption and decryption are done
one symbol at a time. In a block cipher, symbols in a block are encrypted together. 

5. A stream cipher is a monoalphabetic cipher if the value of ki does not depend on
the position of the plaintext character in the plaintext stream; otherwise, the cipher
is polyalphabetic.

6. In a block cipher, each character in a ciphertext block depends on all characters in
the corresponding plaintext block. The cipher, therefore, is a polyalphabetic. 

7. The additive ciphers, multiplicative ciphers, affine ciphers, and monoalphabetic
substitution cipher are some examples of monoalphabetic ciphers.

8. The autokey cipher, Playfair cipher, Vigenere cipher, Hill cipher, rotor cipher, one-
time pad, and Enigma machine are some examples of polyalphabetic ciphers.

9. The rail fence cipher and double transposition cipher are examples of transposition
ciphers.
1
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10. Brute-force attack, statistical attack, pattern attack, and Kasiski test are examples
of attacks on traditional ciphers.

Exercises
11.

a. The number of keys = n × (n − 1) / 2 = (100 × 99) / 2 = 4950.   

b. Only 100 keys are needed: There should be one secret key between the presi-
dent and each member.

c. Only 100 keys are needed: There should be one secret key between the presi-
dent and each member to create the session secret key. After the session key is
established, the two members can use the one-time session key. 

12. The sentence in the tablet and its translation serves as a known plaintext/ciphertext
pair. This is a known-plaintext attack. 

13. Double encryption here does not help. Encryption with k1 followed by encryption
with k2 is the same as encryption with k = (k1 + k2) mod 26.  

14.

a. The compression in general creates a text which is not in the source language
(English for example). This means that the compressed plaintext does not pre-
serve the frequency of characters. It helps Alice in this case.

b. Compression before encryption can be more efficient because encryption is
normally time consuming if the message is very long.    

15.

a. The size of the key domain is 26 + 10 = 36. The modulus is also 36. Alice needs
to use the set Z36.

b. The size of the key domain is 12; the domain is (1, 5, 7, 11, 13, 17, 19, 23, 25,
and 29). The modulus is 36. Alice needs to use the set Z36∗.

c. The key domain is 36 × 12 = 432. The modulus is still 36. However, Alice
needs to use Z36 for addition and Z36* for multiplication. 

16.

a. The size of the key domain is 29.

b. The size of the key domain is 28 because 29 is a prime number. 

c. The size of the key domain is 29 × 28 = 812.

C = [(P + k1) mod 26) + k2] mod 26 = (P mod 26 + k1 mod 26 + k2) mod 26
C = (P mod 26) mod 26 + (k1 mod 26) mod 26  + k2 mod 26
C = P mod 26 + k1 mod 26  + k2 mod 26 = (P + k1 + k2) mod 26
C = (P + k) mod 26, where k = (k1 + k2) mod 26
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17.

a. Random switching between substitution and transposition is as difficult for
Alice and Bob as it is for Eve to discover which method is being used. If Alice
and Bod do not have a secure channel to inform each other which method they
are using (which is normally the case), they need to toss a coin. Eve can do the
same. However, Alice and Bob can use a pattern (for example, three substitu-
tions and two transpositions), but using any pattern is a kind of weakness in
secrecy. 

b. The same argument used in part a can be used here. However, if Eve knows that
cipher is a substitution, she can use more tools to find out the which type. For
example, if she can easily break the code using brute-force attack on the key,
she knows that they are using either additive or multiplicative cipher. 

c. The same argument used in part a can be used here. However, if Eve knows that
the cipher is transposition, she can use the pattern attack to find the size of the
section. 

18.

a. In additive cipher, Ci = (Pi + k) mod 26. This means that if one character in the
plaintext is changed only one character in the ciphertext is changed. Ci depends
only Pi. 

b. In multiplicative cipher, Ci = (Pi × k) mod 26. This means that if one character
in the plaintext is changed only one character in the ciphertext is changed. Ci
depends only Pi. 

c. In affine cipher, Ci = (Pi × k1 + k2) mod 26. This means that if one character in
the plaintext is changed only the corresponding character in the ciphertext is
changed. Ci depends only Pi. 

d. In Vigenere cipher, Ci = (Pi + ki) mod 26. Although, the value of ki may change,
but the change does not depend on the previous or next characters; the change
depends only on position of the plaintext character. If only one character in the
plaintext is changed, only one character in the ciphertext will be changed. 

e. In autokey cipher, Ci = (Pi + ki) mod 26 = (Pi + Pi −1) mod 26. This means each
ciphertext character (except the first) depends on the corresponding plaintext
character and the previous plaintext character. Therefore, changing one single
character in the plaintext will change all characters in the ciphertext which
comes after that character. In other words, if we change character 21 in the
plaintext, characters 22, 23, 24, … will be changed.   

f. In one-time pad, the key stream is used only once. Each ciphertext character,
however, depends only the corresponding plaintext ciphertext. If only one char-
acter in the plaintext is changed, only one character in the ciphertext will be
changed. 

g. The rotor cipher is a kind of monoalphabetic substitution cipher, in which the
mapping table will be changed from one character to the next. Each ciphertext
character, however, depends only the corresponding plaintext character. If only
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one character in the ciphertext is changed, only one character in the plaintext
will be changed. 

h. The Enigma machine is based on the rotor cipher. Therefore, If only one charac-
ter in the plaintext is changed, only one character in the ciphertext will be
changed. 

19.

a. Single transposition only reorders the characters. If one character is changed in
the plaintext, it affects only one character in the ciphertext. 

b. Double transposition only reorders the characters. If one character is changed in
the plaintext, it affects only one character in the ciphertext. 

c. In the Playfair cipher, encryption is two characters at a time. If one character in
the plaintext is changed, it normally changes one or two characters in the
ciphertext. However, if the changed character is the same as the previous or
next character, we need to add one bogus character in the plaintext that may
change several characters in the ciphertext. 

20.

a. The Playfair is a block cipher; encryption is done two character at a time. 

b. The autokey cipher is a stream cipher; encryption is done one character at a
time. 

c. The one-time pad cipher is a stream cipher; encryption is done one character at
a time.

d. The rotor cipher is a stream cipher; encryption is done one character at a time.

e. The Enigma machine is a is a stream cipher; encryption is done one character at
a time.

21.

22.

23.

 Cipher  Plaintext Ciphertext

Additive, key = 20  This is an exercise NBCMCMUHYRYLWCMY

Multiplicative, key = 15  This is an exercise ZBQKQKANIHIVEQKI

Affine, key = (15, 20)  This is an exercise TVKEKEUHCBCPYKEC

 Cipher  Plaintext Ciphertext

Vigenere The house is being sold tonight WVPSOLKHWDMEZFJGZWDKGQWRST

Autokey The house is being sold tonight AALLVIMWMATFMVTYGZOWHBVONA

Playfair The house is being sold tonight WECEXIOHNOEIFIHKXBBWSIRBEW

 Plaintext Ciphertext

 Life is full of surprise SMFPBZMYLWHMZYPPKPZI
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24. We use the following key:    

We need to add three bogus character, x’s, to separate two d’s and two o’s and one
at the end to make the number of characters even. The transformed plaintext is
actually "th ek ey is hi dx de nu nd er th ed ox or pa dx".  

25. We add the bogus character, "z" to the end of the plaintext to make the number of
characters multiple of 2. The plaintext matrix, the key matrix, and ciphertext
matrix are shown below:  

The ciphertext is then "IUVAFSLDNNLDWMCOTKGMCHEZ", in which
the last character is a bogus character. 

26. This is known-plaintext attack. Johns knows a plaintext/ciphertext pair (yes →
CIW). He knows that the algorithm is shift cipher and the key = 4. When he gets
access to the ciphertext "XVIEWYVT", he decrypts it as "treasure". 

27.

a. Eve is launching a chosen-plaintext attack. 

b. The length of the message is 10. Since 10 = 2 × 5, The number of columns can
be 1, 2, 5 or 10. The first or the last guess is unlikely, so the number of columns

G U I / J D A

N C E B F

H K L M O

P Q R S T

V W X Y Z

 Plaintext Ciphertext
The key is hidden under the door pad POKLBXDRLGIYIBCGBGLXPOBILZTLGTIY

22 4
11 8
21 4
8 13
0 13
8 13

18 4
2 20

17 4
22 14
17 11
3 25

3 2
5 7

8 20
21 0
5 18
11 3
13 13
11 3
22 12
2 14

19 10
6 12
2 7
4 25

PC

K
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is either 2 or 5. 

28. We can try the keys 13, 12, 14, 11, 15 which are close to Alice’s birthday. When
we use the key = 11, the plaintext makes sense. 

29. We know that "ab" → "GL". This means that 

00 → 06     and      01 → 11

We can construct two equations from these two pieces of information: 

00 × k1 + k2 ≡ 06 (mod 26)         01 × k1 + k2 ≡ 11 (mod 26)

Solving these two equations give us k1 = 5 and k2 = 6. This means, 

P = ((C − k2) × k1
−1) mod 26 = ((C + 20) × 21) mod 26  

30. We can find the single-character frequency of letters in this ciphertext as shown
below: 

This statistic, however, is not very useful because of several reasons:

a. The length of the ciphertext is very short for this analysis (only 30 characters). 

b. Only 10 out of 26 characters in the alphabet is used. When monoalphabetic sub-
stitution is used, we need to have all or most of the characters to be present in
the ciphertext. 

c. The frequencies are not distributed. We have only four 4’s, one 3, three 2’s, and
five 1’s. 

With some more guessing, we can find the mapping as: 

This gives us the plaintext that makes sense:

Key = 11

Ciphertext: NCJAEZRCLASJLYODEPRLYZRCLASJLCPEHZDTOPDZQLNZTY

Plaintext: cryptography and steganography are two sides of a coin 

Ciphertext: XPALASXYFGFUKPXUSOGEUTKCDGFXANMGNVS

Plaintext: the best of a fight is making up afterwards

Character O H B G W N V E J C U L R

Frequency 4 4 4 4 3 2 2 2 1 1 1 1 1

O N H O V E J H W O B E V G W O C B W H N U G B L H G B G R

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
o n e o f t h e m o s t f a m o u s m e n w a s c e a s a r
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31.

a. Since each entry can be one of the 29 characters, the total number of potential
keys are 294 = 707,281. 

b. Out of these 707,281 keys, only 682,080 of them are usable. 

32. We can find the single-character frequency of letters in this ciphertext as shown
below: 

Although "B" and "Q" have the highest frequencies, if we assume that "B"
or "Q" are the decryption of "e", the plaintext does not make sense. We
assume that "M" is the decryption of "e". In this case 12 is decrypted as 04
so the key = 8. Using this key the plaintext is

It is the English translation of a poem by Khayyam, the Persian poet, phi-
losopher, and mathematician of the twelve century.

33. This is an example that Kasiski test cannot help us. The reason is that the plaintext
has been encrypted line by line. The ciphertext is also created line by line, but each
line is too short for Kasiski test. The encryption algorithm uses a 5-character word
"a poet" to encrypt the text without adding any padding at the end of the last seg-
ment. 

Plaintext: One of the most famous men was Ceasar.

Character B Q M A V L Z I T W P

Frequency 18 15 14 12 11 10 10 9 9 9 7

Character E G N C O U X J S K D

Frequency 6 6 5 5 4 4 3 2 1 1 1

Plaintext: 
Glow of youth is tarnished, by rolling time’s heavy rust
Winter draped spring, in deep snow and dark frost,
Bird of delight named youth, swiftly left the nest
Alas, couldn’t tame it, while it was in my trust.

maken oment ionof rough times forge tabou teven tspas t

MPYIG OBSRM IDBSY RDIKA TXAIL FDFKX TPPSN TTJIG THDEL T

timey ettoc omeis unrev ealed andbe ingre veale dwill notla st

TXAIR EIHSV OBSML UCFIO EPZIW ACRFX ICUVX VTOPX DLWPE NDHPT SI

dontd wello ndays ofyou rnorb uildo nhere after

DDBXW WTZPH NSOCL OUMSN RCCVU UXZHH NWSVX AUHIK

lifet otoda yandt histo owill whisk awaya sblas t

LXTIM OICHT YPBHM HXGXH OLWPE WWWWD ALOCT SQZEL T
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After adding the punctuation, we get another English translation of a poem
by Khayyam, the Persian poet, philosopher, and mathematician of the
twelve century.    

34. We follow the process shown in Figure 3.23 of the text. 

35. We follow the idea shown in Figure 3.24 of the text.   

36. The length of the message is 12. The size of the block needs to divide 12. This
means that the size of the block can be 1, 2, 3, 4, 6, 12. Since the first and the last
size is trivial, we can ignore them. We need to try the block sizes 2, 3, 4, and 6.

Make no mention of rough times, forget about events past.

Time yet to come is unrevealed, and being revealed will not last,

Don’t dwell on days of your, nor build on here after,

Life to today and this too will whisk away as blast.

Decryption key

3 2 6 1 5 4
1 2 3 4 5 6

Key
Index

3 2 6 1 5 4

1 2 3 4 5 6 Key

Index

3

1

2

2

6

3

1

4

5

5

4

6 Key

Index

3 2 6 1 5 4
Encryption key

4 2 1 6 5 3

Decryption key
3 2 6 1 5 4 4 2 1 6 5 3

Encryption key

Transpose:
Change row
to column

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0
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However, the size of message (12) does not allow us to test for the matrices of size
4 or 16. If the size of the key matrix is 4, we need at least the plaintext/ciphertext
of size 16. If the size of the key matrix is 6, we need to have a plaintext/ciphertext
of size 36. Our only choices are to test for the key matrices of size 2 and 3. 

a. Let us first try the block size 2. Following Example 3.21 in the text, we can
make a plaintext/ciphertext pair of the first four of the given plaintext and given
ciphertext (letu → HBCD). In this case the plaintext matrix and ciphertext are 

Since P is not invertible in modulo 26 arithmetic, we can not proceed. 

b. Let us now try the block size 3. Following Example 3.21 in the text, we can
make a plaintext/ciphertext pair of the first nine character of the given plaintext
and given ciphertext (let usm eet → HBCDFNOPI). In this case the plaintext
and ciphertext matrices are 

Since P is not invertible in modulo 26 arithmetic, we can not proceed. This
means that we cannot solve the problem with the information given. 

37. We can use a row matrix of size m for addition matrix, but we need to use a square
matrix for multiplication (to be reversible). 

a. For the additive cipher we have 

P = 
11

19

04

08
C = 

07

02

01

03

P = 
11 1904

20

04

18

04

12

19

C = 
07 0201

03

14

05

15

13

08

P kC

C kP

1 m 1 m 1 m

1 m1 m1 m
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b. For the affine cipher we have 

38. The following shows the encryption process. The position and the value of each
character in the plaintext (P. Text) is found. The multiplication and addition keys
(k1 and k2) are listed. The numeric result of encryption for each character is calcu-
lated (P × k1 + k2), and finally the ciphertext characters (C. Text) are determined
and listed.  

39. In the Hill cipher, C = P × K. If the plaintext is the identity matrix I, then we have
C = K. This means that if can access to the Alice computer and launch a chosen
plaintext attack using the trivial identity matrix, Eve can find the key. This shows
that the Hill cipher is very vulnerable to the chosen-plaintext attack.

40. The relationship between the plaintext and ciphertext is P + C = 25 or C = (25 − P)
mod 26. 

P. Text c r y p t o g r a p h i s f u n

Position 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3

Values 2 17 24 15 19 14 6 17 0 15 7 8 18 5 20 13

k1 1 3 5 7 9 11 15 17 19 21 23 25 1 3 5 7

k2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

results 2 0 18 4 19 3 18 10 8 12 15 3 4 2 10 4

C. Text C A S E T D S K I M P D E C K E

 Plaintext Ciphtertext

an exercise ZMVCVIXRHV

P k1
k2C

C
( )

−1

k1
P k2

−

1 m

1 m

1 m

1 m

1 mm m

m m1 m
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41. We use the following key:       

  The plaintext and ciphertext are shown below: 

1 2 3 4 5
1 z q p f e
2 y r o g d
3 x s n h c
4 w t m i / j b
5 v u l k a

 Plaintext Ciphtertext

an exercise (5, 5), (3, 3), (1, 5), (3, 1), (1, 5), (2, 2), (3, 5), (4, 4), (3, 2), (1, 5)
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CHAPTER 4

Mathematics of Cryptography
Part II: Algebraic Structures

(Solution to Practice Set) 
Review Questions
1. The combination of the set and the operations that are applied to the elements of

the set is called an algebraic structure. We have defined three common algebraic
structures: groups, rings, and fields.

2. A group is a set of elements with a binary operation that satisfies four properties:
closure, associativity, existence of identity, and existence of inverse. A commuta-
tive group, also called an abelian group, is a group in which the operator satisfies
the four properties for groups plus an extra property, commutativity.

3. A ring is an algebraic structure with two operations. The first operation must sat-
isfy all five properties required for an abelian group. The second operation must
satisfy only the first two. In addition, the second operation must be distributed over
the first. A commutative ring is a ring in which the commutative property is also
satisfied for the second the operation.

4. A field is a commutative ring in which the second operation satisfies all five prop-
erties defined for the first operation except that the identity of the first operation
(sometimes called the zero element) has no inverse. A finite field is a field with a
finite number of elements. An infinite field is a field with an infinite number of
elements. 

5. A Galois field, GF(pn), is a finite field with pn elements. If n = 1, the field is some-
times referred to as GF(p). 

6. An example of a group is G = <Zn, +>. The identity element is 0; the inverse of an
element a is −a.

7. An example of a ring is R = <Z, +, × >. For the first operation, the identity element
is 0; the inverse of an element a is −a. Neither the identify element nor the inverse
of an element is defined for the second operation. 

8. An example of a field is F = <Zp, +, × >. For the first operation, the identity ele-
ment of is 0; the inverse of an element a is −a. For the second operation, the iden-
1
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tity element is 1 and the inverse of an element a is a−1. The identity element of the
first operation, however, has no inverse with regard to the second operation. 

9. A polynomial of degree n − 1 with coefficient in GF(2) can represent an n-bit word
with power of each term defining the position of the bit and the coefficients of the
terms defining the value of the bits.

10. In GF(2n), a reducible polynomial of degree n is a polynomial with coefficient in
GF(2) that cannot be factored into a polynomial with degree of less than n. A
reducible polynomial is sometimes referred to as a prime polynomial. 

Exercises
11.  The group G = <Z4, +> has only four members: 0, 1, 2, and 3.

a. For all a’s and b’s members of G, we need to prove that a + b = b + a. The fol-
lowing shows the proof (all operations are modulo 4). 

b.   

12.  The group G = <Z6∗, ×> has only two members: 1 and 5.

a. For all a’s and b’s members of G, we need to prove that a × b = b × a. Since this
group has only two members, we can see that (1 × 5) mod 6 = (5 × 1) mod 6. 

b.   

c. There is no need to worry about division by zero in this group, because 0 is not
the member of this group. 

13. Assume that the operation is (♦). We can say that (x ♦ y) is the same as x • (−y), in
which (−y) is the inverse of y with respect to operation (•). Using Table 4.1, we can
create the following table:  

(0 + 1)  = (1 + 0)    (0 + 2)  = (2 + 0)    (0 + 3)  = (3 + 0)     
(1 + 2)  = (2 + 1)       (1 + 3)  = (3 + 1)              
(2 + 3)  = (3 + 2)                    

(3 + 2) mod 4  = 1 mod 4    (3 − 2) mod 4   =  −1 mod 4 = 3 mod 4   

(5 × 1) mod 6  = 5 mod 6    
(1 ÷ 5) mod 6  = (1 × 5−1) mod 6 = (1 × 5) mod 6 = 5 mod 6    

♦ a b c d
a a d c b
b b a d c
c c b a d
d d c b a
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Another way to solve the problem is to think about similarity between the group
represented in Table 4.1 and the group G = <Z4, +>. Make the table for subtraction
operation in the group G = <Z4, +> and replace 0 with a, 1 with b, 2 with c, and 3
with d. 

14. It is enough to prove one single case (a ° b  ≠ b  °  a):

15. We use only two cases: 

a. We first prove that 

([1  3  2] °  [2  1  3])  °  [3  1  2]   =  [1  3  2] ° ([2  1  3]  °  [3  1  2])    

b. We then prove that 

([1  2  3] °  [2  1  3])  °  [3  1  2]   =  [1  2  3] ° ([2  1  3]  °  [3  1  2])   

16. The following shows the composition with identify elements. 

17. The result of ([1  3  2]  °   [3  2  1])  °  [2  1  3]   =  [3  2  1]. Bob can use the permu-
tation [3  2  1] to reverse the operation. This proves that double or multiple permu-
tation does not help; Alice could have used one single permutation.    

18.

a. In this case, |G| = 16, which means the order of each subgroup should divide 16.
We can have subgroups with orders 1, 2, 4, 8, 16. The following shows some of
these subgroups.  

[1   3   2] °  [2   1   3]   =   [3   1   2]     but       [2   1   3]  °  [1   3   2]  =   [2  3  1]    

  ([1  3  2] °  [2  1  3])  °  [3  1  2]  =   [3  1  2] °  [3  1  2]  =   [2  3  1]   
   [1  3  2] ° ([2  1  3]  °  [3  1  2])  =   [1  3  2] °  [3  2  1]  =   [2   3  1]   

([1  2  3] °  [2  1  3])  °  [3  1  2]  =   [2  1  3] °  [3  1  2]  =   [3  2  1]   
 [1  2  3] ° ([2  1  3]  °  [3  1  2])  =   [1  2  3] °  [3  2  1]  =   [3  2  1]   

° [1      2] [2      1]
[1      2] [1      2] [2      1]
[2      1] [2      1] [1      2]

 |H| = 1  →  H = <{1}, ×>  
 |H| = 2  →  H = <{1, 7}, ×>     H = <{1, 9}, ×>        H = <{1, 15}, ×> 
 |H| = 4  →   H = <{1 , 3, 9 , 11}, ×>   H = <{1, 7, 9 , 15}, ×>  
 |H| = 8  →    H = G  
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b. In this case, |G| = 23, which means the order of each subgroup should divide 23.
We can have subgroups with orders 1 and 23. The following shows some of
these subgroups. 

c. In this case, |G| = 8, which means the order of each subgroup should divide 8.
We can have subgroups with orders 1, 2, 4, 8. The following shows some of
these subgroups. 

d. In this case, |G| = 16, which means the order of each subgroup should divide 16.
We can have subgroups with orders 1, 2, 4, 8, 16. The following shows some of
these subgroups.

19.

a. The order of the group is |G| = 18. The order of potential subgroups should
divide 18, which means |H| can be 1, 2, 3, 6, 9, and 18.

b. The order of the group is |G| = 29. The order of potential subgroups should
divide 29, which means |H| can be 1 and 29.

c. The order of the group is |G| = 4. The order of potential subgroups should
divide 4, which means |H| can be 1, 2, and 4.

d. The order of the group is |G| = 18. The order of potential subgroups should
divide 18, which means |H| can be 1, 2, 3, 6, 9, and 18.

20.

a. For G = <Z8, +>, we have 

b. For G = <Z7, +>, we have 

 |H| = 1  →  H = <{0}, +>  
 |H| = 23  →    H = G  

 |H| = 1  →  H = <{1}, ×>  
 |H| = 2  →  H = <{1, 7}, ×>     H = <{1, 9}, ×>        H = <{1, 15}, ×> 
 |H| = 4  →   H = <{1 , 3, 9 , 11}, ×>   H = <{1, 7, 9 , 15}, ×>  
 |H| = 8  →    H = G  

 |H| = 1  →  H = <{1}, ×>  
 |H| = 2  →  H = <{1, 16}, ×> 
 |H| = 4  →   H = <{1, 4, 13, 16}, ×>   
 |H| = 16  →    H = G  

ord (0) = 0    ord (1) = 8     ord (2) = 4    ord (3) = 8     ord (4) = 2    
ord (5) = 8  ord (6) = 4    ord (7) = 8         



5

c. For G = <Z9* ×>, we have 

d. For G = <Z7* ×>, we have 

21. The elements 0, g0, g1, g2, and g3 can be easily be generated, because they are the
4-bit representations of 0, 1, x2, and x3. We use the relation ƒ(g) = g4 + g3 + 1 = 0 to
generate other powers. Using this relation, we have g4 = g3 + 1. We use this rela-
tion to find the value of all elements as 4-bit words: 

22. The following shows a few examples of addition and subtraction. Note that modu-
lus for the exponent is 2n −1 or 15.

a. We show two examples of addition (using the results of Exercise 21): 

b. We show two examples of subtraction (using the results of Exercise 21): 

ord (0) = 0    ord (1) = 7     ord (2) = 7    ord (3) = 7     ord (4) = 7    
ord (5) = 7  ord (6) = 7    

ord (1) = 0    ord (2) = 6     ord (4) = 3    ord (5) = 6     ord (7) = 3    
ord (8) = 2  

ord (1) = 0    ord (2) = 3     ord (3) = 6    ord (4) = 6     ord (5) = 6    
ord (6) = 2   

0    
g0 
g1 
g2 
g3 
g4   
g5       
g6    
g7    
g8 

g9   
g10   
g11   
g12 

g13    
g14   

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0    
g0 
g1 
g2 
g3 
g4   
g (g4)       
g (g5)   
g (g6)    
g (g7) 
g (g8)    
g (g9)   
g (g10)  
g (g11) 
g (g12)   
g (g13)   

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0 
g0 
g1

g2

g3

g4  
g (g3 + 1)      
g (g3 + g + 1) 
g (g3 + g2 + g + 1)  
g (g2 + g + 1) 
g (g3 + g2 + g)  
g (g2 + 1) 
g (g3 + g) 
g (g3 + g2 + 1)
g (g + 1)  
g (g2 + g)  

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0    
g0 
g1 
g2 
g3 
g3 + 1  
g3 + g + 1 
g3 + g2 + g + 1  
g2 + g + 1
g3 + g2 + g
g2 + 1
g3 + g
g3 + g2 + 1 
g + 1 
g2 + g 
g3 + g2

−−→    
−−→  
−−→  
−−→  
−−→ 
−−→  
−−→  
−−→ 
−−→
−−→ 
−−→
−−→
−−→
−−→ 
−−→  
−−→ 

0    
g0 
g1 
g2 
g3 
g4  
g5   
g6 

g7 

g8 

g9

g10 

g11 
g12 

g13  
g14 

=    
=  
=  
=  
= 
=  
=  
= 
=
= 
=
=
=
= 
=  
= 

(0000) 
(0001)
(0010)
(0100)
(1000)
(1001)
(1011) 
(1111)
(0111) 
(1110) 
(0101) 
(1010)
(1101)
(0011)
(0110)
(1100)

g3  +  g12 = g3 +  (g + 1) = g3 + g + 1 → (1011) = (1000) + (0011)   
g10 +  g12 = (g3 + g) + (g + 1) = g3 + 1 → (1001) = (1010) + (0011)   

g3  −  g9 = g3 −  (g2 + 1) = g3 + g2 + 1 → (1101) = (1000) − (0101)   
g10 −  g4 = (g3 + g) − (g3 + 1) = g + 1 → (0011) = (1010) − (1001)   
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23.
a. We show two examples of multiplication (using the results of Exercise 21): 

b. We show two examples of division (using the results of Exercise 21): 

24.
a. GF(12) is not a Galois field, because 12 cannot be written in the form pn.
b. GF(13) is a Galois field; 13 can be written in the form pn (p =13 and n = 1).
c. GF(16) is a Galois field; 16 can be written in the form pn (p = 2 and n = 4).
d. GF(17) is a Galois field; 17 can be written in the form pn (p =17 and n = 1).

25.
a. x4 + x 
b. x
c. x5 + 1

d. x + 1

26.
a. 0101
b. 00101
c. 011
d. 10000000

27.
a. 5 + 3 = 8 mod 7 = 1 mod 7
b. 5 − 4 = 1 mod 7
c. 5 × 3 = 15 mod 7 = 1 mod 7
d. 5 ÷ 3 = 5 × (3−1) =  5 × 5 = 25 mod 7 = 4 mod 7

28. A polynomial f(x) of degree n is irreducible if f(x) = g(x) × h(x), where g and h are
two polynomials, each with the degree greater than zero. According to this defini-
tion we have degree (f) = degree (g) + degree (h). Based on this, we can prove that
every polynomial of degree 1 is a reducible polynomial because the integer 1 can-
not be sum of two integers greater than 0. Since the only two polynomials of
degree 1 are f1(x) = x and f2(x) = x + 1, these two polynomials are irreducible. 

29. A polynomial f(x) of degree n is irreducible if f(x) = g(x) × h(x), where g and h are
two polynomials, each with the degree greater than zero. According to this defini-

g3  ×  g12 = g15 mod 15 = g0 = 1 → (0001) = (1000) × (0011)   
g10 ×  g12 = g22 mod 15 = g7 = g2 + g + 1 → (0111) = (1010) + (0011)   

g3  ÷  g9 =  g−6 mod 15 = g9 = g2 + 1 → (0101) = (1000) ÷ (0101)   
g10 ÷  g4 = g6 mod 15 = g6 = g3 + g2 + g + 1 → (1111) = (1010) − (1001)   
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tion we have degree (f) = degree (g) + degree (h). Based on this, a reducible poly-
nomial of degree 2 can be factored only as two polynomials of degree 1 (2 = 1 + 1).
In other words, a factors of a reducible polynomial of degree 2 can be only x or (x
+ 1) (the only two polynomials of degree 1). We can check all polynomials of
degree 2 to see which one can be factored as such.   

It can also be proved that f(x) = x2 + x + 1 cannot be evenly divided by x or x
+1 because this implies that x = 0 or x = −1 must be the root of the f(x),
which are not (f(0) = 1 and f(−1) = 1.    

30. A polynomial f(x) of degree n is irreducible if f(x) = g(x) × h(x), where g and h are
two polynomials, each with the degree greater than zero. According to this defini-
tion we have degree (f) = degree (g) + degree (h). Based on this, a reducible poly-
nomial of degree 3 can be factored only as two polynomials of degree 1 and 2 (3 =
1 + 2). In other words, one of the factors of a reducible polynomial of degree 3
must be x or (x + 1) (the only two polynomials of degree 1). We can check all poly-
nomials of degree 3 to see which one can be factored as such.    

It is clear that f1(x) = x3 + x + 1 can not be factored as (x) or (x + 1) because
neither 0 nor −1 are the root for this polynomial. This is true for f2(x) = x3 +
x2 + 1. 

31. We first write each number as a polynomial with coefficient in GF(2). We then
multiply the polynomials. Finally, we convert the result to the binary pattern.

a. (x  + 1) × (x + 1) → (x2 + x + x + 1) → (x2 + 1)  → 101   

b. (x3 +  x) ×  (x3) →  (x6+  x4)  → 1010000  

c. (x4 + x3 + x2) × (x4)  →  (x16 + x7+ x6)   → 10000000011000000 

32. The only irreducible polynomial of degree 2 is x2 + x + 1. We can guess that the
inverse of 1 is 1 and the other two polynomials are inverses of each other, but we
use the extended Euclidean algorithm to find them. 

(x2) = (x) × (x) → (x2) is reducible
(x2 + 1) = (x + 1) × (x + 1) → (x2 + 1) is reducible
(x2 + x) = (x) × (x + 1) → (x2 + x) is reducible
(x2 + x + 1) cannot be factored. → (x2 + x + 1) is irreducible

(x3) = (x) × (x2) →  (x3) is reducible 
(x3 + 1) = (x + 1) × (x2 + x + 1) →  (x3+ 1) is reducible 
(x3 + x) = (x) × (x2 + 1) →  (x3 + x) is reducible 
(x3 + x + 1) cannot be factored →  (x3 + x + 1) is irreducible 
(x3 + x2) = (x2) × (x + 1) →  (x3 + x2) is reducible 
(x3 + x2 + 1) cannot be factored →  (x3 + x2 + 1) is irreducible 
(x3 + x2 + x) = (x) × (x2 + x + 1) →  (x3 + x2 + x) is reducible 
(x3 + x2 + x + 1) = (x + 1) × (x2 + x + 1) →  (x3 + x2 + x + 1) is reducible 
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a. The inverse of 1 is 1, as shown in the following table. 

b. The inverse of x is x + 1, as shown in the following table. 

c. The inverse of x + 1 is x, as shown in the following table. 

33. The inverse is x3 + x, as shown below (using the extended Euclidean algorithm).

34. We use the irreducible polynomial (x4 + x3 + 1). 

q r1                   r2  r t1                       t2 t 

x2 + x + 1 x2 + x + 1          1 0 0 1 1

1 0 1 1

q r1                   r2  r t1                       t2 t 

x + 1 x2 + x + 1          x 1 0 1 x + 1

x x          1 0 1 x + 1 1

1 0 x + 1 1

q r1                   r2  r t1                       t2 t 
x x2 + x + 1          x + 1 1 0 1 x

x + 1    x + 1          1 0 1 x 1

1 0 x 1

q r1                   r2  r t1                       t2 t 

x + 1  x5 + x2 + 1          x4 + x3 + 1     x3 + x2 + x 0 1 x + 1

x    x4 + x3 + 1         x3 + x2 + x x2 + 1 1 x + 1 x2 + x + 1   

x + 1    x3 + x2 + x         x2 + 1 1 x + 1 x2 + x + 1 x3 + x   

x2 + 1    x2 + 1 1 0 x2 + x + 1 x3 + x 1    

1 0 x3 + x 1
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a. The following shows the addition table. We have used hexadecimal values to
make the table shorter.
  

b. The following shows the multiplication table. We have used hexadecimal val-
ues to make the table shorter.  

⊕ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 3 2 5 4 7 6 9 8 B A D C F E
2 2 3 0 1 6 7 4 5 A B 8 9 E F D C
3 3 2 1 0 7 6 5 4 B A 9 8 F E D C
4 4 5 6 7 0 1 2 3 C D E F 8 9 A B
5 5 4 7 6 1 0 3 2 D C F E 9 8 B A
6 6 7 4 5 2 3 0 1 E F C D A B 8 9
7 7 6 5 4 3 2 1 0 F E D C B A 9 8
8 8 9 A B C D E F 0 1 2 3 4 5 6 7
9 9 8 B A D C F E 1 0 3 2 5 4 7 6
A A B 8 9 E D C D 2 3 0 1 6 7 4 5
B B A 9 8 F E D C 3 2 1 0 7 6 5 4
C C D E F 8 9 A B 4 5 6 7 0 1 2 3
D D C F E 9 8 B A 5 4 7 6 1 0 3 2
E E F C D A B 8 9 6 7 4 5 2 3 0 1
F F E D C B A 9 8 7 6 5 4 3 2 1 0

⊗ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 2 4 6 8 A C E 9 B D F 1 3 5 7
3 0 3 6 5 C F A 9 1 2 7 4 D E B 8
4 0 4 8 C 9 D 1 5 B F 3 7 2 6 A E
5 0 5 A F D 8 7 2 3 6 9 C E D 4 1
6 0 6 C A 1 7 D B 2 4 E 8 3 5 F 9
7 0 7 E 9 5 2 B C A D 4 3 F 8 1 6
8 0 8 9 1 B 3 2 A F 7 6 E 4 C D 5
9 0 9 B 2 F 6 4 D 7 E C 5 8 1 3 A
A 0 A D 7 3 9 E 4 6 C B 1 5 F 8 2
B 0 B F 4 7 C 8 3 E 5 1 A 9 2 6 D
C 0 C 1 D 2 E 3 F 4 8 5 9 6 A 7 B
D 0 D 3 E 6 B 5 8 C 1 F 2 A 7 9 4
E 0 E 5 B A 4 F 1 D 3 8 6 7 9 2 C
F 0 F 7 8 E 1 9 6 5 A 2 D B 4 C 3
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35. We use Table 4.10 to find the multiplicative inverse of the second word. We then
use the same table to multiply the first word with the inverse of the second word. 

a. (100) ÷ (010) = (100) × (010)−1 = (100) × (110) = (010)

b. (100) ÷ (000) → Τhis operation is impossible because (000) has no inverse.   

c. (101) ÷ (011) = (101) × (011)−1 = (101) × (100) = (011)

d. (000) ÷ (111) = (000) × (111)−1 = (000) × (101) = (111)

36. We let P1 = (x2  + 1), P2 = ( x3 + x2 + x + 1), and modulus = (x4+ x3 + 1). The follow-
ing table shows the process. Note that we only need to add the modulus with the
new result (if the degree of the result is greater than the degree of the modulus); no
division is needed.   

The result is (1), which can be proved using multiplication and division by
the modulus. 

37. We let P1 = (10000), P2 = (10101), and modulus = (100101). The following table
shows the process: 

The result is (10111) or (x4 + x2 + x + 1), which can be proved using multipli-
cation and division by the modulus. 

 

Powers Operation               New Result Reduction 

x0  ⊗ P2           x3 + x2 + x + 1 No

x1  ⊗ P2 x   ⊗  ( x3 + x2 + x + 1) x2 + x + 1 Yes

x2  ⊗ P2 x   ⊗  (x2 + x + 1)  x3 + x2 + x No

P1
  ⊗ P2  = (x0  ⊗ P2) ⊕ (x2  ⊗ P2) =  (x3 + x2 + x + 1)  ⊕  (x3 + x2 + x)  =  (1)  

Powers Shift-Let Operation               Exclusive-Or

x0  ⊗ P2           10101

x1  ⊗ P2  01010 01010 ⊕ 00101 = 01111 

x2  ⊗ P2 11110  11110 

x3  ⊗ P2 11100 11100 ⊕ 00101 = 11001

x4  ⊗ P2 10010 10010 ⊕ 00101 = 10111

P1
  ⊗ P2  = (x4   ⊗ P2) = 10111



CHAPTER 5

Introduction to Modern
Symmetric-Key Ciphers

(Solution to Practice Set) 
Review Questions
1. The traditional symmetric-key ciphers are character-oriented ciphers. The modern

symmetric-key ciphers are bit-oriented ciphers.

2. To be resistant to exhaustive-search attack, a modern block cipher needs to be
designed as a substitution cipher because in a transposition cipher we have the
same number of 1s in the plaintext and ciphertext, which makes exhaustive-search
attack simpler. 

3. A transposition is definitely a permutation of bits. A substitution of bits can be
thought of a permutation if we add decoding and encoding to the operation.

4. We mentioned several components of a modern block ciphers in this chapter: P-
boxes, S-boxes, the exclusive-or operation, the swap operation, the circular shift
operation, the split operation, and the combine operation. 

5. A P-box (permutation box) transposes bits. We have three types of P-boxes in
modern block ciphers: straight P-boxes, expansion P-boxes, and compression P-
boxes. A straight P-box is invertible; the other two are not. 

6. An S-box is an m × n substitution unit, where m and n are not necessarily the same.
The necessary condition for invertibility is that m should be equal to n. 

7. A product cipher is a complex cipher combining substitution, permutation, and
other components discussed in this chapter. We discussed two classes of product
ciphers: Feistel and non-Feistel ciphers.

8. Diffusion hides the relationship between the ciphertext and the plaintext. Confu-
sion hides the relationship between the ciphertext and the key.

9. A Feistel block cipher uses both invertible and noninvertible components. A non-
Feistel block cipher uses only invertible components. 

10. A differential cryptanalysis is based on a nonuniform differential distribution table
of the S-boxes in a block cipher; it is a chosen-plaintext attack. A linear cryptanal-
1
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ysis is based on a linear approximation of an S-box; it is a known-plaintext attack. 
 

11. In a synchronous stream cipher the key stream is independent of the plaintext or
ciphertext. In a nonsynchronous stream cipher the key stream is somehow depen-
dent on the plaintext or ciphertext. 

12. A feedback shift register is made of a shift register and a feedback function. We
discussed two variations: linear feedback shift register (LFSR) and nonlinear feed-
back shift register (NLFSR). 

Exercises
13. The order of the group is 10! = 3,626,800. The key size is ⎡log2(10!)⎤ = 22 bits.

Note that a key of 22 bits can select 222 = 4,194,304 different permutations, but
only 3,626,800 of them are used here. 

14. The order of the group is (210)! = 1024! The key size is ⎡log2 (1024!)⎤ = 8770 bits.
Note that a key of 8770 bits can select 28770 different permutations, but only
(1024!) of them are used here. 

15.

a. CircularLeftShift3(10011011)     → 11011100

b. CircularRightShift3(11011100)   → 10011011   

c. The original word in Part a and the result of Part b are the same, which shows
that circular left shift and circular right shift operations are inverses of each
other. 

16.

a. Swap (10011011)  → 10111001          

b. Swap (10111001)  → 10011011                 

c. The original word in Part a and the result of Part b are the same, which shows
that swapping is a self-invertible operation. 

17. We show the complement of A with A .

a. (01001101) ⊕ (01001101) = (00000000)   →    (A ⊕ A = All 0s) 

b. (01001101) ⊕ (10110010) = (11111111)    →   (A ⊕ A = All 1s) 

c. (01001101) ⊕ (00000000) = (01001101)    →   (A ⊕  All 0s = A)

d. (01001101) ⊕ (11111111) = (10110010)    →   (A ⊕  All 1s = A)

18.

a. The value of 0102 = 2, which can be decoded as the 8-bit word (0000100). 

b. The 8-bit word (00100000) has a 1 in position 5, which can be encoded as
(101)2. 
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19. Using eight bits for each character, |M| = 8 × 2000 = 16,000 bits. Therefore, we
have 

This means no padding is needed. The message is divided into 250 blocks. 
20. The permutation table is [2  5  4  1  3].
21. The permutation table is [1  3  5]. 
22. The permutation table is [1  3  3  1  2]. 
23. See the figure below:

24. It is an expansion P-box with 4 inputs and 6 outputs as shown below:

25. It is a compression P-box with 7 inputs and 5 outputs as shown below:

|M| + |Pad| = 0 mod 64 →  |Pad| = − |M| mod 64  →  |Pad| = − 16,000 mod 64 = 0 

Straight
P-box

1 2 4  53 6 7 8

1 2 4  53 6 7 8

 Expansion
P-box

1 2 43

1 2 4  53 6

 Compression
P-box

1 2 4  53 6 7

1 2 4  53
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26. It is a straight P-box with 6 inputs and 6 outputs as shown below:

27. We use the following procedure:

a. We first find the input/output relation based on the given S-box: 

b. We then find the inverse input/output relation (sorted on input): 

c. Now we create the table for the inverse S-box (the left row defines the first
input bit, the first column defines the second input bit, and the entries define the
output):

28. The characteristic polynomial is x5 + x2 + 1 = 0. The feedback function can be
found as x5 = x2 + 1. The following figure shows the LFSR. 

The characteristic polynomial x5 + x2 + 1 or (25)16 is both a primitive polynomial
(see Appendix G). However, the corresponding number of cells is 5, which is odd.
This means that period is less than 31 (2m −1). 
 

Input: 00 01 10 11 
Output: 01 11 10 00 

Input: 00 01 10 11 
Output: 11 00 10 01 

0 1

0 11 00

1 10 01

Straight
P-box

1 2 4  53 6 7 8

1 2 4  53 6 7 8

Output (ki)   x
0

 x
1

 x
2

x5

 x
5  = x2 + 1  

   x
3

 x
4
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29. The characteristic polynomial is x4 + x3 + x2  + 1 or (11101)2 or (1D)16. The poly-
nomial is not primitive (see Appendix G). The maximum period is then less than
24 − 1 or less than 15. 

30. The following table shows the initial state (seed) and the next twenty states.   

The initial state in the above table is the same as the state 11 in Table 5.6. The next
9 states are also the same; state 09 in the above table is the same as the state 20 in
Table 5.6. The rest of the states are different in the two tables. 

31. To have a maximum period of 32, the characteristic polynomial should be of
degree 6 because 25 − 1 = 31 < 32. However, if the characteristic polynomial is
primitive, the maximum period is 26 − 1 = 63. But the problem says that the maxi-
mum period is 32, therefore, the characteristic polynomial is not primitive. In other
words, we have an LFSR of degree 6, with 6 cells (6-bit register) whose character-
istic polynomial is not primitive.

32. We assume that bits are numbered b0 to b5 from right to left. Other assumptions
yield different results. 

33.   

States b4 b3 b2 b1 b0 ki
Initial 1 1 1 1 0

01 0 1 1 1 1 0
02 0 0 1 1 1 1
03 0 0 0 1 1 1
04 1 0 0 0 1 1
05 0 1 0 0 0 1
06 0 0 1 0 0 0
07 1 0 0 1 0 0
08 1 1 0 0 1 0
09 0 1 1 0 0 1
10 1 0 1 1 0 0
11 0 1 0 1 1 0
12 1 0 1 0 1 1
13 1 1 0 1 0 1
14 1 1 1 0 1 0
15 1 1 1 1 0 1
16 0 1 1 1 1 0
17 0 0 1 1 1 1
18 0 0 0 1 1 1
19 1 0 0 0 1 1
20 0 1 0 0 0 1

Input: 110010 → Left bit = 1 ⊕ 0 ⊕ 1 = 0 Right bit = 1 ⊕ 0 ⊕ 0 = 1 → Output: 01

Input: 101101 → Left bit = 1 ⊕ 1 ⊕ 0 = 0 Right bit = 0 ⊕ 1 ⊕ 1 = 0 → Output: 00

Input: 1011 →  Left rotate → Output: 110

Input: 0110 →  Right rotate → Output: 011
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34.  

35.

36.

split (word [0 … n], n)
{

i ← 1
while (i ≤ n / 2)
{

 rightWord[i] ← word[i] 
 leftWord[i] ← word[i + n / 2] 
  i ← i + 1

} 
return (rightWord, leftWord) 

}

combine (rightWord [1 … m], leftWord [1 … m], m)
{

i ← 1
while (i ≤ m)
{

 word[i] ← rigthWord[i] 
 word[i + m] ← leftWord[i] 
  i ← i + 1

} 
 return (word[1 … n]) // n = 2m
}

swap (word [1 … n], n)
{

i ← 1
while (i ≤ n / 2)
{

 temp[i + n / 2] ← word[i] 
 temp[i] ← word[i + n / 2] 
  i ← i + 1

} 
return (temp[0 … n]) 

}
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37.

circularShift (shift, word [1 … n], n, k)
{

i ← 1
while (i ≤ k)
{

 if (shift = left) 
 word ← circularShiftLeft(word, n)
 else 
  word ← circularShiftRight(word, n)
 i ← i + 1   

} 
return (word[1 … n]) 

}
circularShiftLeft (word [1 … n], n)
{
 temp ← word[n]

j ← n − 1
 while (j ≥ 0) 
 {
 word[j +1] ← word[j]

j ← j − 1
  }

word[1] ← temp   
return (word[0 … n]) 

}
circularShiftRight (word [0 … n], n)
{
 temp ← word[1]

j ← 1
 while (j ≤ n) 
 {
 word [j −1] ← word[j]

j ← j + 1
  }

word[n] ← temp   
return (word[0 … n]) 

}
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38.

39. The table can be designed in many different ways. We assume, we have a linear
table of n cells, in which each cell contains a value of m bits. The input defines the
cell number, the contents of the cell defines the output. With this configuration, the
routine looks like the one shown below: 

40. We assume that the key mixer apply the XOR operation on the input and the round
key. The following shows the general idea. 

P-box (inputBits [1 … n], Table [1 … m], n, m)
{

i ← 1
while (i ≤ m)
{

 outputBits[i] ← inputBits[Table[i]] 
 i ← i + 1   

} 
return (outputBits[1 … n]) 

}

S-box (inputBits [1 … n], Table [1 … n], n, m)
{

index ← binaryToDecimal (inputBits)
value ← Table [index]
outputBits ← decimalToBinary (value)
return (outputBits [0 … m]) 

}

Non_FeistelRound (inputBits [1 … n], roundKey[1 … n], n, PermuteTable)
{

temp ← inputBits ⊕  roundKey 
temp← substitute(temp, SubstituteTables)
outputBits ← permute(temp, PermuteTable)
return (outputBits [1 … n]) 

}
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41.  

42.  

FeistelRound (inputBits [1 … n], roundKey[1 … n], n)
{

(tempLeft, tempRight) ← split (word, n) 
tempLeft ← tempLeft ⊕ function (tempRight, roundKey) 
(tempLeft, tempRight) ← swap (tempLeft, tempRight)
outputBits ← combine(tempLeft, tempRight)
return (outputBits [1 … n]) 

}

LFSR (initialState [0 … n −1], n)
{

b[n] ← f (initialState) 
i ← n
while (i > 0)
{

 b[i − 1] ← b[i] 
 i ← i − 1   

} 
return (b[0]) 

}
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CHAPTER 6

Data Encryption Standard (DES)
(Solution to Practice Set) 
Review Questions
1. The block size in DES is 64 bits. The cipher key size is 56 bits. The round key size

is 48 bits. 

2. DES uses 16 rounds. 

3. In the first approach, DES uses 16 mixers and 15 swappers in encryption or
decryption algorithm; in the second (alternative approach), DES use 16 mixers and
16 swappers in encryption or decryption algorithm. 

4. In DES, encryption or decryption uses 16 × 2 + 2 = 34 permutations, because each
mixer uses two permutations and there are two permutations before and after the
rounds. The round-key generator uses 17 permutation operations: one parity drop
and 16 compression permutation operations for each round. 

5. The total number of exclusive-or operations is 16 × 2 = 32, because each round
uses two exclusive-or operations (one inside the function and one outside of the
function). 

6. The input to the function is a 32-bit word, but the round-key is a 48-bit word. The
expansion permutation is needed to increase the number of bits in the input word
to 48. 

7. The cipher key that is used for DES include the parity bits. To remove the parity
bits and create a 56-bit cipher key, a parity drop permutation is needed. Not only
does the parity-drop permutation drop the parity bits, it also permutes the rest of
the bits. 

8. A weak key is the one that, after parity drop operation, consists either of all 0s, all
1s, or half 0s and half 1s. Each weak key is the inverse of itself: Ek(Ek(P)) = P. A
semi-weak key creates only two different round keys and each of them is repeated
eight times. The semi-weak round keys come in pairs, where a key in the pair is the
inverse of the other key in the pair: Ek1(Ek2(P)) = P. A possible weak key is a key
that creates only four distinct round keys; in other words, the sixteen round keys
are divided into four groups and each group is made of four equal round keys. 
1
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9. Double DES uses two instances of DES ciphers for encryption and two instances
of reverse ciphers for decryption. Each instance uses a different key, which means
that the size of the key is 112 bits. However, double DES is vulnerable to meet-in-
the-middle attack.

10. Triple DES uses three stages of DES for encryption and decryption. Two versions
of triple DES are in use today: triple DES with two keys and triple DES with three
keys. In triple DES with two keys, there are only two keys: K1 and K2. The first
and the third stages use K1; the second stage uses K2. In triple DES with three
keys, there are three keys: K1, K2, and K3. 

Exercises
11.  

a.

b.

c.

d.

12. The following table shows the output from all boxes. No pattern can be found:

13. The following table shows the output from all boxes. No pattern can be found:

Input: 1 1011 1 → 3, 11 → Output: 03 (0011)

Input: 0 0110 0 → 0, 6 → Output: 09 (1001)

Input: 0 0000 0 → 0, 0 → Output: 04 (0100)

Input: 1 1111 1 → 3, 15 → Output: 09 (1001)

Input Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8

000000 1110 1111 1010 0111 0010 1100 0100 1101

Input Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8

111111 1101 1001 1100 1110 0011 0011 1101 1011
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14.
a. The following shows that 3 bits will be changed in the output. 

b.  The following shows that 2 bits will be changed in the output.  

15.  
a. The following shows that 2 bits will be changed in the output.   

b. The following shows that 2 bits will be changed in the output.   

16.  
a. The following shows that two outputs are different.   

b. The following shows that two outputs are different. 

Input: 0 0000 0 → 00, 00 → Output: 10 (1010)

Input: 0 0000 1 → 01, 00 → Output: 13 (1101)

Input: 1 1111 1 → 03, 15 → Output: 09 (1001)

Input: 1 1101 1 → 03, 14 → Output: 14 (1100)

Input: 0 0110 0 → 00, 06 → Output: 03 (0011)

Input: 0 0000 0 → 00, 00 → Output: 15 (1111)

Input: 1 1001 1 → 03, 09 → Output: 06 (0110)

Input: 1 1111 1 → 03, 15 → Output: 09 (1001)

Input: 0 0110 0 → 00, 06 → Output: 09 (1001)

Input: 1 1000 0 → 02, 08 → Output: 15 (1111)

Input: 1 1001 1 → 03, 09 → Output: 04 (0100)

Input: 0 0111 1 → 01, 07 → Output: 03 (0011)
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17. The following table shows 32 input pairs and 32 output pairs. The last column is
the difference between the outputs.  

If we sort the table on last column (output differences), we get the following: two
(0011)’s, five (0101)’s, four (0110)’s, three (0111)’s, three (0111)’s, one (1010),
one (1011), one (1100), five (1100)’s, four (1101)’s, one (1110), and two (1111)’s.
None of the group has a size larger than eight. 

Input pairs Output pairs d
000000 000001 0010 1110 1100
000010 000011 1100 1011 0111
000100 000101 0100 0010 0110
000110 000111 0001 1100 1111
001000 001001 0111 0100 0011
001010 001011 1010 0111 1001
001100 001101 1011 1101 0110
001110 001111 0110 0001 0111
010000 010001 1000 0101 1101
010010 010011 0101 0000 0101
010100 010101 0011 1111 1100
010110 010111 1111 1010 0101
011000 011001 1101 0011 1110
011010 011011 0000 1001 1001
011100 011101 1110 1000 0110
011110 011111 1001 0110 1111
100000 100001 0110 1011 1101
100010 100011 0010 1000 1010
100100 100101 0001 1100 1101
100110 100111 1011 0111 1100
101000 101001 1010 0001 1011
101010 101011 1101 1110 0011
101100 101101 0111 0010 0101
101110 101111 1000 1101 0101
110000 110001 1111 0110 1001
110010 110011 1001 1111 0110
110100 110101 1100 0000 1100
110110 110111 0101 1001 1100
111000 111001 0110 1010 1100
111010 111011 0011 0100 0111
111100 111101 0000 0101 0101
111110 111111 1110 0011 1101
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18. For S-Box 7, we set the first (leftmost) input bit to 0. We change the other five
input bits. We then observe one of the output bits (we have chosen the third bit
from the let) and count how many 0’s and how may 1’s we obtain for this bit.
These two count must be close to each other. The following table shows inputs and
outputs.  

As the table shows we have 17 0’s and 15 1’s; close enough. 

19. Figure S6.19 shows the situation. The inputs to S-box 7 in round 2 comes from six
different S-boxes in round 1. 

Input Output Third bit
0  0000  0 0 1 0 0 0
0  0000  1 1 1 0 1 0
0  0001  0 1 0 1 1 1
0  0001  1 0 0 0 0 0
0  0010  0 0 0 1 0 1
0  0010  1 1 0 1 1 1
0  0011  0 1 1 1 0 1
0  0011  1 0 1 1 1 1
0  0100  0 1 1 1 1 1
0  0100  1 0 1 0 0 0
0  0101  0 0 0 0 0 0
0  0101  1 1 0 0 0 0
0  0110  0 1 0 0 0 0
0  0110  1 0 0 0 1 0
0  0111  0 1 1 0 1 0
0  0111  1 1 0 1 0 1
0  1000  0 0 0 1 1 1
0  1000  1 1 1 1 0 1
0  1001  0 1 1 0 0 0
0  1001  1 0 0 1 1 1
0  1010  0 1 0 0 1 0
0  1010  1 0 1 0 1 0
0  1011 0 0 1 1 1 1
0  1011 1 1 1 0 0 0
0  1100 0 0 1 0 1 0
0  1100 1 0 0 1 0 1
0  1101 0 1 0 1 0 1
0  1101 1 1 1 1 1 1
0  1110 0 0 0 0 0 0
0  1110 1 1 0 0 0 0
0  1111 0 0 0 0 1 0
0  1111 1 0 1 1 0 1
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a. The six inputs to S-box 7 in round 2 come from six outputs (37, 38, 39, 40, 41,
42) of expansion permutation box. 

b. The above six outputs correspond to the six inputs (24, 25, 26, 27, 28, 29) in the
expansion permutation box (See Table 6.2 in the textbook). 

c. The above six inputs correspond to the six inputs (09, 19, 13, 30, 06, 22) inputs
in the straight permutation box (See Table 6.11 in the textbook).

d. The above six inputs correspond to the outputs of six different S-Boxes (S-3, S-
5, S-4, S-8, S-2, and S-6) in round 1. 

20. Figure S6.20 shows the situation. The inputs to S-box 7 in round 2 comes from six
S-boxes in round 1. 

Figure S6.19 Solution to Exercise 19

Figure S6.20 Solution to Exercise 20

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
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Round 2

Expansion
P-box

(Round 2)

2206 09 13 19 30
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26 25 29 27

2928

28

25 2924

24
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28

37 42

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

Straigh
P-box

(Round 3)

Round 3

Round 4

Expansion
P-box

(Round 4)

05 17 2601 15 23

09 13

09 13 12110810

12

09 1308

08

12

13 18
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a. The six inputs to S-box 3 in round 4 come from six outputs (13, 14, 15, 16, 17,
18) of expansion permutation box in round 4. 

b. The above six outputs corresponds to the six inputs (08, 09, 10, 11, 12, 13) in
the expansion permutation box in round 4 (See Table 6.2 in the textbook). 

c. The above six inputs correspond to the six inputs (17, 01, 15, 23, 26, 05) inputs
in the straight permutation box (See Table 6.11 in the textbook).

d. The above six inputs correspond to the outputs of six different S-Boxes (S-5, S-
1, S-4, S-6, S-7, and S-2) in round 3. None of them come from S-3. 

21. Figure S6.21 shows the situation. The outputs from S-box 4 in round 3 go to four
S-boxes in round 4. 

a. The four outputs from S-box 3 in round 4 go to six outputs (26, 20, 10, 01) of
straight permutation box (See Table 6.1). 

b. The above four outputs correspond to four outputs (33, 29, 15, 02) in the expan-
sion permutation box (See Table 6.11).
 

c. The above four inputs corresponds to the inputs of four different S-Boxes (S-6,
S-5, S-3, and S-1) in round 4. 

22. Figure S6.22 shows the situation. The outputs from S-box 6 in round 12 goes to
four different S-boxes in round 13. None of them go to S-box 6. So the criterion
cannot actually be tested by these exercise, but it does not violate the criterion
either.  

Figure S6.21 Solution to Exercise 21

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
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Round 4

Expansion
P-box

(Round 4)

26201001

02 15 29 33

13 16
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23. Figure S6.23 shows the situation. We assume j = 5. 

a. One output from S-box 3 (output 10) goes to the first input of S-box 5 (input
25). 

b. An output from S-box 4 (output 14) goes one the last two inputs of S-box 6
(input 29). 

c. An output from S-box 6 (output 24) goes to one of the middle input of S-box 5
(input 19). 

Figure S6.22 Solution to Exercise 22

Figure S6.23 Solution to Exercise 23

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
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J

J
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24. The solution can be found in Figure S6.24. The outputs of S-4 is distributed
between S-1, S-3, S-5, and S-7 in the next round. 

a. The output 16 goes to bit 2 (one of the first two bits of S-box 1). 

b. The output 14 goes to bit 29 (the last bit of S-box 5). 

c. The output 15 goes to bit 15 (one of middle bit of S-box 3).

d. The output 13 goes to bit 33 (one of the middle bit of S-6).
 

25.  Figure S6.25 will help us in this problem. 

Figure S6.24 Solution to Exercise 24

Figure S6.25 Solution to Exercise 25
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a. Only output 19 form S-box 5 (in round 4) goes to S-box 7 (in round 5). How-
ever, the input 38 is not a middle input, so the criterion does not apply. This
answers the question about this exercise, but we do some more investigations.

b. Output 18 from S-box 5 goes a middle input (21) in S-box 4 in the next round.
To check the criteria, we need to see if any input from S-box 4 goes to a middle
input in next round. Looking at Figure S6.24, we can see that this is not the
case. The criterion applies here.

c. We also observe that output 19 from S-box 5 goes a middle input in S-box 1
(input 4). However, none of the inputs from S-box 1 in round 4 goes to a middle
input of S-box 5 in the next round. Only one output from S-box 1 (output 2 goes
to S-box 5, input 26, but it is not a middle input). The criterion applies here. 
 

26. Figure S6.26 shows the alternative approach.

Figure S6.26 Solution to Exercise 26
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27. Figure S6.27 shows a three-round cipher. We prove the equalities between the L’s
and R’s from bottom to top. We have labeled each left section in the encryption Li
and in the decryption (Li)’; we have labeled each right sections Ri in the encrypt-
ing and (Ri)’ in decryption. 

a. Since final permutation and initial permutations are inverse of each other (if
there is no corruption during transmission), we have  

b.  Using the previous equalities and the relations in the mixers, we have  

Figure S6.27 Solution to Exercise 27
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c.  Using the previous equalities and the relations in the mixers, we have

d.  Using the previous equalities and the relations in the mixers, we have

We have proved that (L1)′ = L0 and (R0)′ = R0. Since the final permutation and ini-
tial permutation are inverse of each other, the plaintext created at the destination is
the same as the plaintext started at the source. 

28. If we create a table of input and output, we can answers the three questions. 

a. The missing inputs are 09, 18, 22, 25, 35, 38, 43 and 54.

b. From above table, we can see that the left 24 bits come from the left 28 bits
(except bits 09, 18, 22, and 25, which are blocked). 

c. From the above table, we can see the right 24 bits come from the right 28 bits
(except bits 35, 38, 43, and 54, which are blocked).
 

29. The following shows the result:

(L1)′  = (R2)′ = L2= R1 (R1)′  = R2 ⊕ f [L2, K2]    

 (R1)′  = R2 ⊕ f [R1, K2]    

(R1)′  = L1 ⊕ f [R1, K1] ⊕  f [R1, K1]    

(L1)′ = R1 (R1)′  = L1    

(L0)′  = (L1)′ ⊕ f [(R1)′, K1] (R0)′  = (R1)′ = L1 = R0

(L0)′  = R1 ⊕ f [L1, K1]    

(L0)′  = L0 ⊕ f [L0, K1] ⊕  f [L0, K1]     

(L1)′ = L0 (R0)′ = R0    

In Out In Out In Out In Out
14 01 23 13 41 25 44 37
17 02 19 14 52 26 49 38
11 03 12 15 31 27 39 39
24 04 04 16 37 28 56 40
01 05 26 17 47 29 34 41
05 06 08 18 55 30 53 42
03 07 16 19 30 31 46 43
28 08 07 20 40 32 42 44
15 09 27 21 51 33 50 45
06 10 20 22 45 34 36 46
21 11 13 23 33 35 29 47
10 12 02 24 48 36 32 48

(1066 0099 0088 0088)16
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30. The following shows the result:

31. The first round key is

32. The following shows the effect:

When we complement the plaintext and the key, the ciphertext is complemented. 

33. Figure S6.33 shows the encryption using 3DES with two keys, in which X or Y are
the intermediate texts.   

Van Oorschot and Wiener have devised a meet-in-the-middle attack on the above
configuration. The attack is basically a known-plaintext attack. It   follows the
steps shown below:

a. Eve intercepts n plaintext/ciphertext pairs and stores them in a table which is
sorted on values of P as shown below: 

(0F55 AAFF 0F55 AAFF)16

(1437 4013 3784)16

Originals Complements

Plaintext: 0000 0000 0000 0000 FFFF FFFF FFFF FFFF

Key: 0000 0000 0000 0000 FFFF FFFF FFFF FFFF

Ciphertext: 0808 02AA AA02 A8AA F7F7 FD55 55FD 5755

Figure S6.33 Solution to Exercise 33

Plaintext Ciphertext

P1
P2
…
Pn

C1
C2
…
Cn 

Table 1: n P/C pairs

P C

K1 K2 K1

Encryption

DES
cipher

DES
cipher

DES
cipher

X Y
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b. Eve now chooses a value for X (see Figure S6.33) and uses the decryption algo-
rithm, and all 256 possible K1’s values to create 256 different P values as shown
below:

c. If a value of P created in step b matches one of the value of P in Table 1, Eve
uses the corresponding value for K1 (from the list in step b) and the value of C
from Table 1 and calculates a value for second intermediate text Y = D (K1, C).
Now Eve creates a second table, Table 2, which is sorted on the value of Y. Eve
has now r possible candidate for K1 keys.  

d. Eve now searches for K2. For each 256 possible values of K2, Eve uses the
decryption algorithm and the value of X chosen in step b to create 256 different
values for Y’s.  

If a value of Yi created in this step matches one of the value in Table 2, Eve
have found a pair of keys: K1 is extracted from Table 2 and K2 is extracted
from the decryption algorithm that matches the value of Y in Table 2. 

e. Now Eve tests pairs of K1/K2 values on more intercepted plaintext/ciphertext.
If there is matching, Eve has found the keys; if there is no match, Eve needs to
repeat step b to e using a different value of X. 

34.

P1 = D (K11, X)   P2 = D (K12, X)   …   Pm = D (K1m, X)      where m = 256 

Y K1

Y1
Y2
…
Yr

K11
K12
…
K1r 

Table 2: r Y/K1 pairs

Y1 = D (K21, X)   Y2 = D (K22, X)   …   Ym = D (K2m, X)      where m = 256 

permute (n, m, inBlock[1 … n], outBlock[1 … m], permutationTable[1 … m])
{

i ← 1
while (i ≤ m)
{

 outBlock[i] ← inBlock[permutationTable[i]] 
  i ← i + 1

} 
return 

}
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35.

36.

37.

split (n, m, inBlock[1 … n], leftBlock[1 … m], rightBlock[1 … m])
{

i ← 1
while (i ≤ m)
{

 leftBlock[i] ← inBlock[i] 
 rightBlock[i] ← inBlock[i + m] 
  i ← i + 1

} 
return 

}

combine (n, m, leftBlock[1 … n], rightBlock[1 … n], outBlock[1 … m])
{

i ← 1
while (i ≤ m)
{

 outBlock[i] ← leftBlock[i] 
 outBlock[i + m] ← rightBlock[i] 
  i ← i + 1

} 
return 

}

exclusiveOr (n, firstBlock[1 … n], secondBlock[1 … n], outBlock[1 … n])
{

i ← 1
while (i ≤ n)
{

 outBlock[i] ← firstBlock [i] ⊕ secondBlock[i] 
  i ← i + 1

} 
return 

}
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38.

39. We have added one extra parameter ED (encrypt/decrypt). If ED = E, we do
encryption; if ED = D, we do decryption. 

cipher (plainBlock[1 … 64], RoundKeys[1 … 16][1 … 48], cipherBlock[1 … m64])
{

permute (64, 64, plainBlock, inBlock, InitialPermutationTable) 
split (64, 32, inBlock, rightBlock, leftBlock) 
for (round = 1 to 16) 
{ 

 mixer (leftBlock, rightBlock, RoundKey[round])
 swapper (leftBlock, rightBlock)

} 
swapper (leftBlock, rightBlock) 
combine (32, 64, leftBlock, rightBlock, outBlock)
permute (64, 64, outBlock, cipherBlock, FinalPermutationTable)

}

cipher (ED, plainBlock[1…64], RoundKeys[1…16][1…48], cipherBlock[1 … m64])
{

permute (64, 64, plainBlock, inBlock, InitialPermutationTable) 
split (64, 32, inBlock, rightBlock, leftBlock) 
for (round = 1 to 16) 
{ 

 if (ED  = E)
 mixer (leftBlock, rightBlock, RoundKey[round]
 if (ED  = D)
 mixer (leftBlock, rightBlock, RoundKey[16 − round]
 if (round!= 16)
 swapper (leftBlock, rightBlock)

} 
combine (32, 64, leftBlock, rightBlock, outBlock)
permute (64, 64, outBlock, cipherBlock, FinalPermutationTable)

}



CHAPTER 7

AES
(Solution to Practice Set) 
Review Questions

1. The criteria defined by NIST for selecting AES fall into three areas: security, cost,
and implementation.

2. The following table lists the parameters:

3. The number of round keys and the number of transformation depend on the num-
ber of rounds. The following table list the information. Note that there is one trans-
formation for pre-round. Also note that the last round uses only three
transformations. 

4. DES is bit-oriented; AES is byte-oriented. In DES, an S-box takes 6 bits and trans-
forms it to 4 bits; in AES, SubBytes transformation takes a byte and change it to
another byte. In DES, P-boxes transpose bits; in AES the ShiftRows transforma-
tion transposes bytes. To provide mixing of bits inside a byte, AES uses the Mix-
Columns transformation. 

Version Block
size

Key 
size

Round-key size Number of 
rounds

AES-128 128 128 128 10

AES-192 128 192 128 12

AES-256 128 256 128 14

Version Number of 
rounds

Number of
round keys

Number of
Transformations

AES-128 10 11 1 + 9 × 4 + 3 = 40

AES-192 12 13 1 + 11 × 4 + 3 = 48

AES-256 14 15 1 + 13 × 4 + 3 = 56
1
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5. Before and after each stage, the data block is referred to as a state. States, like
blocks, are made of 16 bytes, but they are normally treated as matrices of 4 × 4
bytes. The following table shows the number of states used in each version. We
have used two extra states: one before the pre-round and one after the last round. If
you do not consider this, the number of states is reduced by two. 

6. The SubBytes, MixColumns, and AddRoundKey transformation change the con-
tents of bytes; the ShiftRows transformation does not.

7. Substitution in DES is done by S-boxes. Each box substitutes a 6-bit value with a
4-bit value. We need eight S-boxes to create a 32-bit half block. Substitution in
AES is done through SubBytes transformation that transforms a whole state to
another state. However, we can say that SubBytes actually substitutes 16 bytes
with new 16 bytes. 

8. Permutation in DES is applied in two steps: before substitution and after subsitu-
tion. The first is an expansion permutation to create a 48-bit half block out of a 32-
bit half block. This is needed because the round key is 48 bits long. Permutation in
AES is straight permutation of bytes. Since the size of the block and the size of the
round key are the same, there is no need for an expansion permutation. 

9. In DES, the size of the block is 64 bits, but the size of the round key is 48 bits. In
AES the size of the block and the round key are both 128 bits (for all versions). 

10. In DES, permutation is bit-oriented; in AES, permutation is byte oriented. To per-
mute the bits inside a byte, AES uses the MixColumns transformation. 

Exercises
11. The disadvantage of using keyed S-boxes is that it makes the design of the cipher

more difficult. In particular, it is more difficult to create S-boxes that are inverse of
each other in the encryption and decryption cipher. The advantage of using keyed
S-boxes is that a keyed S-box is normally non-linear, which protect the cipher
against linear cryptanalysis.

12. A larger block size creates more mixing of bits in each block. In a cipher with a
block size of 64, each bit, in average, is dependent on only 32 other bits; in a block
size of 128 bits, each bit depends, on average, on 64 bits. This is definitely an
advantage. One disadvantage is that the large block size creates an overhead of
adding more padding to the last block. In particular, if the size of the message is
very small and less than the size of a block, most of the plaintext is made of pad-
ding. 

Version Number of 
rounds

Number of
States

AES-128 10 (1) + 1 + 9 × 4 + 3 + (1) = 42

AES-192 12 (1) + 1 + 11 × 4 + 3 + (1) = 50

AES-256 14 (1) + 1 + 13 × 4 + 3 + (1) = 58
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13. Having different number of rounds has the advantage that new versions of cipher
with more number of rounds can be used, without changing the structure of cipher,
if the cipher is attacked by differential and linear cryptanalysis (or other attacks
that depend on the number of rounds). For example, we can use AES with 10
rounds as long as it is not secured. If it is attacked, we can move to the version with
12 or 14 rounds without changing the structure of the cipher. 

14. Having different key size has the advantage that new versions of cipher with larger
key size can be used, without changing the structure of cipher, if the cipher is
attacked by brute-force cryptanalysis. For example, we can use AES with a 128-bit
cipher key as long as it is not attacked. If it is attacked, we can move to the version
with 192-bit or 256-bit cipher key. 

15. A cipher in which the size of the round is the same as the size of the round key is
easier to design because we do not have to use expansion (or compression) permu-
tation to match the size of the block to the size of the round key. This enable us to
make the non-Feistel ciphers. 

16.

a. The state has 16 bytes which are permuted by ShiftRows transformation using
the following permutation table:

b. The state has 16 bytes which are permuted by InvShiftRows transformation
using the following permutation table:

c. We can prove that two transformation are inverse of each other by applying the
the process we learned in Chapter 3. We add indexes, we swap indexes and con-
tents, and then sort the table according to the indexes. We start with the
ShiftRows table to get InvShiftRows table. After adding the index, we have   

After swapping the contents and the indexes, we have  

After sorting the table according to the index, we have the following table
which is the same as the InvShiftRows table found in part b. 

17. We use two plaintexts that differ only in the first bit:

01 02 03 04 06 07 08 05 11 12 09 10 16 13 14 15

01 02 03 04 08 05 06 07 11 12 09 10 14 15 16 13

01 02 03 04 06 07 08 05 11 12 09 10 16 13 14 15
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
01 02 03 04 06 07 08 05 11 12 09 10 16 13 14 15

01 02 03 04 08 05 06 07 11 12 09 10 14 15 16 13
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
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a. Applying the SubBytes transformation to P1 and P2, we get:

T2 and T1 differ only in 5 bits.    

b. Applying the ShiftRows transformation to P1 and P2, we get:

T2 and T1 differ only in 1 bit. 
Applying the MixColumn transformation to P1 and P2, we get:

T2 and T1 differ in 9 bits. 

c. Applying the AddRoundKey of 128 0-bit transformation to P1 and P2, we get:

T2 and T1 differ only in 1 bit. Note that we have used a round key with 128 0’s,
but the result is the same if we use any key. 

18. We have

Definitely, the two are different; the SubByte transformation is non-linear

19.

a. The SubBytes transformation is repeated in each round. So we have Nr of this
transformation. 

b. The ShiftRows transformation is repeated in each round. So we have Nr of this
transformation.

c. The MixColumns transformation is repeated in each round except the last
round. So we have (Nr  − 1) of this transformation.

P1: (0000 0000 0000 0000 0000 0000 0000 0000)16

P2: (8000 0000 0000 0000 0000 0000 0000 0000)16

T1: (6363 6363 6363 6363 6363 6363 6363 6363)16

T2: (CD63 6363 6363 6363 6363 6363 6363 6363)16

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (8000 0000 0000 0000 0000 0000 0000 0000)16

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (1B80 809B 0000 0000 0000 0000 0000 0000)16

T1: (0000 0000 0000 0000 0000 0000 0000 0000)16

T2: (8000 0000 0000 0000 0000 0000 0000 0000)16

SubBytes (0x57 ⊕ 0xA2) = SubBytes (0xF5) = 0xE6 
SubBytes (0x57) ⊕ SubBytes (0xA2)  = 0x5B ⊕ 0x3A  = 0x61 
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d. The AddRoundKey transformation is repeated in each round. In addition, we
have one of this transformation in the pre-round section. So we have (Nr  + 1) of
this transformation. 

e. The total number of transformation is 

20.

a. Figure S7.20a shows the key expansion in AES-192.

b. Figure S7.20b shows the key expansion in AES-256

Total number of transformation =  Nr  + Nr   +   (Nr  − 1) +   (Nr  + 1) = 4 × Nr

Figure S7.20a Solution to Exercise 20.a

Figure S7.20b Solution to Exercise 20.b

Cipher
key

ti

Making of ti (temporary) words i = 6 Nr

RCon[i/6]

Wi–1

k0

w0

t6 w6 w7 w8 w9 w10 w11

t42 w42 w43 w44 w45 w46 w47

t48 w48 w49 w50 w51

w1 w2 w3 w4 w5

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23

RotWord SubWord

Cipher key
(32 bytes)

Making of ti (temporary) words i = 8 Nr

w0

t8 w8 w9 w10 w11 w12 w13

t48 w48 w49 w50 w51 w52 w53

t56 w56 w57 w58 w59 w60

w1 w2 w3 w4 w5 w6 w7

ti

RCon[i/8]

Wi–1 RotWord SubWord

u12

u52

u60

Making of ui words i = 8 Nr + 4

uiWi–1 SubWord

w14

w54

w15

w55
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21.

a. We can use (x11−1 mod prime) and (x12−1 mod prime), in which the prime is the
the irreducible polynomial (x8 + x4 + x3 + x + 1), to find the first terms of
RCon[11] and RCon[12]. The following shows the constants for AES-192. 

b. We can use (x13−1 mod prime) and (x14−1 mod prime), in which the prime is the
the irreducible polynomial (x8 + x4 + x3 + x + 1), to find the first terms of
RCon[13] and RCon[14]. The following shows the constants for AES-256. 

22.

a. The pre-round operation needs a four-word round key. The cipher key in AES-
192 is six words; only the first four words of it is used in the pre-round opera-
tion.

b. The pre-round operation needs a four-word round key. The cipher key in AES-
256 is eight words; only the first four words of it is used in the pre-round opera-
tion.

23. The result is an identity matrix as shown below. Note that the addition and multi-
plication of elements are in GF(2). 

Round (RCon) Round (RCon) Round  (RCon)

1 (01 00 00 00)16 5 (10 00 00 00)16 9 (1B 00 00 00)16

2 (02 00 00 00)16 6 (20 00 00 00)16 10 (36 00 00 00)16

3 (04 00 00 00)16 7 (40 00 00 00)16 11 (6C 00 00 00)16

4 (08 00 00 00)16 8 (80 00 00 00)16 12 (D8 00 00 00)16

Round  (RCon) Round  (RCon) Round  (RCon)

1 (01 00 00 00)16 6 (20 00 00 00)16 11 (6C 00 00 00)16

2 (02 00 00 00)16 7 (40 00 00 00)16 12 (D8 00 00 00)16

3 (04 00 00 00)16 8 (80 00 00 00)16 13 (AB 00 00 00)16

4 (08 00 00 00)16 9 (1B 00 00 00)16 14 (4D 00 00 00)16

5 (10 00 00 00)16 10 (36 00 00 00)16

1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1

1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
0

X

=×

0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1

1
0
0
1
0
1
0
0

0
1
0
0
1
0
1
0

0
0
1
0
0
1
0
1

1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1

1
0
1
0
0
1
0
0

X−1 X × X−1

1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1
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24. The result is an identity matrix as shown below. Note that the addition and multi-
plication of coefficients are in GF(2). 

The identity matrix can be easy found. For example, if we multiply the first row of
C by the first column of C−1, we get
 

But if we multiply the second row of C by the first column of C−1, we get

25. Most of the code matches, line by line, with the steps in the process. The only sec-
tion that needs some explanation is the loop. The iterations of the loop gives us

The rearranged code is the result of matrix multiplication c = X × b if we ignore
the zero terms. After each line is created d = c + y is made. 
    

26.

a. The invByte routine calls two other routine: multiply and quotation. The first
routine multiplies two bytes; the second routine finds the quotient of dividing
the first byte by the second. The quotation routine calls the degree routine
which finds the degree of a byte (as a polynomial)

 

(x)(x3 + x2 + x) + (x + 1)(x3 + 1) + (1)(x3 + x2 +1) + (1)(x3 + x + 1) = 1

(1)(x3 + x2 + x) + (x)(x3 + 1) + (x + 1)(x3 + x2 +1) + (1)(x3 + x + 1) = 0

c0 = b0 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7 → c0  = b0 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7

c1 = b1 ⊕ b5 ⊕ b6 ⊕ b7 ⊕ b0 → c1  = b0 ⊕ b1⊕ b5 ⊕ b6 ⊕ b7

c2  = b2 ⊕ b6 ⊕ b7 ⊕ b0 ⊕ b1 → c2 = b0 ⊕ b1 ⊕ b2 ⊕ b6 ⊕ b7

c3  = b3 ⊕ b7 ⊕ b0 ⊕ b1 ⊕ b2 → c3 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b7

c4  = b4 ⊕ b0 ⊕ b1⊕ b2 ⊕ b3 → c4 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4

c5  = b5 ⊕ b1⊕ b2 ⊕ b3 ⊕ b4 → c5 = b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5

c6  = b6 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 → c6  = b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6

c7  = b7  ⊕ b3 ⊕ b4 ⊕ b5⊕ b6 → c7 = b3 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b7

C

=×
x3 1×

xx2x3 × ×

x2x3 1× ×

xx3 1× ×

x3 1×

xx2x3 × ×

x2x3 1× ×

xx3 1× ×

x3 1×

xx2x3 × ×

x2x3 1× ×

xx3 1× ×

x3 1×

xx2x3 × ×

x2x3 1× ×

xx3 1× ×

1

1

x 1×

x

x 1×

x

1

1

1

x 1×

x

1

x

1

1

x 1×

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

C−1 C × C−1
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invByte (byte)

{

if (byte = 0)    

    return byte

r1 ← (11B)16                                                         // modulus
r2 ← byte 

t1 ← (00)16 

t2 ← (01)16 

while (r2 > (00)16) 

{  

  q ← quotation(r1, r2)

  r ← r1 ⊕ multiply (q, r2)

  t ← t1  ⊕ multiply (q, t2)

  r1 ← r2        r2 ← r      t1 ← t2       t2 ← t

}  

return t1 

}

multiply (byte1, byte2)

{

i ← (00)16 

res ← (00)16 

while (byte2 ≠ (00)16) 

{  

  if [(byte2 AND (01)16) = (01)16]

  res ← res  ⊕ shiftLeft(i, byte1)   

  byte2 ← shiftRight(1, byte2)

}  

return res 

}

Quotation (byte1, byte2)

{

degreeDiff  ← degree (byte1) −  degree (byte2)   

while (degreeDiff  ≥ 0) 

{  

  temp ←  shiftLeft(degreeDiff, 1) 
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b.

c.

  byte1 ←  byte1 ⊕ shiftLeft(degreeDiff, byte2) 

  res ←  res OR temp 

}  

return res 

}

degree (byte)

{

deg  ← −1   

while (byte > 0) 

{  

  deg ← deg + 1  

  byte ←  shiftLeft(1, byte) 

}  

return deg 

}

ByteToMatrix (byte, matrix)

{

for (r = 7 downto 0)

{

matrix[r] ← byte mod 2

byte ← byte / 2 // integer division

}

}

MatrixToByte (matrix, byte)

{

byte ← 0

for (r = 7 downto 0)

{

byte ← byte × 2  + matrix[r]

}

}
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27.

28. The ShiftRows algorithm calls the shiftrow routine three times (the first row is not
shifted) to shift each row. The following shows how shifting is done:

29.

InvSubBytes (S[0 … 3][0 … 3])

{

for (r = 0 to 3)

for (c = 0 to 3)

 S[r][c] ← invsubbyte (S[r][c]) 

return (S) 

}

invsubbyte (byte)

{

d ← ByteToMatrix (byte)

c ← d ⊕ ByteToMatrix (0x63)

b ← X−1 ×  c

a ← MatrixToByte (b)

return (a−1) 

}

First call n = 1 c = 0
c = 1
c = 2
c = 3      

row3  ← t0       
row0  ← t1       
row1  ← t2     
row2  ← t3

Second call n = 2 c = 0
c = 1
c = 2
c = 3   

row2  ← t0   
row3  ← t1   
row0  ← t2   
row1  ← t3

Third call n = 3 c = 0
c = 1
c = 2
c = 3   

row3  ← t0   
row2  ← t1   
row0  ← t2   
row1  ← t3

CopyRow (row[0 … 3], t[0 … 3])

{

for (c = 0 to 3)

t[c] ← row [c] 

}
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30.

31. The MixColumns algorithm calls the mixcolum routine four times, once for each
column of the old state to create the correspond column of the new state. The mix-
column routine actually performs the following matrix multiplication col = C × t,
in which col is the new column matrix, t is the old column matrix, and the C is the
square constant matrix. We can write the code in the mixcolumn routine as 

32.

33.

InvShiftRows(S[0 … 3][0 … 3]

{

for (r = 0 to 3)

invshiftrow (S[r], r)

}

invshiftrow (row[0 … 3], r)

{

CopyRow (row, t)

for (c = 0 to 3)

row[(c + n) mod 4] ← t[c]

}

col0 ← C00 •  t0 ⊕ C01 •  t1 ⊕ C02 •  t2 ⊕ C03 •  t3 
col1 ← C10 •  t0 ⊕ C11 •  t1 ⊕ C12 •  t2 ⊕ C13 •  t3 
col2 ← C20 •  t0 ⊕ C21 •  t1 ⊕ C22 •  t2 ⊕ C23 •  t3 
col3 ← C30 •  t0 ⊕ C31 •  t1 ⊕ C32 •  t2 ⊕ C33 •  t3 

CopyColumn (column[0 … 3], t[0 … 3])

{

for (r = 0 to 3)

t[r] ← column [r] 

}

MixColumns (S[0 … 3][0 … 3]

{

for (c = 0 to 3)

mixcolumn (S[c])

}
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34.

35. The algorithm uses a loop that iterates four times, one for each column of the cur-
rent state. In each iteration, a column of the old state is exclusive-ored with a key
word to create a new column. 

S[c] ← S[c] ⊕ W[4 × round + c]

For example, in round 5, we have

36.

a. The subbyte routine called by the SubWord is the one defined in the text. 

mixcolumn (col [0 … 3])

{

CopyColumn (col, t)

col[0] ← MultField (0x02, t[0]) ⊕ MultField (0x03, t[1]) ⊕ t[2] ⊕ t[3]     

col[1] ← t[0] ⊕ MultField (0x02, t[1]) ⊕ MultField (0x03, t[2]) ⊕ t[3]     

col[2] ← t[0] ⊕ t[1] ⊕ MultField (0x02, t[2]) ⊕ MultField (0x03, t[3])      

col[3] ← MultField (0x03, t[0]) ⊕ t[1] ⊕ t[2] ⊕ MultField (0x02, t[3])      

}

InvMixColumns (S[0 … 3][0 … 3]

{

for (c = 0 to 3)

invmixcolumn (S[c])

}

invmixcolumn (col [0 … 3])

{

CopyColumn (col, t)

col[0] ← 0x0E • t[0]) ⊕ (0x0B • t[1]) ⊕ (0x0D • t[2]) ⊕ (0x09 • t[3])       

col[1] ← 0x09 • t[0]) ⊕ (0x0E • t[1]) ⊕ (0x0B • t[2]) ⊕ (0x0D • t[3])       

col[2] ← 0x0D • t[0]) ⊕ (0x09 • t[1]) ⊕ (0x0E • t[2]) ⊕ (0x0B • t[3])       

col[3] ← 0x0B • t[0]) ⊕ (0x0D • t[1]) ⊕ (0x09 • t[2]) ⊕ (0x0E • t[3])       

}

S[0] ← S[0] ⊕ W[20]

S[1] ← S[1] ⊕ W[21]

S[2] ← S[2] ⊕ W[22]

S[3] ← S[3] ⊕ W[23]
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b.

37.

a.

b.

SubWord (W[0 … 3])

{

for (i = 0 to 3)

W[i] ← subbyte (W[i])

  return (W)

}

RotWord (W[0 … 3])

{

CopyRow (W, t)

for (i = 0 to 3)

W[(i + 3) mod 4] ← t[i]

  return (W)

}

KeyExpansion (Key[0 … 23], W[0 … 51]

{

for (i = 0 to 5)

W[i] ← Key[4i] |  Key[4i +1] |  Key[4i +2] | Key[4i +3]   

for (i = 6 to 51)

if (i mod 6 = 0)   

{   

   t ← subword(rotWord (W[i − 1]) ⊕ Rcon[i /6] 

   W[i] ← t ⊕ W[i − 6] 

}   

else   

   W[i] ← W[i − 1] ⊕ W[i − 6] 

}

KeyExpansion (Key[0 … 31], W[0 … 59])

{

for (i = 0 to 7)

W[i] ← Key[4i] |  Key[4i +1] |  Key[4i +2] | Key[4i +3]   

for (i = 8 to 59)
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38. The following algorithm modifies the keys created for the original design to create
the round keys for the alternate design. 

39.

if (i mod 8 = 0)   

{   

   t ← subword(rotWord (W[i − 1]) ⊕ Rcon[i /8] 

   W[i] ← t ⊕ W[i − 8] 

}   

if (i mod 8 = 4)   

{   

   t ← subword(W[i − 1]) 

   W[i] ← t ⊕ W[i − 8] 

}   

else   

   W[i] ← W[i − 1] ⊕ W[i − 8] 

}

KeyExpansionAlternative (Key[0 … 15])

{

KeyExpansion(Key[0 … 15], W[0 … 43]) 

for (rnd = 1 to 9)

{

for (r = 0 to 3)

t[r] ← W[rnd × 4 + r]

W[rnd × 4 + 0] ← 0x0E • t[0] ⊕ 0x0B • t[1] ⊕ 0x0D • t[2] ⊕ 0x09 • t[3]

W[rnd × 4 + 1] ← 0x09 • t[0] ⊕ 0x0E • t[1] ⊕ 0x0B • t[2] ⊕ 0x0D • t[3]

W[rnd × 4 + 2] ← 0x0D • t[0] ⊕ 0x09 • t[1] ⊕ 0x0E • t[2] ⊕ 0x0B • t[3]

W[rnd × 4 + 3] ← 0x0B • t[0] ⊕ 0x0D • t[1] ⊕ 0x09 • t[2] ⊕ 0x0E • t[3]

}

return (W[0 … 43]) 

}

InvCipher (InBlock[0 … 16], outBlock[0 … 16], W[0 … 43]

{

BlockToState (Inblock, S)

S ← AddRoundKey (S, W[40 … 43])

 for (r = 1 to 10) // r defines the round
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{ 

S ← InvShiftRows (S) 

S ← InvSubBytes (S) 

S ← AddRoundKey (S, W[(10 − r) × 4 … (10 − r) × 4 + 3) 

if (r ≠ 10) 

 S ← InvMixColumns (S)

}

StateToBlock (S, outBlock)

}

InvCipherAlternate (InBlock[0 … 16], outBlock[0 … 16], W[0 … 43]

{

BlockToState (Inblock, S)

S ← AddRoundKey (S, W[40 … 43])

 for (r = 1 to 9) // r defines the round

{ 

S ← InvSubBytes (S) 

S ← InvShiftRows (S) 

S ← InvMixColumns (S) 

S ← InvAddRoundKey (S, W[(10 − r) × 4 … (10 − r) × 4 + 3) 

}

 S ← InvSubBytes (S)

 S ← InvShiftRows (S)

 S ← AddRoundKey (S, W[0 … 3])

StateToBlock (S, outBlock)

}
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CHAPTER 8

Encipherment Using Modern
Block Ciphers

(Solution to Practice Set) 
Review Questions
1. Modern block ciphers encrypt and decrypt small blocks. DES uses a block size of

8 bytes (characters) and AES uses a block size of 16 bytes (characters). In real life,
we need to encrypt or decrypt larger units of data. For example, a one-page docu-
ment is normally more than 1000 characters. Mode of operations are designed to
allow us to repeatedly use a modern block cipher for encryption and decryption. 

2. We discussed electronic codebook (ECB), cipher block chaining (CBC), cipher
feedback (CFB), output feedback (OFB), and counter (CTR) modes. 

3. In the electronic codebook (ECB) mode, the plaintext is divided into N blocks.
Each block is n bits. The same key is used to encrypt and decrypt each block. 

Advantages. This mode has two obvious advantages. First, it is simple. Sec-
ond, transmission error is not propagated from one block to the other.

Disadvantages. This mode has some security problems. First, patterns at the
block level are preserved. Second, block independency creates opportunities
for Eve to substitutes some cipher blocks with some cipher blocks of her own. 

4. In the cipher block chaining (CBC) mode, each plaintext block is exclusive-ored
with the previous ciphertext block before being encrypted. A phony block called
the initial vector (IV) is used to serve as C0. The same key is used to encrypt and
decrypt each block. 

Advantages. This mode has one obvious advantage. Each ciphertext block
depends on previous ciphertext blocks. Patterns at the block level are not pre-
servered. Eve cannot reorder the ciphertext blocks.

Disadvantages. This mode has some security problems. First, if two mes-
sages are equal, their encipherment is the same if they use the same IV. Sec-
ond, Eve can add some ciphertext blocks at the end of the message. The mode
also has some error-propagation problem: a single bit error in one ciphertext
block may creates errors in the corresponding plaintext block and the next
plaintext block. 
1
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5. In the cipher feedback (CFB) mode, the size of the plaintext or ciphertext block is
r, where r ≤ n. The idea is to use DES or AES, not for encrypting the plaintext or
decrypting the ciphertext, but to encrypt or decrypt the contents of a shift register,
S, of size n. Data encryption is done by exclusive-oring an r-bit plaintext block
with r bits of the shift register. Data decryption is done by exclusive-oring an r-bit
ciphertext block with r bits of the shift register. For each block, the shift register Si
is made by shifting the shift register Si−1(previous shift register) r bits to the left
and filling the rightmost r bits with Ci−1. 

Advantages. One advantage of CFB is that no padding is required because the
size of the blocks, r, is normally chosen to fit the data unit to be encrypted.
Another advantage is that the system does not have to wait until it has
received a large block of data before starting the encryption. 

Disadvantages. One disadvantage of CFB is that it is less efficient than CBC
or ECB, because it needs to apply the encryption function of underlying block
cipher for each small block of size r. Another disadvantage is that Eve can add
some ciphertext block to the end of the stream. 

6. The output feedback (OFB) mode is very similar to CFB mode, with one differ-
ence: each bit in the ciphertext is independent of the previous bit or bits. This
avoids error propagation. If an error occurs in transmission, it does not affect the
bits that follow. Like CFB, both the sender and the receiver use the encryption
algorithm.

Advantages. One advantage of OFB is that no padding is required because
the size of the blocks, r, is normally chosen to fit the data unit to be encrypted.
Another advantage is that the system does not have to wait until it has
received a large block of data before starting the encryption. 

Disadvantages. One disadvantage of OFB is that it is less efficient than CBC
or ECB, because it needs to apply the encryption function of underlying block
cipher for each small block of size r. Another disadvantage is that Eve can add
some ciphertext block to the end of the stream. 

7. In the counter (CTR) mode, there is no feedback. The pseudorandomness in the
key stream is achieved using a counter. An n-bit counter is initialized to a pre-
determined value (IV) and incremented based on a predefined rule (mod 2n). To
provide a better randomness, the increment value can depend on the block number
to be incremented. The plaintext and ciphertext block have the same block size as
the underlying cipher (e.g., DEA or AES). Plaintext blocks of size n are encrypted
to create ciphertext blocks of size n.

Advantages. One advantage of CTR is that it can be used to create random
access file as long as the value of the counter is related to the record number in
the file. 

Disadvantages. One disadvantage of CTR is that the size of block is the same
as the size of the underlying cipher (DES or AES). Encryption or decryption
needs to be done n-bit at a time; the process needs to wait until n bit of data is
accumulated. 
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8.

9.

10.

11. RC4 uses a state of bytes for key generation. Each key in the key stream is a per-
mutation of a key state. A5/1 uses the result of three LFSR’s to create a key bit. We
can say that key generation in RC4 is byte-oriented, but the key generation in A5/1
is bit-oriented. The other main difference is encryption and decryption. RC4
encrypts and decrypts a character at a time; A5/1 encrypts and decrypts a frame at
a time. 

12. The size of data in RC4 is normally 8 bits; data is normally encrypted or decrypted
a byte at a time. The size of data in A5/1 is 228 bits; data is encrypted or decrypted
a frame at a time. 

13. ECB can be used for parallel processing because each block is encrypted or
decrypted independently.

14. ECB can be used for encipherment of blocks in a random-access file because the
encryption and decryption of each block is independent from the rest of the blocks. 

Exercises
15. In CFB mode, the key generator for block i uses Ci−1, the ciphertext created in

block (i − 1). According to our definition in Chapter 5, this is a nonsynchronous
stream cipher. In OFB mode, the key generator for block i uses part of the key
from the previous block, but it is independent from the plaintext and ciphertext in
the previous block. According to our definition in Chapter 5, this is a synchronous
stream cipher. 

16. In CFB, ciphertext is transmitted in blocks of r bits. A single bit error in a cipher-
text block affects the corresponding bit plaintext block. However, the corruption
does not stop here. The corrupted ciphertext block in the receiver site enters the
shift register and corrupts the subsequent plaintext blocks until it falls off the shift
register. In general, a single bit error in ciphertext, may corrupt (n /r + 1) blocks of
the plaintext. To see the relations, assume the underlying cipher is DES (n = 64)
and encryption/decryption is done a byte at a time (r = 8). Imagine the second bit
in ciphertext block 5 is corrupted during transmission. When this block is
decrypted, only the second bit in plaintext block 5 is in error. However, this cipher-
text block enters the shift register and remains in there until the next 8 blocks

First Group: ECB and CBC Second Group: CFB, OFB, and CTR

First Group: ECB and CBC Second Group: CFB, OFB, and CTR

First Group: ECB and CBC Second Group: CFB, OFB, and CTR
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arrives. This results in the possible corruption of all bits in the next 8 plaintext
blocks. In other words, 9 blocks may have been corrupted. 

17. In ECB, each block is decrypted independently. However, since the decryption is
done a block at a time (DES or AES), the corrupted bit 17 in ciphertext block 8
may affect all n bits in plaintext block 8.   

18. In CBC, if bits 17 and 18 in ciphertext block 9 are corrupted, all n bits in plaintext
block 9 may be corrupted (decryption is one block at a time). However, bits 17 and
18 in ciphertext block 9 are also exclusive-ored with bits 17 and 18 of the next
block (block 10). Therefore, n + 2 bits may be corrupted; n bits in block 9 and 2
bits in block 10. None of the bits of other blocks (block 11 …) are affected. The
system recovers itself after block 11.     

19. As discussed in the solution to Exercise 16, a corrupted ciphertext block in CFB
affects the corresponding plaintext block and the following n /r plaintext blocks. If
we assume n = 64, the following plaintext blocks may be corrupted: block 11 (bits
3 to 6) and block 12 to 19 (all bits).   

20. In CRT mode, there is no feedback. If ciphertext blocks 3 and 4 are corrupted, only
plaintext blocks 3 and 4 will be corrupted.

21. In OFB mode, the feedback is only in the key-generation system. If ciphertext
block 11 is corrupted, only plaintext block 11 may be corrupted. 

22. In CFB mode, it is obvious that if ki used at the Bob’s site is the same as ki used at
the Alice’s site, then (Pi)′ created by Bob is the same as Pi sent by Alice (assuming
no corruption in transmission):

However, we also need to prove that ki used by Alice and Bob are also the same. If
there is no corruption in transmission and the IV’s used by Alice and Bob are the
same, then (Si)′ = Si. Now, we can prove    

23. In OFB mode, it is obvious that if ki used at the Bob’s site is the same as ki used at
the Alice’s site, then (Pi)′ created by Bob is the same as Pi sent by Alice (assuming
no corruption in transmission):

The ki used by Bob is definitely the same as ki used by Alice if both Alice and Bob
use the same IV’s.      

24. In CRT mode, it is obvious that if ki used at the Bob’s site is the same as ki used at
the Alice’s site, then (Pi)′ created by Bob is the same as Pi sent by Alice (assuming
no corruption in transmission):

(Pi)′ = (Ci)′ ⊗ ki = Pi ⊗ ki ⊗ ki  = Pi ⊗ 0 = Pi 

(ki)′ = ExtractLeftr [EK(Si)′]  = ExtractLeftr [EK(Si)]  = ki 

(Pi)′ = (Ci)′ ⊗ ki = Pi ⊗ ki ⊗ ki  = Pi ⊗ 0 = Pi 

(Pi)′ = (Ci)′ ⊗ ki = Pi ⊗ ki ⊗ ki  = Pi ⊗ 0 = Pi 
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The ki used by Bob is definitely the same as ki used by Alice if both Alice and Bob
use the same IV’s for the counter.

25. Figure S8.25 shows both the encryption and decryption. It is possible to cancel the
underlying encryption for the first block and exclusive-or the IV directly with P1. 

26. Figure S8.26 shows both the encryption and decryption. It is possible to cancel the
underlying encryption for the first block and exclusive-or the IV directly with P1.

Figure S8.25 Solution to Exercise 25

Figure S8.26 Solution to Exercise 26
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27. The following shows the process:

28. Figure S8.28 shows the diagram for encryption and decryption.

29. The following shows the process:

30. Figure S8.30 shows the diagram for encryption and decryption.

        X = DK(CN−1) →          PN = headm(X)
        Y = CN | tailn−m(X) →          PN−1 = DK(Y)

Figure S8.28 Solution to Exercise 28
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Y = DK [CN | tailn−m(X)] → PN−1 = CN−2 ⊕ Y 

Figure S8.30 Solution to Exercise 30
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31. CFB, OFB, and CRT are stream ciphers, in which the size of the block is usually
fixed (one character). There is no need for padding. This means there is no need
for cipher stealing technique. 

32. In this case, the error propagation is the same as the case where the CTS technique
is not used except for the last two blocks. If CN−1 is corrupted, it corrupts both PN−
1 and PN. If CN is corrupted, it corrupts only PN−1.     

33. In this case, the error propagation is the same as the case where the CTS technique
is not used except for the last two blocks. If CN−1 is corrupted, it corrupts both PN−
1 and PN. If CN is corrupted, it corrupts only PN−1.

34. Figure S8.34 shows the BC mode.

35. Figure S8.35 shows the PCBC mode. In PCBC an error in a ciphertext block cor-
rupts all plaintext block that follows. This mode was used in Kerberos (See Chap-
ter 15) to create both encryption and integrity of blocks. If a block was corrupted,
all previous blocks were discarded. 

36. Figure S8.36 shows the CBCC mode. In CBCC an error in a plaintext block cor-
rupts all ciphertext block that follows. 

Figure S8.34 Solution to Exercise 34
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37. We have written a program based on Algorithm 8.6 of the textbook. The result is

Figure S8.35 Solution to Exercise 35

Figure S8.36 Solution to Exercise 36

41 63 2 212 127 55 201 182 51 242 175 82 133 254 180 107 230 32 241 57

Encryption

K K KE

P1

P0 P0

E

P2

E

PN

C1

C0 C0

C2 CN

CN−1

n bits

n bits n bits n bits

n bits n bits

PN−1 PN−1

Decryption

K K KD

P1

D

P2

D

PN

C1 C2 CN

CN−1

n bits

n bits n bits n bits

n bits n bits

Encryption

K E

P1

C1

P0

P0

n bits

n bits

K K KE

P2

C2

n bits

n bits

E

P3

C3

n bits

n bits

(IV)
E

PN

C2

n bits

n bits

Decryption

K D

P1

C1

n bits

n bits

K K KD

P2

C2

n bits

n bits

D

P3

C3

n bits

n bits

(IV)
D

PN

C2

n bits

n bits



9

38. This situation is impossible because

a. If the state must remain the same after the second step, it is needed that S[i] has
the same value for each i = 0 to 255 (for example all 0’s, all 1’s, all 2’s, …)
because only in these cases the permutation in the following steps cannot
change the values.    

b. But the above condition can never happen because, before the second step, we
have S[0] = 0, S[1] = 1, …, S[255] = 255 and the swapping can never make
them the same.   

39. This problem can be solved using the classical third birthday problem that we
review in Appendix E. We have a sample set of k values, in which each sample can
take one of the N values. What is the minimum size of k such that it is probable
(with probability P ≥ 1/2) such that at least two samples are the same. The answer
is k = 1.18 N1/2. In this case N = 2128 possible keys, which means k = 1.18 × 264. 

40. According to the literature, all of the three characteristic polynomials are irreduc-
ible and the number of taps are even, so the maximum period can be found using
the formula 2m − 1. 

a. For LFSR1, we have 219 − 1. 
b. For LFSR2, we have 222 − 1. 
c. For LFSR3, we have 223 − 1. 

41.

a. Majority (1, 0, 0) = 0. Therefore, LFSR2 and LFSR3 whose clocking bits
matches with the value of the Majority function are clocked.   

b. Majority (0, 1, 1) = 1. Therefore, LFSR2 and LFSR3 whose clocking bits
matches with the value of the Majority function are clocked.

c. Majority (0, 0, 0) = 0. Therefore all three LFSR’s are clocked.

d. Majority (1, 1, 1) = 1. Therefore all three LFSR’s are clocked.

42. If the three bits in the Majority functions are called a, b, and c respectively, then   

43.   

Majority (a, b, c) = (a AND b) ⊕ (b AND c) ⊕ (c AND a)

ECB_Decryption (K, C[1 … N])
{

for (i = 1 to N)
{

P[i] ← DK (C[i])
}
return (P[1 … N])

}
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44.

45. We use a variable Pre_C to hold the previous cipher block. In this way, we do not
have to keep an array of ciphertext blocks.  

CBC_Decryption (IV, K, C[1 … N])
{

C[0] ← IV
for (i = 1 to N)
{

temp ← DK (C[i])
temp ← temp ⊕ C[i −1]

}
return (P[1 … N])

}

CFB_Decryption (IV, K, r)
{

i ← 1
while (more blocks to decrypt)
{

input (C)
if (i = 1)

S ← IV
else 
{ 

 Temp ← shiftLeft(r , S)
 S ← concatenate(Temp, Pre_C)

} 
T ← EK(S) 
k ← selectLeft(r, T) 
P  ← C ⊕  k
output (P)
Pre_C ← C 
i ← i + 1 

}
}
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46. We use a variable Pre_k to hold the previous key. In this way, we do not have to
keep an array of k’s.  

47. We have written the decryption algorithm assuming all N blocks are ready for
decryption to match the encryption algorithm in the text. However, as described in
the text, the algorithm can be written if ciphertext blocks are ready only one at a
time.  

OFB_Decryption (IV, K, r)
{

i ← 1
while (more blocks to decrypt)
{

input (C)
if (i = 1)

S ← IV
else 
{ 

 Temp ← shiftLeft(r , S)
 S ← concatenate(Temp, Pre_k)

} 
T ← EK(S) 
k ← selectLeft(r, T) 
P  ← C ⊕  k
output (P)
Pre_k ← k 
i ← i + 1 

}
}

CTR_Decryption (IV, K, C[1 … N])
{

Counter ← IV
for (i = 1 to N)
{

Counter ← (Counter + i  − 1) mod 2N

ki ← EK (Counter)
P[i] ← C[i] ⊕ k[i]

}
return (P[1 … N])

}
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48.

49.

50.

shiftLeft (r, S[1 … n])
{

for (i = n downto r)
S[i] ← S[i − r]

for (i = 0 to r)
S[i] ← 0

return S
}

concatenate (X[1 … n], Y[1 … r])
{

for (i = 1 to r)
X[n − r + 1] ← Y[i] 

return X
}

selectLeft (r, X[1 … n])
{

for (i = 1 to r)
Y[i] ← X[i] 

return Y
}



CHAPTER 9

Mathematics of Cryptography: Part 3
(Solution to Practice Set) 
Review Questions
1. A positive integer is a prime if and only if it is exactly divisible by two integers, 1

and itself. A composite is a positive integer with more than two divisors.

2. Two positive integers, a and b, are said to be relatively prime, or coprime, if gcd (a,
b) = 1. 

3.

a. The function π(n) finds the number of primes smaller than or equal to n.

b. Euler’s phi-function, φ(n), which is sometimes called the Euler’s totient func-
tion, finds the number of integers that are both smaller than n and relatively
prime to n.

4. The Sieve of Eratosthenes is a method to find all primes less than n. We write
down all the integers between 2 and n. We cross out all integers divisible by 2
(except 2 itself). We cross out all integers divisible by 3 (except 3 itself). And so
on. When we have crossed out all integers divisible by all primes less than , the
remaining integers are primes. 

5. We discussed two versions of Fermat’s little theorem. The first version says that if
p is a prime and a is an integer such that p does not divide a, then we have ap−1 ≡
1(mod p). The second Version removes the condition on a. It says that if p is a
prime and a is an integer, then ap ≡ a (mod p). Two immediate applications of this
theorem is to find solutions to exponentiation and multiplicative inverses when the
modulus is a prime.   

6. Euler’s Theorem is a generalization of Fermat’s little theorem. The modulus in the
Fermat theorem is a prime, the modulus in Euler’s theorem is an integer. We intro-
duce two versions of this theorem. The first version says that if a and n are
coprime, then aφ(n) ≡ 1 (mod n). The second version says if n = p × q, a < n, and k
is an integer, then ak × φ(n) + 1 ≡ a (mod n). Two immediate applications of this the-
orem is to find solutions to exponentiation and multiplicative inverses when the
modulus is a composite but we can easily find the value of φ(n).

n

1
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7.

a. Mersenne defined the formula Mp = 2p − 1 that was supposed to enumerate all
primes. However, not all Mersenne numbers are primes. 

b. Fermat defined the formula Fn = 22n + 1 that was supposed to enumerate all
primes. However, not all Fermat’s numbers are primes. 

8. A deterministic algorithm always gives a correct answer; a probabilistic algorithm
gives an answer that is correct most of the time, but not all of the time. We mention
two deterministic algorithms for primality testing: divisibility and AKS. We dis-
cussed three probability algorithms for primality testing: Fermat, square-root, and
Miller-Rabin. 

9. We mentioned the trial-division, Fermat, Polard p − 1, Polard rho, quadratic sieve,
and number field sieve. 

10. The Chinese remainder theorem (CRT) solves a set of congruent equations with
one variable but different moduli, which are relatively prime. The Chinese remain-
der theorem has several applications in cryptography. One is to solve quadratic
congruence. The other is to represent a very large integer in terms of a list of small
integers.

11. A quadratic congruence is an equations of the form a2x2 + a1x + a0 ≡ 0 (mod n). In
this text, we have limited our discussion to equations of the form x2  ≡ a (mod n).
In this equation a is called a quadratic residue (QR) if the equation has two solu-
tions; a is called quadratic nonresidue (QNR) if the equation has no solutions.

12. The group G = <Zp*, ×> has primitive roots. The primitive roots can be thought as
the base of logarithm. Given x = logg y for any element y in the set, there is another
element x that is the log of y in base g. This type of logarithm is called discrete log-
arithm. 

Exercises
13.

a. The number of primes between 100,000 and 200,000 can be found as
π(200,000) − π(100,000). Using the upper and lower limits devised by Gauss
and Lagrange, we have 

b. The number of composites between 100,000 and 200,000 is 

c. The ratio of primes to composites in the above range is 8062/91938 or approxi-
mately 8.77 percent. This ratio for numbers between 1 to 10 (without considering 1 and
10) is 4/4 or 100 percent. 

 16385 < π(200,000)  < 17985    →     π(200,000) ≈ 17200     
 8688  < π(100,000)  <  9587     →     π(100,000) ≈ 9138     

 π(200,000) − π(100,000)  ≈  17200 − 9138  ≈  8062 

 100,000 −  8062 ≈  91938 
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14.

a. All of these numbers have the same largest prime factor, because 

b. However, when we add 1 to each integer, the largest prime factor changes
unpredictably. 

15. When an integer is divided by 4, the remainder is either 0, 1, 2, or 3. This means
that an integer can be written as (4k + 0), (4k + 1), (4k + 2), or (4k + 3), in which k
is the quotient. An integer in the form (4k + 0) or 4k is not a prime because it is
divisible by 4. An integer in the form (4k + 2) can be a prime only if k = 0 (the inte-
ger is 2 and it is the first prime). The other two forms, (4k + 1) and (4k + 3), can
represent a prime or a composite. This means that any prime can be either in the
form of (4k + 1) or (4k + 3). However, this does not mean that any integer in one of
these forms is a prime. 

16. We show some primes for each form:

a. p = 5k + 1:

b. p = 5k + 2:

c. p = 5k + 3:

d. p = 5k + 4:

17.

a. φ(29) = 29 − 1 = 28    (29 is a prime) 

b. φ(32) = φ(25) = 25 − 24 = 16   (2 is a prime) 

c. φ(80) = φ(24 × 51) = (24 − 23) × (51 − 50) = 8 × 4  = 32      (2 and 5 are primes)

100 = (2 × 5)2 = 22 × 52 → Largest factor is 5 
1000 = (2 × 5)3 = 23 × 53 → Largest factor is 5 

10,000 = (2 × 5)4 = 24 × 54 → Largest factor is 5 
100,000 = (2 × 5)5 = 25 × 55 → Largest factor is 5 

1,000,000 = (2 × 5)6 = 26 × 56 → Largest factor is 5 

101 = 1 × 101 → Largest factor is 101 
1001 = 7 × 11 × 13 → Largest factor is 13 

10,001 = 73 × 137 → Largest factor is 137 
100,000 = 11 × 9091 → Largest factor is 9091 

1,000,000 = 101 × 9901 → Largest factor is 9901 

k = 2 → p = 11 k = 6 → p = 31 k = 8 → p = 41 k = 10 → p = 51

k = 0 → p = 2 k = 1 → p = 7 k = 3 → p = 17 k = 7 → p = 37

k = 0 → p = 3 k = 2 → p = 13 k = 4 → p = 23 k = 8 → p = 43

k = 3 → p = 19 k = 5 → p = 29 k = 9 → p = 49 k = 11 → p = 59



4

d. φ(100) = φ(22 × 52) = (22 − 21) × (52 − 51) = 2 × 20  = 40    (2 and 5 are primes)

e. φ(101) = 101 − 1 = 100      (101 is a primes)

18.

a. (224 − 1)  =  (212 − 1) × (212 + 1). Because none of the factors is 1, (224 − 1) is a
composite. 

b. (216 − 1)  =  (28 − 1) × (28 + 1). Because none of the factors is 1, (216 − 1) is a
composite. 

c. In general, if a positive integer can be written in the form (2n − 1) and n is an
even integer greater than 2, then (2n − 1) =  (2n/2 − 1) × (2n/2 + 1). If n = 2, then
we have  (2n − 1) = 3, a prime. 

19. We have (10 = 3 + 7), (24 = 11 + 13), (28 = 11 + 17), and (100 = 11 + 89). 

20. Some of these primes are shown below. We can always check the primeness using
Appendix H. 

21.

a.

b.   

c.

d.

22. We know that if p is a prime, x−1 mod p = x p − 2 mod p.   

a.

b.   

n = 1  →   (n2 + 1) = 2  n = 2 →  (n2 + 1) = 5 
n = 4  →   (n2 + 1) = 17  n = 6 →  (n2 + 1) = 37 
n = 10  →   (n2 + 1) = 101  n = 14 →  (n2 + 1) = 197 
n = 16  →   (n2 + 1) = 257  n = 20 →  (n2 + 1) = 401 
n = 24  →   (n2 + 1) = 577  n = 26 →  (n2 + 1) = 677 

(515 mod 13) = [(52 mod 13) × (513 mod 13)] mod 13         
=  [(−1 mod 13) × (5 mod 13)] mod 13 =  −5 mod 13 = 8 mod 13 

(1518 mod 17) = [(15 mod 17) × (1517 mod 17)] mod 17 
=  [(−2 mod 17) × (−2 mod 17)] mod 17 =  4 mod 17

  (45617 mod 17) = (456 mod 17) = 14 mod 17

(145102 mod 101) = [(145101 mod 101) × (145 mod 101)] mod 101 
 =  [145 ×145] mod 101 = [44  × 44] mod 101 = 17 mod 101 

5−1 mod 13 =  513 − 2 mod 13 =  511 mod 13 = 8 mod 13         
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c.

d.

23. We know that if n is an integer, x−1 mod n = xφ(n) − 1 mod n.   

a.

b.   

c.

d.

24. For each Mersenne number, Mp = 2p − 1, we try some integers in the form 2kp + 1
to find a possible divisor.

a. M23 = 223 − 1 = 8,388,607 is not a prime. When k = 2, 2kp + 1 = 47 divides the
number: 8,388,607 = 47 × 178,481.  M23 is a composite 

b. M29 = 229 − 1 = 536,870,911 is not a prime. When k = 4, 2kp + 1 = 233 divides
the number: 536,870,911 = 233 × 1,103× 2,089.  M29 is a composite

c. M31 = 231 − 1 = 2,147,483,647 is a prime. If this number is a composite, it must
have a divisor less than 46,341 (the square root of M31), which means that k in
2kp + 1 must be less than 748. We tried all k = 0 to 747 with no success. M31 is
a prime.

25. It can be checked that if 2n − 1 is a prime, then n is a prime. However, there are
some values of n for which 2n − 1 is a composite, but n is a prime (n = 11, for
example). In other words, if n is a prime, 2n − 1 may or may not be a prime; if 2n −
1 is a prime, then n is a prime. This is to say that not all Mersenne numbers are
primes. Since Mersenne’s idea cannot be used for primality test, the fact stated in
this problem cannot be used for primality test. 

15−1 mod 17 =  1517 − 2 mod 17  =  1515 mod 17 = 8 mod 17

27−1 mod 41 =  2741 − 2 mod 41  =  2739 mod 41 = 38 mod 41 

70−1 mod 101 =  70101 − 2 mod 101  =  7099 mod 101 = 13 mod 101

12−1 mod 77 =  12φ(77) −1 mod 77 = 1259  mod 77 = 45 mod 77         

16−1 mod 323 =  16φ(323) −1 mod 323 = 16287  mod 323 = 101 mod 323

20−1 mod 403 =  20φ(403) −1 mod 403 = 20359  mod 403 = 262 mod 403 

44−1 mod 667 =  44φ(667) −1 mod 667 = 44615  mod 667 = 379 mod 667

22 − 1 = 3 is a prime →    n = 2 is a prime 
23 − 1 = 7 is a prime →    n = 3 is a prime 
24 − 1 = 15 = 3 × 5 is a composite →    n = 4 is a composite 
25 − 1 = 31 is a prime →    n = 5 is a prime 
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26. The following shows the results of the Fermat test on this group of integers. Note
that if the integer does not pass the test, it is definitely a composite; if it passes the
test, it may be a prime. The last two integers pass the test, but we know that they
are composite. 

27. The flow in the Miller-Rabin algorithm may be better understood using the chart in
Figure S9.27. We follow the chart in each case.  

a. n = 100 → 100 − 1 = 99 × 20  → m = 99 and k = 0. 

26 − 1 = 63 = 3 × 5 is a composite →    n = 6 is a composite 
27 − 1 = 127 is a prime →    n = 7 is a prime 
28 − 1 = 255 = 5 × 51 is a composite →    n = 8 is a composite 
29 − 1 = 511 = 7 × 73 is a composite →    n = 9 is a composite 
210 − 1 = 1023 = 3 × 341 is a composite →    n = 10 is a composite 
211 − 1 = 2047 = 23 × 89   is a composite →    n = 11 is a prime 

n   = 100   → 2n − 1 mod n = 88 (not passed) →    composite   
n  =  110   →   2n − 1 mod n = 72 (not passed) →    composite 
n  = 130   →   2n − 1 mod n = 88 (not passed) →    composite   
n  = 150   →   2n − 1 mod n = 88 (not passed) →    composite   
n  = 200   →   2n − 1 mod n = 88 (not passed) →    composite   
n  = 250   →   2n − 1 mod n = 62 (not passed) →    composite   
n  = 271   →   2n − 1 mod n = 1 (passed) →    prime 
n  = 341   →   2n − 1 mod n = 1 (passed) →    composite      
n  = 561   →   2n − 1 mod n = 1 (passed) →    composite     

Figure S9.27 Solution to Exercise 27

Pseudoprime

Find m and k

1]  [T =  +  −  

1]  [T =  +  −  [All k’s tested?]  

Loop  

T = −1: Pseudoprime  
T = +1: Composite 

am mod nT

Choose a base

Composite

T2 mod nT
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b. n = 109 → 109 − 1 = 27 × 22  → m = 27 and k = 2. 

c. n = 201 → 201 − 1 = 25 × 23  → m = 27 and k = 3.  

d. n = 271 → 271 − 1 = 135 × 21  → m = 135 and k = 1.  

e.  n = 341 → 341 − 1 = 85 × 22  → m = 85 and k = 2. 

f.  n = 349 → 349 − 1 = 87 × 22  → m = 87 and k = 2.  

g.  n = 2047 → 2047 − 1 = 1023 × 21  → m = 1023 and k = 1.  

In this case, the test declares the integer 2047 as a pseudoprime, which is actu-
ally a composite.

28. We use the chart in Figure S9.28 to follow the recommended primality test that
include several instances of Miller-Rabin test, each with a different base. For each
number we use the base set (2, 3, 4). 

Pre-loop → T = 299 mod 100 = 88
Loop is by-passed because k = 0 →  Composite (100 is an even integer)

Pre-loop → T = 227 mod 109 = 33
 k  = 1 → T = T2 mod 109 = 108 mod 109 = (−1) mod 109 
Loop is broken because T = −1 →  Pseudoprime (109 is actually a prime) 

Pre-loop → T = 225 mod 201 = 95
 k  = 1 → T = T2 mod 201 = 181 mod 201 
 k  = 2 → T = T2 mod 201 = 199 mod 201 
Loop is terminated →  Composite (201 = 3 × 67)

Pre-loop → T = 2135 mod 271 = 1 mod 271
T = +1 in the initialization step →  Pseudoprime (271 is actually a prime)

Pre-loop → T = 285 mod 341 = 32
 k  = 1 → T = T2 mod 341 = 1 mod 341 
Loop is broken because T = +1 →  Composite (341 = 11 × 31) 

Pre-loop → T = 287 mod 349 = 213
 k  = 1 → T = T2 mod 349 = 348 mod 349 = (−1) mod 349 

Loop is broken because T = −1 →  Pseudoprime (349 is actually a prime)

Pre-loop → T = 21023 mod 2047 = 1 mod 2047
T = +1 in the initialization step →  Pseudoprime (but 2047 = 23 × 89)
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a. n = 271 is not divisible by 3, 5, 7, 11, 13, 17, 19, 23. We start Miller-Rabin tests.
The tests tells us that 271 is a pseudoprime; it is in fact a prime. 

b. n = 3149 is not divisible by 3, 5, 7, 11, 13, 17, 19, 23.We start Miller-Rabin tests.
This integer fails the test; it is definitely a composite (3149 = 47 × 67). 

c. n = 9673 is not divisible by 3, 5, 7, 11, 13, but is divisible by 17. It is composite
and no Miller-Rabin tests are needed (9673 = 17 × 569). 

29.

a. We test the claim using (3 − 2)p mod p = (3p − 2) mod p with x = 3, a = 2, and
some small primes. 

b. We also test the claim using x = 7, a = 3, and some primes. 
 
 

Figure S9.28 Solution to Exercise 28

Initialization: 271 − 1 = 135 × 21  → m = 135 and k = 1       
a = 2 → T = a135 mod 271 = 1       
a = 3 → T = a135 mod 271 = −1       
a = 4 → T = a135 mod 271 = 1       

The number passes three Miller-Rabin tests   →   Pseudoprime

Initialization: 3149 − 1 = 787 × 22  → m = 787 and k = 2     
a = 2 → T = a787 mod 3149 = 2523     T = T2 mod 3149 = 140        

The number fails the Miller-Rabin test for a = 2   →   Composite

 p = 2 (3 − 2)2 mod 2 = 1 (32 − 2) mod 2 = 1 
 p = 3 (3 − 2)3 mod 3  = 1 (33 − 2) mod 2 = 1 
 p = 7 (3 − 2)5 mod 7  = 1 (37 − 2) mod 7 = 1 

Pseudoprime

Loop  

[Divisibl by 3, 5, ...?]  

[All bases tested?]  [Test failed?]  

  Composite

Composite

Miller-Rabin
test for next base

Find m and k
and choose bases
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30. Generally, pn > n × ln n. The following shows some primes and their approxima-
tions. As n becomes larger, the ratio of error becomes smaller. 

31.

a.

b.

c.

32. The following show QRs and QNRs in each case. 

a. QRs and QNRs in Z13∗

b. QRs and QNRs in Z17∗

c. QRs and QNRs in Z23∗

33.

a. The integer 4 is a QR in Z7∗. Since 7 =  4 × k + 3 with k = 1, we can use the
following expressions to find the solutions.    

 p = 2 (7 − 3)2 mod 2 = 0 (72 − 3) mod 2 = 0 
 p = 5 (7 − 3)5 mod 5 = 4 (75 − 3) mod 5 = 4 
 p = 17 (7 − 3)17 mod 17 = 4 (717 − 3) mod 17 = 4 

 n = 1 pn = 2 n × ln n = 0 
 n = 25 pn = 97 n × ln n = 80.47 
 n = 168 pn = 997 n × ln n = 860.80 
 n = 668 pn = 4999 n × ln n = 4344.86 
 n = 10,000 pn = 104,729 n × ln n = 92103,40 

a1 = 2    m1 = 7 a2 = 3    m2 = 9 → M = 63        
M1 = 9     M1

−1 = 9−1 mod 7  =  4 ;     M2 = 7      M2
−1 = 7−1 mod 9  =  4  

x = (2 × 9 × 4 + 3 × 7 × 4) mod 63 = 30  

a1 = 4    m1 = 5 a2 = 10 m2 =11 → M = 55  
M1 = 11     M1

−1 = 11−1 mod 5  =  1 ; M2 = 5   M2
−1 = 5−1 mod 11  =  9  

x = (4 × 11 × 1 + 10 × 5 × 9) mod 55 = 54  

a1 = 7   m1 = 13 a2 = 11 m2 =12 → M = 156  M1 = 12   M2 = 13
M1 = 12   M1

−1 = 12−1 mod 13 =  12 ; M2 = 13    M2
−1 = 13−1 mod 12  =  1  

x = (7 × 12 × 12 + 11 × 13 × 1) mod 156 = 59  

QRs: 1, 3, 4, 9, 10, 12 QNRs: 2, 5, 6, 7, 8, 11

QRs: 1, 2, 4, 8, 9, 13, 15, 16 QNRs: 3, 5, 6, 7, 10, 11, 12, 14

QRs: 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 QNRs: 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22
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b. The integer 5 is a QR in Z11∗. Since 11 =  4 × k + 3 with k = 2, we can use the
following expressions to find the two solutions: 

c. The integer 7 is not a QR in Z13∗ (see Exercise 32). This equation has no solu-
tions. 

d. The integer 12 is not a QR in Z17∗ (see Exercise 32). This equation has no
solutions.

34.

a. n = 14 = 2 × 7 → p1 = 2 and p2 = 7. The four new equations are  

We have four sets of equations: The solution gives us x = 2 and x = 12.  

b. n = 10 = 2 × 5 → p1 = 2 and p2 = 5. The four new equations are  

We have four sets of equations: The solution gives us x = 5.  

c. n = 33 = 3 × 11 → p1 = 3 and p2 = 11.   

Since the second equation has no solution, the equation x2 = 7 mod 33 has
no solution.    

d. n = 34 = 2 × 17 → p1 = 2 and p2 = 17. The four new equations are  

Since the second equation has no solution, the equation x2 = 12 mod 34 has
no solution.

x: 4(7 + 1)/4 mod 7 = 2 x: −4(7 + 1)/4 mod 7 = −2

x: 5(11 + 1)/4 mod 11 = 4 x: −5(11 + 1)/4 mod 11 = −4

x2 ≡ 4 (mod 2)   →  x ≡ ± 0 (mod 2)    x2 ≡ 4 (mod 7) →  x ≡ ± 2 (mod 7)

Set 1: x ≡ + 0 (mod 2) x ≡ + 2 (mod 7) 
Set 2: x ≡ + 0 (mod 2) x ≡ − 2 (mod 7) 
Set 3: x ≡ − 0 (mod 2) x ≡ + 2 (mod 7) 
Set 4: x ≡ − 0 (mod 2) x ≡ − 2 (mod 7) 

x2 ≡ 1 (mod 2)   →  x ≡ ± 1 (mod 2)    x2 ≡ 0 (mod 5) →  x ≡ ± 0 (mod 5)

Set 1: x ≡ + 1 (mod 2) x ≡ + 0 (mod 5) 
Set 2: x ≡ + 1 (mod 2) x ≡ − 0 (mod 5) 
Set 3: x ≡ − 1 (mod 2) x ≡ + 0 (mod 5) 
Set 4: x ≡ − 1 (mod 2) x ≡ − 0 (mod 5) 

x2 ≡ 1 (mod 3)   →  x ≡ ± 1 (mod 3)    x2 ≡ 7 (mod 11) →  no solutions

x2 ≡ 12 (mod 2)  →  x ≡ ± 0 (mod 2)    x2 ≡ 12 (mod 17) →  No solutions
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35. We use tables based on Figure 9.7. We first calculate all powers of a’s. 
a. y = 2124 mod 8 → a = 21, x = 24 = 110002. Shaded areas represent no moutipli-

cations.  All calculations are in modulo 8. The answer is y = 1.

The table shows that we can stop whenever axi becomes 1. 
b. y = 32023 mod 461 → a = 320, x = 23 = 101112. Shaded areas represent no mul-

tiplications.   All calculations are in modulo 461. The answer is y = 373.

c. y = 177641 mod 2134 → a = 1776, x = 41 = 1010012. Shaded areas represent no
multiplications.  All calculations are in modulo 2134. The answer is y = 698.

a’s xi y = 1 mod 8

a1 = 5 mod 8 0 y = 1 mod 8  

a2 = 1 mod 8 0 y = 1 mod 8  

a4 = 1 mod 8 0 y = 1 mod 8 

a8 = 1 mod 8 1 y = 1 × 1 mod 8 = 1 mod 8 

a16 = 1 mod 8 1 y = 1 × 1 mod 8 = 1 mod 8

a’s xi y  = 1 mod 461

a1 = 320 mod 461 1 y = 1 × 320 mod 461 = 320 mod 461 

a2 = 58 mod 461 1 y = 320 × 58 mod 461 = 120 mod 461 

a4 = 137 mod 461 1 y = 120 × 137 mod 461 = 305 mod 461  

a8 = 329 mod 461 0 y = 305 mod 461

a16 = 367 mod 461 1 y = 305 × 367 mod 461 = 373 mod 461

a’s xi y  = 1 mod 2134

a1 = 1776 mod 2134 1 y = 1 × 1776 mod 2134 = 1776 mod 2134 

a2 = 124 mod 2134 0 y = 1776 mod 2134

a4 = 438 mod 2134 0 y = 1776 mod 2134  

a8 = 1918 mod 2134 1 y = 1776 × 1918 mod 2134 = 504 mod 2134 

a16 = 1842 mod 2134 0 y = 504 mod 2134 

a32 = 2038 mod 2134 1 y = 504 × 2038 mod 2134 = 698 mod 2134



12
d. y = 200135 mod 2000 → a = 2001, x = 35 = 1000112. Shaded areas represent no
multiplications.  All calculations are in modulo 2001. The answer is y = 1.

The table shows that we can stop whenever axi becomes 1. 

36.

a. The order of the group is φ(19) = 18.

b. The following shows the order of each element: 

c. The number of primitive roots is φ(φ(19)) = φ(18) = 6. 

d. The primitive roots are those element with order 18. They are 2, 3, 10, 13, 14,
and 15. 

e. We know that the group is cyclic because 19 is a prime. Any of the primitive
root can generate all elements of the group. For example, if we choose g = 2 as
the generator, we can generate all elements as shown below (all calculations are
in modulo 19).  

f. We can create a table of discrete logarithms for bases 2, 3, 10, 13, 14, and 15. 

a’s xi y  = 1 mod 2000

a1 = 1 mod 2000 1 y = 1 × 1 mod 2000 = 1 mod 2000

a2 = 1 mod 2000 1 y = 1 × 1 mod 2000 = 1 mod 2000

a4 = 1 mod 2000 0 y = 1 mod 2000 

a8 = 1 mod 2000 0 y = 1 mod 2000 

a16 = 1 mod 2000 0 y = 1 mod 2000  

a32 = 1 mod 2000 1 y = 1 × 1 mod 2000 = 1 mod 2000

ord (1) = 1 ord(2) = 18 ord (3) = 18 ord (4) = 9 ord (5) = 9 ord (6) = 9
ord (7) = 3 ord(8) = 6 ord (9) = 9 ord (10) = 18 ord (11) = 3 ord (12) = 6
ord (13) = 18 ord(14) = 18 ord (15) = 18 ord (16) = 9 ord (17) = 9 ord (18) = 2

g1 → 2 g2 → 4 g3 → 8 g4 → 16 g5 → 13 g6 → 7 
g7 → 14 g8 → 9 g9 → 18 g10 → 17 g11 → 15 g12 → 11 
g13 → 3 g14 → 6 g15 → 12 g16 → 5 g17 → 10 g18 → 1 

x 1          2        3     4       5      6             7              8              9             10           11          12        13      14       15           16          17      18 
L2(x) 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9
L3(x) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9
L10(x) 18 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9
L13(x) 18 11 17 4 14 10 12 15 16 7 6 3 1 5 13 8 2 9
L14(x) 18 13 7 8 10 2 6 3 14 5 12 15 11 1 17 16 4 9
L15(x) 18 5 11 10 8 16 12 15 4 13 6 3 7 17 1 2 14 9
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37.

a. To solve the equation x5 ≡ 11 (mod 17), we need to find a primitive root in the
group G = <Z17∗, × > and the discrete logarithm table for that root. The first
primitive root in this group is 3 (primitive roots are 3, 5, 6, 7, 10, 11, 12, and
14). The discrete logarithm table for this root (base) can be found as

We then apply the function L3 to both sides of the congruence. Note that the
working modulus is φ(17) = 16 and L3(11) = 7 (from the table). 

Now we need to solve the congruence equation 5 × L3(x) ≡ 7 (mod 16). Recall
from Chapter 2 that this equation has only one solution because gcd (5, 16) = 1. 

Now we can use the table to find x if L3(x) = 11; the answer is x = 7, which can be
checked as 75 ≡ 11 (mod 17). We can also write a program to test all of values of x
from 1 to 17 to see if any of this values satisfies the equation. We did so; the
only value is x = 7. 

b. To solve the equation 2x11 ≡ 22 (mod 19) or 2x11 ≡ 3 (mod 19), we need to find
a primitive root in the group G = <Z19∗, × > and the discrete logarithm table for
that root. The first primitive root in this group is 2 (see Exercise 36). The dis-
crete logarithm table for this root (base) can be found as 

We then apply the function L2 to both sides of the congruence. Note that the
working modulus is φ(19) = 18, L2(2) = 1 and L2(3) = 13. 

Now we need to solve the congruence equation 11 × y ≡ 12 (mod 18). Recall from
Chapter 2 that this equation has only one solution because gcd (11, 18) = 1. 

Now we can use the table to find x if L2(x) = 6; the answer is x = 7, which can be
checked as 2 × 711 ≡ 3 (mod 19). We can also write a program to test all of values
of x from 1 to 19 to see if any of this values satisfies the equation. We did so;
the only value is x = 7. 

x 1          2        3     4       5      6             7              8              9             10           11          12        13      14       15           16         

L3(x) 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

L3(x5) ≡ L3(11) (mod 16) →    5 × L3(x) ≡ 7 (mod 16)    →  5 × L3(x)  ≡ 7 (mod 16)     

L3(x) ≡ 5−1 × 7 (mod 16) ≡  11 (mod 16) 

x 1          2        3     4       5      6             7              8              9             10           11          12        13      14       15           16          17      18 

 L2 x 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

L2(2x11) ≡ L2(3) (mod 18)     →        L2(2) + 11 × L2(x) ≡ L2(3) (mod 18)       
→  1 + 11 × L2(x) ≡ 13 (mod 18)  →  11 × L2(x) ≡ 12 (mod 18)          

  11 × y ≡ 12 (mod 18)  →   y ≡ 11−1 × 12 (mod 18) ≡ 5  × 12 (mod 18) ≡ 6 (mod 18) 



14
c. The equation 5x12 + 6x  ≡ 8 (mod 23) cannot be solved using the discrete loga-
rithm discussed in this chapter because there is no property of discrete loga-
rithm to allows us extract L(x) from L(5x12 + 6x). However, we can write a
program to test all of values of x from 1 to 22 to see if any of this values satis-
fies the equation. We did so, but find no value of x satisfying the congruence;
the congruence has no solution. 

38. One million operations per second means 3,600,000,000 operations per hour. 

a. If we assume that the complexity of divisibility test is 2nb (which is very unreal-
istic), then 

b. The complexity of ASK is (log2nb)12. 

c. The complexity of Fermat is nb if we use Fast Exponentiation algorithm. 

However, as we know the algorithm is probabilistic. We are not sure if the
result is correct. 

d. The complexity of square root test is n or 2nb

However the test is not deterministic. We are not sure if the result is correct.   

e. The main operation in Miller-Rabin test is Fermat test, so the complexity is
somehow more than Fermat. However, the test is not deterministic. 

39. One million operations per second means 3,600,000,000 operations per hour.

a. The complexity of trial division method is exponential (2nb). 

b. The complexity of Fermat method is subexponential or 2p(log2nb). For simplicity,
we assume the complexity to be 2(log2nb)2. 

 

2nb = 3,600,000,000  →  2nb ≈ 232   nb
  ≈ 32  

This means n < 232  

(log2nb)12 = 3,600,000,000  → log2nb = 6.25  → nb ≈ 26.25  → nb ≈ 76   

This means n < 276  

nb = 3,600,000,000

This means n < 23,600,000,000  

2nb = 3,600,000,000  →  2nb ≈ 232   nb
  ≈ 32  

This means n < 232  

2nb = 3,600,000,000  →  2nb ≈ 232   nb
  ≈ 32  

This means n < 232  
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c. The complexity of Polard rho method is exponential or (2nb/4).  

d. The complexity here is eC where C = (lnn lnlnn)1/2. Since it is very difficult to
calculate n in this case, we assume that C = lnn)1/2 or C = (lnn).  

e. The complexity here is eC where C = 2(lnn)1/3(lnlnn)2/3. Since it is very diffi-
cult to calculate n in this case, we assume that C = 2(lnn)1/3(lnn)2/3 = 2(lnn)             

40.

41.

2(log2nb)2 = 3,600,000,000  →  2(log2nb)2 ≈ 232 →  (log2nb)2 ≈ 32 
→  (log2nb) ≈ 5.7  →   nb ≈ 25.7  → 52     

This means n < 252  

2nb/4 = 3,600,000,000  →  2nb/4 ≈ 232   nb
  ≈ 128  

This means n < 2128  

elnn = 3,600,000,000  →  lnn = 3,600,000,000    

This means n < e3,600,000,000  

e2lnn = 3,600,000,000  →  lnn = 1,800,000,000    

This means n < e1,800,000,000  

Square_and_Multiply (a, x, n)
{

y  ← 1
for   (i =  0   to   nb −1)                                                           
{

if (a   =   1)                                                       
                                                       return   y // no need to continue

if   (xi  = 1)                                         
                                        y  ← y × a mod n

a  ← a2 mod n                                    
}
return y      

}

Square_and_Multiply (a, x, n)
{

y  ← 1
for   (i =  nb −1   downto   0)                                                           
{

a  ← a2 mod n                                    
if   (xi  = 1)                                         

                                        y  ← y × a mod n

}
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42.

43.  

44.

return y      
}

Square_and_Multiply (a, x, n)
{

y  ← 1
while   (x > 0)                                                           
{

if   (x mod 2  = 1)                                         
                                        y  ← y × a mod n // not needed in the last round

a  ← a2 mod n                                    
x  ← x / 2                                    // integer division

}
return y      

}

FermatPrimalityTest (a, n) // We can use different bases
{

y ←  Square_and_Multiply (a, n − 1, n)  // See Algorithm 9.7 in the text
if (y   =   1)                                                           

return (n is probably a prime)                                                       
return (n is a composite)      

}

SquareRootPrimalityTest (n)
{

for   (a  =  2   to   n / 2 + 1)                                                          // n is normally odd
{

x ← a2 mod n                                                         
y ← (−a)2 mod n                                                         
if (x  = 1 mod n) or (y  = 1 mod n)                                           
                                    return (n is a composite)

}
return (n is probably a prime)        

}
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45.  

46.

47.   

ChineseRemainderTheorem(k, a[1 … k], m[1 … k])
{

M ← 1                                                         
for   (i  =  1   to   k)                                                          

M ←  M × m[i]                                                         
for   (i  =  1   to   k)                                                          
{

M[i] ←  M / m[i]                                                         
InvM[i] ← M[i]−1 mod m[i]                                                         

}
x ← 0                                                         
for   (i  =  1   to   k)                                                          

x ←  [x + (a[i] × M[i] × InvM[i])] mod M                                                           
return x        

}

FindQuadraticResidues (p) // p is a prime
{

for   (a  =  2   to   n / 2 + 1)                                                          // n is normally odd
{

x ←  Square_and_Multiply (a, (p − 1)/2, p)                                                         
if (x  = 1 mod p)                                           
                                    insert a in QRList
else                                             
                                    insert a in QNRList

}
return QRList and QNRList

}

FindFirstPrimitiveRoot (p) // p is a prime
{

for   (a =  2   to   p −1)                                                          
{

i  ← 1                               
while (ai mod p ≠ 1)                                         
{                                         
          i  ← i  + 1                           
}                                         
if (i = p − 1)                                         // order a = φ(p) 
          return a                             

}
}
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48.

49.

FindAllPrimitiveRoots (p) // p is a prime
{

for   (a =  2   to   p −1)                                                          
{

i  ← 1                               
while (ai mod p ≠ 1)                                         
{                                         
          i  ← i  + 1                           
}                                         
if (i = p − 1)                                         // order a = φ(p) 
                                     Insert a to PrimitiveRootList

}
return PrimitiveRootList

}

FindAllDiscreteLogs (p) // p is a prime
{
                                                           PrimitiveRootList  ← FindAllPrimitiveRoots(p) // See Exercise 48
                                                           Create a DiscreteLogTable sorted on y 

for   (each   g in PrimitiveRootList)                                                          
{

for (x = 1 to p − 1)                                         
{                                         
          y ← gx mod p                           
                                    insert x to Lg row of DiscreteLogTable under y column 
}                                         

}
return DiscreteLogTable 

}



CHAPTER 10

Symmetric-Key Cryptography
(Solution to Practice Set) 
Review Questions
1. Symmetric-key cryptography is based on sharing secrecy; asymmetric-key cryp-

tography is based on personal secrecy. 

2. In asymmetric-key cryptography, each entity has a pair of public/private key. The
public key is universal; the private key is personal. In symmetric-key cryptography
a shared secret key is used for secret communication between two entities.

3. In cryptography, a trapdoor is a secret with which Bob can use a feasible algorithm
to decrypt the ciphertext. If Eve does not know the trapdoor, she needs to use an
algorithm which is normally infeasible. 

4. In the knapsack cryptosystem, if we are told which elements, from a predefined set
of numbers, are in a knapsack, we can easily calculate the sum of the numbers; if
we are told the sum, it is difficult to say which elements are in the knapsack. 

a. The one-way function is the multiplication of the row matrix x by the column
matrix a to get s = x × a. Given x and a, it is easy to calculate s; given s and a, it
is difficult to calculate x. 

b. The trapdoor in this system is the value of r and n that allow Bob to calculate
the value of s′ = r−1 × s. In the matrix multiplication s′ = x × b, the matrix b can
be calculated if it is a superincreasing column matrix (tuple). 

c. The public key is the k-tuple a. The private key is n, r, and the k-tuple b.

d. The security of the system depends on the size of the two matrices x and a. If
they are very large, it is difficult to find x given s and a. However, today, knap-
sack cryptosystem is not considered secure; it is broken.   

5.  RSA uses two exponents, e and d, where e is public and d is private. Alice calcu-
lates C = Pe mod n to create ciphertext C from plaintext P; Bob uses P = Cd mod n
to retrieve the plaintext sent by Alice. 

a. The one-way function is the C = Pe mod n. Given P and e, it is easy to calculate
C; given C and e, it difficult to calculate P if n is very large. 
1
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b. The trapdoor in this system is the value of d, which enables Bob to use P = Cd

mod n. 

c. The public key is the tuple (e, n). The private key is d. 

d. The security of RSA mainly depend on the factorization of n. If n is very large,
and the value of e and d are chosen properly, the system is secure. 

6. The Rabin cryptosystem is a variation of the RSA cryptosystem. RSA is based on
the exponentiation congruence; Rabin is based on quadratic congruence. The
Rabin cryptosystem can be thought of as an RSA cryptosystem in which e = 2 and
d = 1/2.

a. The one way function is C = P2 mod n. Given P, it is easy to calculate C; given
C, it difficult to calculate P if n is very large.

b. The trapdoor is the factorization of n = p × q. Bob knows the value of p and q,
but Eve does not. Bob uses the Chinese remainder theorem and the values of p
and q, to find P. 

c. The public key is n. The private key is the tuple (p and q).

d. Security of Rabin cryptosystem is basically depends on how it difficult to factor
n. 

7. ElGamal is based on discrete logarithm problem. The plaintext is masked with e1
rd

to create the ciphertext. Part of the mask is created by Bob and become public; the
other part is created by Alice. 

a. The one-way function is C = mask (P). Given P and the mask, it is easy to cal-
culate the C; given C is difficult to unmask P. 

b. The trapdoor is the value of d that enables Bob to unmask C. 

c. The public key is (e1, e2 and n). The private key is d. 

d. The security of ElGamal depends on two points; p should be very large and
Alice needs to select a new r for each encryption. 

8. ECC is based on elliptic curves. We can defined a group GF(p) or GF(2n) in which
the elements are points on an elliptic curve. ECC simulates the idea of ElGamal
using the above-mentioned groups.

a. The one-way function in ECC is the idea of multiplying an integer by a point to
get a new point on the curve. If the original point is given, the new point can be
calculated with polynomial complexity. If the new point is given, it is very hard
to calculate the original point without knowing the trapdoor. 

b. The trapdoor is the value of d that enables Bob to calculate the original point on
the curve using an algorithm with polynomial complexity.

c. The public key is (e1, e2, and E) in which e1 and e2 are two points on the curve
E. The private key is d. 

d. The security of ECC is based on the difficulty of solving elliptic curve loga-
rithms. 
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9. An elliptic curve is an equation in two variables similar to the equations used to
calculate the length of a curve in the circumference of an ellipse. Elliptic curves
with points belonging to the groups GF(p) or GF(2n) are used in cryptography. 

10. Operations are basically adding two points on the curve to get a new point on the
curve. 

Exercises
11. We use the 7-bit representation of character "a" as the plaintext.    

12.
a. φ(n) = φ(13 × 17) = 192  →   d = e−1 mod φ(n) = 5−1 mod 192 =  77 
b. φ(n) = φ(31 × 127) =  3780  →   d = e−1 mod φ(n) = 17−1 mod 3780 =  3113

c. n = p × q =  437 → φ(n) = 396. Since gcd(n, e) ≠ 1, we cannot calculate d for
this problem. This shows that we need to choose the value of e carefully. In
this case φ(n) = 396 = 22 × 32 × 1, which means e cannot be 2, 3, or 11. We can
have e = 5, which means d = 5−1 mod 396 = 317. 

13. n  = 187 = 17 × 11  → φ(n) = 17 × 11 = 160  → d = e−1 mod φ(n) = 113. This
proves that the value of n in RSA must be very large.We could find d because we
could factor n. The modulus must be large enough to make the factorization infea-
sible. 

14. We can create two equations of two unknowns (p and q): 

If we let A = (n − φ(n) +1), then p2 − A × p + n = 0. This means   

For example, assume n = 209 and φ(n) = 180. Then A = 209 −180 + 1 = 30. We
have p = 19 and q  = 11.  

Key Generation:
t = [287, 451, 943, 762, 564, 86, 623]  →  a = [623, 86, 564, 287, 451, 943, 762]

Encryption:     
Plaintext:  x = [1, 1, 0, 0, 0, 0, 1]      →    Ciphertext: s = 1471     

Decryption:      
s’ = (41−1, 1471) mod 1001 = 293 × 1471 mod 1001 = 573
x’ = [0, 0, 0, 1, 0, 1, 1]  →  Plaintext x = [1, 1, 0, 0, 0, 0, 1]  

p × q = n
(p − 1) × (q − 1) = φ(n)          

p = [A + (A2 − 4 × n)1/2] / 2          and               q = [A − (A2 − 4 × n)1/2] / 2      
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15. In a real situation, the value of n is so large that it is impossible for Alice to check
if n and e are chosen properly. In this toy problem, it is easy to see that n is not
properly selected because n = 100 cannot be factored into two primes (n = p × q).
Although we can still encrypt the message using e = 13 and n = 100, the encrypted
message cannot be decrypted. The problem prove that Bob needs to first select p
and q and be sure that they are primes before calculating n = p × q. After the cor-
rect selection of n, then e needs to be selected in such a way that φ(n) and e be
coprimes. This problem has no solution. 

16. Although in real life Alice cannot check to see if n and e are properly selected by
Bob, in this toy problem she can. The value of n is proper because n = 107 × 113
(two primes). The value of e is also proper because e, which is 13 and φ(n), which
is 11872, are coprime.    

a. The plaintext is: 19070818260818261914200607

b. For encryption, we create 4-digit blocks so that the value of each block be less
than n. 

c. In this toy problem, we can easily find d = e−1 mod φ(n) = 3653. Each block can
be decrypted as 

The plaintext is:19070818260818261914200607 or “THIS IS TOUGH”. 

17.

a. If e = 1, there is no encryption: C = P. If Eve intercepts the ciphertext, she has
the plaintext.

P1 = 1907    →      C1 = 190713 mod 12091    = 10614     
P2 = 0818    →      C2 = 081813 mod 12091  = 7787    
P3 = 2608    →      C3 = 260813 mod 12091 = 1618   
P4 = 1826    →      C4 = 182613 mod 12091 = 10717   
P5 = 1914    →      C5 = 191413 mod 12091 = 4084   
P6 = 2006    →      C6 = 200613 mod 12091  = 6558   
P7 = 07    →      C7 = 0713 mod 12091 = 6651

C1 = 10614    →      P1 = 106143653 mod 12091    = 1907     
C2 = 7787   →      P2 = 77873653 mod 12091 = 0818  
C3 = 1618  →      P3 = 16183653 mod 12091 = 2608  
C4 = 10717  →      P4 = 107173653 mod 12091 = 1826  
C5 = 4084  →      P5 = 40843653 mod 12091 = 1914  
C6 = 6558  →      P6 = 65583653 mod 12091 = 2006  
C7 = 6651 →      P7 = 66513653 mod 12091 = 07
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b. If e = 2, the cipher is actually Rabin, not RSA.

18. Eve can use a type of plaintext attack called short-message attack if she knows that
each character is encrypted separately. Eve can write a simple program using e and
n to find all plaintext/ciphertext character as shown in the following table.

Eve knows that the plaintext is made of P = 4, P = 0, P = 18, and P = 24. The plain-
text is "easy". Eve can break the code because the set of plaintext values is small.
Eve can try all of them using a program. The set should be very large. Even if
Alice has short pieces of messages to send, she need to pad them to make the set
large (see OAEP encryption/decryption). 

19. Eve has intercepted C = 57

a. Eve chooses X = 17 (which is in Z143*).

b. Eve calculates Y = C × 177 mod 143 =  57 × 177 mod 143 = 137

c. Eve sends 137 to Bob and ask to decrypt it. The response is Z = 136 (We know
how to calculate this because we can easily find d = 103, but we assume that
Eve cannot; she needs to send the ciphertext to Bob and receive the plaintext. 

d. P = (Z × X−1) mod 143 = (136 × 17−1) mod 143 = 8 mod 143. Which is the
plaintext. This shows that RSA is very vulnerable to chosen-ciphertext attack.      

20.
Intercepted ciphertext is C = 22.
C1 = Ce mod n = 223 mod 35 = 8.
C2 = C1e mod n = 83 mod 35 = 22.
Since C2 = C = 22, P = C1 = 8. 

21. One solution is to use different padding with each plaintext. As we discussed in the
text, using OAEP encryption, each time with different random r, removes the rela-
tionships between different plaintexts that are sent by Alice to Bob.

22. We first find n = p × q = 47 × 11 = 517.

a. C = P2 mod 517 = 172 mod 517 = 289.

b.
a1 = + C(p +1)/4 mod p = + 28912 mod 47 =  + 17 and a2 = −17.
b1 = + C(q +1)/4 mod q = + 2893 mod 11 =  + 5 and  b2 = − 5.

We have the following four sets, each of two equations to solve: 

P = 0 P = 1 P = 2 P = 3 P = 4 P = 5 P = 6
C = 0 C = 1 C = 13958 C = 2459 C = 6625 C = 7340 C = 8320
P = 7 P = 8 P = 9 P = 10 P = 11 P = 12 P = 13

C = 8911 C = 10247 C = 15310 C = 16008 C = 18021 C = 12029 C = 2232
P = 14 P = 15 P = 16 P = 17 P = 18 P = 19 P = 20

C = 4670 C = 13504 C = 11913 C = 10706 C = 2968 C = 8539 C = 5671
P = 21 P = 22 P = 23 P = 24 P = 25

C = 11831 C = 15284 C = 4718 C = 17863 C = 1160
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The only acceptable answer is P2 = 17.   

23.

a. We choose e1 = 3 (a primitive root of p = 31) and d = 10. Then we have e2 = 310

mod 31= 25. 

b. The common factor for calculation of C2’s is e2
7 mod 31 = 257 mod 31 = 25. 

c.   

24. In general, the numeric value of C1 and C2 are different in a ciphertext. If these
two values are swapped during transmission, Bob cannot correctly decrypt the
ciphertext to get the plaintext because 

25. Although the value of p (the modulus) and d are not given, we can assume a mod-
ulus which is greater that 17 and 37 and its primitive root is 2. We have chosen p =
53 and d = 3. In this case, we have p = 53, d = 3, e1 = 2, and e2 = e1

3 mod 53 = 8. 

a. Alice uses r = 9 to encrypt two messages, 17 and 37. The values of ciphertexts
are: C1 = 35, C2 =19, C1′ = 35 and C2′ = 32. 

b. Eve intercepts C1 = 35, C2 =19, C1′ = 35 and C2′ = 32 and she know P = 17. Eve
can use the known-plaintext attack to find P′. 
 

P1 ≡ +17 (mod 47) P1 ≡ +5 (mod 11)  → P1 = 346 

P2 ≡ + 17 (mod 47) P2 ≡ −5 (mod 11)  → P2 = 17

P3 ≡ −17 (mod 47) P3 ≡ +5 (mod 11)  → P3 = 500

P4 ≡ −17 (mod 47) P4 ≡ −5 (mod 11)  → P4 = 171

P = "H" = 07 C1 = 37 mod 31 = 17 C2 = 07 × 25 mod 31 = 20 → C = (17, 20)

P = "E" = 04 C1 = 37 mod 31 = 17 C2 = 04 × 25 mod 31 = 07 → C = (17, 07)

P = "L" = 11 C1 = 37 mod 31 = 17 C2 = 11 × 25 mod 31 = 27 → C = (17, 27)

P = "L" = 11 C1 = 37 mod 31 = 17 C2 = 11 × 25 mod 31 = 27 → C = (17, 27)

P = "O" = 14 C1 = 37 mod 31 = 17 C2 = 14 × 25 mod 31 = 09 → C = (17, 09)

C = (17, 20) → P = 20 × (1710)−1 mod 31 = 07    → "H"

C = (17, 07) → P = 07 × (1710)−1 mod 31 = 04 → "E"

C = (17, 27) → P = 27 × (1710)−1 mod 31 = 11 → "L"

C = (17, 27) → P = 27 × (1710)−1 mod 31 = 11 → "L"

C = (17, 09) → P = 09 × (1710)−1 mod 31 = 14 → "O"

C2 × (C1
d)−1 ≠ C1 × (C2

d)−1 
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26.

a. E(1, 2) means that a = 1 and b = 2 in the equation y2 = x3 + ax + b. The equation
of the curve is then y2 = x3 + x + 2. 

b. Figure S10.26 shows the points on the curve. 

c. Bob chooses e1 = (2, 1) and d = 3, then e2 = 3 × (2, 1) = (4, 9). Public key is
E11(1, 2), e1, and e2. The private key is d. 

d. Assume Alice has the plaintext P = (4, 2) to send to Bob. 

e. Alice choose r = 6 and calculate the two points of the ciphertext 

C1 = r × e1 = 6 × (2, 1) = (8, 7) 
C2 =  (4, 2) + 6 × (4, 9) = (4, 2) + (8, 4) =  (2, 10)

f.  Bob receives C1 and C2. Bob calculates the plaintext as to get the P. 

P =  C2  − (d × C1) = (2, 10) − 3 × (8, 7) 
= (2, 10) − (8, 4) = (2, 10) + (8, 7) = (4, 2)   

27.

a. E(g4, 1) means that a = g4 and b = 1. The equation of the curve is

y2 + xy  = x3  + g4x2 + 1 

b. Assume that the irreducible polynomial is x4 + x + 1 (See Appendix G). We use
the process in Example 10.16 in the textbook Page 326 to find the points on the
curve as shown in Figure S10.27. 

P’ = C2′ × (e2
r) −1 mod p = C2′ × (C2 × P−1) −1 mod p = C2′ × C2

−1 × P mod p 

P’ = 32 × 19−1 × 17   mod 53 = 32 × 14 × 17 mod 53 = 37 

Figure S10.26 Part of solution to Exercise 26
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c. Bob chooses e1 = (g3, g8) and d = 2. Then e2 = d × e1 = (g5, g3). The public key
is the combination of e1, e2, and E(g4, 1). The private key is d. 

d. Alice chooses P = (g10, g) and r = 3.   

e. Alice calculates C1 = r × e1 =  (g9, g10) and C2 = P + r × e2 = (1, g6). 

f.  Bob decrypt the message P = C2 − (d × C1) = (g10, g) = P

28.

a. The following shows the encrypting algorithm. It calls the KnapsackSum algo-
rithm defined in the text (Algorithm 10.1). 

b. The following shows the decrypting algorithm. It calls the inv_KnapsackSum
algorithm defined in the text (Algorithm 10.1).  

Figure S10.27 Part of the solution to Exercise 27

KnapsackEncrypt (P, a)
{

C = KnapSum (P, a)
return C

}
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{
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29.

a. The following shows the encrypting algorithm. Alice uses the original message
(m), a random number (r) and two functions (G and H). 

b. The following shows the decrypting algorithm. Bob uses the ciphertext (C), the
private key (d), modulus (n), and two functions G and H. 

30.

RSA_OAEP_Encrypt (m, e, n, r)
{

M ← pad (m)
P1 ← M ⊕ G(r)
P2 ← H(P1) ⊕ r
C ← Fast_Exponentiation (P1 | P2, e, n)
return C

}

RSA_OAEP_Decrypt (C, d, n)
{

P  ← Fast_Exponentiation (C, d, n)
P1, P2  ← Splitm,k (P)
r  ← H(P1) ⊕ P2
M ← P1 ⊕ G(r)
m ← Extract (M)
return m

}

CyclingAttack (C, e, n)
{

T1  ← C
T2  ← T1

e mod n
while (T2 ≠ C) 
{

T1  ← T2
T2  ← T1

e mod n
}
return T1 

}
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31. The following shows the AddPoint algorithm. P(x) and P(y) are x and y compo-
nents of P. Calculations are done in GF(p) .

32. The following shows the AddPoint algorithm. P(x) and P(y) are x and y compo-
nents of P. Calculation are done in GF(2n) with the selected irreducible polyno-
mial.  

AddPoint (p, a, b, P1, P2)
{

if (P1(x) ≠ P2(x)) 
 λ ← ( (P2(y) − P1(y) ) / (P2(x) − P1(x) ) )  mod p

else 
 λ ← ( (3 × (P1(x))2 + a  ) / (2 × P1(y) ) )  mod p

P3(x) ← (λ2 − P1(x) − P2(x)) mod p 
P3(y)← (λ × (P1(x) − P3(x)) − P1(y)) mod p 
return P3

}

AddPoint (n, a, b, P1, P2)
{

if (P1(x) ≠ P2(x)) 
{ 

 λ ← (P2(y) + P1(y) ) / (P2(x) + P1(x) )   
 P3(x) ← λ2 + λ + P1(x) + P2(x) + a
 P3(y) ← λ (P1(x) + P3(x)) + P3(x) + P1(y)

} 
else 
{ 

 λ ← P1(x) + P1(y) / P1(x)   
 P3(x) ← λ2 + λ + a
 P3(y)← (P1(x))2 + (λ + 1) P3(x) 

} 
return P3

}



CHAPTER 11

Message Integrity and
Message Authentication

(Solution to Practice Set) 
Review Questions
1. Message integrity guarantees that the message has not been changed. Message

authentication guarantees that the sender of the message is authentic.    

2. The first criteria is preimage resistant, which ensures that Eve cannot find any
message whose hash is the same as the one intercepted. 

3. The second preimage resistance ensures that a message cannot easily be forged.
In other words, given a specific message and its digest, it is impossible to create
another message with the same digest. 

4. The third criteria is collision resistance, which ensures that Eve cannot find two
messages that hash to the same digest. 

5. The Random Oracle Model is an ideal mathematical model for a hash function. A
function based on this model behaves completely randomly. The digest can be
thought of as a random variable uniformly distributed between 0 and N − 1 in
which N = 2n. Attacks on hash functions can be analyzed working with this ran-
dom variable. 

6. The pigeonhole principle says that if n pigeonholes are occupied by n + 1 pigeons,
then at least one pigeonhole is occupied by two pigeons. Because the digest is
shorter than the message, according to the pigeonhole principle there can be colli-
sions. In other words, there are some digests that correspond to more than one
message; the relationship between the possible messages and possible digests is
many-to-one.

7. The following briefly states the four birthday problems:

Problem 1: What is the minimum number, k, of students in a classroom such
that it is likely that at least one student has a predefined birthday? 

Problem 2: What is the minimum number, k, of students in a classroom such
that it is likely that at least one student has the same birthday as the student
selected by the professor? This problem can be generalized as follows.
1



2

Problem 3: What is the minimum number, k, of students in a classroom such
that it is likely that at least two students have the same birthday? 

Problem 4: We have two classes, each with k students. What is the minimum
value of k so that it is likely that at least one student from the first classroom
has the same birthday as a student from the second classroom? 

8. The following table shows the association:

9. A modification detection code (MDC) is a message digest that can prove the integ-
rity of the message. A message authentication code (MAC) ensures the integrity of
the message and the data origin authentication. The difference between an MDC
and a MAC is that the second includes a secret between Alice and Bob.

10. HMAC is a nested MAC that uses two instances of a hash function. CMAC is a
MAC that uses a symmetric-key cipher in the CBC mode. 

Exercises
11. Imagine Alice uses the oracle. She give her message M to send to the oracle and

obtain the digest d. Alice then sends the message and digest to Bob. To verify that
the message has come from Alice, Bob needs to give the received message M to
the same oracle and obtain the digest d1. If d1 is not equal (all the time with d), Bob
cannot verify that the message has been sent by Alice. This means that the oracle
needs to record the message obtained from Alice and the digest given to her to be
able to create the same digest when Bob ask for calculation of the digest. 

12. The key which is concatenated with the message in a MAC should be a secret
between Alice and Bob; no one else should know this secret. When Alice sends a
MAC to Bob, the key cannot be the public key of Bob or the private key of Alice
for the following reasons:

a. If the key is the public key of Bob, every one (including Eve) knows this key
and can use it to create a MAC to pretend that she is Alice. 

b. If the key is the private key of Alice, no one (including Bob) knows the key. So
Bob cannot verify that a MAC has truly created by Alice. 

13. This the first birthday problem, in which "on average" can be interpreted as "with
probability P = 1/2 and N = 30". We have  

Birthday Problem Attack on 
hash function

1 Preimage
2 Second preimage
3 Collision
4 Alternate collision

k ≈ 0.69 × N ≈ 21
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14. This the third birthday problem, in which "on average" can be interpreted as "with
probability P = 1/2 and N = 30". We have 

15. This the first birthday problem, in which "on average" can be interpreted as "with
probability P = 1/2 and N = 2007 − 1950 = 57". We have 

16. This the third birthday problem, in which "on average" can be interpreted as "with
probability P = 1/2 and N = 2007 − 1950 = 57". We have 

17. We solve each case separately. 

a. This the third birthday problem with N = 365 and k = 6. We let the probability
of two family member having the same birthday be P and no family member
having the same birthday be Q. According to Table 11.3 in the text, we have     

b. This the third birthday problem with N = 30 and k = 6. We let the probability of
two family member born on the same day of the month be P and no family
member born on the same day of the month be Q. According to Table 11.3 in
the text, we have      

c. This the first birthday problem with N = 30 and k = 6. We can solve this prob-
lem directly or using the approximation given in Table 11.3 in the text. In the
direct solution, the probability of one particular member is born on the first day
of the month is 1/30; the probability that any member of the family is born at
the first day of the month is 6/30.     

d. This the same as the third birthday problem because "three" can be thought of
"at least two". Using the approximation in the third birthday problem we can
have         

k ≈ 1.18 × N1/2 ≈ 7

 k ≈ 0.69 × N ≈ 40. 

k ≈ 1.18 × N1/2 ≈ 9.

P ≈ 1 − e−k(k − 1)/2N ≈ 0.04 Q = 1 − P ≈ 0.96

P ≈ 1 − e−k(k − 1)/2N ≈ 0.04 Q = 1 − P ≈ 0.96

P = 6 × (1/30) = 0.20 P ≈ 1 − e−k/N ≈ 0.19 

P ≈ 1 − e−k(k − 1)/2N ≈ 0.35 
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18. This is similar to the fourth birthday problem, but the size of the two classes are
different. Using the same strategy we used in Appendix E, we can find that the
probability that no student in the first class has the same birthday as a student in
the second class is Q = (1 − 1/N)k × l. The probability of collision is then P =  1− Q
= 1 − (1 − 1/N)k × l. 

19. This the third birthday problem with N = 9999 and k = 100. We let the probability
of two students having the same four digits in their social security number be P.
According to Table 11.3 in the text, we have    

20. This is the pigeonhole problem. The grades (A, B, C, D, or F) are similar to the
pigeonholes; the students that obtain one of these grades are playing the roles of
pigeons. So we have kn + 1 = 100 pigeons and n = 5 pigeonholes. If we solve for k,
we found k = 99 / 5 > 19. So at least 20 pigeons needs to go be in one pigeonhole,
which means at least 20 students need to have one of the grades. 

21. The pigeons can be distributed in the pigeonholes in any order. The principle does
not define any order. 

22. The probability of failure, Q, with a list of digest k = 0.69 × 2n, is 50 percent. This
means that if Eve needs to be sure that she is successful, she needs to repeat the
algorithm m times so that Q = (1/2)m = 0. Solving this equation, gives us m = infin-
ity, which means that Eve can never be sure that she can find the answer. However,
if Eve repeats the algorithm many time, the probability of failure reduces tremen-
dously. For example, if she repeat the algorithm 1000 times, Q = 1 / 21024, which is
a very small number.      

23. The probability of failure, Q, with a list of digest k = 1.18 × 2n/2, is 50 percent. This
means that if Eve needs to be sure that she is successful, she needs to repeat the
algorithm m times so that Q = (1/2)m = 0. Solving this equation, gives us m = infin-
ity, which means that Eve can never be hundred present sure that she can find the
answer. However, if Eve repeats the algorithm many time, the probability of failure
reduces tremendously. For example, if she repeat the algorithm 1000 times, Q = 1 /
21024, which is a very small number.      

24. The following shows the value of the digest after hashing each character of the
text. The method is not secure because the digest is always between 0 and 25. The
total number of possible digest is N = 26.    

P ≈ 1 − e−k(k − 1)/2N ≈ 0.74 

Initial value of the digest: d = 00 

After hashing the first character (H: 07): d = (00 + 07) mod 26 = 07  

After hashing the first character (E: 04): d = (07 + 04) mod 26 = 11  

After hashing the first character (L: 11): d = (11 + 11) mod 26 = 22  

After hashing the first character (L: 11): d = (22 + 11) mod 26 = 07  

After hashing the first character (O: 14): d = (07 + 14) mod 26 = 21  
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25. Although the problem does not mention the substitution process, we substitute the
number x with the (x + 1)th prime number (the first prime number is 2). The fol-
lowing shows how the digest is calculated (using the table of prime numbers in
Appendix H. The method is very insecure because the possible number of digests
N = 100.  

26. We use the 8-bit ASCII representation of the text (with the leftmost bit set to 0).
We choose H0 = (11110000)2 = 240 and the p = 137. We choose m = 8, so we do
not need padding. We have N = 5 blocks. We can then calculate the digests as fol-
lows: 

The digest is then H5 = 67 =  (43)16 = (01000011)2. Even if we let m to be large,
still the algorithm is insecure because the algorithm is trivial. A cryptographical
hash algorithm needs to be more complex, with many rounds, to throughly mix the
bits of the message (See Chapter 12).   

27. Figure S11.27 shows the diagram for this hash algorithm. We assume that the mes-
sage is already augmented and the last block (length block) is already added. We
have m + 1 blocks, each of N/2 bits. Note that << means shift left and >> means
shift right. The || operator means the OR operation.        

Initial value of the digest:    d = 00

Character: H (07)  →  8th prime: 19  d = (00 + 19) mod 100 = 19  

Character: E (04) →  5th prime: 11  d = (19 + 11) mod 100 = 30  

Character: H (11)  →  12th prime: 37  d = (30 + 37) mod 100 = 67  

Character: H (11)  →  12th prime: 37   d = (67 + 37) mod 100 = 04  

Character: H (14) →  15th prime: 47  d = (04 + 47) mod 100 = 51  

H0  →   240     

H1  →   (H0 + "H") mod p =   (240 + 72) mod 137 =  38

H2  →   (H1 + "H") mod p =   (38 + 69) mod 137 =  107

H3  →   (H2 + "H") mod p =   (107 + 76) mod 137 =  46

H4  →   (H3 + "H") mod p =   (46 + 76) mod 137 =  122

H5  →   (H4 + "H") mod p =   (122 + 79) mod 137 =  67

MASH (x[0 … m + 1], K, Hinit , p, q) 
{

H[0] ← Hinit
M ← p × q
for (i = 1 to m + 1)
{

if (i  < m + 1) 
 Y[i] ← Expand (x[i], (1111)2)

else  
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28. Given the value of P (less than 1), the following algorithm finds the value of k for
the first general birthday problem: 

 Y[i] ← Expand (x[i], (1010)2)
T[i] ← ((H[i − 1] ⊕ Y[i])  || Κ) 275 mod M 
G[i] ← T[i]  mod 2N 
H[i] ← H[i − 1]  ⊕ G[i]  

}
return H[m + 1]

}
Expand (x, const) 
{
  u ← (const << 4) // u is const with four 0’s          
  y  ← (000… 0) // y is made of N zeros
  bytecount ← (Ν / 2) /4 

for (i = 1 to bytecount)
{

t ← x  ||  (F)16                        // extract the four rightmost bits
u ← u ||  t  
y ← y  ||  u << (i −1) × 8  
x ← x  >> 4  

}
return y

}

Figure S11.27 Diagram for Exercise 27

Hash: 

Message
digest

Augmented message: multiple of N/2 bit blocks Length
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X1 
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Ym 
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N bits
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Expansion
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Expansion

Hash
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N bits

N bits

Expansion

Hash
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29. Given the value of P (less than 1), the following algorithm finds the value of k for
the second general birthday problem: 

30. Given the value of P (less than 1) and N, the following algorithm finds the value of
k for the third general birthday problem:   

BirthdayFirst (P, N)
{

k ← 1
while (true)
{

Q ← (1 − 1 / N) k 

if ((1 − Q) = P) 
return k

k ← k + 1
}

}

BirthdaySecond (P, N)
{

k ← 1
while (true)
{

Q ← (1 − 1 / N) k −1 

if ((1 − Q) = P) 
 return k
k ← k + 1

}
}

BirthdayThrid (P, N)
{

Q ← 1
k ← 1
while (true)
{

Q ← Q × (1− (k − 1) /N) 
if ((1 − Q) = P) 
 return k
k ← k + 1

}
}
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31. Given the value of P (less than 1) and N, the following algorithm finds the value of
k for the fourth general birthday problem:   

32. Given the value of b, n, M (message), and K (key), the following algorithm finds
the hash HMAC of M.    

BirthdayFourth(P, N)
{

k ← 1
while (true)
{

Q ← (1 − 1 / N) k × k 
if ((1 − Q) = P) 
 return k
k ← k + 1

}
}

HMAC (b, n, M, K)
{

ipad  ← Concatenate (b/8, 3616)
opad ← Concatenate (b/8, 5C16)
K ← PadZero (b, K)
K1 ← K ⊕ ipad 
hmiddle ← hash (K1 | M) 
hmiddle ← Padzero (b, h)
K2 ← K ⊕ opad 
h ← hash (K2 | hmiddle) 
return h 

}
PadZero (b, T)
{

while (length (T) < b)
 T ← 0 | T

return Res 
}
Concatenate (m, C)
{

Res  ← C
i ← 1
while (i  <  m)
{

 Res ← Res | C
 i ← i + 1

} 
return Res 

}
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33. Given the value of n, N, k, K (key), and a message of N blocks, the following algo-
rithm calculates the CMAC. Note that we have not shown how to calculate the
value of k, but it is not difficult to write another algorithm to do so.   

CMAC (n, N, k, K, M[1 … N])
{

C[1]  ← EK (M[1])
i ← 2
while (i  <  N)
{

 C[i]  ← EK (C[i − 1] ⊕ M[i])
 i ← i + 1

} 
C[N]  ← EK (C[N − 1] ⊕ M[N] ⊕ k)
h  ← SelectLeft (n, C[N])
return h 

}
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CHAPTER 12

Cryptographic Hash Functions
(Solution to Practice Set) 
Review Questions
1. A cryptographic hash function takes a message of arbitrary length and creates a

message digest of fixed length. 

2. An iterated cryptographic hash function uses a compression function with fixed-
size input and repeat the function a necessary number of times until the whole
message is hashed. 

3. The Merkle-Damgard scheme is an iterated hash function that is collision resistant
if the compression function is collision resistant. If we use this scheme, we need
only to make the compression function collision resistant. 

4. A category of cryptographic hash functions uses compression functions that are
made from scratch. We can mention several groups of hash functions in this cate-
gory: MD’s (MD2, MD4, and MD5), SHA (SHA-1, SHA-224, SHA-256, SHA-
384, and SHA-512), RIPMED, and HAVAL. 

5. An iterated cryptographic hash function can use a symmetric-key block cipher as a
compression function. We mentioned Rabin, Davies-Meyer, Matyas-Meyer-Oseas,
and Miyaguchi-Preneel schemes. 

6. SHA-512 is an iterated cryptographic hash function based on Merkle-Damgard
scheme in which the compression function is made from scratch. The following
table shows some characteristics of SHA-512. 

Characteristics Values

Minimum message size 2128 − 1 bits

Block size 1024 bits

Message digest size 512 bits

Number of rounds 80

Word size 64 bits
1
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7. Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-
Preneel scheme, that uses a symmetric-key block cipher in place of the compres-
sion function. The block cipher is a modified AES cipher that has been tailored for
this purpose. The following table shows some characteristics of Whirlpool. 

8. SHA-512 is a hash function made of scratch; Whirlpool is a hash function made of
a encryption cipher. The following table shows a comparison between the two: 

Exercises
9. The size of the length field is 128 bit or 32 hexadecimal digits.

10. The size of the length field is 256 bit or 64 hexadecimal digit. We show only part
of each value. 

11.  We need to have |M| + |P| + 128) mod 1024 = 0 or |P| = (−|M| − 128) mod 1024. 

Characteristics Values

Minimum message size 2 < 256 bits

Block size 512 bits

Message digest size 512 bits

Number of rounds 10

Characteristics SHA-512 Whirlpool

Scheme Merkle-Damgard Miyaguchi-Preneel 

Minimum message size 2128 − 1 bits 2 < 256 bits

Block size 1024 bits 512 bits

Message digest size 512 bits 512 bits

Number of rounds 80 10

a. 0000 0000 0000 0000 0000 0000 0000 03EB
b. 0000 0000 0000 0000 0000 0000 0000 2710
c. 0000 0000 0000 0000 0000 0000 000F 4240

a. 0000 (52 extra hexadecimal 0-digits) 0000 03EB
b. 0000 (52 extra hexadecimal 0-digits) 0000 2710
c. 0000 (52 extra hexadecimal 0-digits) 000F 4240

a. |P| = (− |M| − 128) mod 1024 = (−5120 − 128) mod 1024 = 896
b. |P| = (−||M| − 128) mod 1024 = (−5121 − 128) mod 1024 = 895
c. |P| = (−||M| − 128) mod 1024 = (−6143 − 128) mod 1024 = 897



SECTION 3
12. We need to have |M| + |P| = (2k + 1) × 256 in which k ≥ 0. In other words, we need
to find |P| = (2k + 1) × 256 − |M|.    

13.

a. In SHA-512, the last block, which is 1024 bits, consists of  

In which, X is the rightmost part of the message of (|M| mod 1024) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same. 

b. In Whirlpool, the last block, which is 512 bits, consists of  

In which, X is the rightmost part of the message of (|M| mod 256) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same. 

14. We have (17)1/2 = 4.12310562562. If we convert this number to binary, and keep
only the first 64 bits in the fraction part, we have     

The fractional part is G0 = (1F83D9ABFB41BD6B)16. 

15. The compression function of SHA-512 can be compared to a Feistel cipher (or
encryption cipher) of 80 rounds:

a. The initial digest in the compression function can be thought as the plaintext in
the Feistel cipher.

b. The final digest in the compression function can be thought as the ciphertext in
the Feistel cipher.

c. Each word in the compression function can be thought as the corresponding
round key in the Feistel cipher.

16. We can say that there is a similarity between SHA-512 with Davies-Meyer scheme
if we let

a. the input digest to each compression function to be thought of as the plaintext to
the imaginary cipher.

a. |P| = (2k + 1) × 256 − 5120   → k = 10 → P = 256 
b. |P| = (2k + 1) × 256 − 5121 → k = 10 → P = 255 
c. |P| = (2k + 1) × 256 − 6143   → k = 12 → P = 257 

X | padding | 128-bit message length 

X | padding | 256-bit message length 

100. 0001 1111 1000  … 0110 10100  →  (4.1F83D9ABFB41BD6B)16 
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b. the output digest from each compression function to be thought of the cipher-
text from the imaginary cipher.

c. the message block to be thought of as the cipher key to each cipher.

d. the final adding operation to be thought of as the XOR operation.     

17. If the final adding operation is removed from the SHA-512 compression function,
then its structure is similar to Rabin scheme, which is subject to the meet-in-the-
middle attack as discussed in the textbook. 

18. The following table shows the comparison between two ciphers; 

19. In AES, the need for removing the third operation is to make the encryption and
decryption inverse of each other. In Whirlpool, we use a cryptographic cipher to
simulate a hash function. The cipher is used only as an encryption algorithm with-
out the decryption algorithm. The hash function can have any structure without
worrying about the inverse structure. 

20. RotR12(x) means the right rotation of the argument by 12 bits or 3 hexadecimal
digits.   

21. ShL12(x) means the left shifting of the argument by 12 bits or 3 hexadecimal digit.      

22. Rotate(x) = RotR28(x) ⊕ RotR34(x) ⊕ RotR39(x). We first rotate the block three
times and then apply the exclusive-or operation. 
  
  

Characteristic AES (with 10 rounds) Whirlpool

Block size 128 512 bits

State 4 × 4 bytes 8 × 8 bytes

Cipher key size 128 512 bits

Number of rounds 10 plus a pre-round 10 plus a pre-round

Key expansion A complex process Using the cipher itself

Round key (10 + 1) × 128 bit (10 + 1) × 512 bit

Substitution SubBytes SubBytes

Permutation ShiftRows ShiftColumns

Mixing MixColumns MixRows

Adding round key Column-wise Byte-wise

Before Rotation: 1234 5678 ABCD 2345 3456 5678 ABCD 2468 
After Rotation: 4681 2345 678A BCD2 3453 4565 678A BCD2

Before Shifting: 1234 5678 ABCD 2345 3456 5678 ABCD 2468 
After Shifting: 4567 8ABC D234 5345 6567 8ABC D246 8000 
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23. The three blocks differ only in the first digit (leftmost digit). For the first digits,
Conditional (0001, 0010, 0011) = (0011)2 = 216. For the rest of the block, it means
applying the Conditional function to three digits of equal values, which results in
the common digit. Therefore, we have 

24. The three blocks differ only in the first digit (leftmost digit). For the first digits,
Majority (0001, 0010, 0011) = (0010)2 = 316. For the rest of the block, it means
applying the Majority function to three digits of equal values, which results in the
common digit. Therefore, we have 

25. Although this operation is available in most high-level languages, we write a rou-
tine for that. The following routine calls another routine, RotR(x), which rotates
right only one bit. We assume that the word is stored in an array of 64 bits with the
leftmost bit as the first element and the rightmost bit as the last element.  

26. Although this operation is available in most high-level languages, we write a rou-
tine for that. The following routine calls another routine, ShL(x), which shifts left

RotR28(x): BCD2 4681 2345 678A BCD2 3453 4565 678A 
RotR34(x): 2AF3 491A 048D 159E 2AF3 48D1 4D15 959E 
RotR39(x): F157 9A48 D024 68AC F157 9A46 8A68 ACAC 
Rotate(x): 6776 95D3 F7EC 1AB8 6776 E6C4 8218 5EB8

Result: 2234 5678 ABCD 2345 3456 5678 ABCD 2468 

Result: 3234 5678 ABCD 2345 3456 5678 ABCD 2468 

RotR (x, i)
{

count ← 1 
while (count < i)
{

 RotR(x)
 count ← count + 1

}
return x 

}
RotR(x)
{

temp ← x[64] 
j ← 63 
while (j  >  1)
{

 x[j + 1] ← x[j]
 j  ← j − 1

}
x[1]← temp 
return x 

}
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only one bit. We assume that the word is stored in an array of 64 bits with the left-
most bit as the first element and the rightmost bit as the last element.  

27. We assume that words x, y, z are represented as arrays of 64 elements. The follow-
ing routine shows how to find the result. We have use the if-else statement to show
the conditional nature of the operation. The code can be shorter if we use the logi-
cal operators (AND, OR, and NOT). 

ShLi (x, i)
{

count ← 1 
while (count < i)
{

 ShL(x)
 count ← count + 1

}
return x 

}
ShL(x)
{

j ← 2 
while (j  ≤  64)
{

 x[j − 1] ← x[j]
 j  ← j + 1

}
x[64]← 0 
return x 

}

Conditional (x, y, z)
{

i ← 1 
while (i ≤ 64)
{

 if (x[i] = 1)  
 result[i] ← y[i] 
 else  
 result[i] ← z[i] 
 i ← i + 1  

}
return result

}
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28. We assume that words x, y, z are represented as arrays of 64 elements. The follow-
ing routine shows how to find the result. 

29. We call the RotR(x, i) function we used in Exercise 25. 

30. We represent the initial digests as a two-dimensional array Digests[8][64] and the
first eight primes as Primes[8]. Note that, after taking the square root of the corre-
sponding prime, we subtract (i +1) / 2 from the result. This extracts the fractional
part of the square root because the integral part is 1, 2, 3, or 4. The routine
Convert63 converts the fractional part to a 64-bit binary pattern.  

Conditional (x, y, z)
{

i ← 1 
while (i ≤ 64)
{

 result[i] ← (x[i] AND y[i]) ⊕ (y[i] AND z[i])  ⊕ (z[i] AND x[i])        
 i ← i + 1  

}
return result

}

Rotate (x)
{

x1 ← x     x2 ← x     x3 ← x 
result ← RotR(x1, 28) ⊕  RotR(x2, 34) ⊕  RotR(x3, 39)
return result

}

CalcInitialDigest ()
{

Primes [8] = {2, 3, 5, 7, 11, 13, 17, 19}
i ← 1 
while (i ≤ 8)
{

 temp ← ExtractFraction (Primes [i]1/2)        
 Digests [i]  ← Convert64 (temp)       
 i ← i + 1  

}
return Digests

}
ExtractFraction(x)
{

while (x > 1.0)
{
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31. This is the same as the previous example, except that we need to use the first
eighty primes and then take the cubic root of them. The routine uses the same rou-
tine, Convert64 defined in the solution to Exercise 30. 

32. The following shows the simple routine to create 80 words. The RotR and ShL
routine have already been defined in the solution to Exercises 25 and 26.  

 x ← x  − 1.0       
}
return x

}
Convert64 (x)
{

j ← 1 
while (i ≤ 64)
{

 result[j] ← 0       
 x ← x × 2       
         if (x ≥ 1)             
         {
         result[i] ← 1
         x ← x − 1
         
         }
 j ← j + 1  

}
return result

}

CalcConstants ()
{

Primes [80] = {2, 3, …, 401, 409}
i ← 1 
while (i ≤ 80)
{

 temp ← (Primes [i])1/3       
 temp ← ExtractFraction (temp)       
 Constants [i]  ← Convert64 (temp)       
 i ← i + 1  

}
return (Constants[1 … 80])

}
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33.

WordExpansion (Key[0 … 15])
{

i ← 1 
while (i ≤ 80)
{

         if (i < 16)             
         W[i] ← Key[i] 
         else            
         {           
         temp1 ← RotShift(W[i −15], 1, 8, 7)
         temp2 ← RotShift(W[i −2], 19, 61, 6)
         W[i] ← W[i −16] ⊕ temp1 ⊕ W[i −7] ⊕ temp2
         }           
 i ← i + 1  

}
return (W[0 … 79]) 

}
RotShift(W, i, j, k)
{

temp1 ← RotR(W, i) 
temp2 ← RotR(W, j) 
temp3 ← ShL(W, k) 
result  ← temp1 ⊕ temp2 ⊕ temp3
return result

}

CompressionFunction (H[1 … 8], W[0 …79], K[0 … 79])
{

i ← 1 
while (i ≤ 8)
{

 Temp[i] ← H[i]       
 i ← i + 1  

}
j ← 0 
while (j < 80)
{

 H[1 … 8] ←  RoundFunction(H[1 … 8], W[j], K[j])        
 j ← j + 1  

}
i ← 1 
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34.    

while (i ≤ 8)
{

 H[i] ← (H[i] + Temp[i]) mod 264       
 i ← i + 1  

}
return (H[1 … 8])

}
RoundFunction (H[1 … 8], W, K)
{

i ← 1 
while (i ≤ 8)
{

T[i] ← H[i]       
i ← i + 1  

}
H[2] ← T[1]   
H[3] ← T[2]   
H[4] ← T[3]   
H[6] ← T[5]   
H[7] ← T[6]   
H[8] ← T[7]   
Temp1 ← (Majority (T[1], T[2], T[3]) + Rotate [T[1]) mod 264    
Temp2 ← (Conditional (T[5], T[6], T[7]) + Rotate [T[5] + W + K) mod 264    
H[1] ← (Temp1 + Temp2) mod 264    
H[5] ← (Temp2 + T[4]) mod 264    
return (H[1 … 8])

}

TransformBlockToState (b[0 … 63])
{

i ← 0 
while (i < 64)
{

 S[i/8][i mod 8] ← b[i]       
 i ← i + 1  

}
return (S[0 … 7][0 … 7])

}
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35.    

36.

37.

TransformStateToBlock (S[0 … 7][0 … 7])
{

i ← 0 
j ← 0 
while (i < 8)
{

 while (j < 8)       
 {      
 b[i × 8 + j]  ← S[i][j] 
 j ← j + 1
 }  
 i ← i + 1  

}
return (b[0 … 63])

}

SubByte (S[0 … 7][0 … 7])
{

i ← 0 
j ← 0 
while (i < 8)
{

 while (j < 8)       
 {      
 s[i][j]  ←  ByteTrans (s[i][j]) 
 j ← j + 1
 }  
 i ← i + 1  

}
return (S[0 … 7][0 … 7])

}

ShiftColumns (S[0 … 7] [0 … 7])
{

c ← 1 
while (c ≤ 7)
{

 shiftcolumn (S[c], c)       
 c ← c + 1  
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38.  

39.  

}
return (S[0 … 7][0 … 7])

}
shiftcolumn (col[1 … 8], n)
{

CopyColumn (col, temp) 
r ← 0 
while (r ≤ 7)
{

 col [(r − n) mod 8] ← temp [r]       
 r ← r + 1  

}
return col[1 … 8]

}

MixRows (S[0 … 7] [0 … 7])
{

r ← 0 
while (r < 8)
{

 mixrow (S[r], r)       
 r ← r + 1  

}
return (S[0 … 7] [0 … 7])

}
shiftcolumn (row[0 … 7], n, Constant [0 … 7] [0 … 7])
{

row  ← Constant × row 
return row [0 … 7]

}

AddRoundKey (S[0 … 7][0 … 7], k[0 … 7][0 … 7])
{

i ← 0 
j ← 0 
while (i < 8)
{

while (j < 8)       
{      

s[i][j]  ←  s[i][j] ⊕ k[i][j] 
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40.  

41.  

j ← j + 1
}  
i ← i + 1  

}
return (S[0 … 7][0 … 7])

}

KeyExpansion (CipherKey, RC[1 … 10])
{
 K[0] ← CipherKey
 x ← CipherKey

i ← 0 
while (i  ≤ 10)
{

x ← SubBytes (x)
x ← ShiftColumn (x)
x ← MixRows (x)
K[i] ← AddRoundKey (x, RC[i])
i ← i + 1

}
return (K[0 … 10])

}

RoundConstant ()
{

r ← 0 
i ← 0 
j ← 0 
while (r  ≤ 10)
{

while (i < 8)
{

        while (j < 8)       
       {
  if (i = 0)
          RC[r][i][j] ← ByteTrans (8 × (r −1) + j)
  else
          RC[r][i][j]  ←  0
 j ← j + 1
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42.

43.

       }
  i ← i + 1 
 }  
  r ← r + 1

}
return (RC[0 … 10][0 … 7] [0 … 7])

}

WhirlpoolCipher (P, CipherKey)
{
 K [0 … 10] ← KeyExpansion (CipherKey, RC[1 … 10])
 X ← AddRoundKey (P, K[0])

i ← 0 
while (i  ≤ 10)
{

X = SubBytes (X)
X = ShiftColumn (X)
X = MixRows (X)
X = AddRoundKey (X, K[i])
i ← i + 1

}
C ← X
return C

}

WhirlpoolHashFunction (M[1 … N], N)
{
 H ← (00 … 0)                                      // 520 of 0’s

i ← 0 
while (i  ≤ N)
{

H ← WhirlpoolCipher (M[i], H)  ⊕ H ⊕ M[i]
i ← i + 1

}

return H
}
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44. Figure S12.44 shows the outline of SHA-1. The maximum message size in SHA is
264 − 1 (compared with (2128 − 1 in SHA-512). The block size is 512 bits and the
digest size is 160 bits. SHA-1 uses only five words (each of 32 bits instead of 8
words, each of 64 bits in SHA-512). The number of rounds is 80 (same as SHA-
512). The structure of round in SHA-1, however, is somehow different from SHA-
512. There are 80 constants of size 32 bits. The word expansion in SHA-1 is also
simpler than SHA-512; eighty 32-bit words are made from sixteen 32-bit block. 

45. All of these three hash functions are either similar to SHA-1 or SHA-512. The dif-
ferences are in the block size, digest size, word size, and the number of rounds. 

a. SHA-224 is very similar to SHA-1 (See Figure S12.45a) except that the digest
size is 224 bits (7 words, each of 32 bits). The number of rounds is 64.

b. SHA-256 is very similar to SHA-1 (See Figure S12.45b) except that the digest
size is 256 bits (8 words, each of 32 bits). The number of rounds is 64.

Figure S12.44    Solution to Exercise 44. 
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c. SHA-256 is very similar to SHA-512 (See Figure S12.45c) except that the
digest size is 384 bits (6 words, each of 64 bits). The number of rounds is 80.

Figure S12.45a Solution to Exercise 45 part a

Figure S12.45b Solution to Exercise 45 part b

Figure S12.45c Solution to Exercise 45 part c
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46. We discuss RIPEMD-160 which is similar to SHA-1. RIPEMD-160 uses blocks of
512 bits and create digest of 160 bits as SHA-1 does. The difference is the struc-
ture of the compression function and the function used. Figure S12.46 shows the
general layout of RIPEMD-160. It uses 5 rounds, but each round is made of 16
iteration, which is the same as 80 rounds in SHA-1. RIPEMD, however, uses two
left and round sections in each round. The block is fed to two-word expansion pro-
cess that creates two sets of 80 words (each set uses a different combination of the
original 16 words). The initialized digests or digests from the previous compres-
sion function are equally fed into left and right rounds. 

47.

a. HAVAL is a hashing algorithm of variable-size digest designed by Yuliang
Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992 as shown in Figure
S12.47a. 

Figure S12.46    Solution to Exercise 46

Figure S12.47a   Solution to Exercise 47 Part a
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SECTION 18
The digest can be 128, 160, 192, 224, or 256 bits. The block size is 1024 bits.
The algorithm actually creates a digest of 256 bits, but a folding algorithm
matches the resulting 256 bits to one of the desired sizes. 

b. The compression function uses 3, 4, and 5 passes in which each pass uses 16
iteration of different complex functions. The three-pass version is the fastest,
but least secure; the five-pass version is the slowest, but the most secure. Figure
S12.47b shows the structure of the compression function in HAVAL. 

 

Figure S12.47b Solution to Exercise 47 part b
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CHAPTER 13

Digital Signature
(Solution to Practice Set) 

Review Questions
1. We mentioned four areas in which there is a differences between a conventional

and a digital signature: inclusion, verification, document-signature relation, and
duplicity. 

a. Inclusion: a conventional signature is included in the document; a digital signa-
ture is a separate document. 

b. Verification: A conventional signature is verified by comparing with the signa-
ture on file. The verifier of a digital signature needs to create a new signature. 

c. Relation: A document and a conventional signature has a one-to-many relation;
a message and a digital signature has one-to-one relation. 

d. Duplicity: In conventional signature, a copy of the signed document can be dis-
tinguished from the original one on file. In digital signature, there is no such
distinction unless there is a factor of time (such as a timestamp) on the docu-
ment. 

2. A digital signature can provide three security services: message authentication,
message integrity, and nonrepudiation. It does not provide confidentiality. 

3. The following table shows the relationship between attacks on a cryptosystem and
attacks on a digital signature. 

4. In an existential forgery, Eve may be able to create a valid message-signature pair,
but not the one that she can really use. In selective forgery, Eve may be able to

Cryptosystem
attacks

Digital signature
Attacks

Ciphertext-only Key-only
Known-plaintext Known-message
Chosen-plaintext Chosen-message
Chosen-ciphertext
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forge Alice’s signature on a message with the content selectively chosen by Eve.
Existential forgery is easy; selective forgery is difficult. 

5. The idea behind the RSA digital signature scheme is the same as the RSA crypto-
system, but the roles of the private and public keys are changed. First, the private
and public keys of the sender, not the receiver, are used. Second, the sender uses
her own private key to sign the document; the receiver uses the sender’s public key
to verify it. 

6. The ElGamal digital signature scheme uses the same keys as the ElGamal crypto-
system, but the algorithm is different. RSA digital signature scheme creates one
signature out of the message; ElGamal digital signature scheme creates two signa-
tures. 

7. The Schnorr digital signature scheme is similar the ElGamal digital signature but
the size of the signatures are smaller. 

8. The Digital Signature Standard (DSS) was adopted by the National Institute of
Standards and Technology (NIST) in 1994. It combines the advantages of the
ElGamal scheme with some ideas from the Schnorr scheme. DSS has been criti-
cized from the time it was published. It is less complex than Schnorr scheme, but
the sizes of the signatures are smaller than ones in ElGamal scheme. 

9. The elliptic curve digital signature scheme is based on DSA, but uses elliptic
curves. The scheme is similar to the elliptic curve cryptosystem in which the signer
and verifiers manipulate points on an elliptic curve. 

10. We mentioned three variations of digital signature: timestamped digital signatures,
blind digital signatures, and undeniable digital signature. A timestamped digital
signature prevents the signature from being replayed by an adversary. A blind digit
signature allows an entity to let another entity sign a document without revealing
the contents of the document to the signer. An undeniable digital signature allows
an entity to sign a message that cannot be denied, at the same time, cannot be
forged. 

Exercise
11. We have n = 809 × 751 = 607559  φ(n) = (809 −1) × (751 − 1) = 606000. Since d =

23, we have e = d −1mod φ(n) = 158087. 

a. We have  

b.  We have 

c. If M = M1 × M2 = 5000, we have 

S1 = M1
d mod n = 10023 mod 607559 =  223388

M1 = S1
e mod n = 223388158087 mod 607559 =  100

S2 = M2
d mod n = 5023 mod 607559 =  5627

M2 = S2
e mod n = 5627158087 mod 607559 =  50
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12. We have p = 881 d = 700. We choose e1 = 3. Then e2 = e1
d mod p = 471. 

We can verify the signature because V1 is congruent to V2. 

13. We have q = 83, p = 997, and d = 23. We choose e0 = 7. Then e1 = e0
(p −1)/q mod p

= 9 e2 = e1
d mod p = 521. We calculate S1 and S2 in mod q. We let h(40067) = 81

(The actual value does not matter here).  

We can verify the signature assuming that h(40067) = 81.  

14. We have q = 59, p = 709, d = 14, r = 13 and h(M) = 100. We choose e0 = 2. Then
we have e1 = e0

(p −1)/q mod p = 551 e2 = e1
d mod p = 399. The following shows the

calculation for S1, S1 at the sender site and the calculation of V at the receiver site.
Since V = S1, the signature is verified. 

15.

a. In RSA scheme S = Md mod n. This means that the value of S can be as large as
(n − 1). In other words the size of |S| ≈ |n| ≈ 1024 bits. 

b. In ElGamal scheme S1 = (…) mod p and S2 = (…) mod (p −1). This means that
the value of S1 can be as large as (p − 1) and the value of S2 can be as large as (p
− 2) In other words the size of |S1| ≈ |p| ≈ 1024 bits and the size of |S2| ≈ |p| ≈
1024 bits. This means the sign of the signature is 2048 bits. 

S = Md mod n = 500023 mod 607559 =  572264
S = (S1 × S2) mod n  = (223388 × 5627) mod 607559 = 572264   

S1 = e1
r mod p = 317 mod 881 =  540

S2 = (M − d × S1) r−1 mod (p − 1) = (400 − 700 × 540) 17−1 mod 880 =  720  

V1 = e1
M mod p = 3400 mod 881 = 186

V2 = e2
S1 ×  S1

S2 mod p = 471540 × 540720 mod 881 =  186  

S1 = h(M | e1
r mod p) = h(400 | 911 mod p) = h(400 | 67) = h(40067) = 81 

S2 = r + ds1 mod q = 11 + 23 × 81 mod 83 = 48 

V = h(M | e1
S2 e2

 −S1 mod p) = h(400 | 948 521−81 mod 997) =  

V = h(400 | 948 5212 mod 997) = h(400 | 877 × 257 mod 997) =   

V = h(400 | 67) = h(40067) = 81  

S1 = (e1
r mod p) q =  48

S2 = (h(M) + d × S1) r−1 mod q = 14    
S2 

−1 mod q = 38         → V = (e1
h(M) ×38 e2

S1 ×38 mod p) mod q  = 48
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c. In Schnorr scheme S1 = h (...) and S2 = (…) mod (q). This means that the value
of S1 is exactly equals h (...) and the value of S2 can be as large as (q − 1). Since
q is required to be the same size as q. The size of |S1| ≈ |q| ≈ 160 bits and the
size of |S2| ≈ |q| ≈ 160 bits. This means the sign of the signature is 320 bits. The
signature in Schnorr is much smaller than signature in ElGamal.

d. In DSS scheme S1 = (…) mod q   S2 = (…) mod q. This means that the value of
S1 and S2 can be as large as (q − 1). The size of |S1| = |S2| ≈ |q| ≈ 160 bits and the
This means the sign of the signature is 320 bits. The signature in DSS is the
same size as the signature in the Schnorr scheme. 

16. If S2 = 0, S2 
−1 mod q does not exist and the verifier cannot calculate the value of V

to verify the signature.

17. In all of these schemes, Eve can calculate the value of d if she intercept a message
and its signature. She can then forge a message from Alice to Bob. Each case is
described separately in Exercises 23, 24, and 25. 

18.  

a. In the ElGamal scheme, if Alice uses the same value for r to sign two messages,
the value of S1 is the same for both signature. This is a weakness in the security
of the signature. 

b. In the Schnorr scheme, since the value of S1 depends on the value of the mes-
sage, the two values of S1 are different. The weakness described in part a does
not apply here.     

c. In the DSS scheme, the situation is the same as in the ElGamal scheme. The two
values of S1 are the same for two signature, which is considered a weakness in
the security of DSS. 

19. If p = 19 and q = 3, n = 57. Eve can easily calculate φ(n) = φ(57) = 36. Since e is
public, Eve can find d  = e−1 mod n. Eve can now choose a message of her own M,
calculate S = Md mod n. Eve then sends M and S to Bob and pretends that they are
coming from Alice. 

20. If p = 19, then the value of d is between 2 and 17. Since e2 = e1
d mod p and the val-

ues of e1, e2, and p are public, Eve can find the value of d using exhaustive search.
Eve can now choose a message of her own M, calculates S1 and S2. Eve then sends
M, S1, and S2 to Bob and pretends that they are coming from Alice.

21. If p = 29 and q = 7, then the value of d is between 2 and 7 (it should be less than q
− 1). Since e2 = e1

d mod p and the values of e1, e2, p, and q are public, Eve can find
the value of d using exhaustive search. Eve can now choose a message of her own
M, calculates S1 and S2. Eve then sends M, S1, and S2 to Bob and pretends that
they are coming from Alice.

22. If p = 29 and q = 7, then the value of d is between 2 and 7 (it should be less than q
− 1). Since e2 = e1

d mod p and the values of e1, e2, p, and q are public, Eve can find
the value of d using exhaustive search. Eve can now choose a message of her own
M, calculates S1 and S2. Eve then sends M, S1, and S2 to Bob and pretends that
they are coming from Alice.
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23. In ElGamal scheme, if Eve can somehow finds out what value of r is used by Alice
to calculate the signature for a particular message, the whole system is broken. Eve
knows the value of M, S1, S2 and r. She can calculate the value of d as shown
below:

     d = (M  − rS2)S1
−1 mod (p − 1)

This is possible if gcd(S1, p −1) = 1, which is very probable. When d is
found, Eve can choose a message of her own (selective forgery), calculate
the signature and send them to Bob fooling him that the message is coming
from Alice. 

24. In Schnorr scheme, if Eve can somehow finds out what value of r is used by Alice
to calculate the signature for a particular message, the whole system is broken. Eve
knows the value of M, S1, S2 and r. She can calculate the value of d as shown
below:

     d = (S2 − r)S1
−1 mod q

This is possible if gcd(S1, q) = 1, which is very probable. When d is found,
Eve can choose a message of her own (selective forgery), calculate the sig-
nature, and send them to Bob fooling him that the message is coming from
Alice. 

25. In DSS scheme, if the value of r revealed, the whole system is broken. Eve knows
the value of M, S1, S2 and r. She can calculate the value of d as shown below:

     d = (rS2 − h(M))S1
−1 mod q

This is possible if gcd(S1, q) = 1, which is very probable. When d is found,
Eve can choose a message of her own (selective forgery), calculate the sig-
nature and send them to Bob fooling him that the message is coming from
Alice. 

26.
a. Although the value of S1 is calculated differently in each scheme, both values

are in the range 0 to q if the size of the digest in Schnorr is the same as the size
of the q (which is normally the case). 

b. Although the value of S2 is calculated differently in each scheme, both values
are in the range 0 to q since calculation is done modulo q in both cases. 

27. This is done to make the calculation possible because if ax ≡ ay mod p, then x ≡ y
mod (p − 1). 

28. In the Schnorr scheme, we need to make both S1 and S2 smaller than q. Since we
apply a hashing function to S1 in which the size of the digest is q, the result is auto-
matically smaller than q. Since no hashing is applied to S2, we need to do the cal-
culation in modulo q to make the result smaller than q. 

29. In the DSS scheme, we need to make both S1 and S2 smaller than q. However, to
make it more difficult for Eve to find the value of r, we first do exponentiation in
modulo p (which is much larger than q), but we apply another modulo operation to

https://www.coursehero.com/file/17225685/Instructor-Solution-Chap-13/

This
 st

ud
y r

es
ou

rce
 w

as

sh
are

d v
ia

Cou
rse

Hero
.co

m

https://www.coursehero.com/file/17225685/Instructor-Solution-Chap-13/


6

reduce the size of S1. In case of S2, since there is no exponentiation and the size of
the digest is smaller than q, we need to apply only a modulo q operation to make
the size of S2 smaller than q.   

30. We start with V and show that it is congruent to S1. 

31. We start with V and show that it is congruent to S1. Let h(M) = x.  

32. We prove that the point T(…, …) reached by Bob on the curve is the same point
re1(…, …) reached by Alice on the curve (all calculation are in mod q).  

 

If T(…, …) and re1(…, …) represent the same point on the curve, then their first
coordinates is the same. This proves that V = S1. 

33.

V = h(M | e1
S2 e2

−S1 mod p)       

V = h(M | e1
S2 (e1

d mod p)−S1 mod p)                                  // Since e2 = e1
d mod p

V = h(M | e1
S2 (e1

−dS1 mod p) = h(M | e1
r + dS1 e1

−dS1 mod p)                                  

V = h(M | e1
r mod p)  =  S1                                  

V = (e1
xS2−1 e2

S1 S2−1 mod p mod q  = (e1
x   e2

S1) S2−1 mod p mod q 

 V = (e1
x   e1

dS1) S2−1 mod p mod q                                // Since e2 = e1
d mod p   

 V = (e1
x + dS1) S2−1 mod p mod q   

 V = (e1 
rS2) S2−1 mod p mod q                          // Since S2 = (x + dS) r−1mod q

 V = (e1
r) S2S2−1 mod p mod q = (e1

r) mod p mod q = S1
 

T(…, …) = Ae1(…, …) + Be2(…, …) = Ae1(…, …) + Bde1(…, …) 

T(…, …) = (A + dB) e1(…, …) = (h(M)S2
−1 + dS2

−1S1) e1(…, …)   

T(…, …) = S2
−1 (h(M) + dS1) e1(…, …) = S2

−1 (rS2) e1(…, …) = r e1(…, …)   

RSA_Signing (M, d, n)
{

S  ← Md mod n 
return (M, S) 

}
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34.

35.

RSA_Verifying (M, e, n, S)
{

M′  ← Se mod n 
if (M’ = M)     

   Accept M
else    

   Reject M
}

ElGamal_Signing (M, r, e1, d, p)
{

S1  ← e1
r mod p 

S2  ← (M − d × S1) r −1 mod (p − 1) 
return (M, S1, S2)

}

ElGamal_Verifying (M, e1, e2, p, S1, S2)
{

V1  ← e1
M mod p 

V2  ← e2
S1 × S1

S2 mod p 
if (V1 = V2)     

   Accept M
else    

   Reject M
}

Schnorr_Signing (M, r, e1, d, p, q)
{

S1  ← h (M | e1
r mod p) 

S2  ← (r  + d × S1)  mod q 
return (M, S1, S2)

}

Schnorr_Verifying (M, e1, e2, p, q, S1, S2)
{

V  ← h (M | e1
S1 × e2 

−
 
S2 mod p) 

if (S1 = V)     
   Accept M

else    
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36.

37.

   Reject M
}

DSS_Signing (M, r, e1, d, p, q)
{

S1  ← (e1
r mod p) mod q 

S2  ← (h (M)  + d × S1) r−1  mod q 
return (M, S1, S2)

}

DSS_Verifying (M, e1, e2, p, q, S1, S2)
{

x   ← h (M) × S1
−1 mod q 

y   ← S2 × S1
−1 mod q 

V  ← (e1
x × e2 

y mod p) mod q 
if (S1 = V)     

   Accept M
else    

   Reject M
}

EllipticCurve_Signing (M, a, b, r, e1(…, …), d, p, q)
{

P(u, v)  ← r × e1(…, …) 
S1  ← u mod q 
S2  ← (h (M)  + d × S1) r−1  mod q 
return (M, S1, S2)

}

EllipticCurve_Verifying (M, a, b, e1(…, …), e1(…, …), p, q, S1, S2)
{

A ← (h (M) × S2
−1) mod q   

B ← (S1 × S2
−1) mod q

T(x, y)  ← A × e1(…, …) + B × e1(…, …)    
V  ← x mod q 
if (S1 = V)     

   Accept M
else    

   Reject M
}
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1

CHAPTER 14 

Entity Authentication
(Solution to Practice Set) 

Review Questions
1. There are two differences between message authentication and entity authentica-

tion. First, message authentication might not happen in real time; entity authentica-
tion does. Second, message authentication simply authenticates one message; the
process needs to be repeated for each new message. Entity authentication authenti-
cates the claimant for the entire duration of a session.

2. Verification can be done with one of three kinds of witnesses: something known,
something possessed, or something inherent. Something know is a secret known
only by the claimant that can be checked by the verifier. Something possessed is
something that can prove the claimant’s identity. Something inherent. is an inher-
ent characteristic of the claimant. 

3. A fixed password is a password that is used over and over again for every access.
A one-time password is a password that is used only once. 

4. Long passwords has the advantage that they cannot be easily guessed by an
intruder. They have the disadvantage that cannot be easily remembered by the user
and needs to be recorded somewhere, which make them vulnerable to password
stealing attack. 

5. In challenge-response authentication, the claimant proves that she knows a secret
without sending it to the verifier.

6. A nonce is a random number used only once. A nonce must be time-varying; every
time it is created, it should be different.

7. In a dictionary attack, Eve is interested in finding one password, regardless of the
user ID. Eve can create a list of numbers. She then applies the hash function to
every number until she finds a match with a hashed password.   

8. In challenge-response authentication, the claimant proves that she knows a secret
without sending it to the verifier. In zero-knowledge authentication, the claimant
proves that she knows a secret without revealing it. 

9. Biometrics is the measurement of physiological or behavioral features that identify
a person (authentication by something inherent). Biometrics measures features that
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SECTION 2

cannot be guessed, stolen, or shared. These techniques can be divided into two
broad categories: physiological and behavioral.

10. Accuracy of biometric techniques is measured using two parameters: false rejec-
tion rate (FRR) and false acceptance rate (FAR). FRR measures how often a per-
son, who should be recognized, is not recognized by the system. FAR measures
how often a person, who should not be recognized, is recognized by the system. 

Exercises
11. A system may require that users frequently change their passwords. In this case, a

validity period is defined for each password. Near the end of the period, the system
warns the user to create a new password and use the password-changing process to
change the password. 

12. Guessing attacks can be prevented if people use long passwords with no relation
with their names, dates of birth, account numbers, and so on. 

13. See Figure S14.13. 

14. One problem with timestamp is the difficulty in synchronization. The computer of
the claimant and the verifier needs to be synchronized for the timestamp to be
effective. 

15. It can be done. However, it is very inefficient. It can be done using three exchange
as shown in Figure S14.15. But this efficient protocol is subject to an attack called
reflection attack (See solution to Exercise 30). 

Figure S14.13 Solution to Exercise 13

h(...)

h(...)

h(...)

Alice

Alice
Original

After first access

After second access

nAlice hn (P0)hn − 1(P0)

hn − 2(P0) n − 1Alice hn −1(P0)

n − 2Alice hn −2(P0)

n

n − 1

Alice

hn − 3(P0)

n − 2

Alice
(claimant)

First
access

Second
access

Third
access

Bob
(verifier)
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SECTION 3

16. See Figure S14.16. 

17. See Figure S14.17.

Figure S14.15 Solutions to Exercise 15

Figure S14.16 Solution to Exercise 16

Figure S14.17 Solution to Exercise 17
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RA RB
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KA-B
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Bob
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2

3

Alice-Bob secret key
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Alice
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1
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SECTION 4

18. The following table shows the comparison.  

19. The following table shows the comparison.  

20. A timestamp can be used anywhere a nonce can be used. So we can use a times-
tamp T instead of RB in Figure 14.9 (in the textbook) and two timestamps T1 and
T2 instead of RA and RB in Figure 14.10 (in the textbook). 

21. All three protocols use witness, challenge, and response. However, the value of
these three items are different in different protocols as shown in the following
table. 

22. One way to apply the cave analogy to Feige-Fiat-Shamir protocol is to have k
caves. After Alice comes up from the one cave, she need to try the next one. She
has passed the test if she come up from all of them. The door in each cave opens
with different magic word. Figure S14.22 shows the idea.  

Feature Protocol in Figure 14.5 Protocol in Figure 14.9
Challenge Bob’s nonce is sent in plaintext. Bob’s nonce is encrypted with 

Alice’s public key 
Response Alice should show that she have the 

secret by encrypting Bob’s nonce 
and send the encrypted nonce. 

Alice should show that she have the 
secret by decrypting Bob’s nonce 
and send it in plaintext.

Authentication Feature Protocol in Figure 14.7 Protocol in Figure 14.10
Authentication
of Bob

Challenge Bob’s nonce is sent in plain-
text (second exchange).

Alice challenges Bob by 
sending her nonce encrypted 
with Bob’s public key (first 
exchange) 

Response Alice should show that she 
have the secret by encrypt-
ing Bob’s nonce and send 
the encrypted nonce (third 
exchange). 

Bob shows that he possesses 
his private key by decrypting 
Alice’s nonce and resending 
it in the second exchange.

Authentication 
of Alice

Challenge Alice’s nonce is sent in 
encrypted form (third 
exchange).

Bob challenges Alice by 
sending his nonce encrypted 
with Alice’s public key (sec-
ond exchange) 

Response Bob should show that he 
have the secret by encrypt-
ing Alice’s nonce and send 
the encrypted nonce (fourth 
exchange). 

Alice shows that she pos-
sesses her private key by 
decrypting Bob’s nonce 
resending it in the third 
exchange

Witness Challenge response

Figure 14.13 x = r2 mod n c: (0 or 1) y = rsc mod n

Figure 14.15 x = r2 mod n (c1, c2, … ck) y = rs1
c1 s2

c2 … sk
ck mod n

Figure 14.16 x = remod n c: (1 to e) y = rsc mod n
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SECTION 5

23. p ← 569   q  ← 683   n ←  388,267 s ← 157 v ←  24,649 

The values of the last two columns should be the same if Alice is honest or has pre-
guessed the value of c.   

24. p ← 683   q  ← 811   n ←  553,913 (s1 ← 157    s2 ← 43215)   (v1 ← 112068   
v2 ← 338402). 

The values of the last two columns should be the same if Alice is honest or has pre-
guessed the value of c’s correctly.   

25. p ← 683   q  ← 811   n ←  553,913  φ(n) ← 552,402   s ← 157 e ← 7   v ← 444751         

The values of the last two columns should be the same if Alice is honest or has pre-
guessed the value of c correctly.   

26. All three protocols use three exchanges and some calculation. Figure S14.26
shows the general idea in these protocols. 

27. In the Fiat-Shamir protocol, a dishonest claimant can correctly responds to a
change with the probability of 1/2. The probability that a dishonest claimant

Figure S14.22 Solution to Exercise 22

r x ← r2 mod n c y ← rsc mod n y2 mod n xvc mod n 

203,122 130663 0 203122 130,663 130,663

153,271 292,873 1 379,260 366,513 366,513

377,245 345,180 1 210,881 247,049 247,049

r x ← r2 mod n c’s y ← rsc mod n y2vc mod n x 

12,672 498,727 (0, 1) 354436 498,727 498,727

14,567 48,810 (1, 1) 491234 48,810 48,810

16,034 213386 (1, 0)  374,579 213,386 213,386

r x ← re mod n c y ← rsc mod n yevcmod n x 

15,024 519,635 1 153,116 519,635 519,635

7,235 135,522 3 35,444 135,522 135,522

423 200,972 4 18,109 200,972 200,972

Cave 1 Cave 2 Cave k
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SECTION 6

responds correctly 15 times is then P = (1/2)15 = 1/32768 ≈ 0.0000305, which is
very small. 

28. In the Feige-Fiat-Shamir protocol, a dishonest claimant can correctly responds to a
change with the probability of (1/2)k because there are k challenges. The probabil-
ity that a dishonest claimant responds correctly 15 times is then P = [(1/2)k]15,
which is extremely small when k is large. 

29. In the Guillou-Quiquater protocol, a dishonest claimant can correctly responds to a
change with the probability of 1/(e − 1) because the challenge value is between 1
and e. The probability that a dishonest claimant responds correctly 15 times is then
P = [1/(e − 1)]15, which is extremely small when e is large.

30. Reflection attack cannot happened in Figure 14-10 of the text. It may happened if
bidirectional authentication is done using the secret key between Alice and Bob as
shown in Figure S14.30a.  

Figure S14.26 Solution to Exercise 26

Figure S14.30a Solution to Exercise 30

Witness

Response

Challenge

Alice
(claimant)

Bob
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SECTION 7

In this version, Eve can use two sessions to fool Bob as shown in Figure S14.30b.

In the first session, Eve pretends that she is Alice and sends RA and Alice identity.
She receives RB from Bob, which she keeps. Eve now pretends that this session is
aborted. After a while she sends RB to bob with Alice ID as though she is starting a
new session. Bob is fooled that RB that he has sent is a new RA from Alice (this
can occur if Bob does not keep track of R’s). Bob know encrypt RB with the secret
key and sends it to Eve. That is what Eve needs. She sends what she has received
(she cannot decrypt it, but it does not matter) to Bob and pretends that the first ses-
sion continues. Now Eve is falsely authenticated to Bob as Alice. 

Figure S14.30b

Bob
Eve

Note: Eve is pretending 
to be Alice

First
session

Back to
First

session

Second
session

Note: Eve is sending RB pretending that it is a new RA

Eve aborts the session because she does not know the 
secret key to encrypt RB

Eve aborts the second session, but  continues with the 
first session. She sends encrypted RB pretending 

that Alice has encrypted it.  

RA RB

KA-B

RB R’B

KA-B

RB

KA-B

Alice, RA

Alice, RB

KA-B Encrypted with Alice-Bob secret key
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1

CHAPTER 15

Key Management
(Solution to Practice Set) 

Review Questions
1. The following shows the main duties. 

a. KDC establishes a shared secret key between itself and each newly joined
member.

b. KDC accepts requests from members who wants to establish a session key
between themselves and other members.

c. KDC checks the willingness of members for establishing session keys.
d. KDC creates a session key and sends it to two parties who want to use it. 

2. A session key is a secret key that is used only once (during the session). After the
session termination, the session key is no longer useful. The following shows one
of the ways a session is established between Alice and Bob: 
� Alice sends a request to the KDC stating that she needs a session key. 
�  KDC informs Bob about Alice’s request. 
� If Bob agrees, a session key is created between the two.

3. Kerberos is a popular authentication protocol, and at the same time a KDC. Three
servers are involved in the Kerberos protocol: an authentication server (AS), a
ticket-granting server (TGS), and a real (data) server that provides services to oth-
ers. AS is the KDC. TGS issues a ticket for the real server (Bob) and provides the
session key. The real server provides services.

4. Diffie-Hellman protocol is a symmetric-key agreement protocol that allows Alice
and Bob to create a session key between themselves without using a KDC. 

5. Man-in-the-middle attack is an attack on the Diffie-Hellman protocol, in which
Eve can fool Alice and Bob by creating two keys: one between herself and Alice,
and another between herself and Bob.

6. The station-to-station protocol is a symmetric-key agreement protocol based on
Diffie-Hellman. It uses digital signatures with public-key certificates to establish a
session key between Alice and Bob.

https://www.coursehero.com/file/17224854/Instructor-Solution-Chap-15/

This
 st

ud
y r

es
ou

rce
 w

as

sh
are

d v
ia

Cou
rse

Hero
.co

m

https://www.coursehero.com/file/17224854/Instructor-Solution-Chap-15/


2

7. A certification authority (CA), is a federal or state organization that binds a public
key to an entity and issues a certificate. 

8. The X.509 recommendation is a way to describe a certificate in a structured way
using the ASN.1 protocol. 

9. Public-Key Infrastructure (PKI), created by the Internet Engineering Task Force, is
a model for creating, distributing, and revoking certificates based on the X.509. 

10. A trust model defines the rules that specify how a user can verify a certificate
received from a CA. We mentioned three variation of a trust model: hierarchical
model, mesh model, and web of trust. 

Exercises
11. In this case, Alice can access the ticket, change the session key, and send the

altered session key to Bob. In other words, Alice can create the session key instead
KDC; the role of KDC in authentication is totally deleted in this case.

12.

a. RA ensures that the session is totally fresh. In other words, RA ensures Alice
that the second message is from KDC, not replayed by Eve. Assume that there
is no RA. Alice starts and ends a session. However, Eve intercepts the second
message and stores it in her computer. Later, when Alice starts a new session to
communicate with Bob, Eve intercepts the request and discards it. Eve now
replayed the old stored message. Alice is fooled that this second message is
coming from KDC. Alice sends the third message to Bob. If Eve somehow
knows Bob’s secret key with KDC (KB), she can intercepts the third message
and decrypts it. Eve now knows the session key between Alice and Bob. She
can pretend to be Bob and continue communication with Alice. The use of RA
prevents this type of replaying attack. 

b. RB in step 4 and RB − 1 in step 5 are to ensure Bob that Alice actually has KAB
(the session key). This nonce acts like a testing messages exchanged between
Alice and Bob. 

13.

a. Alice is authenticated by KDC, because only Alice can decrypt the message
sent in step 2.

b. KDC is an authorized and well-know entity. The whole assumption is that Alice
trusts KDC. 

c. KDC is an authorized and well-know entity. The whole assumption is that Bob
also trusts KDC. 

d. Alice is authenticated to KDC. KDC is authenticated to Bob. Therefore, Alice
is authenticated to Bob. 

e. Bob is authenticated to KDC. KDC is authenticated to Alice. Therefore, Bob is
authenticated to Alice.
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14. The Needham-Schroeder protocol involves the KDC from the beginning even if
Bob is not ready or not willing to communicate with Bob. In the Otway-Rees pro-
tocol, on the other hand, Alice first contact Bob. If Bob is ready to communicate
with Alice, then KDC is being involved. 

15. There is one flaw in the Needham Schroeder protocol (discovered by Denning and
Sacco), which is often referred to as known-session-key attack. Eve records the
exchanges in a session between Alice and Bob. If is somehow successful to obtain
the session key, KAB, Eve now launches a new session starting with the third
exchange; she resends the ticket to Bob. Bob responds by sending a new nonce,
RB. Eve can decrypt this message (she knows the session key) and obtain RB. Eve
now responds using RB−1. A session has been created between Bob and Eve. The
flaw in the protocol is that there is not a nonce that glues the five exchanges in the
session. The first nonce, RA, is active only for the first two messages; the second
nonce, RB, is active only for the last two messages. Eve can partially replay the
second part of the these messages. In Otway-Rees protocol, a third nonce, R, is
used to be active during all four exchanges. Eve cannot replay only part of the
message.   

16. The timestamp in Kerberos actually serves as nonce R in Otway-Rees protocol.
Although we have not shown them in Figure 15.8 of the textbook, Kerberos can
use RA and RB in the protocol (Version five actually uses these nonces). 

17.

a. K = gxy mod p = 73 × 5 mod 23  = 14

b. R1 = gx mod p =  73 mod 23 =  21   R2 = gy mod p =  75 mod 23 = 17. Note that
K = R2

x mod 23 = 173 mod 23  = R1
y mod 23 = 215 mod 23  = 14.        

18. Assume that both Alice and Bob choose x (instead of x and y). Then we have 

Both R1 and R2 are the same and the K is the same. For example, if we use g = 7
and p = 23, and x = 3, we get R1 = R2 = 21 and K = 15.

19. Appendix J gives us the first primitive root for a prime less than 1000. According
to this appendix, the first primitive root of 53 is g = 2. Note that the number of
primitive roots are φ(φ(53)) = 24. We can also find other primitive roots for 53
using one of the procedures given in the literature. The fastest one is when we
know the prime factors of φ(p) = p − 1. In this case, g is a primitive root if g(p − 1)/
q mod p ≠ 1 for all q’s where q is a prime factor of p − 1. In this case, 

φ(p) = φ(53) = 52 = 22 × 13     →    q = 2 and q = 13

We need to check the powers of 52/13 = 4 and 52/2 = 26. We give the proof for the
first three primitives. 
a. The first primitive is g = 2 because 24 mod 53 = 16 ≠ 1 and 226 mod 53 = 52 ≠ 1.

R1 = gx mod p R2 = gx mod p

K = (gx mod p)x mod p = gx2mod p K = (gx mod p)x mod p = gx2mod p
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b. The second primitive is g = 3 because 34 mod 53 = 28 ≠ 1 and 326 mod 53 = 52
≠ 1.

c. The third primitive is g = 5 because 54 mod 53 = 42 ≠ 1 and 526 mod 53 = 52 ≠
1.     

20. A simple view of this attack can be viewed as follows (see Figure 15.12 of the text-
book):
a. Eve intercepts the message sent in step 2, discards the message, and sends a

new message with the same value of R1 to Bob.
b. Bob receives the message, and judging by the sender address of the packet, he

believes that the message is originated from Eve. 
c. Bob, calculates R2 and K and sends them, in step 5, to Eve (the sender of the

message in step 2).
d. Eve intercepts the message and resends it to Alice pretending that it is coming

from Bob (false sender address). 
e. Alice calculate the session key and sends the message in step 8 to Bob. 
f. Bob receives the message in step 8 and he knows that it is coming from Alice

(sender address). Bob discards this message because he does expect that this
message come from Alice; he is waiting to receive a message from Eve, which
never happens.

g. The result is that Alice believes that a session key is established between herself
and Bob; Bob believes that the session with Eve is broken.    

21. The root certificate offered by some browsers are not hundred percent trustworthy
because we are not sure if the browser actually check the validity of this certifi-
cates. The browsers belongs to private companies that their certificates are not nec-
essarily endorsed by governmental authorities. 
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CHAPTER 16

PGP and S/MIME
(Solution to Practice Set) 

Review Questions
1. Alice needs to include the identifiers of the algorithms in the packets sent to Bob.

Each packet type has a field that defines the identity of the algorithm being used. 
2. Alice needs to include the identifiers of the algorithms in the header sent to Bob. 
3. The secret key is encrypted with the public key and sent with the message. 
4. The secret key is encrypted with the public key and send with the message. 
5. PGP uses a web of trust; S-MIME uses certificates signed by CA’s, but the user is

responsible to keep a web of trust.

6.
Session-key packet
Signature packet
Private-key packet
Compressed-data packet

Data packet encrypted with a secret key
Literal data packet
User ID packet

7.

Encrypted message
Signed message
Certified message

8.

Data Content Type
Signed-Data Content Type
Enveloped-Data Content Type
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Digest-Data Content Type
Encrypted-Data Content Type
Authenticated Data Content Type

9. In PGP, everyone in the community needs two rings (one public and one private);
in S/MIME, the public keys are distributed through X.509 certificates. 

Exercises
10. Note that when we talk about the tag value, we actually refer to the rightmost 6-bit

values (ignoring the leftmost two bits):
a. According to Table 16.12, a type value of 8 defines a compressed data packet. 
b. According to Table 16.12, a type value of 9 defines a data packet encrypted

with a secret key. 
c. According to Table 16.12, a type value of 2 defines a signature packet.

11. Alice can use two public-key algorithms and two public keys each sent separately
in a public-key packet.   

12.
a. A packet of type 1 can carry only the session key, not another packet.
b. A packet of type 6 can carry only a public key, not another packet.

13.
a. For confidentiality, two packets need to be sent. A session key packet (type 1)

and an encrypted data packet (type 9). However, the second packet contains
either a compressed data packet (which contains a literal data packet) or simply
a literal data packet. 

b. For message integrity, two packets need to be sent. A signature packet (type 2)
and a literal data packet (type 11).   

c. The packets in part b also provide authentication.
d. Nonrepudiation needs a third party. Since e-mail communication is only

between two parties, it is not possible to provide this security service.
e. To provide both confidentiality and message integrity, four packets are needed

to be sent (type 1, type 9, type 2 and type 11). 
f. Same as part e. 
g. Same as part e. 
h. This is impossible because there is no third party to provide nonrepudiation. 

14.
a. (Enveloped-Data)
b. (Digested-Data or Signed-Data)
c. (Authenticated-Data)

https://www.coursehero.com/file/17225676/Instructor-Solution-Chap-16/

This
 st

ud
y r

es
ou

rce
 w

as

sh
are

d v
ia

Cou
rse

Hero
.co

m

https://www.coursehero.com/file/17225676/Instructor-Solution-Chap-16/


3

d. Nonrepudiation needs a third party. Since e-mail communication is only
between two parties, it is not possible to provide this security service.

e. (Enveloped-Data) + (Digested-Data or Signed-Data) 

f. (Enveloped-Data) + (Authenticated-Data)

g. (Enveloped-Data) + (Digested-Data or Signed-Data) + (Authenticated-Data)

h. This is impossible because there is no third party to provide nonrepudiation.

15.  The following table shows the comparison:

16. The following table shows the comparison. Note that S/MIME does not support
any public-key algorithm for encryption/decryption.

17.  The following table shows the comparison:

Algorithms PGP S/MIME
No Encryption

IDEA
Triple DES
CAST-128
Blowfish

SAFER-SK 128
DES/SK
AES-128
AES-192
AES-256
RC2/40

Algorithms PGP S/MIME
RSA

ElGaml
Elliptic curve

Algorithms PGP S/MIME
MD2
MD5

SHA-1
double-width SHA

RIPEMED/160
TIGER/192

HAVAL
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18.  The following table shows the comparison:

19.
a. Although the message can be sent without encoding, we show how to send it

using Radix-64.The text to be sent in English is "This is a test". We add a null
character at the end to make the English text multiple of 3 characters. We show
the space character with "_".   

The text to be sent is "QWhpcyBpeyBhIHxlc3wA". 
b. The message consists only of ASCII characters, so the English text and the

quoted-printable text are the same. The text to be sent is "This is a test". 

Algorithms PGP S/MIME
RSA
DSS

ECDSA
ElGamal

Text ASCII code R-64 code Text
Thi 01000001 01101000 01101001 010000 010110 100001 101001 QWhp
s_i 01110011 00100000  01101001 011100 110010 000001 101001 cyBp
s_a 01110011 00100000 01100001 011100 110010 000001 100001 eyBh
_te 00100000 01111100 01100101 001000 000111 110001 100101 IHxl
st 01110011 01111100 00000000 011100 110111 110000 000000 c3wA
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CHAPTER 17

SSL and TLS
(Solution to Practice Set) 

Review Questions
1. Five services are provided by SSL or TLS: fragmentation, compression, message

integrity, confidentiality, and framing. SSL or TLS

2. In SSL, a 48-byte master secret is created from the pre-master secret by applying
two hash functions (SHA-1 and MD5).

3. TLS uses the PRF function to create the master secret from the pre-master secret.
The first parameter (secret) is the pre-master secret; the second parameter (label) is
the string “master secret”; the third parameter (seed) is the concatenation of the cli-
ent random number and server random 

4. In SSL, the master secret is used to create variable-length key materials by apply-
ing the same set of hash functions used to create the master secret and prepending
with different constants. The module is repeated until key materials of adequate
size are created.

5. TLS uses the PRF function to create key materials from the master secret. The first
parameter (secret) is the master secret, the second parameter (label) is the string
“key expansion”, and the third parameter (seed) is the concatenation of the server
random number and the client random number.

6. In a session, one party has the role of a client and the other party has the role of a
server; in a connection, both parties have equal roles, they are peers. For two enti-
ties to exchange data, the establishment of a session is necessary, but not sufficient;
they need to create a connection between themselves. A connection between two
parties can be terminated and re-established within the same session. 

7. The following list the four protocols:

a. The Handshake Protocol uses messages to negotiate the cipher suite, to authen-
ticate the server to the client and the client to the server if needed, and to
exchange information for building the cryptographic secrets. 

b. The ChangeCipherSpec Protocol defines the process of moving cryptographic
parameters between the pending and active states. 
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c. The Alert Protocol is used to report errors and abnormal conditions.

d. The Record Protocol carries messages from the upper layer (Handshake Proto-
col, ChangeCipherSpec Protocol, Alert Protocol, or application layer).

8. The following gives the goal of each phase: 

a. In Phase I, the client and the server announce their security capabilities and
choose those that are convenient for both. After this phase, the client and server
know the version of SSL, the algorithms for key exchange, message authentica-
tion, and encryption, the compression method, and the two random numbers for
key generation.

b. After this phase, the server is authenticated to the client and the client knows
the public key of the server if required.

c. After this phase, the client is authenticated for the server and both the client and
the server know the pre-master secret.

d. In Phase IV, the client and server send messages to change cipher specification
and to finish the handshaking protocol. After phase IV, the client and server are
ready to exchange data. 

9. TLS uses the Handshake Protocol defined for SSL with only two small changes in
CertificateVerify and Finished messages: 

a. In SSL, the hash used in the CertificateVerify message is the two-step hash of
the handshake messages plus a pad and the master secret. in TLS the hash is
only over the handshake messages.

b. In TLS, a pseudorandom function (PRF) is used to calculate two hashes used
for the Finished message.

10. TLS uses the Record Protocol defined for SSL with only one small change: SSL
uses a MAC to sign the message, but TLS uses an HMAC to do so. 

Exercises
11. The following table shows the size of the key-material in each case 

Client
Auth.

Server
Auth.

Client
Enc.

Server
Enc.

Client
IV

Server
IV

Total
Size

a. 1024 1024 0 0 0 0 2048

b. 1024 1024 0 0 0 0 2048

c. 1024 1024 56 56 64 64 2288

d. 1024 1024 168 168 64 64 2512

e. 1024 1024 56 56 64 64 2288

f. 1024 1024 168 168 64 64 2512
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We assume that the size of key for RSA authentication is 1024 bits
although it can be 512 bits.We also assume that single DES uses a 56-bit
bits and triple DES uses a key of 168 bits. 

12. The number of iterations are different when the protocol is SSL from when from
when it is TLS. 
a. SSL: 2048 / 128 → 16  iterations of MD5 
b. SSL: 2048 / 128 → 16  iterations of MD5
c. TLS: 2228 / 128 → 18  iterations of MD5, but 2228 / 160 → 14  iterations of

SHA
d. TLS: 2512 / 128 → 20  iterations of MD5, but 2512 / 160 → 16  iterations of

SHA
e. TLS: 2228 / 128 → 18  iterations of MD5, but 2228 / 160 → 14  iterations of

SHA
f. TLS: 2512 / 128 → 20  iterations of MD5, but 2512 / 160 → 16  iterations of

SHA
13. At first glance, it looks that TLS uses the premaster secret only once to create the

master secret, but if we look more carefully at the data expansion function and the
PRF function, we see that this calculation in TLS is more complex than the corre-
sponding calculation in SSL. We believe the calculation in TLS is less efficient
than the one in SSL. 

14.
a. We believe that the calculation in TLS is more complex than the one in SSL and

probably less efficient. 
b. Since the calculation in TLS looks more complex, it should be more secure.

However, there is not enough evidence in this case. 
15. Although TLS uses only one PRF function, the PRF function is made of two data

expansion function and each expansion function is an iteration of two-stage
HMAC calculation. Therefore, TLS also uses iteration to create variable-size key
materials although it is not as explicit as the SSL in this issue. 

16. Only six messages are needed to resume a session:

17. Authentication keys, encryption keys, and IV’s need to be created. The premaster
and master secret do not need to be created again. 

1. ClientHello Client → Server
2. ServerHello Client ← Server
3. ChangeCipherSpec Client ← Server
4. Finished Client ← Server
5. ChangeCipherSpec Client → Server
6. Finished Client → Server

https://www.coursehero.com/file/17224479/Instructor-Solution-Chap-17/

This
 st

ud
y r

es
ou

rce
 w

as

sh
are

d v
ia

Cou
rse

Hero
.co

m

https://www.coursehero.com/file/17224479/Instructor-Solution-Chap-17/


4

18. The client needs to send the ChangeCipherSpec message first. The server does not
send its ChangeCipherSpec message until the one from the client has arrived. So
this situation never occurs. 

19. The calculation in TLS is more consistent to other standards for MAC calculation
(padding the secret and exclusive-oring them with ipad or opad). We believe the
efficiency of both methods is the same. 

20. The hash algorithm in TLS is more efficient and simpler than the one in SSL. The
first has only level of hashing; the second has two levels of hashing.

21. It is difficult to say which one is more efficient, but the one used in TLS looks
more secure because it creates two different digests from the handshake message
using two different algorithms (MD5 and SHA-1). 

22. The only reason that comes to mind is that the designer of TLS wanted this digest
to be calculated faster. 

23.

a.

b.

c.

d.

e.  

Key Material = MD5 (M | SHA-1 ("A" | M | CR | SR)) |
MD5 (M | SHA-1 ("BB" | M | CR | SR)) |
MD5 (M | SHA-1 ("…" | M | CR | SR)) |
… 

MAC = Hash (WriteSecret | pad-2 | Hash (WriteSecret | Pad-1 | 
Sequence number  | Compressed type | Compressed length 
|Compressed fragment))

Hash Digest = Hash (M | pad-2 | Hash (Handshake message | Μ | Pad-1))

Hash Digest = Hash (M | pad-2 | Hash (Handshake message | Μ | Pad-1))

Expanded Secret = HMACSecret (HMACSecret (Seed)  | Seed) | 
HMACSecret (HMACSecret (X)  | Seed) |
HMACSecret (HMACSecret (Y)  | Seed) |
…

Where X = HMACSecret (Seed), Y = HMACSecret (X),  …
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f.

g.

h.  

i.  

j.

k.  

24. The handshake protocol uses the idea of symmetric-key agreement for establishing
session secrets between two parties. If strong key exchange algorithms (such as
RSA, Ephemeral Diffie-Hellman, or Fixed Diffie-Hellman) is used for key agree-
ment, the protocol is more immune to the man-in-the-middle attack. If weak key
exchange algorithms (such as Anonymous Diffie-Hellman) is used for key agree-
ment, the protocol is less immune to the man-in-the-middle attack. 

25. The key size in SSL or TLS depends on the algorithm used for encryption. If an
encryption algorithm with small key-size (such as single DES) is used, the proto-
col is less immune to brute-force attack. If an encryption algorithm with a large
key size is used (such as 3DES), the protocol is more immune to brute-force
attack.

26. The main attack on short keys is the brute-force attack. As described in Exercise
25. Some algorithms (such as single DES) use small key size that make either pro-
tocol (SSL or TLS) vulnerable to brute-force attack. 

New Secret = MD5 (Label | Seed)  ⊕ SHA-1 (Label | Seed) 

Master Secret = PRF (PM, "Master Secret", CR | SR)

Key Material = PRF (M, "Key Expansion", SR | CR)

Hash Digest = Hash (Handshake Message)

Hash Digest = PRF (M | Finished Label | 
MD5 (Handshake Message) | 
SHA-1 (Handshake Message))

HMAC = Hash (MAC Secret  ⊕ opad |

Hash (MAC Secret  ⊕ opad |  X  |  Compressed Fragment)
X = Sequence number | Compressed type | Compressed version | Compress Length
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27. The two protocol are equally immune to the man-in-the-middle attack. The immu-
nity depends on the type of algorithm used for key exchange as discussed in Exer-
cise 24. 
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CHAPTER 18

IPSec
(Solution to Practice Set) 
Review Questions

1. IPSec operates in one of the two modes: the transport mode or tunnel mode.

a. In the transport mode, IPSec protects what is delivered from the transport layer
to the network layer. In other words, the transport mode protects the network
layer payload.

b. In the tunnel mode, IPSec protects the entire IP packet. It takes an IP packet,
including the header, applies IPSec algorithm to the entire packet, and then adds
a new IP header.

2. AH is the simpler protocol in IPSec. It only adds a header (and some padding) to
the IP payload. AH provides source authentication and data integrity, but not pri-
vacy. 

3. ESP is the more sophisticated protocol in IPSec. It adds both a header and a trailer
to the IP payload. ESP provides source authentication, data integrity, and privacy.

4. A Security Association is a contract between two parties; it creates a secure chan-
nel between them. SA establishes the security parameters between the two parties. 

5. SAD is a set of SAs that can be collected into a database. The database can be
thought of as a two-dimensional table with each row defining a single SA.

6. SP defines the type of security applied to a packet when it is to be sent or when it
has arrived. Before using a SA, a host must determine the predefined policy for the
packet. Each host that is using the IPSec protocol needs to keep a Security Policy
Database (SPD). 

7. The Internet Key Exchange (IKE) is a protocol designed to create Security Associ-
ations. When a peer needs to send an IP packet, it consults the Security Policy
Database (SPD) to see if there is an SA for that type of traffic. If there is no SA,
IKE is called to establish one. In other words, IKE creates SAs for IPSec.

8. IKE uses two phases: phase I and phase II. Phase I creates SAs for phase II; phase
II creates SAs for a data exchange protocol such as IPSec.
1



2

9. The ISAKMP protocol is designed to carry messages for the IKE exchange.

10. ISAKMP uses fourteen payload types as shown below:

a. None: Shows the end of the payloads.

b. SA: Defines a packet that start the negotiation

c. Proposal: Defines a packet that contains information used during SA negotia-
tion

d. Transform: Defines a packet that actually defines parameters to create a secure
channel

e. Key Exchange: Defines a packet that carries data used for generating keys

f. Identification: Defines a packet that carries the identification of communica-
tion peers

g. Certification: Defines a packet that carries a public-key certificate

h. Certification Request: Defines a packet that carries a request for certificate
from the other party

i. Hash: Defines a packet that carries data generated by a hash function

j. Signature: Defines a packet that carries data generated by a signature function

k. Nonce: Defines a packet that carries randomly generated data as a nonce

l. Notification: Defines a packet that carries error message or status associated
with an SA

m.  Delete: Defines a packet that carries one more SA that the sender has deleted

n. Vendor: Defines a packet that carries vendor-specification extensions

Exercise

11. Since the sequence number of the packet (181) is out of the window (200 to 264),
the packet is discarded. It is either duplicate or its arrival time has expired. The
window span does not change. 

12. The sequence number of the packet (208) is inside the window (200 to 263). If the
packet is new (the corresponding slot is not marked), the packet is accepted and the
corresponding slot is marked. If the corresponding slot is marked, the packet is a
duplicate packet; it is discarded. There is no change in the window span in either
case. 

13. The sequence number of the packet (331) is at the right of the window. Since the
packet is authenticated, it is accepted and the window span will change as shown
in Figure S18.13. 

14. Figure S18.14 shows the diagrams. 
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15. Figure S18.15 shows the diagram.

16. Figure S18.16 shows the diagram. 

17. Figure S18.17 shows the diagram.

18. Figure S18.18 shows the diagram.

Figure S18.13 Solution to Exercise 13

Figure S18.14 Solution to Exercise 14

Figure S18.15 Solution to Exercise 15
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19. Figure S18.19 shows the diagram without using PSF. The one with PSF is similar
(see the solution to Exercise 18).

Figure S18.16 Solution to Exercise 16

Figure S18.17 Solution to Exercise 17

Figure S18.18 Solution to Exercise 18

Figure S18.19 Solution to Exercise 19
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20. Figure S18.20 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. 

Figure S18.20 Solution to Exercise 20
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21. Figure S18.21 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet.

Figure S18.21 Solution to Exercise 21
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22. Figure S18.22 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. 

Figure S18.22 Solution to Exercise 22
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23. Figure S18.23 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. 

Figure S18.23 Solution to Exercise 23

GH: General Header

SA: security Association

P: Proposal

T: Transform

K: Key

N: Nonce

ID: Identification

Sig: Signature

C: Certificate

Packet Types 

GH

SA

P

P

T

T

T

T

NextPayload: 1 

NextPayload: 2 

NextPayload: 3

NextPayload: 3

NextPayload: 3

NextPayload: 0

NextPayload: 2

NextPayload: 3

GH

K

N

NextPayload: 4 

NextPayload: 10 

NextPayload: 0

GH

K

N

NextPayload: 4 

NextPayload: 10 

NextPayload: 0

GH

SA

P

T

T

NextPayload: 1 

NextPayload: 2 

NextPayload: 3

NextPayload: 3
NextPayload: 0

GH

Sig

NextPayload: 5 

NextPayload: 0

IDNextPayload: 7 
CNextPayload: 9 

GH

Sig

NextPayload: 5 

ID NextPayload: 7 
C NextPayload: 9 

NextPayload: 0

Initiator Responder 

3

4

5

6

1

2



9

24. Figure S18.24 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. Compare this
method with the corresponding method in the main mode. 

Figure S18.24 Solution to Exercise 24

GH: General Header
SA: security Association

P: Proposal
T: Transform

K: Key
N: Nonce

ID: Identification
H: Hash

Packet Types 

GH

SA
P

P

T

T

T

T

NextPayload: 1 

NextPayload: 2 
NextPayload: 3

NextPayload: 3

NextPayload: 3

NextPayload: 4

NextPayload: 2

NextPayload: 3

K
N

NextPayload: 10 
NextPayload: 5

IDNextPayload: 0 

GHNextPayload: 8 

HNextPayload: 0

K
N

NextPayload: 10 
NextPayload: 5

ID
H

NextPayload: 8 
NextPayload: 0

GH

SA

P
T
T

NextPayload: 1 

NextPayload: 2 
NextPayload: 3
NextPayload: 3
NextPayload: 4

Initiator Responder 

3

1

2



10
25. Figure S18.25 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet.   Compare this
method with the corresponding method in the main mode. 

Figure S18.25 Solution to Exercise 25
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26. Figure S18.26 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. Compare this
method with the corresponding method in the main mode. 

Figure S18.26 Solution to Exercise 26
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27. Figure S18.27 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. Compare this
method with the corresponding method in the main mode. 

Figure S18.27 Solution to Exercise 27
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28. Figure S18.28 shows only the layout of the packets and next payload value. When
a packet is encrypted, a padlock is inserted next to the packet. Note that here two
ID packets, ID-I and ID-R is included in the first and second message. Note that
we also have three hash functions: Hash1, Hash2, and Hash3. However, the packet
is used to carry these hashes are the same. A very interesting point is that only the
third message is encrypted in this method; the signature in the second message is
not encrypted. 

Figure S18.28 Solution to Exercise 28
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29.

a. The security compromise is that the ID’s of the initiator and the responder are
not encrypted in the aggressive mode.

b. The gain is that only three messages are sent instead of six.

30.

a. The security compromise is that the hash created by the responder is not
encrypted in the aggressive mode.

b. The gain is that only three messages are sent instead of six.

31.

a. The security compromise is that the hash created by the responder is not
encrypted in the aggressive mode.

b. The gain is that only three messages are sent instead of six.

32.

a. The security compromise is that the certificate and the signature of the
responder is not encrypted. 

b. The gain is that only three messages are sent instead of six.

33. SKEYID is calculated differently in different method, but provision is made in
each method to protect it from the intrusion.

a. In the preshared secret-key method, SKEYID is calculated from the preshared
secret key method which is supposed to be secured from intrusion.

b. In the public-key method, SKEYID is calculated from N-I and N-R, which are
secretly exchanged using the public keys of two parties.

c. In the digital signature, SKEYID is calculated from the hashed values of N-R
and N-R, which are secured if the hash function is a secured one. 

34. In the preshared secret-key method, the preshared secret key is a function of the IP
address. Now if the ID is also a function of the IP address, then there is a vicious
circle. The receiver of the fifth or sixth message in the main mode, needs to know
the ID of the sender to decrypt the message, but the ID itself is inside the message
that needs to be decrypted. 

35. All methods in the main mode protect the exchanges of ID’s, some in the third or
fourth messages and some in the fifth and sixth messages. 

36. Only public-key methods in the aggressive method explicitly protect the
exchanges of ID’s in the aggressive mode. However, since the hash in the pre-
shared secret method and the signature in the signature method contain a copy of
ID’s, we can say the exchange of ID’s are implicitly protected in these methods. 

37. The exchange of N-I and N-R in the third and fourth messages protects these mes-
sages from being replayed. The inclusion of these values again in the encrypted
hash or signature in the fifth and sixth messages glues the whole session together
and protects the session against partial replay. 
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38. The exchange of N-I and N-R in the first and second messages protects these mes-
sages from being replayed. The inclusion of these values again in the encrypted
hash or signature in the third message glues the whole session together and pro-
tects the session against partial replay. 

39. The exchange of encrypted N-I and N-R in the first and second messages protects
these messages from being replayed. The inclusion of these values again in the
encrypted hash or signature in the third message glues the whole session together
and protects the session against partial replay.

40. The effectiveness of the brute-force attack depends on the size of the secrets
exchanged between two parties. Since IKE allows the concatenation of keys to cre-
ate a larger key, brute-force attack can be protected by creating a larger key. 
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