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Introduction

e RSA encryption is not meant to replace symmetric
ciphers because it is several times slower than

ciphers such as AES.

e The main use of the RSA encryption feature is to
securely exchange a key for a symmetric cipher.

e RSA is often used together with a symmetric
cipher such as AES, where the symmetric cipher
does the actual bulk data encryption.

e The underlying one-way function of RSA is the
integer factorization problem.
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Complexity of operations in RSA

Alice Bob
‘ 3
P Exponential P
Y _ complexity :
C = P° mod n Polynomlal Polynom.lal | P =9 mod n I
complexity complexity
A
C C

Insecure channel
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Encryption and Decryption

e Bob chooses two distinct large primes p, and q;
and computes n=pq.

e Bob chooses e such thati<e <g(n)andgcd (e, 4(n))=1.
e Bob computes d with de=1modg(n).

e Bob makes n and e public, and keeps d secret.

e Alice encrypts m asc=m® modnand sends c to Bob.

d mod n

e Bob decrypts by computing m=c
Public Key: (e, n)  and Private Key: (d)
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Alice Bob
message ¥ =4 l. choose p=3and g =11
2.n=p-q=33
3d(n)=(3-1)(11-1)=20

4. choose e =3
5.d=e¢'=7mod 20

kpap=(33.3)

y=x*=4" =31 mod 33

V¥ =31" =4 =xmod 33
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e In practice m, ¢, n and d are very long numbers,
usually 1024 bit long or more.

e The value e is referred to as encryption
exponent or public exponent, and the private
key d is called decryption exponent or private
exponent.

e If Alice wants to send an encrypted message to
Bob, Alice needs to have Bob’s public key (n,e),
and Bob decrypts with his private key d.
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Proof of Correctness

InRSA:n = pg

ed =1mod ¢(n)

—ed =k¢(n)+1
Encryption:C = P° modn
Decryption: P = c9 mod n
Now:C9 mod n

— P® modn

= pK?(M+L modn.
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Euler’s theorem: Case 1:

If a and n be integers with |If P and n are co-prime then

gcd(a,n) = 1, then: ( )
Ko(n)+1

P mod n

a®(") 1(mod n)

— Px P*(") modn

= P modn
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Case 2: If P is a multiple of p but not of g then

LetP=1xp
Pk2(") mod q
- pk#(P)2(9) mod q
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Cd mod n

= PK)+ g

- Px P*(") modn
=Px(jg+1)modn
=(jgP +P)modn
=( jqip + P)modn
=(jin+P)modn
=P modn

Introduction to Cryptography Department of CSE, ISM Dhanbad September 30, 2020



Fast Exponentiation

e How many multiplications are required to
compute the simple exponentiation x3?

The straightforward method:

SO 2 MUL 3 MUL 4 MUL s MUL g MUL 7 MUL g

I—y —y —fy —], ——y —Q8 X —X
Alternatively, we can do something faster:
50 o SQ 4 SQ g

X — X ——mX — X

Two basic operations:
SQ: squaring the current result,
MUL: multiplying the current result by the base element x.
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e How many multiplications are required to
compute the simple exponentiation x2°?

The straightforward method: requires 25
multiplications.

Alternatively, we can do something faster:

5Q 2 MUL - El’ﬁ EIIZ MUL 13 Er’zﬁ..

XA— X
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Square-and-multiply algorithm

e The algorithm is based on scanning the bit of
the exponent from the left (the MSB) to the
right (the LSB).

e In every iteration, i.e., for every exponent bit,
the current result is squared.

e If and only if the currently scanned exponent
bit has the value 1, a multiplication of the

current result by x is executed following the
squaring.
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Example

Example We again consider the exponentiation x*®. For the square-and-multiply
algorithm, the binary representation of the exponent is crucial:

.1{:5 — Il ||:|||:|j — II:.‘P.;FJ;.FE:.‘H FJQ:I] .

The algorithm scans the exponent bits, starting on the left with A4 and ending with
the rightmost bit hy.

Step

#) x=xI inital setting, bit processed: hy = 1
#la {x') = 1 x102 SQ. bit processed: h3

#1b x*-x=x = ":" xl2 =y MUL, since hy =1

#2a (x3)? =218 = (x!12)2 = x1102 SQ. bit processed: h;

#2b no MUL, since /i, =0

#3a (x0)? =x'2 = (x1102)2 = 411902 SQ. bit processed: hj

#3h x12.x = x1% = 11002412 — 51101, MUL, since h; = 1

#4a (x13)? = x%6 = (x11012)2 = x11010; SQ. bit processed: hy

#4b no MUL, since fip =0
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Attacks on RSA

Factorization Attack: The security of RSA is based
on the idea that the modulus is so large that it is
not feasible to factor it in a reasonable time.

The attacker attempts to factor n. If this can be
done then it is a simple way to compute ¢(n) and
subsequently d will be derived.
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Chosen-Ciphertext Attack

e Eve chooses a random integer X in Z_*.
e Eve calculates Y=CxX® mod n

e Eve sends Y to Bob for decrypting and get
Z=Y°mod n.

e Eve can easily find P because...
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Attacks on Encryption Exponent

e To reduce the encryption time, it is tempting to use a
small encryption exponent e.

e The common value is considered as e=3.

e In Broadcast Attack, If one entity sends the same

message to a group of recipients with same low
encryption exponent.

o If the public exponent, e=3 and the moduli=n,,n,, and
n, then the problem statement will be:

C = P> mod 0]
C, = P3 mod Ny

Cy= P> mod N3
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Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem is used to solve a set of congruent
equations with one variable but different moduli, which are
relatively prime then the equations have a unique solution.

X=2mod3

X=3mod5

X=2mod7

Stepl: M=3x5x7=105

Step2: Ml 21075235”\/'2 210?52 21,M3 21075215

Step3:The inverses are I\/Ii1 =2W.rt.3; M'zl =1w.r.t.5; Mél =1w.r.t.7;
X = (2x My x M{* +3x My x M5! + 2x M3 x M3) mod105 = 23mod105
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Attacks on Encryption Exponent

¢ In Broadcast Attack, the problem statement will be:
C = P3 mod N
Cy = P> mod Ny
Cy = P> mod N3
e Applying the CRT, the attacker can find an equation of
the form

C'= P> mod N NoNg

— P3 < MNoNg

= P=3C’
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Low Decryption Exponent Attacks

e Bob may think that using low decryption
exponent would make the decryption process
faster.

1
e Wiener showed that ifd <§n% andq < p<2q then the
attacker can factor n in polynomial time.

e In RSA, the recommendation is to have d > %n%
to prevent low decryption exponent attack.
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Continued Fractions

e To approximate a real number by a rational number.

e For example m®=3.14159... may be approximated as
22/7,333/106, 355/113 etc.

e Approximation process: of 1=3.14159...
e Floor(m)=3

1 22

e 1/0.14159=7.06251  3+-=—
3 1 333
e 1/0.06251=15.9966 " _ 1 ~ 106

{+—
15
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e 1/0.9966=1

1 355

1 113

15+}

1

e The last approximate is more accurate.

3+

[+
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o Ingeneral, Pn_, . 1 1

Un d +

dy +

e Each rational number z—"gives a better

K
approximation than the preceding rational
numbers.
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|f x—L <i2
S| 25
22
For example, 72-7

r
for integers r,s, then — - P for some i.

!

~0.001< —and 22-P2
08

7 0
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Theorem. Suppose p,g are primes with g < p < 2q. Let n = pg and let
l <de < ¢(n) satisfiyde =1 {mod (p—1){qg—1)). Ifd < %n”", then d
can be calculafed gquickly (that is, in time polynomiel in logn).

Proof. Since q° < pg =n, we have q < /n. Therefore, since p < 27,
n—¢m)=pg—(p-1)lg-1)=p+q-1<3g<3yn
Write ed = 1 + ¢[n)k for some integer & > 1. Since e < ¢(n), we have
1 1/4
d(n)k < ed < E:ﬁ{n}n \

50 k < %ﬂl"'l 1, Therefore,

kn—ed=kin— d(n)) -1 < k(n - ¢{n)) < %ﬂ”"{ﬂv"ﬁ] = .

Also, since k{n = ¢(n)) — 1 > 0, we have kn — ed > 0. Dividing by dn yields

E e 1
H{Eﬁﬁﬁdn”"ﬂ:ﬂfﬂ'

since 3d < n'/* by assumption.
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We now need a result about continued fractions. Recall froin Section
3.12 that if = is a positive real number and k and d are positive integers

with

22
d

<
2d°"

then k/d arises from the continued [raction expansion of z. Therefore, in our
case, k/d arises from the continued Fraction expansion of g/n.
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Eve does the following;

1. Computes the continued froction of &/n. After each step, she obtains
a fraction A/B.

2. Eve uses k = A and d = B to compute C = (ed — 1)/k. (Since
ed =1+ ¢{n)k, this wmlue if C is o candidate for ¢(n).)

3. If C is not an integer, she procesds to the next step of the continued
fraction.

4. If C is an integer, then she finds the roots ry, r3 of X* —{n-~-C+1}.X +n.
(Note that this is possibly the equation X* = (n = d(n) + 1)X +n =
(X = p){X = gq) from earlier.) If v, and r2 are integers, then Eve has
factored n. If not, then Eve proceeds to the next step of the continued
fraction algorithin.
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Example. Let n = 1966981193543797 and e = 323815174542919. The
continued [raction of e/n is

0;6,14,2,3,1,3,1,9,1,36,5,2,1,6,1,43,14,1,10,11,2, 1,9, 5]

The first fraction is 1/6, so we try & = 1,d = 6. Since d ‘must be odd, we
discard this possibility.
By the remark, we may jump to the third fraction:

1 27
E+ﬁ! 164"

Agnin, we discard this since d must be odd.

The fifth fraction is 121,/735. This gives C = (e - 735 — 1)/121, which is
nol an integer.

The seventh raction is 578/3511 This gives ¢ = 1966981103495136 as
the candidate for ¢{n). The roots of n = 37264873 x 52783789
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Side-Channel Attacks

operations: S SM SM S SM 55 SM SM SM § SM
privatekey: 0 1 1 O 1 00 1 1 1 0 1

Power Trace
sl |évillshall 61 &M1& sl s

Fower

Tirme
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Cycling Attack

e Idea: Eve continuously encrypts the
intercepted ciphertext C, she eventually get the

plaintext.
C, =C°®modn
C, =C{ modn
C3; =C5 modn

Cy =Cy_,modn
If C = C then stop; the plaintext is P = Cy _;
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Short Message Attack

e Even can encrypt all of the possible message until
the result is the same as the ciphertext intercepted.

e For example if it is known that Alice is sending a
four digit number to Bob, Eve can easily try
plaintext numbers from 0000 to 9999 to find the
plaintext.

e To defend such kind o attack, Optimal Asymmetric
Encryption Padding (OAEP) is the standard
approach.

¢ |In addition, OAEP mapped the same plaintext with
different ciphertext.
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Optimal Asymmetric Encryption Padding (OAEP)

M: Padded message P: Plaintext (P || P,)  G: Public function (k-bit to m-bit)
r: One-time random number  C: Ciphertext H: Public function (m-bit to k-bit)
Message | < m bits Message | < m bits
A
Y ' H H
M m bits M m bits
Ykl ycy R L 7 bits ey -
\J‘ Y
m bits ¢——— m bits
4 - k bits
H H
“Jk bits J bits
D«
Y
Py P, Py P,
.I ' \ _I
¥ (m + k) bits 1 (m + k) bits
Encryption Decryption
¥ (m + k) bits (m + k) bits
< C
Sender Receiver
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Key lengths

e Security of public key system should be
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size
< 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

e High security = very large moduli.
Not necessary with Elliptic Curve Cryptography.
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mThank You!n
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