Public Key Cryptosystem

Sachin Tripathi

IIT(ISM), Dhanbad

ElGamal Cryptosystem

Key generation, encryption, and decryption in ElGamal Bob Key generation Select p (very large prime) Select e_1 (primitive root) Select d Public key: (e_1, e_2, p) Alice $e_2 = e_1^d \mod p$ Private key: d (e_1, e_2, p) Ciphertext: (C1, C2) $C_1 = e_1^r \mod p$ $P = [C_2 \times (C_1^d)^{-1}] \mod p$ Plaintex Plaintext Decryption Encryption

Key Generation

Encryption

Decryption

Note: Bit operation complexity of encryption and decryption in Elgamal Cryptosytem is polynomial

Proof

The ElGamal decryption expression $C_2 \times (C_1^d)^{-1}$ can be verified to be P through substitution:

$$[C_2 \times (C_1^d)^{-1}] \mod p = [(e_2^r \times P) \times (e_1^{rd})^{-1}] \mod p = (e_1^{dr}) \times P \times (e_1^{rd})^{-1} = P$$

Example

Here is a trivial example. Bob chooses p = 11 and $e_1 = 2$. and d = 3 $e_2 = e_1^d = 8$. So the public keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C1 and C2 for the plaintext 7.

Plaintext: 7

 $C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$ $C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$ **Ciphertext:** (5, 6)

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.

$$[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11 = 6 \times 3 \mod 11 = 7 \mod 11$$
Plaintext: 7

Instead of using $P = [C_2 \times (C_1^d)^{-1}] \mod p$ for decryption, we can avoid the calculation of multiplicative inverse and use $P = [C_2 \times C_1^{p-1-d}] \mod p$ (see Fermat's little theorem

Security of Elgamal

Low Modulus Attack

If the value of p is not large enough, Eve can use some efficient algorithms to solve the discrete logarithm problem to find d or r. If p is small, Eve can easily find $d = \log_{e_1} e_2 \mod p$ and store it to decrypt any message sent to Bob. This can be done once and used as long as Bob uses the same keys. Eve can also use the value of C_1 to find random number r used by Alice in each transmission $r = \log_{e_1} C_1 \mod p$.

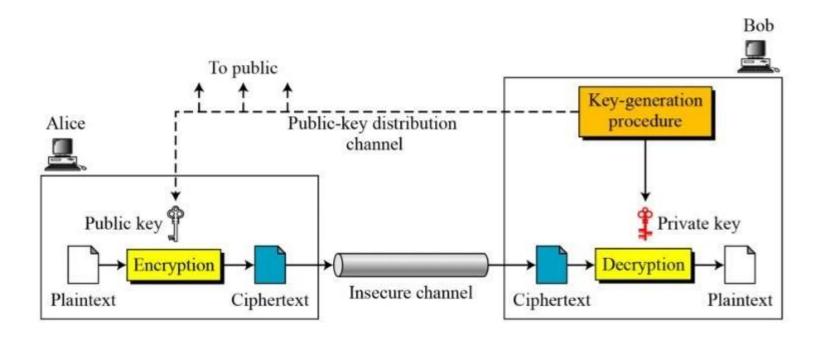
Known Plaintext Attack

If Alice uses the same random exponent r, to encrypt two plaintexts P and P', Eve discovers P' if she knows P. Assume that $C_2 = P \times (e_2^r) \mod p$ and $C'_2 = P' \times (e_2^r) \mod p$. Eve finds P' using the following steps:

- 1. $(e_2^r) = C_2 \times P^{-1} \mod p$
- 2. $P' = C'_2 \times (e_2^r)^{-1} \mod p$

It is recommended that Alice use a fresh value of r to thwart the known-plaintext attacks.

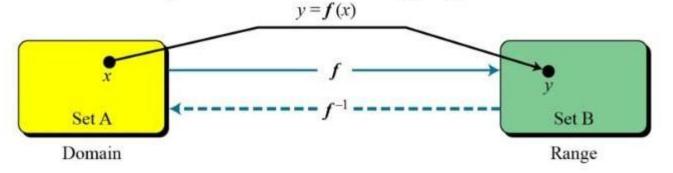
General Idea of Public Cryptosystem



Trapdoor One Way Function

Functions

A function as rule mapping a domain to a range



One-Way Function (OWF)

- 1. f is easy to compute.
- 2. f^{-1} is difficult to compute.

Trapdoor One-Way Function (TOWF)

3. Given y and a trapdoor, x can be computed easily.

Cryptanalysis

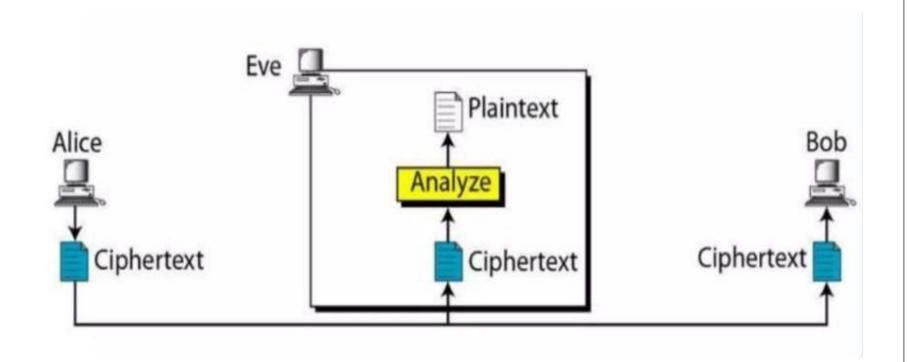
- Cryptanalysis is the art of trying to decrypt the encrypted messages without the use of the key that was used to encrypt the messages. Cryptanalysis uses mathematical analysis & algorithms to decipher the ciphers.
- The success of cryptanalysis attacks depends
 - Amount of time available
 - Computing power available
 - Storage capacity available

- Known-Plaintext Analysis (KPA): Attacker decrypts ciphertext with known partial plaintext.
- Chosen-Plaintext Analysis (CPA): Attacker uses ciphertext that matches arbitrarily selected plaintext via the same algorithm technique.
- Ciphertext-Only Analysis (COA): Attacker uses known ciphertext collections.
- Man-in-the-Middle (MITM) Attack: Attack occurs when two parties use message or key sharing for communication via a channel that appears secure but is actually compromised.

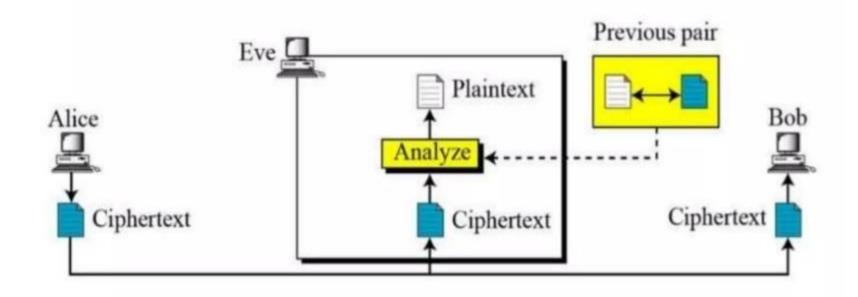
Types

- Brute force attack— this type of attack uses algorithms that try to guess all the possible logical combinations of the plaintext which are then ciphered and compared against the original cipher.
- Dictionary attack— this type of attack uses a wordlist in order to find a match of either the plaintext or key. It is mostly used when trying to crack encrypted passwords.
- Rainbow table attack— this type of attack compares the cipher text against pre- computed hashes to find matches.

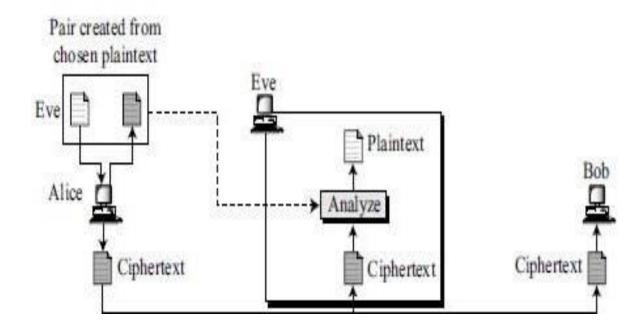
Cipher text Only Attack



Known Plaintext Attack

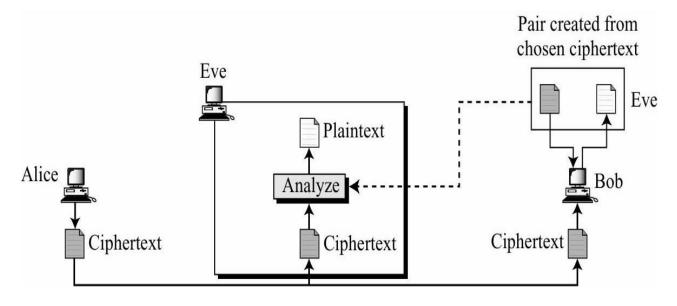


Chosen Plaintext Attack



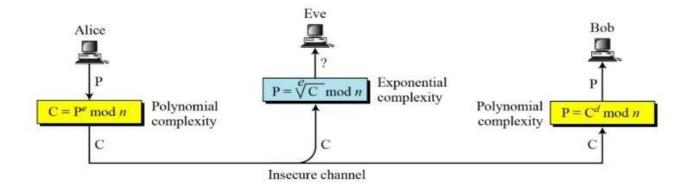
Chosen Cipher text Attack

• Similar to the chosen plaintext attack, except that Eve chooses some cipher text and decrypt it to form a cipher text/plaintext pair



RSA Cryptosystem

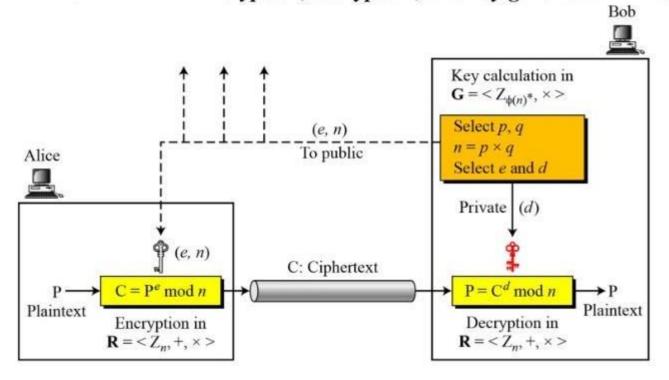
- The most common public key algorithm (Rivest, Shamir and Adleman)
- Complexity of operations in RSA



RSA uses modular exponentiation for encryption/decryption; To attack it, Eve needs to calculate $\sqrt[e]{C} \mod n$.

RSA Algorithm

Encryption, decryption, and key generation in RSA



Two Algebraic Structures

Encryption/Decryption Ring:

$$R = \langle Z_n, +, \times \rangle$$

Key-Generation Group:

$$G = \langle Z_{\phi(n)} *, \times \rangle$$

RSA uses two algebraic structures: a public ring R = <Z $_n$, +, $\times>$ and a private group G = <Z $_{\phi(n)}*$, $\times>$.

In RSA, the tuple (e, n) is the public key; the integer d is the private key.

RSA Key Generation

```
RSA_Key_Generation {

Select two large primes p and q such that p \neq q.

n \leftarrow p \times q

\phi(n) \leftarrow (p-1) \times (q-1)

Select e such that 1 < e < \phi(n) and e is coprime to \phi(n)

d \leftarrow e^{-1} \mod \phi(n)

d \leftarrow e^{-1} \mod \phi(n)

Public_key \leftarrow (e, n)

Private_key \leftarrow d

d \leftarrow e

d \leftarrow e
```


Encryption

In RSA, p and q must be at least 512 bits; n must be at least 1024 bits.

Decryption

```
RSA_Decryption (C, d, n) //C is the ciphertext in \mathbb{Z}_n {

P ← Fast_Exponentiation (C, d, n) // Calculation of (\mathbb{C}^d \mod n)

return P
}
```


Proof of RSA

If $n = p \times q$, a < n, and k is an integer, then $a^{k \times \phi(n) + 1} \equiv a \pmod{n}$.

```
\begin{aligned} P_1 &= C^d \bmod n = (P^e \bmod n)^d \bmod n = P^{ed} \bmod n \\ ed &= k \phi(n) + 1 & \text{$//d$ and $e$ are inverses modulo $\phi(n)$} \\ P_1 &= P^{ed} \bmod n &\to P_1 = P^{k \phi(n) + 1} \bmod n \\ P_1 &= P^{k \phi(n) + 1} \bmod n & \text{$//Euler's theorem (second version)} \end{aligned}
```


Examples

Bob chooses 7 and 11 as p and q and calculates n = 77. The value of $\phi(n) = (7 - 1)(11 - 1)$ or 60. Now he chooses two exponents, e and d, from $Z_{60} *$. If he chooses e to be 13, then d is 37. Note that $e \times d \mod 60 = 1$ (they are inverses of each Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5.

Plaintext: 5

$$C = 5^{13} = 26 \mod 77$$

Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26

$$P = 26^{37} = 5 \mod 77$$

Plaintext: 5

Now assume that another person, John, wants to send a message to Bob. John can use the same public key announced by Bob (probably on his website), 13; John's plaintext is 63. John calculates the following:

Plaintext: 63

 $C = 63^{13} = 28 \mod 77$

Ciphertext: 28

Bob receives the ciphertext 28 and uses his private key 37 to decipher the ciphertext:

Ciphertext: 28

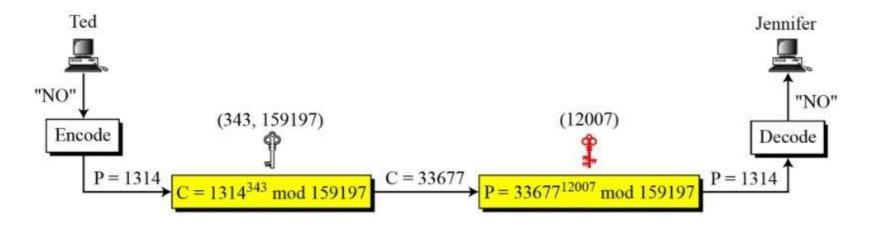
 $P = 28^{37} = 63 \mod 77$

Plaintext: 63

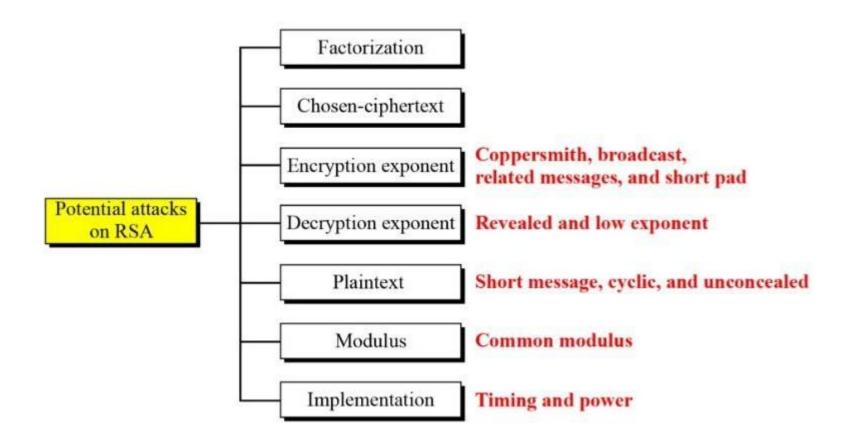
Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates n = 159197. She then calculates $\phi(n) = 158400$. She then chooses e = 343 and e = 12007. Show how Ted can send a message to Jennifer if he knows e and e.

Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a number (from 00 to 25), with each character coded as two digits. He then concatenates the two coded characters and gets a four-digit number. The plaintext is 1314.

Encryption and decryption in Example



Attacks on RSA



Factorization Attack

The security of RSA is based on the idea that the modulus is so large that it is infeasible to factor it in a reasonable time. Bob selects p and q and calculates $n = p \times q$. Although n is public, p and q are secret. If Eve can factor n and obtain p and q, she can calculate $\phi(n) = (p-1)(q-1)$. Eve then can calculate $d = e^{-1} \mod \phi(n)$ because e is public. The private exponent d is the trapdoor that Eve can use to decrypt any encrypted message.

Chosen Cipher text Attack

A potential attack on RSA is based on the multiplicative property of RSA. Assume that Alice creates the ciphertext $C = P^e \mod n$ and sends C to Bob. Also assume that Bob will decrypt an arbitrary ciphertext for Eve, other than C. Eve intercepts C and uses the following steps to find P:

- a. Eve chooses a random integer X in Z_n^* .
- b. Eve calculates $Y = C \times X^e \mod n$.
- c. Eve sends Y to Bob for decryption and get Z = Y^d mod n; This step is an instance of a chosen-ciphertext attack.
- d. Eve can easily find P because

$$Z = Y^d \bmod n = (C \times X^e)^d \bmod n = (C^d \times X^{ed}) \bmod n = (C^d \times X) \bmod n = (P \times X) \bmod n$$

$$Z = (P \times X) \bmod n \longrightarrow P = Z \times X^{-1} \bmod n$$

Eve uses the extended Euclidean algorithm to find the multiplicative inverse of X and eventually the value of P.

Attacks on Encryption Exponent

- These attacks do not generally result in a breakdown of the system, but they still need to be prevented. To thwart these kinds of attacks, the recommendation is to use $e = 2^{16} + 1 = 65537$ (or a prime close to this value).
- Coppersmith Theorem Attack The major low encryption exponent attack is referred to as the Coppersmith theorem attack. This theorem states that in a modulo-n polynomial f(x) of degree e, one can use an algorithm of the complexity log n to find the roots if one of the roots is smaller than n^{1/e}.

Broadcast Attack

The **broadcast attack** can be launched if one entity sends the same message to a group of recipients with the same low encryption exponent. For example, assume the following scenario: Alice wants to send the same message to three recipients with the same public exponent e = 3 and the moduli n_1 , n_2 , and n_3 .

$$C_1 = P^3 \mod n_1$$
 $C_2 = P^3 \mod n_2$ $C_3 = P^3 \mod n_3$

Applying the Chinese remainder theorem to these three equations, Eve can find an equation of the form $C' = P^3 \mod n_1 n_2 n_3$. This means that $P^3 < n_1 n_2 n_3$. This means $C' = P^3$ is in regular arithmetic (not modular arithmetic). Eve can find the value of $C' = P^{1/3}$.

Related Message Attack

• The related message attack, discovered by Franklin Reiter, can be briefly described as follows. Alice encrypts two plaintexts, P1 and P2, and encrypts them with e = 3 and sends C1 and C2 to Bob. If P1 is related to P2 by a linear function, then Eve can recover P1 and P2 in a feasible computation time.

Short pad Attack

The **short pad attack**, discovered by Coppersmith, can be briefly described as follows. Alice has a message M to send to Bob. She pads the message with r_1 , encrypts the result to get C_1 , and sends C_1 to Bob. Eve intercepts C_1 and drops it. Bob informs Alice that he has not received the message, so Alice pads the message again with r_2 , encrypts it, and sends it to Bob. Eve also intercepts this message. Eve now has C_1 and C_2 , and she knows that they both are ciphertexts belonging to the same plaintext. Coppersmith proved that if r_1 and r_2 are short, Eve may be able to recover the original message M.

Attacks on Decryption exponent

Revealed Decryption Exponent Attack It is obvious that if Eve can find the decryption exponent, d, she can decrypt the current encrypted message. However, the attack does not stop here. If Eve knows the value of d, she can use a probabilistic algorithm (not discussed here) to factor n and find the value of p and q. Consequently, if Bob changes only the compromised decryption exponent but keeps the same modulus, n, Eve will be able to decrypt future messages because she has the factorization of n. This means that if Bob finds out that the decryption exponent is compromised, he needs to choose new value for p and q, calculate n, and create totally new private and public keys.

In RSA, if d is comprised, then p, q, n, e, and d must be regenerated.

Low Decryption Exponent Attack Bob may think that using a small private-key d, would make the decryption process faster for him. Wiener showed that if d < 1/3 $n^{1/4}$, a special type of attack based on *continuous fraction*, a topic discussed in number theory, can jeopardize the security of RSA. For this to happen, it must be the case that q . If these two conditions exist, Eve can factor <math>n in polynomial time.

In RSA, the recommendation is to have $d \ge 1/3 n^{1/4}$ to prevent low decryption exponent attack.

Plaintext Attack

• Plaintext and cipher-text in RSA are permutations of each other because they are integers in the same interval (0 to n – 1). In other words, Eve already knows something about the plaintext. This characteristic may allow some attacks on the plaintext. Three attacks have been mentioned in the literature: short message attack, cycling attack, and unconcealed attack.

Short Message Attack

In the **short message attack**, if Eve knows the set of possible plaintexts, she then knows one more piece of information in addition to the fact that the ciphertext is the permutation of plaintext. Eve can encrypt all of the possible messages until the result is the same as the ciphertext intercepted. For example, if it is known that Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from 0000 to 9999 to find the plaintext. For this reason, short messages must be padded with random bits at the front and the end to thwart this type of attack. It is strongly recommended that messages be padded with random bits before encryption using a method called OAEP

Cycling Attack

- The cycling attack is based on the fact that if the ciphertext is a permutation of the plaintext, the continuous encryption of the ciphertext will eventually result in the plaintext.
- However, Eve does not know what the plaintext is, so she does not know when to stop. She needs to go one step further. When she gets the ciphertext C again, she goes back one step to find the plaintext.

```
Intercepted ciphertext: C
C_1 = C^e \mod n
C_2 = C_1^e \mod n
...
C_k = C_{k-1}^e \mod n \rightarrow \text{If } C_k = C, \text{ stop: the plaintext is } P = C_{k-1}
```


Unconcealed Message Attack

unconcealed message is a message that encrypts to itself (cannot be concealed). It has been proven that there are always some messages that are encrypted to themselves. Because the encryption exponent normally is odd, there are some plaintexts that are encrypted to themselves such as P = 0 and P = 1. Although there are more, if the encrypting exponent is selected carefully, the number of these message is negligible. The encrypting program can always check if the calculated ciphertext is the same as the plaintext and reject the plaintext before submitting the ciphertext.

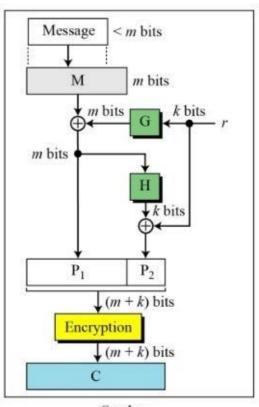
Optimal Asymmetric encryption Padding

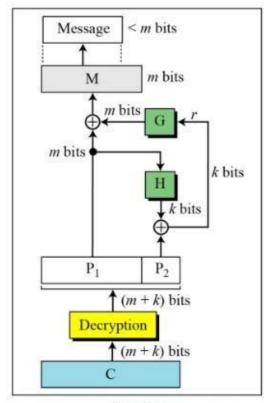
M: Padded message r: One-time random number

P: Plaintext $(P_1 \parallel P_2)$

G: Public function (k-bit to m-bit)

random number C: Ciphertext H: Public function (m-bit to k-bit)





Receiver

Encryption

- 1. Alice pads the message to make an m-bit message, which we call M.
- 2. Alice chooses a random number *r* of *k* bits. Note that *r* is used only once and is then destroyed.
- 3. Alice uses a public one-way function, G, that takes an r-bit integer and creates an m-bit integer (m is the size of M, and r < m). This is the mask.
- 4. Alice applies the mask G(r) to create the first part of the plaintext $P_1 = M \oplus G(r)$. P_1 is the masked message.
- 5. Alice creates the second part of the plaintext as $P_2 = H(P_1) \oplus r$. The function H is another public function that takes an *m*-bit input and creates an *k*-bit output.

P₂ is used to allow

- Bob to recreate the mask after decryption.
- 6. Alice creates $C = P^e = (P_1 \parallel P_2)^e$ and sends C to Bob.

Decryption

The following shows the decryption process:

- 1. Bob creates $P = C^d = (P_1 || P_2)$.
- 2. Bob first recreates the value of r using $H(P_1) \oplus P_2 = H(P_1) \oplus H(P_1) \oplus r = r$.
- 3. Bob uses $G(r) \oplus P = G(r) \oplus G(r) \oplus M = M$ to recreate the value of the padded message.
- 4. After removing the padding from M, Bob finds the original message.

Example (Realistic)

Here is a more realistic example. We choose a 512-bit p and q, calculate n and $\phi(n)$, then choose e and test for relative primeness with $\phi(n)$. We then calculate d. Finally, we show the results of encryption and decryption. The integer p is a 159-digit number.

p =

961303453135835045741915812806154279093098455949962158225831508796 479404550564706384912571601803475031209866660649242019180878066742 1096063354219926661209

q =

120601919572314469182767942044508960015559250546370339360617983217 314821484837646592153894532091752252732268301071206956046025138871 45524969000359660045617

The modulus $n = p \times q$. It has 309 digits.

n =

 $115935041739676149688925098646158875237714573754541447754855261376\\147885408326350817276878815968325168468849300625485764111250162414\\552339182927162507656772727460097082714127730434960500556347274566\\628060099924037102991424472292215772798531727033839381334692684137\\327622000966676671831831088373420823444370953$

$\phi(n) = (p-1)(q-1)$ has 309 digits.

 $\phi(n) =$

 $115935041739676149688925098646158875237714573754541447754855261376\\147885408326350817276878815968325168468849300625485764111250162414\\552339182927162507656751054233608492916752034482627988117554787657\\013923444405716989581728196098226361075467211864612171359107358640\\614008885170265377277264467341066243857664128$

Bob chooses e = 35535 (the ideal is 65537) and tests it to make sure it is relatively prime with $\phi(n)$. He then finds the inverse of e modulo $\phi(n)$ and calls it d.

e =	35535
d =	580083028600377639360936612896779175946690620896509621804228661113 805938528223587317062869100300217108590443384021707298690876006115 306202524959884448047568240966247081485817130463240644077704833134 010850947385295645071936774061197326557424237217617674620776371642 0760033708533328853214470885955136670294831

Alice wants to send the message "THIS IS A TEST", which can be changed to a numeric value using the 00-26 encoding scheme (26 is the space character).

P =

1907081826081826002619041819

The ciphertext calculated by Alice is $C = P^e$, which is

C =

475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
148354103361657898467968386763733765777465625079280521148141844048
14184430812773059004692874248559166462108656

Bob can recover the plaintext from the ciphertext using $P = C^d$, which is

P =

1907081826081826002619041819

The recovered plaintext is "THIS IS A TEST" after decoding.