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Key Generation

{

ElGamal_Key_Generation

Select a large prime p

Select d to be a member of the group G=<Z,*. x>such that 1 sd <p -2
Select ¢, to be a primitive root in the group G=<Z * x>

€y ¢']‘I mod p

Public_key « (¢).e5.p) // To be announced publicly
Private_key « d /I To be kept secret

return Public_key and Private_key
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Encryption

ElGamal_Encryption (¢,. ¢>. p. P) // P is the plaintext
(

Select a random integer r in the group G =< Z,*, x>
C, « ¢/ "modp
C, « (Pxe))modp /I C, and C, are the ciphertexts

return C and C,
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Decryption

ElGamal_Decryption (d. p. C,. C,) /I C, and C, are the ciphertexts
{

P « [Cy(C) " Imodp /I P is the plaintext

return P
}

Note: Bit operation complexity of encryption and decryption in: Elgamall Cryptosytemis:polynomial|
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Proof

The ElGamal decryption expression Cy X (Cld)'1 can be verified to be P through
substitution:

[C, % (C,") " mod p= [(e"x P)x (") T mod p = (e, ) x P x (¢! =P
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Example

Here is a trivial example. Bob chooses p = 11 and e, = 2.

and d =3 e, =e" = 8. So the public keys are (2, 8, 11)
and the private key is 3. Alice chooses r = 4 and calculates
C1 and C2 for the plaintext 7.

Plaintext: 7

Ci=¢/"mod 1l =16 mod Il =5mod 11
Cr=(Pxey))mod 11 =(7x4096) mod 11 =6 mod 11
Ciphertext: (5, 6)

Bob receives the ciphertexts (5 and 6) and calculates the
plaintext.

[Cy % (C;Y) ! mod 11=6 % (53 mod 11=6 x3mod 11 =7 mod 11
___ Plaintext: 7
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Instead of using P = |C, x (C,%) 7] mod p for decryption, we can

avoid the calculation of multiplicative inverse and use
P=|C, x C,7"] mod p (see Fermat’s little theorem
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Security of Elgamal
® Low Modulus Attack

[f the value of p is not large enough, Eve can use some efficient algorithms

to solve the discrete logarithm problem to find d or r. If p 1s small, Eve can easily find
d = log,, e, mod p and store 1t to decrypt any message sent to Bob.This can be done
once and used as long as Bob uses the same keys. Eve can also use the value of C; to find
random number 7 used by Alice in each transmission = log,;C; mod p.
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® Known Plaintext Attack

If Alice uses the same random exponent r, to encrypt two plaintexts P and P’, Eve
discovers P’ if she knows P. Assume that C, =P X (e,") mod p and C’y = P" X (e,") mod p.
Eve finds P using the following steps:

I. (e)) = C;xP ' mod p

2. P'= Cyx (e Y mod p
It 1s recommended that Alice use a fresh value of  to thwart the known-plaintext
attacks.
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Trapdoor One Way Function

Functions
A function as rule mapping a domain to a range
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X /
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One-Way Function (OWF)

1. f'is easy to compute.
2. flis difficult to compute.

Trapdoor One-Way Function (TOWF)

3. Given y and a trapdoor, x can be
computed easily.
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Cryptanalysis

o Cryptanalysis is the art of trying to decrypt the
encrypted messages without the use of the key
that was used to encrypt the messages.
Cryptanalysis uses mathematical analysis &
algorithms to decipher the ciphers.

o The success of cryptanalysis attacks
depends

Amount of time available
Computing power available

Storage capacity available
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Known-Plaintext Analysis (KPA): Attacker decrypts ciphertext with
known partial plaintext.

Chosen-Plaintext Analysis (CPA): Attacker uses ciphertext that
matches arbitrarily selected plaintext via the same algorithm
technique.

Ciphertext-Only Analysis (COA): Attacker uses known ciphertext
collections.

© Man-in-the-Middle (MITM) Attack: Attack occurs when two parties
use message or key sharing for communication via a channel that
appears secure but is actually compromised.
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Types

. Brute force attack- this type of attack uses algorithms that
try to guess all the possible logical combinations of the
plaintext which are then ciphered and compared against the
original cipher.

- Dictionary attack- this the of attack uses a wordlist in order
to find a match of either the plaintext or key. It is mostly used
when trying to crack encrypted passwords.

.~ Rainbow table attack- this type of attack compares the
cipher text against pre- computed hashes to find matches.
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Chosen Plaintext Attack
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text/plaintext pair

Eve

I Plaintext

Chosen Cipher text Attack

@ Similar to the chosen plaintext attack, except that Eve
chooses some cipher text and decrypt it to form a cipher

Pair created from
chosen ciphertext

Ciphertext| |
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RSA Cryptosystem

® The most common public key algorithm (Rivest, Shamir and
Adleman)

e Complexity of operations in RSA

Eve

Alice % Bob
&n 92 v
| P = \7(Tmod 7 Exponential P

o complexity : -
C=P'modn | Polynomial Polynomial [M5 _ od 11104
C

complexity complexity

Insecure channel

RSA uses modular exponentiation for encryption/decryption;
To attack it, Eve needs to calculate ‘:/E mod n.
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RSA Algorithm

Encryption, decryption, and key generation in RSA
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Two Algebraic Structures

Encryption/Decryption Ring: |R =<Z , +, X >

Key-Generation Group: |G =<2 aig ¥a X P

RSA uses two algebraic structures:
a public ring R = <Z,, +, X > and a private group G = <Z, ¥, X>.

In RSA, the tuple (e, ) is the public key; the integer d is the private key.
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RSA Key Generation

RSA_Key_Generation
{
Select two large primes p and ¢ such that p # ¢.
n«pxgq
On) «(p-1)x(g —-1)
Select ¢ such that | < e < ¢(n) and ¢ is coprime to ¢(n)

d «¢ 'mod O(n) /1 d is inverse of ¢ modulo o(n)
Public_key « (e, n) // To be announced publicly
Private_key « d /I 'To be kept secret

return Public_key and Private_key

Q)
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Encryption

RSA_Encrypli(;n (P. ¢, n) /1 P is the plaintextin Z, and P <n
{

C « Fast_Exponentiation (P. ¢, n) /! Calculation of (P mod n)

return C

In RSA, p and ¢ must be at least 512 bits; » must be at least 1024 bits.
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Decryption

RSA_Decryption (C. d, n) //C is the ciphertext in Z,,
{
P « Fast_Exponentiation (C. d, n) // Calculation of (C? mod n)

return P

}
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Proof of RSA

If n=pxXgqg,a<n, and k is an integer, then a0+l = 4 (mod n).

P, = C? mod n = (P* mod n) mod n = P*/ mod n
ed = kd(n) + 1

P,=P““modn — P, =P+ mod n

P, = P*U"*! mod n = P mod n

/l d and e are inverses modulo ¢(n)

// Euler’s theorem (second version)
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Examples

Bob chooses 7 and 11 as p and g and calculates n = 77. The
value of ¢(n) = (7 = 1)(11 = 1) or 60. Now he chooses two
exponents, e and d, from Z, = . If he chooses e to be 13, then

d is 37. Note that e x d mod 60 = 1 (they are inverses of each
Now imagine that Alice wants to send the plaintext 5 to Bob.
She uses the public exponent 13 to encrypt 5.

Plaintext: 5 C =5" =26 mod 77 Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to
decipher the ciphertext:

Ciphertext: 26 P=26"" =5 mod 77 Plaintext: 5
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Now assume that another person, John, wants to
send a message to Bob. John can use the same
public key announced by Bob (probably on his
website), 13; John’s plaintext is 63. John calculates

the following:

Plaintext: 63 C =633 =28 mod 77 Ciphertext: 28

Bob receives the ciphertext 28 and uses his private key 37 to
decipher the ciphertext:

Ciphertext: 28 P =28 =63 mod 77 Plaintext: 63
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Jennifer creates a pair of keys for herself. She
chooses p = 397 and q = 401. She calculates
n = 159197. She then calculates ¢(n) = 158400. She
then chooses e = 343 and d = 12007. Show how Ted
can send a message to Jennifer if he knows e and n.

Suppose Ted wants to send the message “NO” to
Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two
digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext
Is 1314. -
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Encryption and decryption in Example

Ted

"NO"

(343, 159197) (12007)

.

Encode

Jennifer

C=33677

C = 1314*% mod 159197 P=133677"27 mod 159197
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Attacks on RSA

Factorization I
Chosen-ciphertext I
Fiicivohion expotest Coppersmith, broadcast,
P P related messages, and short pad
Potential attacks . ‘ .
on RSA Decryption cxponentl Revealed and low exponent
Plaintext I Short message, cyclic, and unconcealed
Modulus I Common modulus
Implementation I Timing and power
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Factorization Attack

The security of RSA 1s based on the idea that the modulus 1s so large that it 1s infeasi-
ble to factor it in a reascnable time. Bob selects p and ¢ and calculates n = p x g.
Although n 1s public, p and g are secret. If Eve can factor n and obtain p and ¢, she
can calculate ¢(n) = (p - 1) (g = 1). Eve then can calculate d = ¢”' mod o(n) because
¢ 1s public. The private exponent d 1s the trapdoor that Eve can use to decrypt any
encrypted message.
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Chosen Cipher text Attack

A potential attack on RSA is based on the multiplicative property of RSA. Assume that
Alice creates the ciphertext C = P® mod » and sends C to Bob. Also assume that Bob
will decrypt an arbitrary ciphertext for Eve, other than C. Eve intercepts C and uses the
following steps to find P:

a. Eve chooses a random integer X in Z_*.

b. Eve calculatesY = C x X* mod n.

c. Eve sends Y to Bob for decryption and get Z = Y4 mod n: This step is an instance

of a chosen-ciphertext attack.

d. Ewve can easily find P because

Z=Y9modn=(CxX)¥mod n = (C% x X mod n = (C¥x X) mod n = (P x X) mod n
Z=(PxX)modn — P=ZxX'modn

Eve uses the extended Euclidean algorithm to find the multiplicative inverse of X
and eventually the value of P.
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Attacks on Encryption Exponent

® These attacks do not generally result in a breakdown of the

system, but they still need to be prevented. To thwart these
kinds of attacks, the recommendation isto use e = 216+ 1 =
65537 (or a prime close to this value).

® Coppersmith Theorem Attack The major low encryption
exponent attack Is referred to as the Coppersmith theorem
attack. This theorem states that in a modulo-n polynomial
f(x) of degree e, one can use an algorithm of the complexity
log n to find the roots if one of the roots Is smaller than nl/e,
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Broadcast Attack

The broadcast attack can be launched if one entity sends the
same message to a group of recipients with the same low encryption exponent. For
example, assume the following scenario: Alice wants to send the same message to three
recipients with the same public exponent e = 3 and the moduli , n,, and n5.

Cl — P3 mod nm Cz = P3 mod nH C3 = P3 mod n3

Applying the Chinese remainder theorem to these three equations, Eve can find
an equation of the form C” = P> mod nyn,n5. This means that P3< nyn,n;. This
means C’= P2 is in regular arithmetic (not modular arithmetic). Eve can find the
value of ¢’ =P,
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Related Message Attack

® The related message attack, discovered by Franklin Reiter,

can be briefly described as follows. Alice encrypts two
plaintexts, P1 and P2, and encrypts them with e = 3 and
sends C1 and C2 to Bob. If P1 is related to P2 by a linear

function, then Eve can recover P1 and P2 in a feasible
computation time.
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Short pad Attack

The short pad attack, discovered by Coppersmith, can be briefly
described as follows. Alice has a message M to send to Bob. She pads the message with
r|» encrypts the result to get C,, and sends C; to Bob. Eve intercepts C; and drops it.
Bob informs Alice that he has not received the message, so Alice pads the message again
with r,, encrypts 1t, and sends it to Bob. Eve also intercepts this message. Eve now has
C, and C, and she knows that they both are ciphertexts belonging to the same plaintext.
Coppersmith proved that if | and r, are short, Eve may be able to recover the original
message M.
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Attacks on Decryption exponent

Revealed Decryption Exponent Attack [t 1s obvious that if Eve can find the
decryption exponent, d, she can decrypt the current encrypted message. However, the
attack does not stop here. If Eve knows the value of d. she can use a probabilistic
algorithm (not discussed here) to factor n and find the value of p and ¢. Consequently,
1f Bob changes only the compromised decryption exponent but keeps the same mod-
ulus, n, Eve will be able to decrypt future messages because she has the factorization
of n. This means that if Bob finds out that the decryption exponent is compromised,
he needs to choose new value for p and ¢. calculate n, and create totally new private
and public keys.

In RSA, if dis comprised, then p, ¢, n, ¢, and d must be regenerated.
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Low Decryption Exponent Attack Bob may think that using a small private-key d.
would make the decryption process faster for him. Wiener showed that if d < 1/3 "%, a
special type of attack based on continuous fraction, a topic discussed in number theory.
can jeopardize the security of RSA. For this to happen, it must be the case that ¢ <p < 2g.
[f these two conditions exist, Eve can factor n in polynomial time.

In RSA, the recommendation is to have d 2 1/3 n'* to prevent low decryption
exponent attack.
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Plaintext Attack

® Plaintext and cipher-text in RSA are permutations of each
other because they are integers in the same interval (0 to n —
1). In other words, Eve already knows something about the
plaintext. This characteristic may allow some attacks on the
plaintext. Three attacks have been mentioned in the
Iterature: short message attack, cycling attack, and
unconcealed attack.
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Short Message Attack

[n the short message attack, if Eve knows the set of possible
plaintexts, she then knows one more piece of information n addition to the fact that the
ciphertext is the permutation of plaintext. Eve can encrypt all of the possible messages
until the result 1s the same as the ciphertext intefeepted. For example, if it 1s known that
Alice 15 sending a four-digit number to Bob, Eve can easily try plaintext numbers from
0000 t0 9999 to find the plaintext. For this reason, short messages must be padded with
random bits at the front and the end to thwart this type of attack. It is strongly recom-

mended that messages be padded with random bits before encryption using a method
called OAEP
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Cycling Attack

® The cycling attack Is based on the fact that If the ciphertext is
a permutation of the plaintext, the continuous encryption of
the ciphertext will eventually result in the plaintext.

® However, Eve does not know what the plaintext is, so she
does not know when to stop. She needs to go one step
further.When she gets the ciphertext C again, she goes back
one step to find the plaintext.
[ntercepted ciphertext: C
C;=C° modn
Cy=C,“mod n

Cp=Cyy"mod n — If C;= C, stop: the plaintext is P=C;_,
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Unconcealed Message Attack

unconcealed message 15 a message that encrypts to itself (cannot be concealed). It has
been proven that there are always some messages that are encrypted to themselves.
Because the encryption exponent normally 15 odd. there are some plamtexts that are
encrypted to themselves such as P =0 and P = 1. Although there are more, if the
encrypting exponent 1s selected carefully, the number of these message 1s neghgible.
The encrypting program can always check if the calculated ciphertext 1s the same as
the plaintext and reject the plaintext before submitting the ciphertext.
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Optimal Asymmetric encryption Padding

M

: Padded message

r: One-time random number  C: Ciphertext

Message | < m bits
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Encryption

[. Alice pads the message to make an m-bit message, which we call M.

2. Alice chooses a random number r of £ bits. Note that r 1s used only once and 1s
then destroyed.

3. Alice uses a public one-way function, G, that takes an r-bit integer and creates an
m-bit integer (m 1s the size of M, and r < m). This is the mask.

4. Alice applies the mask G(r) to create the first part of the plaintext P; =M @ G(r).
P, 1s the masked message.

5. Alice creates the second part of the plaintext as P, = H(P|) © r. The function H 1s
another public function that takes an m-bit input and creates an A-bit output.

P, 1s used to allow

Bob to recreate the mask after decryption.

6. Alice creates C = P“ = (P, || P,)" and sends C to Bob.
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Decryption

The following shows the decryption process:
1. Boo creates P=C/=(P, | P,).
2. Bob first recreates the value of r using H(P,) © P,=H(P)) @ H(P)) @ r=r.
3. Bob uses G(r) @ P=G(r) © G(r) © M = M to recreate the value of the padded
message.
4, After removing the padding from M, Bob finds the original message.
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Example (Realistic)

Here is a more realistic example. We choose a 512-bit p
and ¢, calculate n and ¢(n), then choose ¢ and test for
relative primeness with ¢(n). We then calculate d.
Finally, we show the results of encryption and
decryption. The integer p is a 159-digit number.

p:

961303453135835045741915812806154279093098455949962 15822583 1508796
479404550564706384912571601803475031209866660649242019180878066742
1096063354219926661209

120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871
45524969000359660045617




The modulus n = p X ¢. It has 309 digits.

115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
55233918292716250765677272746009708271412773043496050055634 7274566
62806009992403710299142447229221577279853172703383938 1334692684137

32762200096667667 183 1831088373420823444370953

n=

&(n) = (p — 1)(q — 1) has 309 digits.

d(m)y= | 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664 128




Bob chooses e = 35535 (the ideal is 65537) and tests it to
make sure it is relatively prime with ¢(n). He then finds
the inverse of ¢ modulo ¢(n) and calls it d.

e= 35535

d= 58008302860037763936093661289677917594669062089650962 1804228661113
8059385282235873170628691003002 171085904433840217072986908760061 15
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
076003370853332885321447088595513667029483 1




Alice wants to send the message “THIS IS A TEST”,
which can be changed to a numeric value using the
00-26 encoding scheme (26 is the space character).

P=

190708182608182600261904 1819

The ciphertext calculated by Alice is C = P¢, which is

C=

475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
14835410336165789846796838676373376577746562507928052114814 1844048
14184430812773059004692874248559166462108656




Bob can recover the plaintext from the ciphertext using
P = C9 which is

P= 190708182608 18260026 19041819

The recovered plaintext is “THIS IS A TEST” after
decoding.




