IPSec-1

G.P. Biswas

Prof/CSE, IIT, Dhanbad

Internet Key Exchange (IKE) Protocol

The Internet Key Exchange (IKE) is a protocol designed to create both mbound and
outhound Security Associations. As we discussed in the previous section, when a peer
needs to send an IP packet, it consults the Security Policy Database (SPDB) to see if
there is an SA for that type of wraffic. If there is no SA, IKE is called to establish one.

TKE creates SAs for IPSec.

IKE is a complex protocol based on three other protecols: Oakley, SKEME, and
[SAKMP as shown in Figure 18_|5.

Figure 18.15 [KE componernis

Intemet Key Exchange (IKE)

l ejternet Secority Ascodiation -
LS '1"_._!- ‘ﬁiﬁ' i_-'f"'s' ':.:hl-"\-H' Tk
Oakley I I SKEME

The Oakley protocol was developed by Hilane Orman, It is a key creation protocol
based on the Diffie-Hellman key-¢xchange method, but with some improvements as we
shall see shortly. Oakley is a free-formatted protocol in the sense that 1t does not define
the format of the message 1o be exchanged. We do not discuss the Oakley protocol
directly in this chaptet, but we show how TKE uses its ideas.

SKEME, designed by Hugo Krawcyzk, 15 another protocol for key excha
uses public-key encryption for entity authentication in a key-exchange protoce
will see shortly that one of the methods used by IKE is based on SKEME,

The Internet Security Association and Key Management Protocol (ISAK!
& protocol designed by the National Securiry Agency (NSA) that sctually inpleme
exchanges defined in IKE. It defines several packets, protocols, and parameters tha
the TKE exchanges to take place in standardized, formatted messages 10 creale §/
will discuss ISAKMP in the next section as the carrier protocol tha implements K

Improved Diffie-Hellman Key Exchange Protocol

* The key-exchange idea in IKE is based o the Diffie-Hellman protocol. It provides a session key
between two pairs without the need for the existence of any previous secret.

Figure 18.16 Diffie-H el key exchange

—— e — - —

Imirinros Responibes
‘f" | Valuve of poand g I' *ﬂ
J_E'-:E-I: ' ,::-' rrececdl o l - :E%'.F' R=g rnn-d_;-]
e .

_ In the original Diffie-Hellman key exchange, two parties create a symmelrc ses-
sion kKey o exchange data without having to remember or store the key for future use.
E,’iu:‘mr!r establishing a symmetric key, the two parties need to choose two numbers P and g,
’f::-: hirst number, p, is a large prime on the order of 300 decimal digits (1024 bits).

e second number, g, 15 a generator in the ¢ <L *, x>, Alice chooses a l: \
dom number i and ru[cuiatﬁ's: KE-T = g* r:riirj'up‘;f;fiE’nzjﬁ;lj;‘l:{:‘?;mﬁmb = Id{gﬂ Tﬂ-u
d p. She s KE ob. Bob chooses
:um_.ﬂ_?lu:r large random number r and calculates KE-R = g" mod p. He sends KE-R to
Alice. We refer to KE-I and KE-R as Diffie-Hellman half'-t-auy::z because each is a half-
kr;{r generated by a peer. They need 10 be combined together to create the full key,
which is K = g " mod p. K is the symmetric key for the session. ‘
) The Diffie-Hellman protocol has some weaknesses that need 1o be eliminated
before it is suitabie as an Internet kev exchanoe

Clogging Attack

The first issue with the Diffie-Hellman protocol is the clogging attack or denial-of.
service attack. A malicious intruder can send many half-key (¢ mod g) messages to
Bob, pretending that they are from different sources. Bob then needs 1o ealcylate differ-
ent responses (g° mod ¢) and at the same time calculate the full-key (g™ mad), This
keeps Bob so busy that he may stop responding to any other messages. He denies ser-
vices 1o clients, This can happen because the Diffie-Hellman protocol is computation-
ally intensjve.

To prevent this clogging attack, we can add two extra messages 1o the protocol to
force the two parties to send cookies, Figure 18.17 shows the refinement that can pre-
vent a clogging attack. The cookie is the result of hashing a unique identifier of the peer

(such as IP address, port number, and protocol), a secret random number known to the
party that generates the cookie, and a limestamp,

Figure 18.17 Diffie-Hellman with cookies

Inivator Hesponder
E == 2

LK_E—I =g mood p

-

The initiator sends its own cookie; the responder its own. Both cookies are repeated,
unchanged, in every following message. The calculations of half-keys and the session key
are postponed until the cookies are returned. If any of the peers is a hacker attempling a
clogging attack, the cookies are not returned; the corresponding party does not spend the
lime and effort 1o calculate the half-key or the session key. For example, if the initiator 18

a hacker using a bogus IP address, the initiator does not reccive the second message and
cannot send the third message. The process is aborted.

To protect against a clogging attack, TKE uses cookies.

Replay Attack

Like other protocols we have seen so far, Diffie-Hellman is vulnerable to a replay
attack; the information from one session can be replayed in a future session by a mali-
cious intruder. To prevent this, we can add nonces to the third and fourth messages to
preserve the freshness of the message.

To protect against a replay attack, TKE uses nonces.

Mﬂ'ﬂdﬂ-—l’ﬁ-ﬂ'—ﬂlﬂﬂt ﬂm&

The third, and the most dangerous, attack on the Diffic-Hellman protocol is the man-in-
the-middle attack, previously discussed in Chapter 15, Eve can come in the middle and
create one key between Alice and herself and another key between Bob and herself.
Thwarting this attack is not as simple as the other two, We need to authenticate each

party. Alice and Bob need (o be sure that the integrity of the messages is preserved and
that both are authenticated to each other,

Authentication of the messages exchanged (message integrity) and the authentica-
tion of the parties involved (entity authentication) require that each parnty proves his/her
claimed identity. To do this, each must prove that it possesses a secret,

To protect against man-in-the-middie attack, IKE requires that each party shows
that i1 possesses a secret,

In IKE, the secret can be one of the following:

a. A preshared secret key

b. A preknown encryption/decryption public-key pair. An enbity must show that »
message encrypied with the announced public key can be decrypted with the corre-
sponding private key,

c. A preknown digital signature public-key pair. An entity must show that it can sign
& message with its private key which can be verified with its announced public key,

IKE (Internet Key Exchange Protocol)

IKFE Phases

IKE creates SAs for a message-exchange protocol such as IPSec. IKE, however, needs 1o
exchange confidential and authenticated messages. What protocol provides SAs for IKE
itself”? The reader may realize that this requires a never-ending chain of SAs: IKE must
create SAs for IPSec, protocol X must create SAs for IKE, protocol Y needs to create SAs
for protocol X, and so on. To solve this dilemma and, at the same time, make TKE inde-
pendent of the IPSec protocol, the designers of IKE divided IKE into two phases. In
phase 1, IKE creates SAs for phase IL. In phase II, IKE creates SAs for IPSec or some
other protocol. Phase I is generic; phase 11 is specific for the protocol.

IKFE is divided into two phases: phase 1 and phase I1. Phase [creates SAs for phase I1;
phase 11 creates SAs for a data exchange protocol such as [PSec,

Still, the question remains: How js phase | protected? In the next sections we show
how phase | uses an SA that is formed in a gradual manner. Earlier messages are
exchanged in plaintext; later messages are authenticated and encrypled with the keys
created from the earlier messages,

Phases and Modes

To allow for a variety of exchange methods, TKE has defined modes for the phases. So

» there are two modes for phase I: the main mode and the aggressive mode, The only
maode for phase 11 is the guick mode. Figure 18.18 shows the relationship between
phases and modes.

Figure 18.18 IKE Phases

Phage | |

Main Mode Agpressive Mode
six exchanges ~ three exchanges

Phase 11

Based on the nature of the pre-secret between the two parties, the phase I modes
can use one of four different authentication methods: the preshared secret key method,
the original public-key method, the revised public-key method, or the digital signature
method, as shown in Figure 18.19.

Figure 18.19 Main-mode or aggressive-mode methods

Autheatication
Methods

Pre-shared Omginal Revised Digital
secrel key public key pubhic key signature

Phase I: Main Mode

In the main mode, the initiator and the responder exchange six messages. In the first two
messages, they exchange cookies (to protect against a clogging attack) and negotiate the
SA parameters. The initiator sends a series of proposals; the responder selects one of them.
When the first two messages are exchanged, the initiator and the responder know the SA
parameters and are confident that the other party exists (no clogging attack occurs).

In the third and fourth messages, the initiator and responder usually exchange their
half-keys (g' and g” of the Diffie-Hellman method) and their nonces (for replay protec-
tion). In some methods other information is exchanged; that will be discussed later.
Note that the half-keys and nonces are not sent with the first two messages because the
two parties must first ensure that a clogging attack is not possible.

After exchanging the third and fourth messages, each party can calculate the com-
mon secret between them in addition to its individual hash digest, The common secret
SKEYID (secret key ID) is dependent on the calculation method as shown below. In the
equations, prf (pseudorandom function) is a keyed-hash function defined during the
negotiation phase,

SKEYID_d (derived key) is a key to create other keys. SKEYID_a is the authenti-
cation key and SKEYID _¢ is used for the encryption key; both are used during the
negotiation phase. The first parameter (SKEYID) is calculated for each key-exchange
method separately. The second parameter is a concatenation of various data. Note that
the key for prf is always SKEYID.

The two parties also calculate two hash digests, HASH-1 and HASH-R, which are
used in three of the four methods in the main mode. The calculation is shown below:

oy T T e S S R W S TR g
R U :“‘J"’:}'"‘E} i e b Fat
¥ A ¥ A T o .‘:1'? .I.. FIELY I iR B [i

Note that the first digest uses ID-1, while the second uses ID-R. Both use SA-I, the
entire SA data sent by the initiator. None of them include the proposal selected by the
responder. The idea is to protect the proposal sent by the initiator by preventing an
intruder from making changes. For example, an intruder might try to send a list of pro-
posals more vulnerable to attack. Similarly, if the SA is not included, an intruder might
change the selected proposal to one more favorable to himself. Note also a party does
not need to know the 1D of the other party in the calculation of the HASHs.

After calculating the keys and hashes, each party sends the hash to the other party to
authenticate itself. The initiator sends HASH-] to the responder as proof that she is Alice.
Only Alice knows the authentication secret and only she can calculate HASH-1, If the
HASH-I then calculated by Bob matches the HASH-1 sent by Alice, she is authenticated.
[n the same way, Bob can authenticate himself to Alice by sending HASH-R.

Note that there is a subtle point here. When Bob calculates HASH-1, he needs Alice’s
ID and vice versa. In some methods, the 1D is sent by previous messages: in others it is
sent with the hash, with both the hash and the ID encrypted by SKEYTD _e.

Preshared Secret-Key Method

In the preshared secret-key method, a symmetric key is used for authentication of the
peers to each other. Figure 18.20 shows shared-key authentication in the main mode.

Figure 18.20 Main mode, preshared secrei-key method

KE-L (KE-R): Initiater’s (responder’s) half-key HDR: General header including cooldies

N-T (N-R): Initiator's (responder’s) nonce ﬁ Encrypted with SKEYTD_»
1D-1 (ID-R): Initiator's (respoader's) 1D
HASH-1 (HASH-R): Initiator's (responder’s) hash

Preshared key | !
HDR. SA-offered >

| Result: SA for Phase 11 |

e ——

Figure 18,29 1sAkMp general header

In the first two messages, the initiator and responder exchange cookies (inside the
general header) and SA parameters, In the next two messages, they exchange the half-
keys and the nonces (see Chapter 15). Now the two parties can create SKEYTD and the
two keyed hashes (HASH-I1 and HASH-R). In the fifth and sixth messages, the two
parties exchange the created hashes and their IDs. To protect the IDs and hashes, the
last two messages are encrypted with SKEYID _e.

Note that the pre-shared key is the secret between Alice (initiator) and Bob
(responder). Eve (intruder) does not have access to this key. Eve cannot create SKEYID
and therefore cannot create either HASH-1 or HASH-R. Note that the IDs need to h‘.:
exchanged in messages 5 and 6 to allow the calculation of the hash.

There is one problem with this method. Bob cannot decrypt the message unless hﬂ
knows the preshared key, which means he must know who Alice is (know her [D). But

Alice’s ID is encrypted in message 5. The designer of this method has argued that the

1D in this case must be the IP address of each
stationary host (the I address i
to another, this is a problem.

party. This is not an issve if Alice is on a
15 fixed). However, if Alice is movin g from one network

Original Public-Key Method
In the original public-key method, the initiator and the responder prove their identities by

showing that they possess a private key related to their announced public key. Figure 18.2]
shows the exchange of messages using the original public-key method.,

Figore 18.21 Main mode, original public-key method

HDOR: Genernl header including cookies 1 & Encrypied with initintar's public key
KE-1 (KE R} Initistor's {responder’s) hall-key ' ; ©
M-I (N-R): Initiator's {responder’s) nonce » ﬁ Encrypied with responder’s public key
ID-1(ID-R}: Initiator's {responder’s) 1D £l Encrypted with SKEYID_e
HASH-T (HASH-R X Initistor's (responder’s) hash

Inatsatar Hesponder

I_ Public keys g
HDR, SA-offered } .
. [HDR. Shﬁ[md"l

O—ioe, i« ey * o y

v e ‘
ﬁmhl_ﬂ

[Rmm:s.urwrhmu]

