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CHAPTER 9

Mathematics of Cryptography

Part III: Primes and Related Congruence Equations 

Objectives

This chapter has several objectives:

❏ To introduce prime numbers and their applications in cryptography.

❏ To discuss some primality test algorithms and their efficiencies.

❏ To discuss factorization algorithms and their applications in cryptography.

❏ To describe the Chinese remainder theorem and its application.

❏ To introduce quadratic congruence.

❏ To introduce modular exponentiation and logarithm. 

Asymmetric-key cryptography, which we will discuss in Chapter 10, is

based on some topics in number theory, including theories related to primes,

factorization of composites into primes, modular exponentiation and loga-

rithm, quadratic residues, and the Chinese remainder theorem. These issues

are discussed in this chapter to make Chapter 10 easier to understand.

9.1 PRIMES

Asymmetric-key cryptography uses primes extensively. The topic of primes is a large

part of any book on number theory. This section discusses only a few concepts and

facts to pave the way for Chapter 10.

Definition

The positive integers can be divided into three groups: the number 1, primes, and com-

posites as shown in Figure 9.1.
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A positive integer is a prime if and only if it is exactly divisible by two integers, 1 and
itself. A composite is a positive integer with more than two divisors. 

Example 9.1

What is the smallest prime?

Solution

The smallest prime is 2, which is divisible by 2 (itself) and 1. Note that the integer 1 is not a
prime according to the definition, because a prime must be divisible by two different integers, no
more, no less. The integer 1 is divisible only by itself; it is not a prime.

Example 9.2

List the primes smaller than 10.

Solution

There are four primes less than 10: 2, 3, 5, and 7. It is interesting to note that the percentage of
primes in the range 1 to 10 is 40%. The percentage decreases as the range increases. 

Coprimes

Two positive integers, a and b, are relatively prime, or coprime, if gcd (a, b) = 1. Note
that the number 1 is relatively prime with any integer. If p is a prime, then all integers 1
to p − 1 are relatively prime to p. In Chapter 2, we discussed set Zn*whose members are
all relatively prime to n. Set Zp*is the same except that modulus (p) is a prime.

Cardinality of Primes

After the concept of primes has been defined, two questions naturally arise: Is there a finite
number of primes or is the list infinite? Given a number n, how many primes are smaller
than or equal to n? 

Figure 9.1 Three groups of positive integers

A prime is divisible only by itself and 1.

Exactly one divisor Exactly two divisors More than two divisors

Positive
integers

CompositesPrimesNumber 1
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Infinite Number of Primes

The number of primes is infinite. Here is an informal proof: Suppose that the set of primes
is finite (limited), with p as the largest prime. Multiply the set of primes and call the result
P = 2 × 3 × … × p. The integer (P + 1) cannot have a factor q ≤ p. We know that q divides P.
If q also divides (P + 1), then q divides (P + 1) − P = 1 The only number that divides 1 is 1,
which is not a prime. Therefore, q is larger than p. 

Example 9.3

As a trivial example, assume that the only primes are in the set {2, 3, 5, 7, 11, 13, 17}. Here P =
510510 and P + 1 = 510511. However, 510511 = 19 × 97 × 277; none of these primes were in the
original list. Therefore, there are three primes greater than 17. 

Number of Primes

To answer the second question, a function called π(n) is defined that finds the number
of primes smaller than or equal to n. The following shows the values of this function for
different n’s. 

But if n is very large, how can we calculate π(n)? The answer is that we can only
use approximation. It has been shown that 

[n / (ln n)]    <     π(n)     <      [n/(ln n − 1.08366)] 

Gauss discovered the upper limit; Lagrange discovered the lower limit. 

Example 9.4

Find the number of primes less than 1,000,000. 

Solution

The approximation gives the range 72,383 to 78,543. The actual number of primes is 78,498. 

Checking for Primeness

The next question that comes to mind is this: Given a number n, how can we determine if n
is a prime? The answer is that we need to see if the number is divisible by all primes less
than . We know that this method is inefficient, but it is a good start. 

Example 9.5

Is 97 a prime?

Solution

The floor of  = 9. The primes less than 9 are 2, 3, 5, and 7. We need to see if 97 is divisible
by any of these numbers. It is not, so 97 is a prime. 

There is an infinite number of primes. 

π(1) = 0    π(2) = 1     π(3) = 2     π(10) = 4      π(20) = 8    π(50) = 15    π(100) = 25  

n

97
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Example 9.6

Is 301 a prime?

Solution

The floor of  = 17. We need to check 2, 3, 5, 7, 11, 13, and 17. The numbers 2, 3, and 5 do
not divide 301, but 7 does. Therefore 301 is not a prime. 

Sieve of Eratosthenes

The Greek mathematician Eratosthenes devised a method to find all primes less than
n. The method is called the sieve of Eratosthenes. Suppose we want to find all prime
less than 100. We write down all the numbers between 2 and 100. Because  = 10,
we need to see if any number less than 100 is divisible by 2, 3, 5, and 7. Table 9.1
shows the result. 

The following shows the process:

1. Cross out all numbers divisible by 2 (except 2 itself).

2. Cross out all numbers divisible by 3 (except 3 itself).

3. Cross out all numbers divisible by 5 (except 5 itself).

4. Cross out all numbers divisible by 7 (except 7 itself). 

5. The numbers left over are primes. 

Euler’s Phi-Function 

Euler’s phi-function, φ(n), which is sometimes called the Euler’s totient function plays
a very important role in cryptography. The function finds the number of integers that are
both smaller than n and relatively prime to n. Recall from Chapter 2 that the set Zn* con-
tains the numbers that are smaller than n and relatively prime to n. The function φ(n) cal-
culates the number of elements in this set. The following helps to find the value of φ(n).

1. φ(1) = 0.

2. φ(p) = p − 1 if p is a prime.

Table 9.1 Sieve of Eratosthenes

  2   3   4   5   6   7   8   9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

301

100



SECTION 9.1 PRIMES 255

3. φ(m × n) = φ(m) × φ(n) if m and n are relatively prime.

4. φ(pe) = pe − pe−1 if p is a prime.

We can combine the above four rules to find the value of  φ(n). For example, if n can be
factored as n = p1

e1 ×  p2
e2 ×  …  ×  pk

ek, then we combine the third and the fourth rule to find

 φ(n) = (p1
e1 − p1

e1−1) × (p2
e2 − p2

e2 − 1) ×  …  × (pk 
ek  − pk

ek − 1) 

It is very important to notice that the value of φ(n) for large composites can be
found only if the number n can be factored into primes. In other words, the difficulty of
finding φ(n) depends on the difficulty of finding the factorization of n, which is dis-
cussed in the next section. 

Example 9.7

What is the value of φ(13)?

Solution

Because 13 is a prime, φ(13) = (13 −1) = 12.

Example 9.8

What is the value of φ(10)?

Solution

We can use the third rule: φ(10) = φ(2)  ×  φ(5) = 1 × 4 = 4, because 2 and 5 are primes.   

Example 9.9

What is the value of φ(240)?

Solution

We can write 240 = 24 × 31 × 51. Then 

φ(240) = (24 −23)  × (31 − 30) ×  (51 − 50) = 64

Example 9.10

Can we say that φ(49) =  φ(7) × φ(7) = 6 × 6 = 36?

Solution

No. The third rule applies when m and n are relatively prime. Here 49 = 72. We need to use the
fourth rule: φ(49) = 72 − 71 = 42.

Example 9.11

What is the number of elements in Z14*?

Solution

The answer is  φ(14) = φ(7) × φ(2) = 6 × 1 = 6. The members are 1, 3, 5, 9, 11, and 13.

The difficulty of finding φ(n) depends on the difficulty of finding the factorization of n. 

Interesting point: If n > 2, the value of φ(n) is even. 
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Fermat’s Little Theorem

Fermat’s little theorem plays a very important role in number theory and cryptogra-
phy. We introduce two versions of the theorem here.

First Version 

The first version says that if p is a prime and a is an integer such that p does not divide
a, then ap−1 ≡ 1 mod p.

Second Version 

The second version removes the condition on a. It says that if p is a prime and a is an
integer, then ap ≡ a mod p.

Applications

Although we will see some applications of this theorem later in this chapter, the theo-
rem is very useful for solving some problems.

Exponentiation Fermat’s little theorem sometimes is helpful for quickly finding a
solution to some exponentiations. The following examples show the idea. 

Example 9.12

Find the result of 610 mod 11.

Solution

We have 610 mod 11 = 1. This is the first version of Fermat’s little theorem where p = 11. 

Example 9.13

Find the result of 312 mod 11.   

Solution

Here the exponent (12) and the modulus (11) are not the same. With substitution this can be
solved using Fermat’s little theorem. 

Multiplicative Inverses A very interesting application of Fermat’s theorem is in
finding some multiplicative inverses quickly if the modulus is a prime. If p is a prime
and a is an integer such that p does not divide a (p | a), then a−1 mod p = ap−2 mod p.

This can be easily proved if we multiply both sides of the equality by a and use the
first version of Fermat’s little theorem: 

312 mod 11 = (311 × 3) mod 11 = (311 mod 11) (3 mod 11) = (3 × 3) mod 11 = 9 

 a × a−1 mod p = a × a p−2 mod p = a p−1 mod p = 1 mod p 
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This application eliminates the use of extended Euclidean algorithm for finding
some multiplicative inverses. 

Example 9.14

The answers to multiplicative inverses modulo a prime can be found without using the extended
Euclidean algorithm:

a. 8−1 mod 17 = 817−2 mod 17 = 815 mod 17 = 15 mod 17

b. 5−1 mod 23 = 523−2 mod 23 = 521 mod 23 = 14 mod 23

c. 60−1 mod 101 = 60101−2 mod 101 = 6099 mod 101 = 32 mod 101

d. 22−1 mod 211 = 22211−2 mod 211 = 22209 mod 211 = 48 mod 211

Euler’s Theorem

Euler’s theorem can be thought of as a generalization of Fermat’s little theorem. The
modulus in the Fermat theorem is a prime, the modulus in Euler’s theorem is an integer.
We introduce two versions of this theorem.

First Version

The first version of Euler’s theorem is similar to the first version of the Fermat’s little
theorem. If a and n are coprime, then aφ(n) ≡ 1 (mod n). 

Second Version

The second version of Euler’s theorem (as we call it for the lack of anyname) is similar
to the second version of Fermat’s little theorem; it removes the condition that a and n
should be coprime. If n = p × q, a < n, and k an integer, then ak × φ(n) + 1 ≡ a (mod n). 

Let us give an informal proof of the second version based on the first version.
Because a < n, three cases are possible: 

1. If a is neither a multiple of p nor a multiple of q, then a and n are coprimes.  

2. If a is a multiple of p (a = i × p), but not a multiple of q, 

 ak  ×  φ(n) + 1 mod n = (aφ(n))k × a mod n = (1)k × a mod n =  a mod n                                         

aφ(n) mod q  = (aφ(q) mod q)φ(p) mod q = 1    →   aφ(n) mod q  = 1

a k × φ(n) mod q  = (aφ(n) mod q)k mod q = 1   →  a k × φ(n) mod q = 1

a k × φ(n) mod q  = 1  →   a k × φ(n)  = 1 + j × q   (Interpretation of congruence)

a k × φ(n) + 1  = a × (1 + j × q) = a + j × q × a  = a + (i × j) × q × p = a + (i × j) × n 

a k × φ(n) + 1  = a + (i × j) × n    →   a k × φ(n) + 1  = a mod n     (Congruence relation) 
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3. If a is a multiple of q (a = i × q), but not a multiple of p, the proof is the same as for
the second case, but the roles of p and q are changed. 

Applications

Although we will see some applications of Euler’s later in this chapter, the theorem is
very useful for solving some problems.

Exponentiation Euler’s theorem sometimes is helpful for quickly finding a solution
to some exponentiations. The following examples show the idea. 

Example 9.15

Find the result of 624 mod 35.

Solution

We have 624 mod 35 = 6φ(35) mod 35 = 1. 

Example 9.16

Find the result of 2062 mod 77.   

Solution

If we let k = 1 on the second version, we have 2062 mod 77 = (20 mod 77) (20φ(77)+1 mod 77)
mod 77 = (20)(20) mod 77 = 15. 

Multiplicative Inverses Euler’s theorem can be used to find multiplicative inverses
modulo a prime; Euler’s theorem can be used to find multiplicative inverses modulo a
composite. If n and a are coprime, then a−1 mod n = aφ(n)−1 mod n.

This can be easily proved if we multiply both sides of the equality by a: 

Example 9.17

The answers to multiplicative inverses modulo a composite can be found without using the
extended Euclidean algorithm if we know the factorization of the composite:

a. 8−1 mod 77 = 8φ(77)−1 mod 77 =  859 mod 77 = 29 mod 77

b. 7−1 mod 15 = 7φ(15)−1 mod 15 =  77 mod 15 = 13 mod 15

c. 60−1 mod 187 = 60φ(187) −1mod 187 = 60159 mod 187 = 53 mod 187

d. 71−1 mod 100 = 71φ(100)−1mod 100 = 7139 mod 100 = 31 mod 100

Generating Primes

Two mathematicians, Mersenne and Fermat, attempted to develop a formula that could
generate primes.

The second version of Euler’s theorem is used in the RSA cryptosystem in Chapter 10.

 a × a−1 mod n  =   a × a φ(n) −1 mod n = a φ(n) mod n = 1 mod n



SECTION 9.1 PRIMES 259

Mersenne Primes

Mersenne defined the following formula, called the Mersenne numbers, that was sup-

posed to enumerate all primes. 

If p in the above formula is a prime, then Mp was thought to be a prime. Years later, it

was proven that not all numbers created by the Mersenne formula are primes. The fol-

lowing lists some Mersenne numbers.

It turned out that M11 is not a prime. However, 41 Mersenne primes have been

found; the latest one is M124036583, a very large number with 7,253,733 digits. The

search continues.

Fermat Primes

Fermat tried to find a formula to generate primes. The following is the formula for a

Fermat number:

Fermat tested numbers up to F4, but it turned out that F5 is not a prime. No number

greater than F4 has been proven to be a prime. As a matter of fact many numbers up to

F24 have been proven to be composite numbers. 

Mp = 2p −−−− 1

M2   = 22 − 1 = 3

M3   = 23 − 1 = 7

M5   = 25 − 1 = 31

M7   = 27 − 1 = 127

M11 = 211 − 1 = 2047          Not a prime (2047 = 23 × 89)

M13 = 213 − 1 = 8191

M17 = 217 − 1 = 131071

A number in the form Mp = 2p −−−− 1 is called a Mersenne number and may

or may not be a prime. 

Fn = 22
n
 + 1

F0 = 3

F1 = 5

F2 = 17

F3 = 257

F4 = 65537

F5 = 4294967297 = 641 × 6700417 Not a prime
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9.2 PRIMALITY TESTING

If schemes for generating primes, like Fermat’s or Mersenne’s, have failed to produce
large primes, how can we create large primes for cryptography? We could just choose a
large random number and test it to be sure that it is a prime. 

Finding an algorithm to correctly and efficiently test a very large integer and out-
put a prime or a composite has always been a challenge in number theory, and conse-
quently in cryptography. However, recent developments (one of which we discuss in
this section) look very promising. 

Algorithms that deal with this issue can be divided into two broad categories:
deterministic algorithms and probabilistic algorithms. Some members of both cate-
gories are discussed here. A deterministic algorithm always gives a correct answer; a
probabilistic algorithm gives an answer that is correct most of the time, but not all of
the time. Although a deterministic algorithm is ideal, it is normally less efficient than
the corresponding probabilistic one. 

Deterministic Algorithms

A deterministic primality testing algorithm accepts an integer and always outputs a
prime or a composite. Until recently, all deterministic algorithms were so inefficient at
finding larger primes that they were considered infeasible. As we will show shortly, a
newer algorithm looks more promising. 

Divisibility Algorithm

The most elementary deterministic test for primality is the divisibility test. We use as
divisors all numbers smaller that . If any of these numbers divides n, then n is com-
posite. Algorithm 9.1 shows the divisibility test in its primitive, very inefficient form.

The algorithm can be improved by testing only odd numbers. It can be further
improved by using a table of primes between 2 and . The number of arithmatic oper-
ations in Algorithm 9.1 is . If we assume that each arithmatic operation uses only one
bit operation (unrealistic) then the bit-operation complexity of Algorithm 9.1 is f(nb) =

 = , where nb is the number of bits in n. In Big-O notation, the complexity can

be shown as O( ): exponential (see Appendix L). In other words, the divisibility algo-
rithm is infeasible (intractable) if nb is large.    

Example 9.18

Assume n has 200 bits. What is the number of bit operations needed to run the divisibility-test
algorithm? 

Solution

The bit-operation complexity of this algorithm is . This means that the algorithm needs
2100 bit operations. On a computer capable of doing 230 bit operations per second, the algorithm
needs 270 seconds to do the testing (forever). 

The bit-operation complexity of the divisibility test is exponential. 

n

n

n

2
nb

2
nb/2

2
nb

2
nb/2
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AKS Algorithm

In 2002, Agrawal, Kayal, and Saxena announced that they had found an algorithm for
primality testing with polynomial bit-operation time complexity of O( ). The
algorithm uses the fact that (x − a)p ≡ (xp − a) mod p. It is not surprising to see some
future refinements make this algorithm the standard primality test in mathematics and
computer science. 

Example 9.19

Assume n has 200 bits. What is the number of bit operations needed to run the AKS algorithm? 

Solution

The bit-operation complexity of this algorithm is O( ). This means that the algorithm
needs only (log2200)12 = 39,547,615,483 bit operations. On a computer capable of doing 1 bil-
lion bit operations per second, the algorithm needs only 40 seconds. 

Probabilistic Algorithms

Before the AKS algorithm, all efficient methods for primality testing have been proba-
bilistic. These methods may be used for a while until the AKS is formally accepted as
the standard. A probabilistic algorithm does not guarantee the correctness of the result.
However, we can make the probability of error so small that it is almost certain that the
algorithm has returned a correct answer. The bit-operation complexity of the algorithm
can become polynomial if we allow a small chance for mistakes. A probabilistic algo-
rithm in this category returns either a prime or a composite based on the following
rules:

a. If the integer to be tested is actually a prime, the algorithm definitely returns a
prime. 

b. If the integer to be tested is actually a composite, it returns a composite with prob-
ability 1− ε, but it may return a prime with the probability ε. 

The probability of mistake can be improved if we run the algorithm more than once
with different parameters or using different methods. If we run the algorithm m times,
the probability of error may reduce to εm. 

Algorithm 9.1 Pseudocode for the divisibility test

Divisibility_Test (n)                                 // n is the number to test for primality

{
   r ← 2
   while (r < )                                   
   {
    if (r | n) return "a composite"

    r ← r + 1                      
   } 

    return "a prime"    
}

n

log2nb( )
12

log2nb( )
12
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Fermat Test

The first probabilistic method we discuss is the Fermat primality test. Recall the Fermat

little theorem

Note that this means that if n is a prime, the congruence holds. It does not mean that if

the congruence holds, n is a prime. The integer can be a prime or composite. We can

define the following as the Fermat test  

A prime passes the Fermat test; a composite may pass the Fermat test with proba-

bility ε. The bit-operation complexity of Fermat test is the same as the complexity of an

algorithm that calculates exponentiation. Later in this chapter, we introduce an algo-

rithm for fast exponentiation with bit-operation complexity of O(nb), where nb is the

number of bits in n. The probability can be improved by testing with several bases (a1,

a2, a3, and so on). Each test increases the probability that the number is a prime.

Example 9.20

Does the number 561 pass the Fermat test?

Solution

Use base 2 

The number passes the Fermat test, but it is not a prime, because 561 = 33 × 17.

Square Root Test

In modular arithmetic, if n is a prime, the square root of 1 is either +1 or −1. If n is com-

posite, the square root is +1 or −1, but there may be other roots. This is known as the

square root primality test. Note that in modular arithmetic, −1 means n −1. 

Example 9.21

What are the square roots of 1 mod n if n is 7 (a prime)? 

Solution

The only square roots are 1 and −1. We can see that 

If n is a prime, then an−−−−1 ≡≡≡≡ 1 mod n.

If n is a prime, an−1 ≡ 1 mod n

If n is a composite, it is possible that an−1 ≡ 1 mod n

 2561–1 = 1 mod 561   

If n is a prime, mod n = ±1.

If n is a composite, mod n = ±1 and possibly other values. 

12 = 1 mod 7            (–1)2 = 1 mod 7

22 = 4 mod 7            (–2)2 = 4 mod 7

32 = 2 mod 7            (–3)2 = 2 mod 7

1

1
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Note that we don’t have to test 4, 5 and 6 because 4 = –3 mod 7, 5 = –2 mod 7 and 6 = –1 mod 7.

Example 9.22

What are the square roots of 1 mod n if n is 8 (a composite)? 

Solution

There are four solutions: 1, 3, 5, and 7 (which is −1). We can see that

Example 9.23

What are the square roots of 1 mod n if n is 17 (a prime)? 

Solution

There are only two solutions: 1 and  −1

Note that there is no need to check integers larger than 8 because 9 = −8 mod 17, and so on.

Example 9.24

What are the square roots of 1 mod n if n is 22 (a composite)?

Solution

Surprisingly, there are only two solutions, +1 and −1, although 22 is a composite.

Although this test can tell us if a number is composite, it is difficult to do the testing.
Given a number n, all numbers less than n (except 1 and n −1) must be squared to be sure
that none of them is 1. This test can be used for a number (not +1 or −1) that when squared
in modulus n has the value 1. This fact helps in the Miller-Rabin test in the next section.

Miller-Rabin Test

The Miller-Rabin primality test combines the Fermat test and the square root test in a
very elegant way to find a strong pseudoprime (a prime with a very high probability). In
this test, we write n − 1 as the product of an odd number m and a power of 2: 

The Fermat test in base a can be written as shown in Figure 9.2. 

12 = 1 mod 8            (−1)2 = 1 mod 8
32 = 1 mod 8            52      = 1 mod 8

12    = 1 mod 17             (−1)2 = 1 mod 17
22    = 4 mod 17             (−2)2 = 4 mod 17
32    = 9 mod 17             (−3)2 = 9 mod 17
42    = 16 mod 17           (−4)2 = 16 mod 17
52    = 8 mod 17             (−5)2 = 8 mod 17
62    = 2 mod 17             (−6)2 = 2 mod 17
(7)2 = 15 mod 17           (−7)2 = 15 mod 17
(8)2 = 13 mod 17           (−8)2 = 13 mod 17

12      = 1 mod 22 
(−1)2 = 1 mod 22 

n − 1 = m × 2k
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In other words, instead of calculating an−1 (mod n) in one step, we can do it in k + 1
steps. What is the benefit of using k + 1 steps instead of just one? The benefit is that, in
each step, the square root test can be performed. If the square root test fails, we stop
and declare n a composite number. In each step, we assure ourself that the Fermat test
is passed and the square root test is satisfied between all pairs of adjacent steps, if appli-
cable (if the result is 1). 

Initialization:

Choose a base a and calculate T = am, in which m = (n − 1) / 2k

a. If T is +1 or −1, declare that n is a strong pseudoprime and stop. We say that
n has passed two tests, the Fermat test and the square root test. Why?
Because if T is ±1, T will become 1 in the next step and remains 1 until it
passes the Fermat test. In addition T has passed the square root test, because
T would be 1 in the next step and the square root of 1 (in the next step) is ±1
(in this step). 

b. If T is anything else, we are not sure if n is a prime or a composite, so we con-
tinue to the next step. 

Step 1:

We square T.

a. If the result is +1, we definitely know that the Fermat test will be passed,
because T remains 1 for the succeeding tests. The square root test, however, has
not been passed. Because T is 1 in this step and was something other than ±1 in
the previous step (the reason why we did not stop in the previous step), we
declare n a composite and stop. 

b. If the result is −1, we know that n will eventually pass the Fermat test. We also
know that it will pass the square root test because T is −1 in this step and
becomes 1 in the next step. We declare n a strong peseudoprime and stop.

c. If T is anything else, we are not sure whether we do or do not have a prime. We
continue to the next step.

Steps 2 to k − 1:

This step and all steps until step k − 1 are the same as step 1.

Figure 9.2 Idea behind Fermat primality test

an − 1 
= am × 2k 

= [am]
2k

 
= [am] 

2 2 
. . 

. 2

k 
tim

es
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Step k:

This step is not needed. If we have reached this step and we have not made a decision,
this step will not help us. If the result of this step is 1, the Fermat test is passed, but
because the result of the previous step is not ±1, the square root test is not passed. After
step k − 1, if we have not already stopped, we declare that n is composite.    

Algorithm 9.2 shows the pseudocode for the Miller-Rabin test. 

There exists a proof that each time a number passes a Miller-Rabin test, the proba-
bility that it is not a prime is 1/4. If the number passes m tests (with m different bases),
the probability that it is not a prime is (1/4)m. 

Example 9.25

Does the number 561 pass the Miller-Rabin test?

Solution
Using base 2, let 561 − 1 = 35 × 24, which means m = 35, k = 4, and a = 2   

Example 9.26

We already know that 27 is not a prime. Let us apply the Miller-Rabin test. 

The Miller-Rabin test needs from step 0 to step k − 1. 

Algorithm 9.2 Pseudocode for Miller-Rabin test

Miller_Rabin_Test (n, a)                                       // n is the number; a is the base.

{
      Find m and k such that n − 1 = m × 2k 
      T  ← am mod n

      if (T = ± 1)   return "a prime"

      for (i ← 1 to k − 1)                                            // k − 1 is the maximum number of steps.
      {
            T  ← T2 mod n

            if (T = +1) return "a composite"

            if (T = −1) return "a prime"                     
      } 

      return "a composite"     
}

Initialization:              
k = 1:             
k = 2:            
k = 3:          

T = 235 mod 561 = 263 mod 561 
T = 2632 mod 561 = 166 mod 561
T = 1662 mod 561 = 67 mod 561
T = 672 mod 561 = +1 mod 561                   →   a composite
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Solution

With base 2, let 27 − 1 = 13 × 21, which means that m = 13, k = 1, and  a = 2. In this case, because
k − 1 = 0, we should do only the initialization step: T = 213 mod 27 = 11 mod 27. However,
because the algorithm never enters the loop, it returns a composite.

Example 9.27

We know that 61 is a prime, let us see if it passes the Miller-Rabin test. 

Solution

We use base 2. 

Note that the last result is 60 mod 61, but we know that 60 = −1 in mod 61. 

Recommended Primality Test

Today, one of the most popular primality test is a combination of the divisibility test
and the Miller-Rabin test. Following are the recommended steps:   

1. Choose an odd integer, because all even integers (except 2) are definitely
composites.

2. Do some trivial divisibility tests on some known primes such as 3, 5, 7, 11, 13, and
so on to be sure that you are not dealing with an obvious composite. If the number
passes all of these tests, move to the next step. If the number fails any of these
tests, go back to step 1 and choose another odd number.

3. Choose a set of bases for testing. A large set of bases is preferable.

4. Do Miller-Rabin tests on each of the bases. If any of them fails, go back to step 1
and choose another odd number. If the test passes for all bases, declare the number
a strong pseudoprime. 

Example 9.28

The number 4033 is a composite (37 × 109). Does it pass the recommended primality test? 

Solution

1. Perform the divisibility tests first. The numbers 2, 3, 5, 7, 11, 17, and 23 are not divisors 
of 4033.

2. Perform the Miller-Rabin test with a base of 2, 4033 − 1 = 63 × 26, which means m is 63 
and k is 6. 

3. But we are not satisfied. We continue with another base, 3. 

61 − 1 = 15 × 22   →    m = 15 k = 2 a = 2
Initialization:   T =   215 mod 61 = 11 mod 61
k = 1                 T = 112   mod 61 =  −1 mod 61       →   a prime

Initialization: T ≡ 263 (mod 4033) ≡ 3521 (mod 4033) 
k = 1                T ≡ T2 ≡ 35212 (mod 4033) ≡ −1 (mod 4033)    → Passes 
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9.3 FACTORIZATION

Factorization has been the subject of continuous research in the past; such research is
likely to continue in the future. Factorization plays a very important role in the security
of several public-key cryptosystems (see Chapter 10).

Fundamental Theorem of Arithmetic

According to the Fundamental Theorem of Arithmetic, any positive integer greater
than one can be written uniquely in the following prime factorization form where p1,
p2,…, pk are primes and e1, e2, …, ek are positive integers.

There are immediate applications of factorization, such as the calculation of the
greatest common divisor and the least common multiplier. 

Greatest Common Divisor

Chapter 2 discussed the greatest common divisor of two numbers, gcd (a, b). Recall
that the Euclidean algorithm gives this value, but this value can also be found if we
know the factorization of a and b.  

Least Common Multiplier

The least common multiplier, lcm (a, b), is the smallest integer that is a multiple of both
a and b. Using factorization, we also find lcm (a, b). 

Initialization: T ≡  363 (mod 4033)  ≡ 3551 (mod 4033)

k = 1                T ≡ T2 ≡ 35512 (mod 4033 ≡ 2443 (mod 4033)
k = 2                T ≡ T2 ≡ 24432 (mod 4033 ≡ 3442 (mod 4033)
k = 3                T ≡ T2 ≡ 34422 (mod 4033 ≡ 2443 (mod 4033)
k = 4                T ≡ T2 ≡ 24432 (mod 4033 ≡ 3442 (mod 4033)
k = 5                T ≡ T2 ≡ 34422 (mod 4033  ≡ 2443 (mod 4033)  →Failed (composite)

n = p1
e1× p2

e2 ×  …  × pk
ek

a = p1
a1 × p2

a2 ×  …  × pk
ak                                              b = p1

b1 × p2
b2 ×  …  × pk

bk

gcd (a, b) =   p1
min (a1 , b1)  ×  p2

min (a2 , b2)×  …  × pk
min (ak , bk)

a = p1
a1 × p2

a2 ×  …  × pk
ak                                             b = p1

b1 × p2
b2 ×  …  × pk

bk 

lcm (a, b) =   p1
max (a1 , b1)  ×  p2

max (a2 , b2)×  …  × pk
max (ak , bk)


