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Example 10.7

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates
n = 397 × 401= 159197. She then calculates φ(n) = 396 × 400 = 158400. She then chooses
e = 343 and d = 12007. Show how Ted can send a message to Jennifer if he knows e and n. 

Solution

Suppose Ted wants to send the message “NO” to Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext is 1314. Ted then uses e and n to encrypt
the message. The ciphertext is 1314343 = 33677 mod 159197. Jennifer receives the message
33677 and uses the decryption key d to decipher it as   3367712007 = 1314 mod 159197. Jennifer
then decodes 1314 as the message “NO”. Figure 10.7 shows the process.

Attacks on RSA

No devastating attacks on RSA have been yet discovered. Several attacks have been
predicted based on the weak plaintext, weak parameter selection, or inappropriate
implementation. Figure 10.8 shows the categories of potential attacks.

Figure 10.7 Encryption and decryption in Example 10.7

Figure 10.8 Taxonomy of potential attacks on RSA
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Factorization Attack

The security of RSA is based on the idea that the modulus is so large that it is infeasi-
ble to factor it in a reasonable time. Bob selects p and q and calculates n = p × q.
Although n is public, p and q are secret. If Eve can factor n and obtain p and q, she
can calculate φ(n) = (p − 1) (q − 1). Eve then can calculate d = e−1 mod φ(n) because
e is public. The private exponent d is the trapdoor that Eve can use to decrypt any
encrypted message. 

As we learned in Chapter 9, there are many factorization algorithms, but none of
them can factor a large integer with polynomial time complexity. To be secure, RSA
presently requires that n should be more than 300 decimal digits, which means that the
modulus must be at least 1024 bits. Even using the largest and fastest computer avail-
able today, factoring an integer of this size would take an infeasibly long period of
time. This means that RSA is secure as long as an efficient algorithm for factorization
has not been found. 

Chosen-Ciphertext Attack

A potential attack on RSA is based on the multiplicative property of RSA. Assume that
Alice creates the ciphertext C = Pe mod n and sends C to Bob. Also assume that Bob
will decrypt an arbitrary ciphertext for Eve, other than C. Eve intercepts C and uses the
following steps to find P:

a. Eve chooses a random integer X in Zn*.

b. Eve calculates Y = C × Xe mod n.

c. Eve sends Y to Bob for decryption and get Z = Yd mod n; This step is an instance
of a chosen-ciphertext attack. 

d. Eve can easily find P because

Eve uses the extended Euclidean algorithm to find the multiplicative inverse of X
and eventually the value of P. 

Attacks on the Encryption Exponent

To reduce the encryption time, it is tempting to use a small encryption exponent e. The
common value for e is e = 3 (the second prime). However, there are some potential
attacks on low encryption exponent that we briefly discuss here. These attacks do not
generally result in a breakdown of the system, but they still need to be prevented. To
thwart these kinds of attacks, the recommendation is to use e = 216 + 1 = 65537 (or a
prime close to this value). 

Coppersmith Theorem Attack The major low encryption exponent attack is referred
to as the Coppersmith theorem attack. This theorem states that in a modulo-n polyno-
mial f(x) of degree e, one can use an algorithm of the complexity log n to find the
roots if one of the roots is smaller than n1/e. This theorem can be applied to the RSA

Z = Yd mod n = (C × Xe)d mod n = (Cd × Xed) mod n = (Cd × X) mod n = (P × X) mod n
Z = (P × X) mod n    →    P = Z × X−1 mod n 
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cryptosystem with C = f (P) = Pe mod n. If e = 3 and only two thirds of the bits in the
plaintext P are known, the algorithm can find all bits in the plaintext. 

Broadcast Attack The broadcast attack can be launched if one entity sends the
same message to a group of recipients with the same low encryption exponent. For
example, assume the following scenario: Alice wants to send the same message to three
recipients with the same public exponent e = 3 and the moduli n1, n2, and n3. 

Applying the Chinese remainder theorem to these three equations, Eve can find
an equation of the form C′ = P3 mod n1n2n3. This means that P3< n1n2n3. This
means C′= P3 is in regular arithmetic (not modular arithmetic). Eve can find the
value of C′ = P1/3. 

Related Message Attack The related message attack, discovered by Franklin Reiter,
can be briefly described as follows. Alice encrypts two plaintexts, P1 and P2, and
encrypts them with e = 3 and sends C1 and C2 to Bob. If P1 is related to P2 by a linear
function, then Eve can recover P1 and P2 in a feasible computation time. 

Short Pad Attack The short pad attack, discovered by Coppersmith, can be briefly
described as follows. Alice has a message M to send to Bob. She pads the message with
r1, encrypts the result to get C1, and sends C1 to Bob. Eve intercepts C1 and drops it.
Bob informs Alice that he has not received the message, so Alice pads the message again
with r2, encrypts it, and sends it to Bob. Eve also intercepts this message. Eve now has
C1 and C2, and she knows that they both are ciphertexts belonging to the same plaintext.
Coppersmith proved that if r1 and r2 are short, Eve may be able to recover the original
message M. 

Attacks on the Decryption Exponent

Two forms of attacks can be launched on the decryption exponent: revealed decryp-

tion exponent attack and low decryption exponent attack. They are discussed
briefly. 

Revealed Decryption Exponent Attack It is obvious that if Eve can find the
decryption exponent, d, she can decrypt the current encrypted message. However, the
attack does not stop here. If Eve knows the value of d, she can use a probabilistic
algorithm (not discussed here) to factor n and find the value of p and q. Consequently,
if Bob changes only the compromised decryption exponent but keeps the same mod-
ulus, n, Eve will be able to decrypt future messages because she has the factorization
of n. This means that if Bob finds out that the decryption exponent is compromised,
he needs to choose new value for p and q, calculate n, and create totally new private
and public keys. 

C1 = P3 mod n1                                    C2 = P3 mod n2                                   C3 = P3 mod n3

In RSA, if d is comprised, then p, q, n, e, and d must be regenerated. 
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Low Decryption Exponent Attack Bob may think that using a small private-key d,
would make the decryption process faster for him. Wiener showed that if d < 1/3 n1/4, a
special type of attack based on continuous fraction, a topic discussed in number theory,
can jeopardize the security of RSA. For this to happen, it must be the case that q < p < 2q.
If these two conditions exist, Eve can factor n in polynomial time.  

Plaintext Attacks

Plaintext and ciphertext in RSA are permutations of each other because they are inte-
gers in the same interval (0 to n − 1). In other words, Eve already knows something
about the plaintext. This characteristic may allow some attacks on the plaintext. Three
attacks have been mentioned in the literature: short message attack, cycling attack, and
unconcealed attack.

Short Message Attack In the short message attack, if Eve knows the set of possible
plaintexts, she then knows one more piece of information in addition to the fact that the
ciphertext is the permutation of plaintext. Eve can encrypt all of the possible messages
until the result is the same as the ciphertext intercepted. For example, if it is known that
Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from
0000 to 9999 to find the plaintext. For this reason, short messages must be padded with
random bits at the front and the end to thwart this type of attack. It is strongly recom-
mended that messages be padded with random bits before encryption using a method
called OAEP, which is discussed later in this chapter. 

Cycling Attack The cycling attack is based on the fact that if the ciphertext is a
permutation of the plaintext, the continuous encryption of the ciphertext will eventu-
ally result in the plaintext. In other words, if Eve continuously encrypts the inter-
cepted ciphertext C, she will eventually get the plaintext. However, Eve does not
know what the plaintext is, so she does not know when to stop. She needs to go one
step further. When she gets the ciphertext C again, she goes back one step to find the
plaintext. 

Is this a serious attack on RSA? It has been shown that the complexity of the algo-
rithm is equivalent to the complexity of factoring n. In other words, there is no efficient
algorithm that can launch this attack in polynomial time if n is large.

Unconcealed Message Attack Another attack that is based on the permutation rela-
tionship between plaintext and ciphertext is the unconcealed message attack. An

In RSA, the recommendation is to have d ≥≥≥≥ 1/3 n1/4 to prevent low decryption 

exponent attack.

Intercepted ciphertext: C
C1 = Ce   mod n   
C2 = C1

e mod n   
… 
Ck = Ck−1

e mod n → If Ck = C, stop: the plaintext is  P = Ck−1
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unconcealed message is a message that encrypts to itself (cannot be concealed). It has
been proven that there are always some messages that are encrypted to themselves.
Because the encryption exponent normally is odd, there are some plaintexts that are
encrypted to themselves such as P = 0 and P = 1. Although there are more, if the
encrypting exponent is selected carefully, the number of these message is negligible.
The encrypting program can always check if the calculated ciphertext is the same as
the plaintext and reject the plaintext before submitting the ciphertext. 

Attacks on the Modulus

The main attack on RSA, as discussed previously, is the factorization attack. The fac-
torization attack can be considered an attack on the low modulus. However, because we
have already discussed this attack, we will concentrate on another attack on the modu-
lus: the common modulus attack. 

Common Modulus Attack The common modulus attack can be launched if a com-
munity uses a common modulus, n. For example, people in a community might let a
trusted party select p and q, calculate n and φ(n), and create a pair of exponents (ei, di)
for each entity. Now assume Alice needs to send a message to Bob. The ciphertext to
Bob is C = PeB mod n. Bob uses his private exponent, dB, to decrypt his message, P =
CdB mod n. The problem is that Eve can also decrypt the message if she is a member of
the community and has been assigned a pair of exponents (eE and dE), as we learned in
the section “Low Decryption Exponent Attack”. Using her own exponents (eE and dE),
Eve can launch a probabilistic attack to factor n and find Bob’s dB. To thwart this type
of attack, the modulus must not be shared. Each entity needs to calculate her or his own
modulus.

Attacks on Implementation

Previous attacks were based on the underlying structure of RSA. As Dan Boneh has
shown, there are several attacks on the implementation of RSA. We mention two of
these attacks: the timing attack and the power attack. 

Timing Attack Paul Kocher elegantly demonstrated a ciphertext-only attack, called
the timing attack. The attack is based on the fast-exponential algorithm discussed in
Chapter 9. The algorithm uses only squaring if the corresponding bit in the private
exponent d is 0; it uses both squaring and multiplication if the corresponding bit is 1. In
other words, the timing required to do each iteration is longer if the corresponding bit is
1. This timing difference allows Eve to find the value of bits in d, one by one. 

Assume that Eve has intercepted a large number of ciphertexts, C1 to Cm. Also
assume that Eve has observed how long it takes for Bob to decrypt each ciphertext, T1
to Tm. Eve, who knows how long it takes for the underlying hardware to calculate a
multiplication operation, calculated t1 to tm, where ti is the time required to calculate
the multiplication operation Result = Result × Ci mod n. 

Eve can use Algorithm 10.5, which is a simplified version of the algorithm used in
practice, to calculate all bits in d (d0 to dk−1).   

The algorithm sets d0 = 1 (because d should be odd) and calculates new values for
Ti’s (decryption time related to d1 to dk−1). The algorithm then assumes the next bit is 1


